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Parabolic Geodesics in
Sasakian 3-Manifolds

Jong Taek Cho, Jun-ichi Inoguchi, and Ji-Eun Lee

Abstract. We give explicit parametrizations for all parabolic geodesics in 3-dimensional Sasakian space

forms.

1 Introduction

Let M = (M, ϕ, ξ, η, g) be a 3-dimensional contact strongly pseudo-convex pseudo-

Hermitian manifold with Tanaka–Webster connection ∇̂.

A curve in M is said to be a slant curve if its tangent vector field makes constant

angle with the Reeb vector field ξ of M [9].

In our previous paper [12], we proved that every ∇̂-geodesic parametrized by arc

length in a Sasakian 3-space form is a slant curve. Moreover, we showed that the

acceleration vector field ∇̂γ ′γ ′ of a unit speed slant curve γ(s) in a Sasakian 3-space

form is orthogonal to ξ everywhere.

On the other hand, D. Jerison and J. M. Lee [14] introduced the notion of

parabolic geodesics in contact strongly pseudo-convex pseudo-Hermitian manifolds.

According to Jerison and Lee, a curve γ(s) in a contact strongly pseudo-

convex pseudo-Hermitian manifold is said to be a parabolic geodesic if it satisfies

∇̂γ ′γ ′
= aξγ(s) for some constant a and initial condition γ ′(0) ⊥ ξγ(0). Parabolic

geodesics naturally induce parabolic exponential maps. The parabolic exponential

map is a local diffeomorphism from a tangent space TpM into M. Then any choice

of orthonormal frame for the holomorphic subspace Hp of the complexified tangent

space TC

p M gives an identification of TpM and the Heisenberg group Nil. Compos-

ing this identification with the parabolic exponential map yields pseudo-Hermitian

normal coordinates around p. The pseudo-Hermitian normal coordinates allow us

to considerably simplify the computation of Taylor series of the pseudo-Hermitian

structure explicitly in terms of pseudo-Hermitian curvature and torsion.

The purpose of this paper is to give explicit parametric equations for all parabolic

geodesics in Sasakian 3-space forms.
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2 Preliminaries

2.1 Contact Manifolds

We recall the fundamental ingredients of 3-dimensional contact Riemannian geom-

etry. Our general references are D. E. Blair’s lecture notes [4] and monograph [5].

Let M be a 3-dimensional manifold. A contact form is a one-form η such that

dη ∧ η 6= 0 on M. A 3-manifold M together with a contact form η is called a con-

tact 3-manifold. The Reeb vector field ξ is a unique vector field satisfying η(ξ) = 1,

dη(ξ, · ) = 0.

On a contact 3-manifold (M, η), there exists a structure (ϕ, ξ, g) such that

ϕ2
= −I + η ⊗ ξ, g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ),

g(X, ϕY ) = dη(X,Y ), X,Y ∈ X(M).

Here X(M) denotes the Lie algebra of all smooth vector fields on M.

The structure (ϕ, ξ, η, g) is called the contact Riemannian structure of M asso-

ciated with the contact form η. A contact 3-manifold together with its associated

contact Riemannian structure is called a contact Riemannian 3-manifold and denoted

by (M, ϕ, ξ, η, g). A contact Riemannian 3-manifold M satisfies the following for-

mula ([18]):

(2.1) (∇Xϕ)Y = g((I + h)X,Y )ξ − η(Y )(I + h)X, X,Y ∈ X(M).

Here h is an endomorphism field defined by h = £ξϕ/2. The formula (2.1) implies

(2.2) ∇Xξ = −ϕ(I + h)X, X ∈ X(M).

One can see from (2.2) that ξ is a Killing vector field if and only if h = 0.

A contact Riemannian 3-manifold (M, ϕ, ξ, η, g) is called a Sasakian manifold if it

satisfies

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X

for all X,Y ∈ X(M).

The formulas (2.1) and (2.2) imply that a contact Riemannian 3-manifold is Sasa-

kian if and only if its Reeb vector field ξ is a Killing vector field.

A plane section Πp at a point p of a contact Riemannian 3-manifold is called a

holomorphic plane if it is invariant under ϕp. The sectional curvature function of

holomorphic planes is called the holomorphic sectional curvature. Sasakian 3-mani-

folds of constant holomorphic sectional curvature are called Sasakian 3-space forms.

2.2 Bianchi-Cartan-Vranceanu Spaces

To describe a parabolic geodesic in 3-dimensional Sasakian space forms explicitly, it

is convenient to use the so-called Bianchi–Cartan–Vranceanu model spaces.
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Let c be a real number and set

D =
{

(x, y, z) ∈ R
3(x, y, z)

∣∣ 1 +
c

2
(x2 + y2) > 0

}
.

Note that D is the whole R
3(x, y, z) for c ≥ 0. We equip the region D with the

following Riemannian metric:

gc =
dx2 + dy2

{1 + c
2
(x2 + y2)}2

+

(
dz +

ydx − xdy

1 + c
2
(x2 + y2)

) 2

.

The one-parameter family of Riemannian 3-manifolds {(D, gc)}c∈R was introduced

by L. Bianchi [3], E. Cartan [8], and G. Vranceanu [21] (see also Kobayashi [15]).

Take the following orthonormal frame field on (D, gc):

u1 =

{
1 +

c

2
(x2 + y2)

} ∂

∂x
− y

∂

∂z
, u2 =

{
1 +

c

2
(x2 + y2)

} ∂

∂y
+ x

∂

∂z
, u3 =

∂

∂z
.

Then the Levi–Civita connection ∇ of this Riemannian 3-manifold is described as

∇u1
u1 = c yu2, ∇u1

u2 = −c yu1 + u3, ∇u1
u3 = −u2,

∇u2
u1 = −c xu2 − u3, ∇u2

u2 = c xu1, ∇u2
u3 = u1,

∇u3
u1 = −u2, ∇u3

u2 = u1, ∇u3
u3 = 0.

[u1, u2] = −c yu1 + c xu2 + 2u3, [u2, u3] = [u3, u1] = 0.

Define the endomorphism field ϕ by

ϕu1 = u2, ϕu2 = −u1, ϕu3 = 0.

The dual one-form η of the vector field ξ = u3 is a contact form on D and satisfies

dη(X,Y ) = g(X, ϕY ), X,Y ∈ X(D).

Moreover, the structure (ϕ, ξ, η, g) is Sasakian, and (D, gc) is of constant holomor-

phic sectional curvature H = −3 + 2c (cf. [2, 16]). Hereafter we denote this model

(D, gc) of Sasakian space form by M3(H). The model M3(H) of Sasakian 3-space

form is called the Bianchi–Cartan–Vranceanu model of Sasakian 3-space forms.

The Reeb flows are the translations in the z-directions. Hence the orbit space

M2(H + 3) = M3(H)/ξ under the Reeb flow is given explicitly by

M2 =

({
(x, y) ∈ R

2
∣∣∣ 1 +

c

2
(x2 + y2) > 0

}
,

dx2 + dy2

{1 + c
2
(x2 + y2)}2

)
.

The natural projection π : M3(H) → M2(H + 3) is given by π(x, y, z) = (x, y). Note

that the orbit space is of constant curvature H + 3.
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Example 2.1 (Heisenberg group) The Sasakian space form M3(−3) of constant

holomorphic sectional curvature −3 is isomorphic to the Heisenberg group Nil3. The

Heisenberg group Nil3 = M3(−3) is realized as R
3(x, y, z) with Sasakian metric

g0 = dx2 + dy2 + (dz + ydx − xdy)2

and group structure

(2.3) (x, y, z) · (x̃, ỹ, z̃) := (x + x̃, y + ỹ, z + z̃ + xỹ − x̃y)

for (x, y, z), (x̃, ỹ, z̃) ∈ R
3(x, y, z). The Riemannian metric g0 is invariant under left

translations with respect to the group structure (2.3). Note that Nil3 is the model

space of nilgeometry in the sense of W. M. Thurston [20].

Example 2.2 (H > −3) The Sasakian space form M3(1) of constant holomorphic

sectional curvature 1 is of constant curvature 1. Hence M3(1) is an open portion of

the unit 3-sphere S3 equipped with canonical Sasakian structure. The Sasakian space

form M3(H) with H > −3 and H 6= 1 is an open portion of the Berger sphere [1].

Example 2.3 The Sasakian space form M3(H) with H < −3 is the universal cover-

ing of the special linear group SL2R equipped with canonical Sasakian structure.

3 Parabolic Geodesics

3.1 Pseudo-Hermitian Structures

For a contact Riemannian 3-manifold M = (M, η; ξ, ϕ, g), the tangent space TpM

of M at a point p ∈ M can be decomposed as the direct sum TpM = Dp ⊕ Rξp,

with Dp = {v ∈ TpM | η(v) = 0}. Then the correspondence D : p 7−→ Dp defines

a 2-dimensional distribution orthogonal to ξ, called the contact distribution. We see

that the restriction J = ϕ|D of ϕ to D defines an almost complex structure on D.

Denote by TCM the complexified tangent bundle of M. The holomorphic subbundle

H = {X −
√
−1 JX | X ∈ D}

is called the almost CR-structure of M associated with the contact Riemannian

structure (ϕ, ξ, η, g). We can see that each fiber Hp is of complex dimension 1,

H ∩ H = {0}, and DC
= H ⊕ H. Furthermore, the associated almost CR-structure

is always integrable, that is, the space Γ (H) of all smooth sections of H satisfies the

integrability condition [Γ (H), Γ (H)] ⊂ Γ (H). The Levi form L associated with H is

defined by

L : Γ (D) × Γ (D) → F(M), L(X,Y ) = −dη(X, JY ),

where F(M) denotes the algebra of all smooth functions on M. It is easy to check

that the Levi form is Hermitian and positive definite. We call the pair (η, L) a contact

strongly pseudo-convex pseudo-Hermitian structure on M.
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3.2 Tanaka–Webster Connection

Now, we review the Tanaka–Webster connection ([17, 22]) on a contact strongly

pseudo-convex pseudo-Hermitian manifold M = (M; η, L) with the associated con-

tact Riemannian structure (ϕ, ξ, η, g). The Tanaka–Webster connection ∇̂ is defined

by

∇̂XY = ∇XY + η(X)ϕY + (∇Xη)(Y )ξ − η(Y )∇Xξ

for all vector fields X,Y on M. Together with (2.1), ∇̂ may be rewritten as

∇̂XY = ∇XY + A(X,Y ),

where we have put

A(X,Y ) = η(X)ϕY + η(Y )(ϕ(I + h)X) − g(ϕ(I + h)X,Y )ξ.

We see that the Tanaka-Webster connection ∇̂ has the torsion

T̂(X,Y ) = 2g(X, ϕY )ξ + η(Y )ϕhX − η(X)ϕhY.

In particular, for a Sasakian manifold M, the difference tensor A and the torsion

tensor T̂ have simpler forms:

A(X,Y ) = η(X)ϕY + η(Y )ϕX − g(ϕX,Y )ξ,

T̂(X,Y ) = 2g(X, ϕY )ξ.

Furthermore, the following was proved in [19].

Proposition 3.1 The Tanaka–Webster connection ∇̂ on a contact Riemannian

3-manifold (M, ϕ, ξ, η, g) is the unique linear connection satisfying the following con-

ditions:

• ∇̂η = 0, ∇̂ξ = 0;
• ∇̂g = 0, ∇̂ϕ = 0;
• T̂(X,Y ) = −η([X,Y ])ξ, X, Y ∈ Γ (D);
• T̂(ξ, ϕY ) = −ϕT̂(ξ,Y ), Y ∈ Γ (D).

The Tanaka–Webster connection ∇̂ of the Bianchi–Cartan–Vranceanu model

space is described as

∇̂u1
u1 = c yu2, ∇̂u1

u2 = −c yu1, ∇̂u2
u1 = −c xu2, ∇̂u2

u2 = c xu1;

all others are zero.

Here we recall the notion of parabolic geodesic in the sense of Jerison and Lee.

Definition 3.2 ([14]) A regular curve γ : I → M, defined on some open interval

I containing the origin, is a parabolic geodesic of a contact strongly pseudo-convex

pseudo-Hermitian 3-manifold M if
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(i) γ(0) = p ∈ M and γ ′(0) ∈ Dp, and

(ii) there is a constant a ∈ R so that ∇̂γ ′γ ′
= 2a ξγ(t) for any t ∈ I.

Take a tangent vector W ∈ TpM orthogonal to ξp and define a curve σ(s) in

TpM by σW,a(s) = sW + as2ξp. Let γW,a(s) be the parabolic geodesic in M with

initial condition γW,a(0) = p and γ ′
W,a(0) = W . Then the parabolic exponential map

expD
p : TpM → M is defined by

expD
p (W + aξ) = γW,a(1).

Jerison and Lee [14] showed that expD
p maps a neighborhood of 0 in TpM diffeo-

morphically to a neighborhood of p in M and maps σW,a to γW,a. By means of

the parabolic exponential map, Jerison and Lee [14] defined a family of natural

charts near p called the pseudo-Hermitian normal coordinates. Note that the pseudo-

Hermitian normal coordinates are normal coordinates in the sense of Folland and

Stein [13].

3.3 Parabolic Geodesic Equations

To obtain explicit parametrizations of parabolic geodesics, we use the Bianchi–

Cartan–Vranceanu model space M3(H). Let γ(s) = (x(s), y(s), z(s)) be a curve in

M3(H). Then by using a local orthonormal frame field {u1, u2, u3 = ξ} in Section

2.2, we can write

γ ′(s) = T(s) = T1(s)u1 + T2(s)u2 + T3(s)u3.

Now we have the parabolic geodesic equation for γ:

∇̂TT = {T ′
1 − T2(cyT1 − cxT2)}u1 + {T ′

2 + T1(cyT1 − cxT2)}u2 + T ′
3u3 = 2aξ.

Hence, γ is a parabolic geodesic if and only if

(3.1)






T ′
1 − T2(cyT1 − cxT2) = 0,

T ′
2 + T1(cyT1 − cxT2) = 0,

T ′
3 = 2a.

From the third equation of (3.1) and the initial condition, it follows that T3(s) =

2as. Let us multiply the first equation in (3.1) by T1(s) and the second equation by

T2(s), then we get {
T1T ′

1 − T1T2(cyT1 − cxT2) = 0,

T2T ′
2 + T1T2(cyT1 − cxT2) = 0.

Adding these equations, we obtain T1T ′
1+T2T ′

2 = 0, which is equivalent to d
ds

(T1(s)2+

T2(s)2) = 0. This implies that T1(s)2 + T2(s)2 is a non-negative constant, say b2 ∈ R.

Thus the tangent vector field T(s) = γ ′(s) has the form

(3.2) T(s) = b{cos β(s)u1 + sin β(s)u2} + (2as)u3,
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since γ ′(0) ∈ Dp.

Inserting (3.2) into the first equation of (3.1), we have

(3.3) b sin β(s)
{

β ′(s) + bc
(

y(s) cos β(s) − x(s) sin β(s)
)}

= 0.

Next, inserting (3.2) into the second equation of (3.1), we have

(3.4) b cos β(s)
{

β ′(s) + bc
(

y(s) cos β(s) − x(s) sin β(s)
)}

= 0.

Equations (3.3) and (3.4) imply that

(3.5) b
{

β ′(s) + bc
(

y(s) cos β(s) − x(s) sin β(s)
)}

= 0.

Hence b = 0 or

(3.6) β ′(s) + bc
(

y(s) cos β(s) − x(s) sin β(s)
)

= 0.

On the other hand, tangent vector field T of γ is also represented as:

T =

(
dx

ds
,

dy

ds
,

dz

ds

)
=

dx

ds

∂

∂x
+

dy

ds

∂

∂y
+

dz

ds

∂

∂z
.

Using the relations:

∂

∂x
=

1

1 + c
2
(x2 + y2)

(u1 + yu3),
∂

∂y
=

1

1 + c
2
(x2 + y2)

(u2 − xu3),
∂

∂z
= u3,

we get

dx

ds
=

{
1 +

c

2
(x2 + y2)

}
T1,

dy

ds
=

{
1 +

c

2
(x2 + y2)

}
T2,

dz

ds
= T3 −

1

1 + c
2
(x2 + y2)

(
dx

ds
y − x

dy

ds

)
.

Hence we obtain the following.

Lemma 3.3 Let γ : I → M be a parabolic geodesic in a Sasakian space form M3(H).

Then the system of differential equations for γ is as follows:

dx

ds
(s) = b cos β(s)

{
1 +

c

2

(
x(s)2 + y(s)2

)}
,(3.7)

dy

ds
(s) = b sin β(s)

{
1 +

c

2

(
x(s)2 + y(s)2

)}
,(3.8)

dz

ds
(s) = 2as + b

{
x(s) sin β(s) − y(s) cos β(s)

}
.(3.9)

Here β(s) is a solution to (3.5).

Now we determine the parametric equation of a parabolic geodesic.
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3.3.1 b = 0

In this case, we have T = (2as)u3. The parabolic geodesic γ(s) with initial condition

γ(0) = (x0, y0, z0) = p is given explicitly by γ(s) = (x0, y0, as2 + z0). Note that the

initial velocity if γ is γ ′(0) = 0 ∈ Dp.

3.3.2 b 6= 0 and c = 0

In this case M3(H) is the Heisenberg group Nil3. Equation (3.6) is simplified as

β ′
= 0. Namely, β is a constant, say β0. Thus, from (3.7) and (3.8), the parabolic

geodesic starting at γ(0) = (x0, y0, z0) = p is given by

x(s) = (b cos β0)s + x0,(3.10)

y(s) = (b sin β0)s + y0,

z(s) = as2 + b(x0 sin β0 − y0 cos β0)s + z0.

The initial velocity of this parabolic geodesic is γ ′(0) = b(cos β0u1 + sin β0u2) ∈ Dp.

Note that by choosing b = 0 in (3.10), we obtain parabolic geodesics discussed in

Subsection 3.3.1 for c = 0.

3.3.3 b 6= 0 and c 6= 0

We solve the parabolic geodesic equation under the initial condition

(x(0), y(0), z(0)) = (x0, y0, z0).

Then together with (3.6), we see that the equation (3.9) becomes

dz

ds
(s) = 2as +

1

c
β ′(s).

Thus we have

z(s) = as2 +
1

c
β(s) + z̃0,

where z̃0 is a constant defined by z̃0 = z0 − β(0)/c. We now compute the x- and

y-coordinates. We put h(s) := 1 + c
2
{x(s)2 + y(s)2}. Then (3.7) and (3.8) become

(3.11)
dx

ds
(s) = b cos β(s)h(s), and

dy

ds
(s) = b sin β(s)h(s),

respectively.

(i) Subcase-1: dβ/ds = 0.

In this case β is a constant, say β0. Moreover, the projected curve (x(s), y(s)) is

a line in the orbit space M2. The z-coordinate is z(s) = as2 + z0. We have two

possibilities.
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• cos β0 6= 0: In this case, from (3.6) we have y(s) = tan β0 x(s), and hence

x(s) is a solution to

dx

ds
(s) = b cos β0

[
1 +

c

2
(sec2 β0)x(s)2

]
.

Thus x(s) is given explictly as follows:

x(s) =

√
2

c
cos β0 tan

( b
√

cs√
2

)
+ x0, c > 0,

x(s) =

√
2

−c
cos β0 tanh

( b
√
−cs√
2

)
+ x0, c < 0.

The angle β0 satisfies y0 = tan β0x0 because of (3.6).

In particular, if sin β0 = 0, then y = y0 = 0 from (3.6) (or (3.1)). The

x-coordinate is given by

x(s) = ±
√

2

c
tan

( b
√

cs√
2

)
+ x0, c > 0,

x(s) = ±
√

2

−c
tanh

( b
√
−cs√
2

)
+ x0, c < 0.

Note that if we choose sin β = 0 in (3.2), then (3.1) implies that y = 0.
• cos β0 = 0: In this case we have T(s) = ±bu2 + (2as)u3. Then from (3.1), we

have x(s) = x0 = 0, and y(s) is a solution to

dy

ds
(s) = ±b

(
1 +

c

2
y(s)2

)
.

Hence y(s) is given by

y(s) = ±
√

2

c
tan

( b
√

cs√
2

)
+ y0, c > 0,

y(s) = ∓
√

2

−c
tanh

( b
√
−cs√
2

)
+ y0, c < 0,

The z-coordinate is given by z(s) = as2 + z0.

(ii) Subcase-2: dβ/ds 6= 0.

Next, we assume that dβ/ds(s0) 6= 0 for some s = s0. Then we see that dβ/ds 6=
0 nearby s = s0. We note that the function h(s) satisfies the following ordinary

differential equation:

(3.12)
d

ds
log h(s) = bc{x(s) cos β(s) + y(s) sin β(s)}.

https://doi.org/10.4153/CMB-2011-035-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-035-2


Parabolic Geodesics in Sasakian 3-Manifolds 405

Differentiating (3.6) and using (3.12), we have

(3.13)
d2

ds2
β(s) =

dβ

ds
(s)

d

ds
log h(s).

Since dβ
ds

6= 0, from (3.13) we obtain

(3.14)
dβ

ds
(s) = rh(s), r ∈ R

×
= R \ {0}.

Using (3.11) and (3.14) we obtain

dx

ds
(s) =

b

r
cos β(s)β ′(s),

dy

ds
(s) =

b

r
sin β(s)β ′(s).

Hence, the parabolic geodesic γ(s) starting at γ(0) = (x0, y0, z0) is given by

(3.15)






x(s) =
b
r

sin β(s) + x0,

y(s) = − b
r

cos β(s) + 1
r

+ y0,

z(s) = as2 + 1
c
β(s) + z0,

where β(s) is a solution to (3.6) with β(0) = 0. Inserting (3.15) into (3.14), we

get

(3.16)
dβ

ds
=

b2c

r
(1 − cos β) + bc(x0 sin β − y0 cos β).

On the other hand, from (3.15), we have

rh(s) = r
[

1 +
c

2

{
x(s)2 + y(s)2

}]

= r +
b2c

r
(1 − cos β) + bc(x0 sin β − y0 cos β) +

rc

2

{
x2

0 + y2
0 +

2b

r
y0

}
.

(3.17)

Comparing (3.14), (3.16), and (3.17), we obtain the following relation for the

initial data (x0, y0):

(3.18) 1 +
c

2

{
x2

0 +
y0

r
(2b + ry0)

}
= 0.

Now we integrate the ordinary differential equation (3.16). The ordinary dif-

ferential equation (3.16) is rewritten as

(3.19)

∫
dβ

b
r
−

(
b
r

+ y0

)
cos β + x0 sin β

= bcs.

Put t := tan(β/2). Then (3.19) becomes

(3.20)

∫
2dt(

2b+ry0

r

)
t2 + 2x0t − y0

= bcs.
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• 2b + ry0 = 0: In this case (3.18) implies x2
0 = −2/c. Hence c < 0. Moreover

(3.20) reduces to

2

∫
dt

2x0t − y0

= bcs.

Hence we obtain

log
∣∣∣ t − y0

2x0

∣∣∣ = x0bcs + C, C ∈ R.

This formula is rewritten as

t =
y0

2x0

+ A exp(x0bcs).

Here we put A = ±eC . By the initial condition β(0) = 0, A = − y0

2x0
. Since

(x0, y0) = (±
√

2/
√
−c,−2b/r), we get

t = ∓b
√
−c√
2r

{
1 − exp (∓b

√
−2c s)

}
.

Now we obtain the following formula for β(s):

β(s) = ∓2 tan−1

[
b
√
−c√
2r

{
1 − exp(∓b

√
−2cs)

}]
.

• 2b + ry0 6= 0: In this case, (3.20) is computed as

2r

2b + ry0

∫
dt

(
t + rx0

2b+yr0

) 2 − r2(x2
0+y2

0)+2bry0

(2b+ry0)2

= bcs.

By (3.18),

r2(x2
0 + y2

0) + 2bry0

(2b + ry0)2
= − 2r2

c(2b + ry0)2
.

Thus we have

(3.21)
2r

2b + ry0

∫
dt

(
t + rx0

2b+yr0

) 2
+ 2r2

c(2b+ry0)2

= bcs.

First we consider the case c > 0. When c < 0, (3.21) is rewritten as

2r

2b + ry0

∫
dt

(
t + rx0

2b+yr0

) 2
+

( √
2r√

c(2b+ry0)

) 2
= bcs.

Solving this ODE, we obtain

t = − rx0

2b + ry0

+

√
2r√

c(2b + ry0)
tan

{
b
√

cs√
2

+ C

}
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for some constant C . By the initial condition β(0) = 0, the constant C

is determined as C = tan−1(
√

cx0/
√

2). Hence the function β(s) is given

explicitly by

β(s) = 2 tan−1

[
− rx0

2b + ry0

+

√
2r√

c(2b + ry0)
tan

{
b
√

cs√
2

+ tan−1
( √

cx0√
2

)}]
.

For the case c < 0, one can show that β(s) is given explictly by

β(s) = 2 tan−1

[
− rx0

2b + ry0

+

√
2r√

−c(2b + ry0)
tanh

{
b
√
−cs√
2

+tanh−1
( √

−cx0√
2

)}]
.

Remark 3.4 If we look for parabolic geodesics starting at (0,−b/r, 0), we have






x(s) =
b
r

sin β(s),

y(s) = − b
r

cos β(s),

z(s) = as2 + 1
c
β(s).

with β(0) = 0. In this case, we get h(s) = 1 + b2c
2r2 and β ′

= b2c/r. From (3.18), we

have b2c = 2r2. Hence we obtain

β(s) =
b2c

r
s = 2rs.

Now we arrive at our main theorems.

Theorem 3.5 The parametric equations of all parabolic geodesics in the Heisenberg

group M3(−3) with initial condition (x(0), y(0), z(0)) = (x0, y0, z0) are given by






x(s) = (b cos β0)s + x0,

y(s) = (b sin β0)s + y0,

z(s) = as2 + b(x0 sin β0 − y0 cos β0)s + z0,

where b and β0 are constants.

Here we give a geometric interpretation of this result. To this end, we recall the

group structure (2.3) of the Heisenberg group. Let us define a curve γ0(s) by

γ0(s) = (b cos β0 s, b sin β0 s, as2).

Then γ0 is a parabolic geodesic starting at the origin (0, 0, 0). Take a point p =

(x0, y0, z0) ∈ Nil3. Then Theorem 3.5 implies that the parabolic geodesic γ(s) start-

ing at p is given by γ(s) = p · γ0(s). Namely, γ(s) is a left translation of γ0(s) by

p.
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Corollary 3.6 Every parabolic geodesic in Nil3 is obtained as a left translation of a

parabolic geodesic starting at the origin.

Remark 3.7 R. Caddeo, C. Oniciuc, and P. Piu [7] classified all unit speed curves in

Nil3 which are biharmonic with respect to the metric g0. In particular, they showed

that every proper biharmonic curve in Nil3 is a helix. Moreover, every proper bi-

harmonic helix starting at p is obtained from a proper biharmonic helix starting at

the origin by means of a left translation. For the classification of proper biharmonic

curves in Sasakian 3-space forms, we refer to [6, 10].

Theorem 3.8 Let M3(H) be the Bianchi–Cartan–Vranceanu model space of constant

holomorphic sectional curvature H = −3 + 2c with c 6= 0. Then the parametric equa-

tions of all parabolic geodesics in M3(H) starting at (x0, y0, z0) are one of the following

types:

(i) A vertical line through (x0, y0, z0); γ(s) = (x0, y0, as2 + z0).
(ii) γ(s) = (x(s), tan β0x(s), as2 + z0), where β0 is a constant such that cos β0 6= 0.

The x-coordinate is given by

x(s) =

√
2

c
cos β0 tan

( b
√

cs√
2

)
+ x0, c > 0,

x(s) =

√
2

−c
cos β0 tanh

( b
√
−cs√
2

)
+ x0, c < 0.

The constant β0 satisfies y0 = tan β0x0.

(iii) x0 = 0 and γ(s) = (0, y(s), as2 + z0), where

y(s) = ±
√

2

c
tan

( b
√

cs√
2

)
+ y0, c > 0,

y(s) = ∓
√

2

−c
tanh

( b
√
−cs√
2

)
+ y0, c < 0,

(iv) γ(s) =
(

1
r

sin β(s) + x0,− 1
r

cos β(s) + 1
r

+ y0, as2 + 1
c
β(s) + z0

)
, where β(s) is

one of the following functions:

• y0 6= −2b/r and c > 0 :

β(s) = 2 tan−1

[
− rx0

2b + ry0

+

√
2r√

c(2b + ry0)
tan

{
b
√

cs√
2

+ tan−1
( √

cx0√
2

)}]
,

• y0 6= −2b/r and c < 0 :

β(s) = 2 tan−1

[
− rx0

2b + ry0

+

√
2r√

−c(2b + ry0)
tanh

{
b
√
−cs√
2

+tanh−1
( √

−cx0√
2

)}]
,

• y0 = −2b/r :

β(s) = ∓2 tan−1

[
b
√
−c√
2r

{
1 − exp

(
∓b

√
−2cs

)}]
.
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In case y0 = −2b/r, x0 is given by x0 = ±
√

2/
√
−c and c < 0.

Remark 3.9 Let γ(s) be a regular curve in a 3-dimensional contact strongly pseudo-

convex pseudo-Hermitian manifold. The contact angle α(s) is the angle function

between the Reeb vector field ξ and the tangent vector field γ ′(s) of γ(s). Namely,

α(s) is defined by the formula:

cos α(s) =
η(γ ′(s))

|γ ′(s)|2 .

A regular curve γ(s) is said to be a slant curve if its contact angle is constant ([9]). In

our previous work [12], the following result was obtained.

Proposition 3.10 Let γ : I → M be a unit speed slant curve in a Sasakian 3-space

form. Then the acceleration vector field ∇̂γ ′γ ′ with respect to the Tanaka–Webster con-

nection is orthogonal to ξ everywhere.

Note that every ∇̂-geodesic in a Sasakian 3-space form is a slant curve. Moreover,

one can see that every biharmonic unit speed curve in a Sasakian 3-space form, and

M3(H) is a slant helix (see [7, 9, 10]).
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[8] E. Cartan, Leçons sur la géométrie des espaces de Riemann. Second Ed., Gauthier-Villards, Paris,
1946.

[9] J. T. Cho, J. Inoguchi, and J. E. Lee, Slant curves in Sasakian 3-manifolds. Bull. Austral. Math. Soc.
74(2006), no. 3, 359–367. doi:10.1017/S0004972700040429

[10] , Biharmonic curves in 3-dimensional Sasakian space forms. Ann. Mat. Pura Appl.
186(2007), no. 4, 685–701. doi:10.1007/s10231-006-0026-x

[11] J. T. Cho, J. Inoguchi, and J. E. Lee, Affine biharmonic submanifolds in 3-dimensional
pseudo-Hermitian geometry. Abh. Math. Semin. Univ. Hambg. 79(2009), no. 1, 113–133.
doi:10.1007/s12188-008-0014-8t

https://doi.org/10.4153/CMB-2011-035-2 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972700040429
http://dx.doi.org/10.1007/s10231-006-0026-x
http://dx.doi.org/10.1007/s12188-008-0014-8
https://doi.org/10.4153/CMB-2011-035-2


410 J. T. Cho, J. Inoguchi, and J.-E. Lee

[12] J. T. Cho and J. E. Lee, Slant curves in contact pseudo-Hermitian 3-manifold. Bull. Aust. Math. Soc.
78(2008), no. 3, 383–396. doi:10.1017/S0004972708000737

[13] G. B. Folland and E. M. Stein, Estimates for the ∂̄b-complex and analysis on the Heisenberg group.
Comm. Pure Appl. Math. 27(1974), 429–522. doi:10.1002/cpa.3160270403

[14] D. Jerison and J. M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem. J. Differential
Geom. 29(1989), 303–344.

[15] S. Kobayashi, Transformation groups in differential geometry. Ergebnisse der Mathematik und ihrer
Grenzgebiete, 70, Springer-Verlag, New York-Heidelberg, 1972.

[16] M. Tamura, Gauss maps of surfaces in contact space forms. Comment. Math. Univ. St. Pauli
52(2003), no. 2, 117–123.

[17] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan.
J. Math. (N.S.) 2(1976), no. 1, 131–190.
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