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Abstract. The qualitative features of the equation of state of matter at supernuclear densities are 
deduced through a careful examination of the nature of particle interactions at short distances and 
by the introduction of an Effective mass spectrum.' it is found that the equation of state begins to take 
on a particularly simple form (the 'asymptotic form') at a relatively low matter density of 101 7 g cm - 3 . 
A brief review of various approaches to calculate the equation of state for a neutron star is also given. 

1. Introduction 

In a system of particles with strong interaction dynamics, the two models very often 
employed are the potential interaction and the dual resonance approach. The former 
has been applied very extensively, and most successfully, to systems of many nucleons; 
the latter has been applied to systems of a few (most successfully zero) baryons. In the 
construction of an equation of state for a neutron star, the matter at nuclear densities 
can be described very accurately by the potential model of two-neutron correlations, 
while at much higher densities, the proliferation of excited particle states suggests the 
dominance of single particle dynamics. Unfortunately, the region of density which is 
most sensitive to the mass of a neutron star is at a matter density of 1 0 1 5 to 1 0 1 7 g cm " 3 , 
and it is not covered by the usual potential interactions in nuclear physics, or by the 
dual resonance model in high energy physics. A major effort is clearly required to 
bring together techniques from different fields of physics to explain this wonderful 
object. 

2. Difficulties in the Theoretical Models 

Figure 1 shows some results of neutron matter calculations (Leung and Wang, 1971). 
The equations of state derived from various nuclear potentials are fairly consistent 
with each other for matter near nuclear densities, but they begin to diverge with each 
other at higher densities as the effect of the nuclear potential core becomes important. 
There are various forms of potential core; some are infinitely stiff at a finite core 
radius, some have an inverse radius dependence on the repulsion, some have finite and 
constant repulsion, and some have no explicit repulsion. It is not clear that one form 
of potential core is less arbitrary than the other. There are many corrections that should 
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Fig. 1. Equations of state for neutron matter calculated from four sets of nuclear potentials. 

be included in the consideration; the condensation energy of the neutrons, the clustering 
effect of the protons and the small contribution from the electrons, the many-body 
forces, the correlations from higher than the two-body terms, the relativistic correc­
tions, the potential contribution due to the high angular momentum partial waves, the 
non-local consideration of the momentum transfer at short distances. Besides the first 
two items, all corrections become increasingly important as the nucleons get closer. 
There are also some basic questions that may be asked about the potential approach. 
Consider, for example, the Yang scaling model with 0.7 fm for the proton dimension 
and 0.6 fm for the pions. Surely when the internucleon distance approaches this 
dimension, some serious corrections should be made. The most important difficulty 
perhaps arises from the lack of a well developed potential to operate among hadrons 
in general. One may certainly consider all baryons as if they were nucleons, but there 
is no compelling reason to do so. 

Figure 2 is an overall equation of state for degenerate matter. Starting with a very 
repulsive potential core and extending the many-body calculations from the nuclear 
physics, one obtains the maximum mass of a neutron star of about 1.5 MQ, while 
without an explicit repulsion in the nuclear core, the limiting mass may be as low as 
0.3 Me. Note that the equation of state is limited by the so-called 'causality relation' 
P=ec2; a stiff equation of state at matter densities higher than 10 1 5 g c m " 3 would not 
support a neutron star heavier than about 1.5 MQ (unless one let the equation of state 
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Fig. 2. An overall description of the equation of state for the cold degenerate matter maintained at 
neutral charge. Curve (1) can support a neutron star with maximum mass of about 1.5 M Q , while 

curve (2) can support only 0.3 MQ. 
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go beyond the causality limit) - only a stiff equation of state at matter density around 
1 0 1 4 g c m ~ 3 would do, but this is where the usual nuclear physics operates and a 
judgment can be easily made. 

Raymond Sawyer in a recent series of articles (Sawyer, 1972a, 1972b), cast two 
serious doubts upon the recent calculations made on the equation of state of matter at 
supernuclear densities. His first objection is that the states of the decay channel of the 
excited baryons may be occupied and their self-energy should therefore be shifted 
upward. The second objection is that the pions in a very dense matter may form a 
degenerate sea so as to considerably reduce the Fermi energy of the baryons. These 
objections apply to the potential approach as well as to the dual resonance or the 
bootstrap considerations. We concur with Sawyer's observation, and suspect that 
some future considerations uncommon to the usual nuclear physics or high energy 
physics may yet to be raised. Faced with such extraordinary uncertainties, we come 
back to a re-examination of the baryons spectrum hoping to learn some general 
properties of the equation of state of matter at supernuclear densities. 

3 . The Baryon Mass Spectrum 

A list of known baryons with masses below 2 GeV can be found in an article by Soding 
et al. (1972). This list is fairly complete and is transcribed in Appendix A giving the 
mass and multiplicity of each. If we compare the cumulative number of baryons, N9 

below a certain mass with the square of that mass, m 2 , normalized to that of the neu­
tron mass, w N , we can see from Figure 3 that it can be approximated by a simple 
power law: 

N = c 1 ( m 2 / m 2 ) a . (1) 

In Figure 3, logN is plotted against l o g ( m 2 / w N ) and the data show remarkable 
linearity with ct=4.0 and a=2.9. From (1) we can deduce the baryon spectrum: 

AN(m) = c0(m2lmifA ( m 2 / m 2 ) , (2) 

where AN denotes the number of baryons within the mass interval A ( m 2 = / w j ) , and 
c0=acu oc=a—\. 

Just as the free neutron equation of state served to illustrate the qualitative features 
of the equation of state of nuclear matter, the equation of state derived from free 
baryons by including all known baryons would provide a qualitative guide to that of 
supernuclear matter. Such an attempt was first considered by Ambartsumyan and 
Saakyan (1960) who made use of all hyperons and resonances known at that time with 
and without some form of interparticle interaction. Based on repulsive vector meson 
exchange, Zel'dovich (1961) has given 

P = (v-l)<?c2. (3) 

where P is the pressure, £ the energy density and v = 2 in his asymptotic limit for 
repulsive interactions. However, Harrison (1965) claimed that due to multiple-meson 
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exchange, the parameter v would be brought back to the more conventional range, 
l < v < 4 / 3 . 

The equation of state derived on the basis of free particles cannot of course be 
realistic and there are serious objections to it since baryons interact strongly at such 
interparticle distances. The neglect of strong interactions certainly cannot be justified. 
Two issues have been raised. First, we know that the mass of a particle resonance such 
as one of those listed in Appendix A is determined experimentally when the particle 
is free to decay strongly. However (Sawyer, 1972a), if the resonance is inhibited from 
decay due to the lack of phase space, as is the case when it is immersed in the Fermi 
sea of dense matter, would its mass remain the same? Second, strong interactions 
among baryons and among baryons and mesons (Sawyer, 1972b, Scalapino, 1972) can 
contribute substantial interaction energy to the system. How much is this interaction 
energy? 

Since there is no accurate way of computing the mass shifts of resonances due to 

Fig. 3. The cumulative number of baryons N below a certain mass m is plotted against the square 
of the mass normalized with respect to the square of the nucleon mass / M N on a log-log plot. The spec­

trum is very sensitive to the index a. 
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alterations in their lifetimes, and the knowledge of particle dynamics is at present 
inadequate to determine the interaction energy, the problem has reached an impasse. 
We shall nevertheless give some plausible arguments below which would then allow 
us to understand the qualitative nature of the equation of state at supernuclear densi­
ties. We shall make use of the notion of mass shifts and claim that the equation of state 
can be derived in terms of a free-particle formalism if the mass of each particle is 
shifted sufficiently to adjust for interaction. It is, of course, always possible to describe 
the statistical mechanics of an interacting baryon matter in terms of a free baryon gas 
provided the masses of particles are adjusted continuously to yield the correct result. 
This, however, is a very difficult thing to do in general if there are only a few types of 
baryons involved since the adjusted mass of each would have to be known exactly. 
Now, the main point of our argument is that since the baryon mass spectrum obeys 
a power law, it is most probable that the 'effective baryon mass spectrum' (which one 
would use in conjunction with a free-particle formalism) due to mass shifts as a result 
of interactions would still obey a power law with possibly a different power a. The 
power law expresses merely a certain distribution of baryon states and should not be 
completely obliterated by mass shifts. The plausibility of this conjecture is argued on 
the basis that the baryon-baryon interaction is not the dominant interaction even at 
very high densities, in contradistinction to the reasoning behind ZePdovich's deriva­
tion of (3); the dominant interaction belongs indeed to the meson-baryon interaction 
which to a large extent is revealed by the baryon spectrum. (More explicit considera­
tions of these arguments are given in Section 5). Hence, in the next section, we shall 
give a simple analytic study of the equation of state of dense baryon matter with an 
effective baryon mass spectrum given by (2) except that a is treated as a parameter, 
bearing in mind that even though the analysis resembles that of a free baryon gas, it 
has in fact a much broader basis of validity. 

Let us discuss now the statistical mechanics of a free baryon gas consisting of particles 
obeying a mass spectrum given by (2). The pressure P and energy density & of such a 
gas are given by: 

4. The Equation of State 

00 

(4) 

m 
OO 

(5) 

m 

where \i is the chemical potential, p=\/kT and c2 = c0(2 n2hmN

2*+2)~l. (Note that 
when there are a large variety of baryons present and occurring in different charge 
states, the role of leptons in the equation of state can be ignored.) 

https://doi.org/10.1017/S0074180900099939 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900099939


A SIMPLE EQUATION OF STATE AT SUPER-NUCLEAR DENSITIES 99 

Consider first the degenerate case where /?-*oo. Then, 

p = (c 2 /3) j dm2m2" j (s2 - m2)3'2 de , (6) 

m o 2 m 
H2 ft 

g = c2 j dm2m2" j e2 (e2 - m2)112 de 
mo2 m 

H2 n 

= 3P + c2 j d w 2 m 2 ( a + , ) j (e 2 - m2)112 de , (7) 
m o 2 m 

where the lower limit of the mass spectrum is denoted by ml, which we may take to be 
ml ~0 .8 m^. An integration by parts of the second term in the right-hand side of (7) 
gives: 

<f = 3P + 2 (a + \ ) P + A, (8) 
where 

J = ( 2 c 2 / 3 ) m 2 ( * + I > j (e2-m2)312 de . (9) 
mo 

In this manner we have reduced the expression for $ to one in terms of P and A. It is 
clear that the expression cannot be further reduced since A is only of the order of P, 
and {AjP) diminishes as JU increases at the rate ( M 0 / / I ) 2 ( A

 + 1 ) . The equation of state 
can now be written as 

(<T-zl) = (5 + 2 a ) P , (10) 

which simplifies immediately to the form of (3) whenever {AjP) becomes negligible, 
viz., 

6° ~{5 + 2a) P. (11) 

Thus, the equation of state for cold dense matter is determined once a is known. In 
order for (11) to be useful, it is of course necessary that a should not vary to any extent 
as \i is varied. This, however, is expected to be the case since a appears as a power in the 
effective baryon mass spectrum and therefore should be comparatively stable. 

To get some qualitative feeling for this analysis, we can adopt a = 2, which is the 
power derived for the known baryon spectrum. Assuming that the power law (2) 
holds up to a mass of 2.0 GeV we shall consider the chemical potential \i also up to 
2.0 GeV. Within the interval 1.5 GeV < \x < 2.0 GeV, corresponding to matter densi­
ties 10 1 7 g c m ~ 3 < g < 2 x 1 0 1 8 g e m " 3 , the factor {AjP) is realized. The equation of 
state also compares well with the one using the actual mass of the baryons, as shown 
in Figure 4, testifying to the adequacy of the power law approximation to the baryon 
spectrum. 

The analysis described above is restricted to the case of zero temperature in order to 
be precise. When the temperature is non-zero some of the mass states beyond the 
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2 GeV limit will be excited and the mass spectrum may deviate from a simple power 
law there. The analysis is however not any more difficult when n is finite. From in­
spection one can easily see that (10) is still correct provided that A and P are modified 
by including the factor [exp(e —ju) / ? + l ] - 1 within the energy integral and that the 
upper limit of the mass integral no longer ends at \i2. Again, when (AjP) becomes 
negligible the equation of state leduces back to (11). There is however little need to 
consider the case of finite p since the smallest energy scale in this problem is m0 which 
corresponds to a temperature of 1 0 1 3 K. 

Indeed, one can also consider a more general effective mass spectrum, such as : 

N = c0(m2y (1 + axm + a2m2 +•••)• (12) 

There is however very little to be gained by having a more complicated result at this 
time since we are only interested in estimating roughly at what densities the equation 
of state will take on the form given by (3). 

Fig. 4. The free baryon equation of state computed from Equation (10) using a simple power law 
approximation to the baryon spectrum is drawn in broken line, and the approximate expression given 
by Equation (11) is drawn in solid line. These are compared with that computed using the exact 
baryon spectrum. The latter is represented by circles. The equations of state are not sensitive to 

the index a. 
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5. Discussion 

We try to point out in this article that the equation of state of matter at high densities 
takes on a particularly simple form given by (11) when supernuclear densities around 
1 0 1 7 g c m ~ 3 are reached. We arrive at this result from dynamical considerations 
completely different from those employed before. Whereas it has been customary to 
assume that the interaction energy coming from inter-baryon repulsion would become 
dominant at high matter densities when baryons are squeezed very tightly together, we 
have avoided relying on this assumption completely since there are indications to the 
contrary (see below). Instead, we lay heavy emphasis on the meson-baryon interaction 
of which a great deal is revealed to us through the resonance spectrum of the baryons. 

In nuclear physics, nuclear potentials are provided with a repulsive core. Such a 
strong short-range repulsive baryon-baryon interaction is deemed necessary to prevent 
nuclear collapse and finds its origin theoretically through the exchange of a neutral 
vector meson (like the co-meson). With such a repulsive core a baryon-baryon inter­
action will indeed play the dominant role for matter at high density. We can however 
infer its absence by extending the same theoretical basis for its presence, i.e., the mech­
anism of one-meson-exchange. The fact that spin-1 meson exchange produces re­
pulsion and spin-2 meson exchange produces attraction between baryons can be 
easily seen through analogy with the Coulomb repulsion and gravitational attraction, 
which can be derived by the exchange of photon (spin-1) and graviton (spin-2) 
respectively, and in identifying the baryonic charge (i.e., the baryon number) with 
the electric charge and the gravitational mass. Recent studies in high energy particle 
physics indicate that the co-meson (spin-1) and the /-meson (spin-2), which are 
responsible for strong baryon-baryon forces, lie on 'exchange degenerate linear Regge 
trajectories,' which means the possible existence of (infinitely) many more even and 
odd spin mesons of increasingly high mass contributing alternatively to attractive and 
repulsive forces of comparable strengths between baryons. If this is the case, the net 
baryon-baryon interaction energy is not expected to be large at matter densities being 
considered. (At such densities the inter-baryon separation is of course considerably 
shorter than the ordinary nuclear separation and is well within the repulsive 'core' 
employed in nuclear physics.) 

The dynamical situation is a great deal clearer with regard to meson-baryon inter­
actions since the resonance spectrum provides us with useful information on the struc­
ture of the scattering amplitudes. The so-called 'narrow resonance models' in particle 
physics rely precisely on just such knowledge (see Si vers and Yellin, 1971 for a review). 
The implementation of the narrow resonance approximation for meson-baryon inter­
action in the framework of statistical mechanics is just the statement of (4) and (5) as 
made clear by the work of Dashen et al. (1969). Therefore, meson-baryon interactions 
can be handled reasonably adequately. 

The remaining consideration centers upon mass shifts of the Sawyer type, which 
affect directly the treatment of the meson-baryon interaction discussed above. Since 
there exists at present no reliable means of estimating mass shifts for all baryon 
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resonances, an exact determination of the equation of state of matter at supernuclear 
densities is impossible. We can nevertheless aim for a qualitative understanding of the 
equation of state at these densities. In line with the above discussion we postulate 
therefore an 'effective baryon mass spectrum' which includes the effects of mass shifts 
as well as baryon-baryon interactions. These effects are meant to cause minor dis­
tortions of the original baryon mass spectrum so that the power law approximation is 
retained. This then leads to our result given by (10) and (11). 

Thus, we see that the equation of state of matter at supernuclear densities departs 
qualitatively from that of a free Fermi gas due to meson-baryon interaction which 
greatly undercuts the Fermi pressure in the system, and this is believed to occur at 
densities as low as 1 0 1 7 g c m " 3 using the known baryon mass spectrum as a guide. 

We are grateful to Dr Philip Morrison who suggested to us the possibility of inter­
preting particle interactions in terms of a shifted mass within the free-particle for­
malism, a concept which we find useful here. 

Appendix A 

We list here the better known baryons which are being made use of in determining 
the baryon mass spectrum (see Figure 3). The data come from Soding et al. (1972) and 
their notations are being followed here. We use m to denote the mass, mN the nucleon 
mass and N the cumulative number of baryons below a certain mass. The statistics 
for m below 2 GeV is fairly accurate, but incomplete for higher masses. 

Spin Isospin Total 
Name Mass (MeV) m2(GeV2) Multiplets Multiplets Components N 

N 939 0.88 2 2 4 4 
A 1115 1.24 2 1 2 6 
I 1190 1.42 2 3 6 12 
A 1236 1.53 4 4 16 28 
£ 1315 1.73 2 2 4 32 
E 1385 1.92 4 3 12 44 
A 1405 1.97 2 1 2 46 
N' 1470 2.16 2 2 4 50 
N' 1520 2.31 4 2 8 58 
A 1520 2.31 4 1 4 62 

1530 2.34 4 2 8 70 
N' 1535 2.36 2 2 4 74 
A 1650 2.72 2 4 8 82 
A 1670 2.79 4 4 16 98 
N 1670 2.79 6 2 12 110 
A' 1670 2.79 2 1 2 112 
E 1670 2.79 4 3 12 124 
Q 1672 2.80 4 1 4 128 
N 1688 2.85 6 2 12 140 
A" 1690 2.86 4 1 4 144 
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Appendix A (continued) 

Name Mass (MeV) m2(GeV2) 
Spin 
Multiplets 

Isospin 
Multiplets 

Total 
Components N 

N" 1700 2.89 2 2 4 148 
E 1750 3.06 2 3 6 154 
E 1765 3.12 6 3 18 172 
N" 1780 3.17 2 2 4 176 
A 1815 3.30 6 1 6 182 

1820 3.31 2 2 4 186 
A 1830 3.35 6 1 6 192 
N 1860 3.46 4 2 8 200 
A 1890 3.57 6 4 24 224 
A 1910 3.64 2 4 8 232 
I 1915 3.66 6 3 18 250 
3 1940 3.76 2 2 4 254 
A 1950 3.80 8 4 32 286 
I 2030 4.12 8 3 24 310 
A 2100 4.41 8 1 8 318 
N 2190 4.8 8 2 16 334 
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D I S C U S S I O N 

Bethe: You have done something similar to Zel'dovich's work, but without strong repulsive interac­
tions. Mind you that without strong repulsion, nuclei would collapse. 

Wang: Most of the recent new nuclear potentials have more and more softer cores. I would be very 
surprised if anyone of them would give rise to a collapsed nuclei. 

Bethe: In your calculation of the equation' of state, instead of plotting P and E, you should plot 
energy per baryon, which is more sensitive. 

Wang: But P and E is what one uses to calculate the models of neutron stars. The main point of my 
talk is trying to show that at densities beyond 101 7 g cm - 3 , the equation of state becomes insensitive 
to the detailed models of calculations. 

Pandharipande: I differ with your statement that a soft repulsive core would give a much softer 
equation of state. My calculations with the Reid potential and with the BKR potential give very 
close results. You have that too in your graph. The problem is whether one should use a static poten­
tial. 

Wang: My potential calculation has not been extended beyond the nuclear densities. I suppose 
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that the relativistic effects would force all calculations to merge at the causality limit. But surely, at 
higher densities, the recoil momentum should be very important, therefore the non-static (non-local) 
contribution should be important. Mind you that Sawyer's criticism applies to the potential approach 
as well. 

Pandharipande: Sawyer's self-energy is the three-body force term. Things like the relativistic cor­
rections, the non-local recoil, the three-body forces, the three-body clustering etc. can be worked out 
in time. There is no reason to give up the potential approach. 

Wang: What do we know about potentials among hadrons in general? Even the potentials among 
nucleons are difficult enough, and Sawyer's self-energy is not exactly the usual three-body force term. 
You have to worry about the self-consistency part of the Fermi energy, and you would get just as 
many coupled equations to solve. I can see some light to work out the nuclear physics from high 
energy physics, but not the other way around. 

Pandharipandi: I would be most happy if your number and mine agree so we all do the right physics. 
I do not really care what approach one takes. 

Wang: Come to think of it, we differ less than an order of magnitude, so there is really hope of 
convergence. 
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