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The temporally developing self-similar turbulent jet is fundamentally different from its
spatially developing namesake because the former conserves volume flux and has zero
cross-stream mean flow velocity whereas the latter conserves momentum flux and does
not have zero cross-stream mean flow velocity. It follows that, irrespective of the turbulent
dissipation’s power-law scalings, the time-local Reynolds number remains constant, and
the jet half-width δ, the Kolmogorov length η and the Taylor length λ grow identically as
the square root of time during the temporally developing self-similar planar jet’s evolution.
We predict theoretically and confirm numerically by direct numerical simulations that
the mean centreline velocity, the Kolmogorov velocity and the mean propagation speed
of the turbulent/non-turbulent interface (TNTI) of this planar jet decay identically as the
inverse square root of time. The TNTI has an inner structure over a wide range of closely
spatially packed iso-enstrophy surfaces with fractal dimensions that are well defined over
a range of scales between λ and δ, and that decrease with decreasing iso-enstrophy towards
values close to 2 at the viscous superlayer. The smallest scale on these isosurfaces is
approximately η, and the length scales between η and λ contribute significantly to the
surface area of the iso-enstrophy surfaces without being characterised by a well-defined
fractal dimension. A simple model is sketched for the mean propagation speeds of the
iso-enstrophy surfaces within the TNTI of temporally developing self-similar turbulent
planar jets. This model is based on a generalised Corrsin length, on the multiscale
geometrical properties of the TNTI, and on a proportionality between the turbulent jet
volume’s growth rate and the growth rate of δ. A prediction of this model is that the
mean propagation speed at the outer edge of the viscous superlayer is proportional to the
Kolmogorov velocity multiplied by the 1/4th power of the global Reynolds number.
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1. Introduction

The turbulent/non-turbulent interface (TNTI) is a thin layer that demarcates sharply
between turbulent vortical flow and non-vortical flow at the turbulent edge of a wide
variety of turbulent flows, such as turbulent boundary layers, mixing layers, jets and wakes
(Corrsin & Kistler 1955; da Silva et al. 2014). The TNTI propagates relative to the fluid
and thereby controls entrainment and resulting transfers across it of mass, momentum and
various scalar quantities, such as heat. Determining the local propagation velocity of the
TNTI, and in particular its scalings, is therefore of central importance.

The TNTI’s local propagation velocity is often thought of as related to a length scale
such as a thickness pertaining to the TNTI or/and a turbulence inner length scale such
as the Kolmogorov or Taylor lengths. The question of determining the scalings of local
TNTI thicknesses is therefore closely related to the question of determining the scalings
of local TNTI propagation velocities. Cafiero & Vassilicos (2020) and Zhou & Vassilicos
(2017) have argued, with support from direct numerical simulations (DNS) and laboratory
experiments of self-similar turbulent wakes and jets, that the average TNTI propagation
velocity scales as the fluid’s kinematic viscosity divided by a length that is the Kolmogorov
length in the presence of the classical equilibrium turbulence dissipation scaling, but is the
Taylor length in the presence of the non-equilibrium dissipation scaling (Vassilicos 2015).

The turbulent wakes and jets considered by Cafiero & Vassilicos (2020) and Zhou &
Vassilicos (2017) are spatially developing wakes and jets, whereas many DNS studies
of turbulent wakes and jets in the literature are concerned with temporally developing
wakes and jets (e.g. da Silva & Pereira 2008; Van Reeuwijk & Holzner 2013; Silva,
Zecchetto & da Silva 2018; and references therein). The presence of non-equilibrium
turbulence dissipation scalings has been established in important regions of significant
extent in spatially developing self-similar turbulent axisymmetric wakes (Obligado, Dairay
& Vassilicos 2016; Ortiz-Tarin, Nidhan & Sarkar 2021; and references therein) and
spatially developing self-similar turbulent planar jets (Cafiero & Vassilicos 2019). It is
in these spatially developing self-similar flow regions that the scaling of the average TNTI
propagation velocity as the inverse Taylor length has been argued by theory and supported
by laboratory and DNS data of turbulent planar jets and turbulent bluff body wakes (Zhou
& Vassilicos 2017; Cafiero & Vassilicos 2019). However, Silva et al. (2018) have found
that the average thicknesses of the TNTI and its viscous superlayer both scale with the
Kolmogorov rather than the Taylor length in temporally developing self-similar turbulent
planar jets. Is it that there is no non-equilibrium turbulent dissipation scaling, i.e. that
the turbulence dissipation scaling is classical, in temporally developing self-similar planar
jets? Or is it that the average TNTI thickness does not relate trivially to the average TNTI
propagation speed even in self-similar turbulent shear flows? Or is it both, or something
else?

In spatially developing self-similar turbulent jets and wakes, the turbulence dissipation
scaling impacts on the TNTI propagation speed via its relation to the jet/wake width
growth (Zhou & Vassilicos 2017; Cafiero & Vassilicos 2020), and the jet/wake width
growth rate is obtained from mass, momentum and turbulent kinetic energy balances
(Townsend 1976; George 1989; Dairay, Obligado & Vassilicos 2015; Cafiero & Vassilicos
2019). This approach to the estimation of the jet/wake width does not seem to have
ever been applied to temporally developing turbulent flows, even though Gauding et al.
(2021) did apply to temporally developing turbulent planar jets the self-similar theory of
Townsend (1949) (see also Tennekes & Lumley 1972), which uses only momentum balance
(but no mass and turbulent kinetic energy balances), and a hypothesis on the relation
between mean flow and Reynolds shear stress profiles that is now known not to be generally
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Length scales and the TNTI of a temporally developing jet

true (e.g. Dairay et al. 2015; Cafiero & Vassilicos 2019). To answer the questions at the
end of the previous paragraph, we therefore start by applying the mass–momentum–energy
approach of Townsend (1976), George (1989), Dairay et al. (2015) and Cafiero & Vassilicos
(2019) to temporally developing self-similar turbulent planar jets in § 2. This allows us
to see how the turbulence dissipation scaling impacts on the jet width and the mean
flow velocity of temporally evolving self-similar turbulent planar jets. In § 3, we derive
a formula for the TNTI’s mean propagation velocity in terms of the jet width growth rate
and the fractal/multiscale nature of the TNTI. We present in § 4 our pseudo-spectral DNS,
with particular attention to spatial resolution and control of numerical oscillations given
that the TNTI is a very thin region of very high enstrophy gradients, and in § 5 we use
these DNS to examine critically the assumptions and results of our theoretical approach.
We report the strengths and failings of our formula for the TNTI’s mean propagation
velocity, and conclude with a suggestion for how to overcome the failings. We summarise
our results in § 6.

2. Mean flow scalings

The temporally developing planar jet is often favoured in numerical studies because of
the advantage that the boundary conditions in the streamwise and spanwise directions can
be taken to be periodic. The initial condition of the planar jet is defined in terms of an
initial streamwise velocity UJ and an initial jet width HJ . The global Reynolds number is
ReG = UJHJ/ν, where ν is the kinematic viscosity of the fluid. (A precise definition of
the initial mean streamwise profile U( y) in terms of HJ and UJ used in this paper’s DNS
is given in § 4.) The transition to the turbulent regime starts by shear layer instabilities
present on both sides of the jet. After the jet has become fully turbulent, the turbulent jet
volume expands with time into the irrotational surrounding volume.

In this section, the time and ReG dependencies of the parameters related to the mean
flow and the turbulence are investigated. The growth of the mean flow profile is of interest
because it relates to the outward spread of the TNTI, a point that is given quantitative
expression in the next section. Following Townsend (1976), George (1989) and Cafiero
& Vassilicos (2019), we start the analysis with the Reynolds-averaged continuity and
momentum equations, where averaging is over the two homogeneous/periodic spatial
directions and/or over realisations:

∇ · 〈u〉 = 0, (2.1)

∂〈u〉
∂t

+ 〈u〉 · ∇〈u〉 = − 1
ρ

∇〈p〉 + ν ∇2〈u〉 − 〈u′ · ∇u′〉, (2.2)

where the vector u is the instantaneous velocity field, and the angle brackets signify
averaging.

Homogeneity/periodicity along x (streamwise) and z (spanwise) coordinates implies
∂〈·〉/∂x = ∂〈·〉/∂z = 0. Defining 〈u〉 = (U, V, W), these being the mean flow components
in the streamwise, cross-stream and spanwise directions, respectively, the relation
∂V/∂y = 0 is reached from (2.1). Because of reflectional symmetry with respect to y = 0,
where y is the cross-stream coordinate, we are led to V = 0. The immediate result V = 0
is a very significant difference between temporally and spatially developing turbulent jets
as V /= 0 in the spatially developing case.

For high-Reynolds-number temporally evolving x- and z-periodic/homogeneous
turbulent jets, the momentum equation in the streamwise direction is well approximated
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by

∂U
∂t

≈ −∂〈u′v′〉
∂y

, (2.3)

where u′ and v′ are the streamwise and cross-stream fluctuating velocities.
Integrating (2.3) within one period along y, the following constraint is obtained:

∂

∂t

∫
U dy = 0, (2.4)

implying that the volume flux is conserved throughout the time evolution of the jet. The
conservation of the volume flux is another important difference between the temporally
developing jet and its spatially developing counterpart, where it is the momentum flux that
is conserved (momentum deficit for the spatially developing wakes) instead of the volume
flux throughout the streamwise direction (Tritton 1988).

At this point, the self-similarity assumption for the mean streamwise velocity U is
introduced:

U( y, t) = u0(t) f ( y/δ), (2.5)

where δ(t) is the instantaneous jet half-width, and u0(t) is the centreline (y = 0) mean flow
velocity of the jet, and both are time-dependent. Plugging (2.5) for the mean streamwise
velocity into (2.4) yields the result

u0(t) δ(t) = const. ∼ UJHJ. (2.6)

A popular way to obtain δ(t) and u0(t) for the temporally evolving jet is by dimensional
analysis based on volume flux conservation. The volume flux being constant in time
and therefore proportional to UJHJ , one is tempted to argue that δ and u0 are functions
of UJHJ and time t only, in which case dimensional analysis implies immediately that
δ ∼ (UJHJ)

1/2t1/2 and u0 ∼ (UJHJ)
1/2t−1/2. However, all power laws δ ∼ HJ(tUJ/HJ)

a,
u0 ∼ UJ(tUJ/HJ)

−a are consistent with the constant volume flux u0δ = const. ∼ UJHJ ,
and there is no a priori reason why δ and u0 should depend on UJHJ rather than on UJ
and HJ separately. In fact, Cafiero & Vassilicos (2019) have shown that different mean
flow scalings exist for the spatially developing turbulent planar jet, depending on different
turbulent dissipation scaling possibilities. If one were to use dimensional analysis based
on the notion that δ and u0 must depend only on the conserved momentum flux and
streamwise distance in the spatially developing jet, then one would obtain mean flow
scalings compatible with only one particular turbulence dissipation scaling (the classical
equilibrium dissipation scaling) and no other, in disagreement with experimental results;
see Cafiero & Vassilicos (2019). Thus in order to obtain the most general picture for
the temporally developing self-similar planar jet case, which can also potentially allow
for effects of non-equilibrium turbulence dissipation, we do not adopt the dimensional
analysis that we mentioned and continue our analysis by deriving the self-similarity of the
Reynolds shear stress and by introducing the equation for the turbulent kinetic energy, a
general turbulence dissipation scaling and self-similarity assumptions for the terms in the
turbulent kinetic energy equation.

By inserting the self-similarity relation (2.5) for U into (2.3), by integrating over y both
sides of (2.3) from 0 to y, and by making use of 〈u′v′〉 = 0 at y = 0, we show easily that
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Length scales and the TNTI of a temporally developing jet

the Reynolds stress also has a self-similar form, which can be written as

〈u′v′〉 = R0(t) g( y/δ), (2.7)

where R0(t) is given by

R0 ∼ δ
du0

dt
∼ u0

dδ

dt
. (2.8)

Note that this is different from R0 ∼ u2
0, which is the assumption made in Townsend

(1949), Tennekes & Lumley (1972) and Gauding et al. (2021). We do not use this
assumption here (but the results (2.19) and (2.20) of our analysis confirm it in this very
particular flow case).

At this point, we have three unknowns, u0, δ, R0, and two relations, (2.6) and (2.8).
Hence one more relation is needed. Following Townsend (1976), George (1989) and
Cafiero & Vassilicos (2019), the equation for the x- and z-average turbulent kinetic energy
K is therefore also incorporated into the analysis:

D
Dt

K = T + P − ε, (2.9)

where T , P and ε are the x- and z-averaged turbulence transport, production and dissipation
terms, respectively. Due to homogeneity/periodicity in x and z, and to the fact that the mean
velocity component V is 0, the equation reduces to the form

∂

∂t
K = T + P − ε. (2.10)

Making self-similarity assumptions for the turbulent kinetic energy K, dissipation ε and
transport and production terms as one entity T + P, i.e.

K(t, y/δ) = K0(t), e( y/δ), (2.11)

ε(t, y/δ) = ε0(t) θ( y/δ), (2.12)

(T + P) (t, y/δ) = P0(t) τ ( y/δ), (2.13)

and then plugging these expressions into (2.10), we obtain

∂K0

∂t
e − K0

δ

dδ

dt
e′ = P0τ − ε0θ, (2.14)

where e′ is the derivative of e with respect to y/δ. The coefficients that are functions of
only t and not of y/δ must be proportional to each other, hence

∂K0

∂t
∼ K0

1
δ

∂δ

∂t
∼ P0 ∼ ε0. (2.15)

The first of these proportionalities simply shows that the variables K0 and δ have
power-law dependencies on time. The remaining useful proportionality relates the
turbulence dissipation to the turbulent kinetic energy and the jet half-width. We isolate

970 A33-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.654


S. Er, J.-P. Laval and J.C. Vassilicos

it below as it is one of the additional relations that we need:

K0
1
δ

∂δ

∂t
∼ ε0. (2.16)

To be useful, this additional relation needs to be complemented by a separate turbulence
dissipation scaling for ε0. There are two options: the classical dissipation scaling

ε0 ∼ K3/2
0
δ

, (2.17)

and the non-equilibrium dissipation scaling found in various turbulent flows, including
spatially developing turbulent jets and wakes, grid-generated turbulence and time-evolving
periodic turbulence (both forced and decaying) (Dairay et al. 2015; Vassilicos 2015; Goto
& Vassilicos 2016; Cafiero & Vassilicos 2019; Ortiz-Tarin et al. 2021),

ε0 ∼
(

ReG

Re0

)m K3/2
0
δ

, (2.18)

with m = 1 except for slender body wakes (Ortiz-Tarin et al. 2021) where m = 2. Unlike
ReG, which is the global Reynolds number (independent of time), Re0 is the local Reynolds
number (time-dependent) defined by Re0 = √

K0 δ/ν. With (2.18), the dissipation scaling
is actually written in a general way that also includes the classical dissipation scaling as a
special case for which m = 0.

To complete our analysis and obtain δ(t) and u0(t), the additional relations that we use
are (2.16), (2.18) and Townsend’s assumption K0 ∼ R0 (Townsend 1976), which is needed,
in fact, only if m /= 1. Combining with u0δ0 ∼ UJHJ from (2.6) and R0 ∼ u0(dδ/dt) from
(2.8), one obtains the following scalings (where t0 is a virtual time origin):

u0 ∼ (UJHJ)
1/2(t − t0)−1/2, (2.19)

δ ∼ (UJHJ)
1/2(t − t0)1/2, (2.20)

irrespective of the value of m. It follows, in particular, that the local Reynolds number Re0
is constant in time irrespective of m. This Reynolds number constancy is a consequence of
our analysis, not its premise. Note also that dδ2/dt is a constant proportional to UJHJ . In
terms of a dimensional constant coefficient A, we write dδ2/dt = AUJHJ .

An important observation here is that the mean flow scalings are independent of
the turbulent dissipation scaling relation, contrary to the spatially developing turbulent
planar jet where different centreline mean velocity and jet width scalings are present for
different turbulent dissipation regimes (Cafiero & Vassilicos 2019). In other words, for the
temporally developing turbulent planar jet, the mean flow scalings are the same for all
values of m, which includes the classical dissipation (m = 0) and the non-equilibrium
dissipation (m = 1) cases. It is therefore not possible to distinguish between different
dissipation scaling regimes from the time evolution of the temporally developing planar
jet flow.

3. TNTI propagation velocity

With the time dependencies of the mean flow parameters obtained, a relation for the
mean propagation velocity of the TNTI can also be found. Following Van Reeuwijk &
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Holzner (2013) and Zhou & Vassilicos (2017), a relation between growth rate of the
turbulent jet volume in time and the TNTI propagation speed can be written:

dVJ

dt
= Svn, (3.1)

where VJ stands for the turbulent volume, S stands for the surface area of the TNTI
bounding this volume, and vn stands for the mean interface propagation velocity. In
this paper, we follow this global/integral approach to our theoretical and computational
estimates of the propagation velocity, which, as shown by Van Reeuwijk & Holzner (2013),
is consistent with the local approach that requires highly resolved calculations with low
numerical noise of first- and second-order derivatives of vorticity, particularly at the outer
edge of the TNTI layer (see § 4 and Appendix A).

Substituting VJ = 2aδLxLz, where a is a dimensionless constant coefficient, and Lx and
Lz are the extents of the domain in the streamwise and spanwise directions, respectively,
the relation can be written as

dδ(t)
dt

2aLxLz = Svn. (3.2)

In various previous studies, the TNTI defined in terms of passive scalar fields is found to
have fractal or fractal-like properties, either with a constant fractal dimension over a range
of scales (Sreenivasan, Ramshankar & Meneveau 1989; Prasad & Sreenivasan 1990) or
with a scale-dependent fractal dimension (Miller & Dimotakis 1991; Dimotakis & Catrakis
1999) that may actually also vary with the threshold defining the boundary of the turbulent
region (Lane-Serff 1993; Flohr & Olivari 1994). By taking into account an assumed fractal
or fractal-like nature of the interface, the surface area of the TNTI can be estimated with
the relation

S(r) ∼ LxLz

(
r

δ(t)

)2−Df

, (3.3)

where r is the length scale with which the surface area is measured (see Mandelbrot 1982),
the outer length is assumed to be δ(t), which is of the order of the integral scale, and Df is
the fractal dimension of the interface, with a value in the range 2 ≤ Df < 3. Considering
that the interface cannot have contortions of size smaller than the thickness of the interface,
the smallest length scale on the interface can be considered to be the TNTI thickness, ηI .
In this section, we neglect the complex inner structure of the TNTI layer and espouse a
relation between ηI and the mean propagation velocity of the type

ηI = ν/vn, (3.4)

which recognises the effect of viscous diffusion of enstrophy at the interface (Corrsin &
Kistler 1955). (In § 5.6, we modify this relation in an attempt to take into account the fact
that viscous superlayer is only the outer part of the TNTI layer.) We therefore estimate S
by setting r proportional to ηI in (3.3) in a way that models S as

S = LxLz

(
ηI

δ(t)

)2−Df

. (3.5)

Using (3.5) for S with (3.2) and (3.4), the following relation is obtained for the TNTI’s
mean propagation velocity:

vn

UJ
= (Aa)1/(Df −1) HJ

δ
Re

−(Df −2)/(Df −1)

G , (3.6)
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where we made use of the dimensionless constant coefficient A in dδ2/dt = AUJHJ . It can
be seen from (3.6) and (2.20) that the average propagation velocity of the TNTI scales as
the inverse square root of time, and that it scales with the global Reynolds number raised
to a power depending on the fractal dimension of the interface.

We want to compare (3.6) for vn to the scalings of the characteristic velocities of the
flow, u0 ∼ (UJHJ)

1/2(t − t0)−1/2 and uη ≡ ν/η, where η is the Kolmogorov length η ≡
(ν3/ε0)

1/4 in terms of the centreline (y = 0) turbulence dissipation rate ε0 (averaged over
x and z). First, we find vn/u0 ∼ Re

(2−Df )/(Df −1)

G , which means that vn/u0 is independent of
time and depends on the initial volume flux only through ReG as it depends on ReG raised
to a power equal to (2 − Df )/(Df − 1). From η ≡ (ν3/ε0)

1/4, (2.18), K0 ∼ R0 and (2.20)
follows

η ∼ (UJHJ)
1/2Re−3/4

G (t − t0)1/2 (3.7)

and therefore

uη ∼ (UJHJ)
1/2(t − t0)−1/2Re−1/4

G . (3.8)

Hence vn/uη ∼ Re
(2−Df )/(Df −1)+1/4
G , meaning that vn and uη have the same dependence on

time, but the same dependence on ReG only if Df = 7/3. Note that the maximum possible
fractal dimension Df = 3 corresponds to vn ∼ uλ, where uλ ≡ ν/λ, the Taylor length λ
being obtained from ε0 ∼ νK0/λ

2 and scaling as

λ ∼ (UJHJ)
1/2Re−1/2

G (t − t0)1/2. (3.9)

It follows that uλ scales as

uλ ∼ (UJHJ)
1/2(t − t0)−1/2Re−1/2

G . (3.10)

The most important implication of these relations is that the time dependencies of all
the velocities vn, uη, uλ and u0 are the same. Similarly, the turbulent length scales η, λ,
the TNTI thickness ηI and the jet half-width δ have the same time dependencies too. As
a result, it is not possible to distinguish whether the average TNTI propagation velocity
scales with uη or uλ in the temporally developing turbulent jet by just monitoring the
evolution in time of these velocities. Other than that, all these three velocities scale with
global Reynolds number ReG raised to different powers, except if Df = 7/3, in which case
vn and uη have the same ReG dependence, or if Df = 3, in which case vn has the same ReG
dependence as uλ.

The validity of the time dependencies and the fractal characteristics of the TNTI are
now investigated with data from DNS of a time-developing turbulent jet. A study of the
ReG dependencies would require many such DNS with a wide enough range of high ReG
values, and remains out of our present scope.

4. Simulations

DNS of a temporally evolving turbulent jet are conducted similar to those described in
the studies of da Silva & Pereira (2008), Van Reeuwijk & Holzner (2013) and Silva et al.
(2018). The global Reynolds number is ReG ≡ UJHJ/ν = 3200. The reference time scale
Tref = HJ/(2UJ) is used for time normalisation when presenting our results.
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The initial mean velocity profile of the jet is defined by (da Silva & Pereira 2008; Van
Reeuwijk & Holzner 2013)

U( y, t = 0) = UJ

2
− UJ

2
tanh

[
HJ

4θ0

(
1 − 2|y|

HJ

)]
, (4.1)

where y = 0 is the centreplane of the planar jet, and θ0 is the initial momentum thickness.
We take HJ/θ0 = 35 as in other studies since this value was reported to lead to faster
transition compared to lower HJ/θ0 values when perturbed (da Silva & Pereira 2008).
A high-frequency white noise is added on top of the mean velocity profile to accelerate
the transition to turbulent flow. In order to confine the added noise inside the jet region, y =
[−HJ/2, HJ/2], the hyperbolic tangent velocity profile is used, i.e. (4.1) by taking UJ = 1.
The initial noise is multiplied by this function, which is equal to 1 at the centreplane and
goes smoothly to zero at the border of the jet.

The energy spectrum of the random velocity field is Enoise(k) = Cnoise exp(−(k − k0)
2),

where Cnoise is the constant controlling the amplitude, and k0 is the wavenumber of
the energy peak. This peak of the excited wavenumber is chosen to be 1.5 times the
wavenumber corresponding to the initial shear layer thickness, which corresponds to
k0 = 75. The shear layer thickness is determined by the difference between the value of y
where dU/dy = 0.95 max(dU/dy) and the value of y where dU/dy = 0.05 max(dU/dy),
where max(dU/dy) is the maximum velocity gradient on the initial mean profile. The
amplitude Cnoise is tuned so that the mean enstrophy value of the random fluctuations at
the centreplane y/HJ = 0 is approximately 4 % of the maximum value of the initial mean
enstrophy profile. This corresponds to velocity fluctuations at the centre of the jet that are
2.45 % of the initial mean streamwise velocity UJ .

The domain size of the DNS is (8HJ, 12HJ, 8HJ), and the corresponding grid size is
(1024 × 1536 × 1024) in directions x, y and z, respectively, which leads to a homogeneous
grid size in every direction. For ensemble averaging, five DNS were run, referred to as PJ1,
PJ2, PJ3, PJ4 and PJ5. The governing equations are solved with a pseudo-spectral solver
and a second-order Runge–Kutta time stepping scheme. Periodic boundary conditions in
all directions are compatible with V = 0 and ∂〈p〉/∂x = 0, in agreement with the theory
in § 2. Apart from the 2/3 truncation de-aliasing method of each wavenumber component,
a filtering function effective at the very high end of the resolved wavenumbers is also
applied to reduce the oscillations appearing in the outer edge of the TNTI layer and the
irrotational region outside of the turbulent bulk of the jet.

Indeed, as the enstrophy value on the non-turbulent side of the TNTI goes to zero,
the presence of weak numerical oscillations inherent to the spectral method limits the
detection of the very outer edge of the TNTI, the TNTI being a very thin region with very
high enstrophy gradients. In order to be able to improve the quality of the detected TNTI, a
few trials have been made. First, a posteriori filtering of the velocity field by spectral filters
was tried. Second, a priori filtering was applied to the nonlinear term simultaneously with
the 2/3 truncation. A priori filtering was observed to be more effective than a posteriori
filtering, so it was preferred and further investigated.

This filtering is obtained by the modification of the classical spectral cut-off filter
applied, namely the 2/3 truncation, for de-aliasing of the pseudo-spectral method. More
details concerning the reasons why the modified de-aliasing procedure was used, and
how it improved the quality of the data, can be found in Appendix A along with the
energy and dissipation spectra at the centreplane of the jet. For the modified de-aliasing
method, a filter function R(|k|) (where k = (kx, ky, kz)) has been applied in the form
R(|k|) = 2 − exp(c1(|k| − kfilter)

2), where c1 is a coefficient chosen to fix the value
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Figure 1. (a) Taylor Reynolds number Reλ and (b) spatial resolution dy = HJ/128, normalised by the
Kolmogorov scale at the centreplane of the jet (y = 0). The five different curves correspond to our five DNS
realisations.

R(kcut-off ) = 0.01. The wavenumbers with |k| < kfilter are completely unaffected from
the filtering, and the wavenumbers with at least one component greater than the cut-off
wavenumber, i.e. max[(kx, ky, kz)] > kcut-off , are truncated. The wavenumbers with |k| >

kfilter but max[(kx, ky, kz)] < kcut-off are then filtered by using the function R(|k|). Due
to the shape of R(|k|), the effect of this modified de-aliasing is limited to only the
wavenumbers very close to the cut-off wavenumbers, which is presented in Appendix A.

Figure 1(a) shows the Reynolds number defined in terms of the Taylor length scale
λ = √

10νK0/ε0, where K0 and ε0 are the kinetic energy and dissipation averaged over
the centreplane (y = 0). Here, Reλ = (

√
2/3K0 λ)/ν remains constant at approximately

Reλ ∼ 45–65 throughout the time evolution of the jet after transition to the fully turbulent
regime. Given that ν/

√
Kc ∼ η(η/δ)1/3, the constancy of Reλ in time is one indication

that the turbulent length scales of the flow evolve similarly in time as expected from
the previous section. Figure 1(b) shows that at all times, the spatial resolution remains
higher than the Kolmogorov length calculated in the centreplane y = 0. This resolution is
observed to be critical for the postprocessing in this study as it is related directly to the
accurate resolution of the geometrical properties of the TNTI. Appendix B shows results
from simulations conducted with higher Reynolds numbers by making a trade-off with
the resolution, and demonstrates the necessity for the high grid resolution favoured in the
present study.

5. Results

5.1. Self-similarity and length scales
The analysis of the DNS data starts with mean profiles in order to determine the
self-similar region where the investigation of the TNTI is to be conducted. In order to
determine the time when the jet becomes self-similar, mean profiles of the streamwise
velocity, turbulent kinetic energy and the 〈u′v′〉 component of the Reynolds stress are
considered. Self-similarity means that statistics evolve with a time-local amplitude scaling
and a time-local length scale, i.e. φ0(t) and �(t), so that the time-dependent y-profile of an
x- and z-averaged quantity φ can be written in the form (Townsend 1976)

φ = φ0(t) f ( y/�(t)). (5.1)

For the investigation of the self-similarity of the mean flow profiles, we start by
normalising the profiles by using the jet half-width δ(t) (defined as the absolute value
of y, where U( y) is U(0)/2) as time-local length scale; see figure 2. In order to distinguish
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Figure 2. Profiles of mean streamwise velocity U, streamwise velocity r.m.s. urms, Reynolds shear stress 〈u′v′〉,
and turbulent kinetic energy K, normalized by the maximum values of the respective profiles and compared
with experimental data from Cafiero & Vassilicos (2019) (blue circles), Ramaprian & Chandrasekhara (1985)
(green triangles) and Gutmark & Wygnanski (1976) (red squares).

between self-similarity and scaling, the profiles are normalised in figure 2 by their maxima
(Dairay et al. 2015).

With similar DNS, da Silva & Pereira (2008) report that the self-similar regime starts at
t/Tref ≈ 20, which is after the transition to turbulence has happened. In another study
of the same flow, Van Reeuwijk & Holzner (2013) report that the jet becomes fully
turbulent at t/Tref ≈ 30. Looking at figure 2, it is observed that the mean flow, Reynolds
stress, root-mean-square (r.m.s.) streamwise velocity and turbulent kinetic energy profiles
collapse rather well as functions of y/δ(t) for t/Tref ≥ 30 in the present simulations;
t/Tref = 30 marks the beginning of the self-similar regime, and as shown in figure 1(a), it
is also when the Taylor length Reynolds number starts remaining approximately constant
in time. In figure 2, the self-similar profiles are also compared with the experimental
data of Gutmark & Wygnanski (1976), Ramaprian & Chandrasekhara (1985) and Cafiero
& Vassilicos (2019), showing good collapse between the present data and the profiles
obtained in the experiments.

Figure 3(a) shows the time evolution of the normalized square of the jet half-width, i.e.
δ2/H2

J .
The data plotted in figures 2 and 3(a) are ensemble averages over the five simulations (as

well as averages over the x–z plane in every simulation, of course). A linear fit to the data
for t/Tref ≥ 30 shows that δ2 grows linearly with time, in agreement with the prediction in
§ 2. Figure 3(b) shows ratios of length scales, namely η(t)/λ(t) and δ(t)/λ(t), where λ and
η are calculated in terms of turbulent kinetic energy and dissipation rate at the centreplane
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Figure 3. (a) Time variation of the square of the jet half-width, δ2. The red dashed line is the linear fit to the
data for times when the jet is fully turbulent and mean profiles are self-similar. (b) Ratios λ/η (solid line) and
δ/λ (dashed line), demonstrating the similar time evolution of all length scales of the flow.
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Figure 4. (a) The ratios K0/R0 and K0/u2
0, and (b) constancy of the normalised volume flux, between

t/Tref = 26 and t/Tref = 98.

y = 0. It is observed that the turbulence length scales λ and η evolve similarly in time.
In addition, the mean flow length scale δ(t) also evolves in the same way, leading to the
confirmation of the conclusion in § 2 that all length scales grow identically with time.

To extract from the DNS data the scaling quantity R0 of § 2, we identify it with 〈u′v′〉max,
the maximum value of the Reynolds shear stress profile in figure 2.

We find that the Townsend assumption K0 ∼ R0 holds for times t/Tref = 30 to t/Tref =
80 (figure 3a). According to the scalings derived in § 2, K0 should vary in time like u2

0,
where u0(t) ≡ U( y = 0, t), and this is confirmed by our DNS data, as figure 4(a) makes
clear over a range of times even greater than K0 ∼ R0 (up to t/Tref = 100). This range
of times is greater because the effects of the boundary conditions on the time-developing
jet appear to be felt first by the Reynolds shear stress and later by other quantities such
as K0 and u0. We chose to process our data from t/Tref = 30 to t/Tref = 100, where
self-similarity holds and where the constancy of u0δ, related to the volume flux (2.6),
is definitely respected in our DNS (figure 4b). With the exception of figure 4(a) where
K0/R0 starts deviating from its constancy in time after t/Tref = 80, all the figures where
we plot quantities versus time do not show a drastic change after t/Tref = 80, which is why
we chose to process our data until t/Tref = 100 rather than t/Tref = 80. There is no effect
on our paper’s conclusions.

5.2. Time dependence of scaling parameters and virtual origin
The time dependencies of the centreline streamwise velocity scale u0(t) and of the jet
half-width δ(t), (2.19) and (2.20), are found to be power laws

φ(t) = A(t − t0)b (5.2)
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Figure 5. The optimal virtual origin t0 as a function of exponent b for the time evolutions of u0 (blue circles)
and δ (red squares). The dashed vertical lines show the best fit exponent b for t0 = 0 (blue for u0, red for δ),
and the green diamond marks the one value of b for which t0 is the same for both (2.19) and (2.20).

in the theoretical analysis of § 2. It is important to note that these two power laws must
combine properly to satisfy the governing equations, and that this can happen only if the
virtual origin t0 is the exact same one in (2.19) and (2.20) (Nedić 2013; Nedić, Vassilicos
& Ganapathisubramani 2013; Dairay et al. 2015; Cafiero & Vassilicos 2019).

There exist various methods for the determination of the exponent b while taking proper
account of the virtual origin t0 (Nedić et al. 2013; Dairay et al. 2015; Cafiero & Vassilicos
2019). In the present study, the method used in Cafiero & Vassilicos (2019) is implemented
on u0(t) ∼ (t − t0)b and δ(t) ∼ (t − t0)−b.

The procedure starts with initial fits to the u0 data in the form u0 ∼ tb, and to the δ

data in form δ ∼ t−b, in agreement with volume flux conservation, (2.6). By this step,
two approximate values for the exponent b are obtained as initial guesses. Then the value
of the exponent is varied in a certain range around the initial guess in order to find the
corresponding t0 values for every value of b. This procedure is carried out for both u0 and
δ separately. Plotting the resulting (b, t0) pairs yields the plot in figure 5, where blue and
red colours are differentiating the values obtained from the u0 and δ data. At the point
where these two lines intersect, the best fit values (b, t0) are the ones that take into account
that the virtual origin must be identical for both u0 and δ. These values are b = −0.51 and
t0 = 11.7. The time evolutions of u0 and δ in the time range t/Tref = 30 to /Tref = 100,
and their power-law fits with the pair b = −0.51, t0 = 11.7, are shown in figure 6.

At this point, we recall our result of § 2 that, unlike spatially developing turbulent jets
(Cafiero & Vassilicos 2019), the evolutions (in time) of u0 and δ0 in temporally developing
turbulent jets are independent of the exponent m in the turbulence dissipation law (2.18).
The values found for b and t0 from the DNS data are compatible with the theoretical value
b = −0.5 obtained in § 2 for any exponent m.

5.3. Identification of the turbulent jet and locating the TNTI
The TNTI is associated with the very high gradients of enstrophy observed between
the rotational turbulent region and the irrotational outer flow. Thus it is the layer where
isosurfaces of very different enstrophy values are spatially stacked very close to each
other. In figure 7, we plot the turbulent jet volume VJ , defined as the volume where
ω2 ≥ ω2

th, where ω2 is the enstrophy of the fluctuating velocity field, and ω2
th is a threshold

enstrophy. In this figure, VJ is normalised by the domain volume Vtot, and plotted versus
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Figure 6. Time variation of (a) u0 and (b) δ, with the best power-law fits obtained by the procedure based on
figure 5.
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Figure 7. Detected turbulent volume VJ/Vtot obtained by varying the threshold values ω2
th/ω

2
ref for one of the

simulations (PJ1).

the normalised enstrophy threshold values ω2
th/ω

2
ref , where the reference enstrophy ω2

ref is
the mean enstrophy value averaged over the centreplane. (Note that ω2

ref evolves in time.)
Figure 7 reveals the presence of a plateau over a very wide range of threshold values

at any time between t/Tref = 30 and t/Tref = 90. This is the range of enstrophies packed
tightly together within the TNTI, leading to VJ/Vtot being approximately constant for a
wide range of ω2

th/ω
2
ref values, and thereby reflecting the sharp demarcation between the

turbulent region and the outer non-turbulent region. Starting from the turbulent side of
the TNTI and going through the interface, the enstrophy drops rapidly from its nearly
homogeneous non-zero value in the inner region of the jet towards zero within a very
short distance, which is typically of the order of 10η for the Reynolds numbers reachable
by current DNS (Nagata, Watanabe & Nagata 2018; Silva et al. 2018).

The left-hand side of the plateau, corresponding to low enstrophy threshold values,
is limited by the numerical noise. These numerical oscillations get significant as the
threshold value goes to zero. The additional filtering that we introduced to reduce the
numerical oscillations increases the ω2

th/ω
2
ref range of the plateau by extending its left-hand
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Figure 8. Contour field of ω2/ω2
ref and isocontours of certain ω2

th/ω
2
ref values to mark the TNTI layer.

Simulation PJ1 at t/Tref = 50.

side to values closer to ω2
th/ω

2
ref = 0, as the outer edge of the TNTI is cleaner in terms of

noise.
Figure 8 shows a part of the computational domain that includes the turbulent jet for PJ1

at t/Tref = 50. The inset is the magnification of a small region around the TNTI and shows
the isocontours ω2

th/ω
2
ref = 10−6, 10−5, 10−4, 10−3. These threshold values are within the

enstrophy range of the plateau in figure 7 and are therefore within the TNTI. Surfaces that
are clean in terms of noise can be obtained for a very wide range of enstrophy thresholds
from the simulation data.

Following the determination of the ω2
th/ω

2
ref range defining the TNTI, we now determine

the TNTI as shown in figure 9. The procedure starts by labelling the turbulent volume
by the condition ω2(x, y, z) ≥ ω2

th/ω
2
ref , and obtaining the binary field. The turbulent

region corresponds to the blue region in figure 9(a), and the non-turbulent regions
correspond to the white and red marked regions, where the engulfed regions (shown
with red) are still present. Following this, the non-turbulent volumes are labelled in
three dimensions by using the labelling function from the open-source SciPy library
(Virtanen et al. 2020), so that all independent non-turbulent volumes have their individual
label number. At this stage, the connectivities of the non-turbulent regions are checked,
leading to detection of engulfed non-turbulent volumes (with no connection in three
dimensions with the external irrotational region). Some examples of these detected
engulfed volumes can be seen in figure 9(a), marked in red. The white detached regions
inside the turbulent area of figure 9(a) (in blue) are connected to the outer non-turbulent
region in the three-dimensional field (out of the figure’s plane). In order to consider only
the outer surface, the engulfed volumes are suppressed in this study. To get the surface
corresponding to a chosen ω2

th/ω
2
ref in three dimensions, a dilation procedure is used in

three dimensions to expand the non-turbulent region into the turbulent region. Then by
subtracting the original field from the dilated field, we end up with a field where the
three-dimensional jet envelope is marked by the number 1, and all other data points are
marked 0 in the entire simulation domain. A cut-section of the resulting field is shown
in figure 9(b), as the dark line. This detection procedure is applied for various enstrophy
threshold values to obtain the interface characteristics at different locations throughout the
TNTI layer as in Van Reeuwijk & Holzner (2013) and Krug et al. (2017).
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Figure 9. (a) The labelling of the turbulent, non-turbulent and engulfed regions. (b) Detected TNTI. For the
instant t/Tref = 50 of simulation PJ1, ω2

th/ω
2
ref = 10−3.

5.4. Fractal dimensions of the TNTI
The theoretical analysis in § 2 relates the fractal dimension of the TNTI to the global
Reynolds number scaling of the TNTI propagation velocity; see (3.6). It is therefore
important to investigate the fractal/fractal-like properties of the TNTI.

The fractal/fractal-like nature of scalar isosurfaces relating to the TNTI has been
reported in various studies (Sreenivasan et al. 1989; Miller & Dimotakis 1991; Sreenivasan
1991; Lane-Serff 1993; Dimotakis & Catrakis 1999; Mistry et al. 2016; Mistry, Dawson &
Kerstein 2018). However, these fractal/fractal-like characteristics are described somewhat
differently in different studies. In some studies, a well-defined power law for the scale
dependence of the surface area (thus constant fractal dimension) has been reported
(Sreenivasan et al. 1989; Sreenivasan 1991; Mistry et al. 2016, 2018). This is the case
where, when one covers the surface with boxes of size r, the number N of boxes needed to
fully cover the surface scales as N(r) ∼ r−Df (Mandelbrot 1982), and the fractal dimension
Df of the surface is independent of r over a significant range of scales r. In other studies
of isosurfaces, in flows such as turbulent jets and mixing layers, a scale-dependent fractal
dimension is reported, i.e. Df = Df (r), which means that there is no constant value for the
fractal dimension Df , but the fractal dimension varies with box size r (Miller & Dimotakis
1991; Dimotakis & Catrakis 1999; Catrakis & Dimotakis 1999).

There is also the question of the enstrophy threshold used to define the TNTI
because a strong threshold dependence of the fractal dimension of scalar isosurfaces
has been reported in some studies (Miller & Dimotakis 1991; Lane-Serff 1993; Flohr &
Olivari 1994). Varying the threshold within the range of thresholds where VJ remains
approximately constant is akin to sampling different inner iso-enstrophy surfaces within
the TNTI layers’ inner structure (Van Reeuwijk & Holzner 2013). There may be not one
single fractal dimension for the TNTI, but different fractal dimensions for different inner
isosurfaces of enstrophy within the TNTI layer, an aspect of the problem that needs to be
investigated.

We apply the box-counting procedure to obtain fractal dimensions of iso-enstrophy
surfaces within the TNTI. Figure 10 shows typical ensemble-averaged box-counting
results, these particular ones being for the isosurface ω2

th/ω
2
ref = 10−3 at time t/Tref = 50.

Figure 10(a) is a log–log plot of the number N of boxes needed to cover the iso-enstrophy
surface versus the inverse box size 1/r. The linear fit in orange is obtained by using
all the points on the plot, and the slope of this fit is found to be Df 1 = 2.161 for this
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Figure 10. Ensemble-averaged results of the box-counting method applied to isosurface ω2
th/ω

2
ref = 10−3 at

time t/Tref = 50. (a) A plot of the number of boxes N of size r versus 1/r is shown in log–log scale, the orange
line being the linear best fit for all data points on this plot. (b) The local slope calculated by the fits using
nine consecutive data points, the value of the local slope being attributed to the centre point. The local slopes
marked as red squares (as opposed to blue circles) are the points used to calculate Df 2. The dashed, dot-dashed
and dotted vertical lines locate on the horizontal axis the length scales δ, λ and η, respectively (where λ and η

are calculated on the centreplane.)

particular case. On the other hand, local slopes are also calculated by fits over nine
consecutive data points on this plot. It is observed (see the example in figure 10b) that the
local slope does not remain constant throughout all scales r. An approximately constant
fractal dimension, seen as a plateau-like region in figure 10(b), appears to exist between
r = δ and r = λ for the entire range of isosurfaces of various enstrophy threshold values
within the TNTI (ω2

th/ω
2
ref between 10−6 and 10−3) and for all times where the jet is fully

turbulent (local slope values marked by red square markers). Note that the constancy of
this local fractal dimension is affected by the fact that it is calculated by using nine points
around the value of r where the local dimension is evaluated. This means that the highly
non-constant values of the fractal dimension at scales r larger than δ are responsible for
deviations from constancy at scales close to but below δ, and that the progressive decrease
of the local slope towards Df = 2 as r decreases at scales r below λ is responsible for the
systematic deviation from constancy at scales close to yet larger than λ.

Throughout this study, the fractal dimension is calculated as the average value of the
local slopes between box sizes r = δ and r = λ, and this fractal dimension is denoted
Df 2. The first point with r smaller than or equal to δ (i.e. the largest value of r in the
range λ ≤ r ≤ δ) is excluded from this average so as to reduce the oscillation caused by
less-converged values of N at larger box sizes.

The fractal dimension Df 2 for different enstrophy threshold values in the TNTI range
ω2

th/ω
2
ref ∈ [10−6, 10−3] is shown in figure 11 as a function of time. The fractal dimensions

Df 2 of the TNTI may be considered to remain approximately constant in time for all these
enstrophy thresholds, and the mean value around which Df 2 appears to fluctuate is shown
by the dashed lines in the figure. For the threshold values ω2

th/ω
2
ref ∈ [10−6, 10−3], this

fractal dimension value varies from Df 2 = 2.09 to Df 2 = 2.18. It can be observed that the
values of Df 2 for different ω2

th/ω
2
ref get closer to each other towards the lower values of

ω2
th/ω

2
ref . It can also be argued that an objective definition of the viscous superlayer must
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Figure 11. TNTI fractal dimensions Df 2 versus time t/Tref for different normalised enstrophy thresholds
within the TNTI.
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Figure 12. Same as figure 10, but for iso-enstrophy surface ω2
th/ω

2
ref = 10−2 at the same time t/Tref = 50.

include, within the superlayer, enstrophy iso-values for which the fractal dimension can be
detected with a value larger than 2.

A significantly higher value, Df 2 = 2.36, has been observed for the iso-enstrophy
surface defined by the threshold ω2

th/ω
2
ref = 10−2. This value is close to the fractal

dimension 7/3 ≈ 2.33 reported in various studies (Sreenivasan et al. 1989; Sreenivasan
1991; Mistry et al. 2016, 2018). It must be noted that the enstrophy threshold ω2

th/ω
2
ref =

10−2 rests on the turbulent side of the TNTI judging from the enstrophy range of the
plateau shown in figure 7. However, it is also observed that the log2 N–log2(1/r) plot
obtained from the box-counting algorithm for this enstrophy threshold shows no evidence
of a fractal dimension that is independent of r, i.e. there is no significant plateau region
in figure 12(b), and the local slope varies significantly with r. The value Df 2 = 2.36 is
obtained by averaging over the local fractal dimensions (local slopes in figure 12b) from
r = λ to r = δ, but these local fractal dimensions vary continuously with r from 2.2 to
over 2.45.
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Length scales and the TNTI of a temporally developing jet
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Figure 13. Validity of dVJ/dt ∼ 2LxLz (dδ/dt) over the time evolution of the fully turbulent jet.

5.5. Propagation velocity of the interface
In § 2, we obtained (3.6) for the TNTI’s mean propagation velocity on the basis of
the fractal/fractal-like character of the TNTI. We now know, following the previous
subsection, that the TNTI of our time-developing turbulent jet has a range of fractal
dimensions Df 2 depending on the normalised enstrophy threshold ω2

th/ω
2
ref , and that Df 2

is a fairly well-defined single number independent of box size r in the range λ ≤ r ≤ δ if
ω2

th/ω
2
ref is in the range [10−6, 10−3]. The question that arises naturally now is: Does (3.6)

capture the time and enstrophy-threshold dependencies of the mean propagation velocity
vn? More specifically, can we use Df 2 = Df 2(ω

2
th/ω

2
ref ) defined in the range λ ≤ r ≤ δ

as the fractal dimension in (3.6) to capture accurately the time and enstrophy-threshold
dependencies of vn? We stress that in this formula, vn depends on the enstrophy threshold
only through Df 2, given that A is defined in terms of quantities that are independent of
enstrophy threshold, and a in VJ = 2aδLxLz can be expected to have a negligibly weak
dependence on enstrophy threshold.

To estimate vn independently from (3.6), we use (3.2), having first checked the validity
of dVJ/dt = 2aLxLz (dδ/dt) (see figure 13), which is needed to go from (3.1) to (3.2).
Figure 13 confirms that the dimensionless coefficient a is approximately independent of
time as it oscillates around the constant value a = 1.66, and that it is also very weakly
dependent on enstrophy threshold over at least four decades.

To use (3.2), we need a reliable estimate of the TNTI surface area S that is different
from the fractal estimate (3.3). To obtain such an estimate of S, we plot r2 N(r): as the
box-counting algorithm’s box size r decreases and becomes small enough to resolve all
the contortions of the iso-enstrophy surface, r2 N(r) reaches a maximum and does not
grow further with further decreasing r. We take this maximum as our estimate of S,
i.e. S = SR ≡ maxr[r2 N(r)]. Of course, S depends on the enstrophy threshold defining
the chosen isosurface within the TNTI, and figure 14(a) shows an example of an r2 N(r)
versus 1/r log–log plot for ω2

th/ω
2
ref = 10−3 at t/Tref = 50, where the maximum r2 N(r)

is reached at r close to η. In fact, figure 14(a) is quite typical of normalised enstrophy
thresholds in the range [10−6, 10−3] and times t/Tref in the range [30, 100].
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Figure 14. (a) Plot (using log2 values) of r2 N(r) versus 1/r, at time t/Tref = 50, for the threshold
value ω2

th/ω
2
ref = 10−3. The horizontal dashed line indicates the maximum value of r2 N(r). (b) Plot of

SR/(LxLz) ≡ maxr[r2 N(r)]/(LxLz) versus time t/Tref for different enstrophy threshold values.
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Figure 15. Time dependence of (a) vn/uη and (b) vn/uλ.

In figure 14(b), we plot SR ≡ maxr[r2 N(r)] as a function of t/Tref for various
normalised enstrophy thresholds. Interestingly, the TNTI surface areas SR remain
approximately constant in time for all thresholds ω2

th/ω
2
ref = 10−6 to 10−4 from t/Tref =

40 to 100, and for threshold ω2
th/ω

2
ref = 10−3 from t/Tref = 50 to 100. This is compatible

with the fact that all length scales, large and small, grow together in this flow.
We now calculate the average TNTI propagation velocity vn by using (3.2) with S

obtained from SR ≡ maxr[r2 N(r)], and we compare it with (3.6). First, in figure 15 we
check the time-dependence of vn, which, according to (3.6) and δ ∼ √

UJHJ(t − t0), is
the same as the time dependence of uη and of uλ. In support of this prediction, figure 15
shows that vn/uη and vn/uλ oscillate around a constant as time proceeds for all ω2

th/ω
2
ref

in the range [10−6, 10−3].
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Figure 16. (a) Average interface propagation velocity vn normalised by uη versus normalised enstrophy

threshold for different times t/Tref . (b) Plot of vn divided by (Aa)1/(Df 2−1)Re
(2−Df 2)/(Df 2−1)

G according to (3.6)
(with A = 0.05777 and a = 1.6574) normalised by uη versus normalised enstrophy threshold for different times
t/Tref .

Second, we check the enstrophy threshold dependence of vn, which, according

to (3.6), should be vn/uη ∼ (Aa)
1/(Df (ω

2
th/ω

2
ref )−1)Re

[2−Df (ω
2
th/ω

2
ref )]/[Df (ω

2
th/ω

2
ref )−1]+1/4

G and

equivalently vn/uλ ∼ (Aa)
1/(Df (ω

2
th/ω

2
ref )−1)Re

[2−Df (ω
2
th/ω

2
ref )]/[Df (ω

2
th/ω

2
ref )−1]+1/2

G . We plot
vn/uη versus ω2

th/ω
2
ref for various time instants t/Tref in figure 16(a); and we take

our measured Df 2(ω
2
th/ω

2
ref ) (averaged over time for simplicity, this average being

denoted Df 2) to represent the fractal dimension Df , and plot (vn/uη)(Aa)−1/(Df 2−1)

Re
−(2−Df 2)/(Df 2−1)

G versus ω2
th/ω

2
ref for various time instants t/Tref in figure 16(b).

If (3.6) is able to capture the enstrophy threshold dependence of vn, then

(vn/uη)(Aa)−1/(Df 2−1)Re
−(2−Df 2)/(Df 2−1)

G should be constant with varying ω2
th/ω

2
ref for all

times t/Tref between 30 and 100, with a ≈ 1.66 (as found already from figure 13) and
A ≈ 0.058 from figure 3(a).

We can see clearly in figure 16(a) that, irrespective of time, vn decreases with increasing
ω2

th/ω
2
ref in the TNTI normalised enstrophy range [10−6, 10−3], which makes sense

because S increases with increasing ω2
th/ω

2
ref . Indeed, we expect Svn to be approximately

independent of ω2
th/ω

2
ref in the TNTI range of enstrophy thresholds, judging from (3.1) and

the approximate constancy of VJ in that range (shown in figure 7).
Figure 16(b) shows that our formula (3.6) for the TNTI’s mean propagation velocity vn

with Df given by Df 2(ω
2
th/ω

2
ref ) – i.e. the time-averaged (from t/Tref = 30 to 98) value

of Df 2(ω
2
th/ω

2
ref ) – captures the enstrophy threshold dependence of vn very well over the

wide range of thresholds 10−6 ≤ ω2
th/ω

2
ref ≤ 10−3, which is within the TNTI throughout

the time range considered.
In the next section we explore the inconsistencies of the simple fractal model for vn

presented in § 2, and investigate how they might be overcome.

5.6. A generalised Corrsin length for the TNTI
Our simple fractal model’s formula (3.6) predicts quite well both the time dependence
of the TNTI’s mean propagation velocity vn and its enstrophy threshold dependence.

970 A33-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.654


S. Er, J.-P. Laval and J.C. Vassilicos

However, our fractal model did not foresee the complex inner structure of the TNTI where
different iso-enstrophy surfaces within the TNTI have different fractal dimensions.

Our model is based on: (i) dVJ/dt = 2aLxLz (dδ/dt) (needed to go from (3.1) to (3.2)),
which our simulations rather support (see figure 13); (ii) S = LxLz(ηI/δ)

2−Df , where
ηI = ν/vn is the Corrsin length scale for the viscous superlayer’s thickness; and (iii) a
well-defined fractal dimension Df independent of r over a significant range of r values
bounded from below by the smallest length scale on the TNTI. In the event, our DNS data
have returned well-defined fractal dimensions Df 2 independent of r in a range bounded
from below by λ but not by the smallest length scale on the TNTI, which appears to be
η as the maximum of r2 N(r) is typically reached at r close to η. The number N of boxes
needed to cover iso-enstrophy surfaces continues to increase faster than r−2 as r decreases
from λ to η, implying that these scales between λ and η contribute to the surface area, but
not with a well-defined r-independent fractal dimension. Furthermore, in the range where
an r-independent fractal dimension may be claimed, i.e. λ ≤ r ≤ δ, this fractal dimension
Df 2 is a decreasing function of enstrophy threshold ω2

th/ω
2
ref , appearing to tend towards

close to 2 as ω2
th/ω

2
ref tends to 0.

In figure 17, we plot S(η) = LxLz(η/δ)2−Df 2 , S(λ) = LxLz(λ/δ)
2−Df 2 and S(ηI) =

LxLz(ηI/δ)
2−Df 2 , all normalised by SR ≡ maxr[r2 N(r)]. These three quantities are plotted

versus time for different enstrophy thresholds within the TNTI range of thresholds, i.e.
ω2

th/ω
2
ref within [10−6, 10−3]. The fractal dimension Df 2 is our only possible choice of

fractal dimension for the calculations of S(η), S(λ) and S(ηI) if we want to be consistent
with our model’s requirement that the fractal dimension should be well defined, i.e.
r-independent over a significant r range.

First, figure 17 shows that S(η)/SR, S(λ)/SR and S(ηI)/SR are approximately constant in
time for all TNTI enstrophy thresholds, which is not surprising given the approximate time
constancies of Df 2 and SR and given that η, λ and ηI all have the same time dependence as
δ. Second, figure 17 shows that only S(η)/SR collapses for all enstrophy thresholds. This
is not a trivial result because S(η) is calculated in terms of a fractal dimension Df 2 that
is not well-defined at scale η. The worse collapse is returned by S(λ)/SR; and S(ηI)/SR
tends towards S(η)/SR with decreasing ω2

th/ω
2
ref , which makes some sense because, in

this limit, Df 2 decreases towards values close to 2, and ηI/η therefore approaches a
value of order 1, extremely weakly dependent on ω2

th/ω
2
ref (see § 2). However, S(ηI)/SR

takes values between 1/5 and 1/4, which is different from 1 and therefore contradicts
(3.5), which is a premise of our model. In fact, there is a dimensionless coefficient
b in (3.3), i.e. S(r) = bLxLz(r/δ)2−Df . This coefficient b is independent of enstrophy
threshold because it is set by S(r = δ) = bLxLz. The only way to retrieve (3.5) is by writing
S = bLxLz(cηI/δ)

2−Df with bc2−Df = 1, which requires that the dimensionless coefficient
c is a function of ω2

th/ω
2
ref . Without the arbitrary condition bc2−Df = 1, the formula (3.6)

predicted by our simple fractal model should be replaced by

vn

UJ
=
(

cDf −2

b

)1/(Df −1)

(Aa)1/(Df −1) HJ

δ
Re

−(Df −2)/(Df −1)

G . (5.3)

The quantity cDf −2/b is in fact the ratio S(ηI)/SR (with S(ηI) given by LxLz(ηI/δ)
2−Df 2)

that we plot in figure 17, and from our data it transpires that (S(ηI)/SR)1/(Df 2−1) is a
significantly decreasing function of ω2

th/ω
2
ref (see figure 18). Without setting cDf −2/b = 1,

970 A33-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.654


Length scales and the TNTI of a temporally developing jet

0.30

0.25

0.20

0.15

0.10

0.30

0.25

0.20

0.15

0.10

0.30

0.25

0.20

0.15

0.10

S(
η

)/
S R

S(
λ

)/
S R

S(
η

I)
/S

R

40 50 60 70 80 90 100

40 50 60 70 80 90 100

40 50 60 70 80 90 100

t/Tref

ω2
th/ω2

ref = 10–6

ω2
th/ω2

ref = 10–5

ω2
th/ω2

ref = 10–4

ω2
th/ω2

ref = 10–3

(b)

(a)

(c)

Figure 17. Plots of (a) S(η) = LxLz(η/δ)2−Df 2 , (b) S(λ) = LxLz(λ/δ)
2−Df 2 and (c) S(ηI) = LxLz(ηI/δ)

2−Df 2

(where ηI = ν/vn, with vn values calculated in § 5.5), all normalised by SR ≡ maxr[r2N(r)], versus time t/Tref
for various enstrophy thresholds within the TNTI.

our model does not return the right enstrophy threshold dependence of vn, and cDf −2/b =
1 does not agree with our DNS data, which show that S(ηI)/SR (with S(ηI) given by
LxLz(ηI/δ)

2−Df 2) takes values between 1/5 and 1/4. We therefore need to explore how our
model could be modified to be more realistic, and we do this by generalising the Corrsin
length.

The Corrsin length may be considered appropriate only for the viscous superlayer at the
very lowest enstrophy thresholds where the generation of vorticity is viscosity-dominated
and, consistently, S(ηI)/SR and S(η)/SR appear to take similar values. To generalise this
property to higher enstrophy thresholds, we introduce a generalised Corrsin length

ηT = νT/vn (5.4)
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Figure 18. Plot of (S(ηI)/SR)1/(Df 2−1) as a function of ω2
th/ω

2
ref at different times t/Tref .

in terms of a local turbulent viscosity νT (local to every iso-enstrophy surface within the
TNTI) such that

S = bLxLz(cηT/δ)2−Df 2, (5.5)

where b and c = c(ReG, ω2
th/ω

2
ref ) are dimensionless coefficients independent of time.

The simple physical idea behind (5.4) is that the process of enstrophy production
is increasingly dominated by vortex stretching rather than viscosity as the enstrophy
threshold increases from the outer, viscous superlayer side of the TNTI to its inner,
turbulent side. Studies over the past two decades have indeed shown that the TNTI has
an inner structure that includes a viscous superlayer and a sort of buffer layer or turbulent
sublayer where vorticity production dominates (da Silva et al. 2014; Taveira & da Silva
2014; Nagata et al. 2018). Hence the turbulence viscosity νT = νT(ω2

th/ω
2
ref ) is expected

to increase and become independent of the fluid’s kinematic viscosity ν with increasing
ω2

th/ω
2
ref within the TNTI.

We now ask whether (5.4), (5.5) and (3.2), which represent an attempt to improve the
model for vn in § 2, are consistent with the requirement that νT must increase with ω2

th/ω
2
ref .

The three equations just mentioned imply

νT = 2aδ

c
dδ

dt

(
S

bLxLz

)−(Df 2−1)/(Df 2−2)

, (5.6)

where the dimensionless constant a is the one in Svn = 2aLxLz dδ/dt. It can be seen
that νT depends on ω2

th/ω
2
ref through S and Df 2 (and also c), but does not depend

on time, in agreement with our observations in figures 3(a), 14(b) and 11. As S/LxLz

increases whereas (Df 2 − 1)/(Df 2 − 2) decreases with increasing ω2
th/ω

2
ref , it is not trivial

to predict how (S/LxLz)
−(Df 2−1)/(Df 2−2) behaves with varying ω2

th/ω
2
ref . We therefore use

time-averaged values of S and Df 2 obtained in the previous section for different enstrophy
thresholds, and plot in figure 19 the turbulent viscosity νT given by (5.6) with c set to
a constant independent of ω2

th/ω
2
ref , and δ(dδ/dt) = 1

2(dδ2/dt) given by the DNS. The
result shows that νT with c = const. is a monotonically increasing function of ω2

th/ω
2
ref ,

as required for our improved model to be physically viable. This means that ηT = νT/vn
is also a monotonically increasing function of ω2

th/ω
2
ref because (3.2) implies that vn is a

decreasing function of ω2
th/ω

2
ref . However, the result in figure 19 also suggests that νT and
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Figure 19. The turbulent viscosity νT given by (5.6) with a/c = 1 and b = 1 as a function of normalised
enstrophy threshold.

ηT tend to 0 as ω2
th/ω

2
ref decreases towards 0, whereas νT should be tending towards the

kinematic viscosity ν in that limit. In the next paragraph, we demonstrate how the model’s
dimensionless coefficient c(ReG, ω2

th/ω
2
ref ) can ensure that νT tends to ν as ω2

th/ω
2
ref → 0,

i.e. as we move towards the outer edge of the TNTI.
We model c as being a constant independent of both ReG and ω2

th/ω
2
ref for most

enstrophy thresholds within the TNTI except the smallest ones, where we approximate it
as c(ReG, ω2

th/ω
2
ref ) ≈ ReG c̃(ω2

th/ω
2
ref ), with c̃ being a function of ω2

th/ω
2
ref but not of ReG.

Given that δ(dδ/dt) = (A/2)UJHJ (from (2.20)), we can write 2a(δ/c)(dδ/dt) ≈ Aa(ν/c̃)
as ω2

th/ω
2
ref → 0, i.e.

νT ∼ Aa
ν

c̃

(
S

bLxLz

)−(Df 2−1)/(Df 2−2)

(5.7)

in that limit. For νT to tend to ν as ω2
th/ω

2
ref → 0, c̃ must tend to 0 at the same rate as

(S/bLxLz)
−(Df 2−1)/(Df 2−2), i.e.

ln c̃ ≈ −Df 2 − 1
Df 2 − 2

ln
(

S
bLxLz

)
+ const. (5.8)

as ω2
th/ω

2
ref → 0. It is not the goal of this paper’s final part to determine the functions

νT(ReG, ω2
th/ω

2
ref ) and c(ReG, ω2

th/ω
2
ref ) in the improved model for vn based on (5.4), (5.5)

and (3.2); the goal here is simply to demonstrate on the basis of our DNS and simple
asymptotic arguments that such a model can be physically viable. The example of a choice
of c(ReG, ω2

th/ω
2
ref ) that we made at the start of this paragraph ensures that νT remains

a monotonically increasing function of ω2
th/ω

2
ref while at the same time tending to ν as

ω2
th/ω

2
ref tends to 0. We now work out the consequences of this choice for ηT and vn.
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The formulae for vn and ηT that can be derived readily from our improved model are

vn/uη ∼
(

c(Df 2−2)

b

)1/(Df 2−1)

(Aa)1/(Df 2−1) Re
−(Df 2−2)/(Df 2−1)+1/4
G (νT/ν)(Df 2−2)/(Df 2−1)

(5.9)
and

ηT/η ∼
(

c(Df 2−2)

b

)−1/(Df 2−1)

(Aa)−1/(Df 2−1)Re
(Df 2−2)/(Df 2−1)−1/4
G

× (νT/ν)−(Df 2−2)/(Df 2−1)(νT/ν). (5.10)

Note that the original model of § 2 leads to vn/uη ∼ (Aa)1/(Df 2−1)Re
−(Df −2)/(Df −1)+1/4
G

and ηI/η ∼ (Aa)−1/(Df 2−1)Re
(Df −2)/(Df −1)−1/4
G without the extra powers of cDf 2−2/b and

νT/ν in (5.9) and (5.10).
Without these extra powers, the original model predicts the dependence of vn on

ω2
th/ω

2
ref very well. In our improved model, (νT/ν)(Df 2−2)/(Df 2−1) is an increasing

function of enstrophy threshold because νT/ν is increasing and because the exponent
(Df 2 − 2)/(Df 2 − 1) is also increasing given that Df 2 is an increasing function
of ω2

th/ω
2
ref as observed in our DNS. Our improved model is therefore capable

of maintaining the original model’s good prediction for vn if the increasing
dependence of (νT/ν)(Df 2−2)/(Df 2−1) on ω2

th/ω
2
ref compensates the decreasing dependence

of (cDf 2−2/b)1/(Df 2−1) on ω2
th/ω

2
ref . Indeed, cDf 2−2/b is not equal to 1, and

(cDf 2−2/b)1/(Df 2−1) is a decreasing function of enstrophy threshold, in agreement with
our DNS observation in figure 17(c). The entire point of our improved model has been
to show that by introducing the generalised Corrsin length and the turbulent viscosity
νT , it is possible to correct our original model’s wrong assumption cDf 2−2/b = 1 without
compromising its correct predictions.

We now show that the choice of c that we made for νT to tend to ν as ω2
th/ω

2
ref → 0

also ensures that the generalised Corrsin length ηT tends to a finite value in that limit. As
we move within the TNTI from high to low iso-enstrophy levels – i.e. as we take the limit
of ω2

th/ω
2
ref decreasing towards very small values close to 0 and we approach the outer

edge of the viscous superlayer – Df 2 tends towards values close to 2, and νT tends to ν,
assuming c(ReG, ω2

th/ω
2
ref ) ≈ ReG c̃(ω2

th/ω
2
ref ) in that limit. We are therefore left with

vn/uη ∼ c̃(Df 2−2)/(Df 2−1)Re1/4
G (5.11)

and

ηT/η ∼ c̃−(Df 2−2)/(Df 2−1)Re−1/4
G (5.12)

as we approach the outer edge of the viscous superlayer (we have omitted the
unimportant factor Aa/b). Finally, (5.8) implies c̃(Df 2−2)/(Df 2−1) ∼ LxLy/S, and therefore
our generalised model’s predictions for the viscous superlayer where Df 2 is very close to 2
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and ω2
th/ω

2
ref is extremely small are

vn/uη ∼ LxLz

Sν

Re1/4
G (5.13)

and

ηT/η ∼ Sν

LxLz
Re−1/4

G , (5.14)

where Sν is the finite surface area of the effectively smooth viscous superlayer of the
TNTI. Our generalised model with c(ReG, ω2

th/ω
2
ref ) ≈ ReG c̃(ω2

th/ω
2
ref ), and (5.8) at the

very smallest enstrophy levels and c = 1 above those enstrophy levels, implies that ηT is
a monotonically increasing function of ω2

th/ω
2
ref with a finite value different from η by a

factor Re−1/4
G at the very smallest enstrophy thresholds. The exponent 1/4 being small, this

prediction is not easy to check as it requires numerical oscillation-free calculations at low
enstrophy thresholds for many highly resolved DNS of temporally developing turbulent
jets over a wide range of Reynolds numbers ReG. (See Appendix B for some details about
higher Reynolds number simulations and the importance of spatial resolution.) This is
at, and perhaps even beyond, the very limit of the most powerful current computational
capabilities and therefore beyond the present paper’s scope. Such a computational check
would also require a computable definition or surrogate for ηT , which we make a first
attempt to give in the next couple of paragraphs. Before doing so, however, we point
out that Silva et al. (2018) argued that the viscous superlayer thickness scales with the
Kolmogorov length if Reλ is larger than approximately 200, and that the TNTI layer’s
characteristic sizes may have different scalings at smaller values of Reλ depending on
presence or absence of mean shear (see da Silva & Taveira (2010) and references therein). It
must be stressed that the definition of the viscous superlayer used by Silva et al. (2018) does
not necessarily include some low iso-enstrophy surfaces with fractal dimensions clearly
larger than 2 (see the discussion around figure 11 in § 5.4) and, more importantly, is not
local in enstrophy threshold (i.e. it does not depend on the local position within the TNTI)
and is therefore different from ηT , which is local in enstrophy threshold. The scaling (5.14)
does not necessarily contradict the scalings in Silva et al. (2018) as they concern different
quantities.

We close this section with an interpretation of the generalised Corrsin length ηT . As ηT
is local in terms of iso-enstrophy levels within the TNTI, and as it expresses some kind
of thickness of iso-enstrophy surfaces, it appears natural to compare it with some average
enstrophy length scale on the TNTI. To this end, we use enstrophy profiles conditioned on
the interface location similar to Bisset, Hunt & Rogers (2002). We define a local coordinate
system with local coordinate yI chosen along the local unit normal n = −(∇ω2/|∇ω2|),
which is pointing towards the non-turbulent region. The origin yI = 0 of this local
coordinate system is placed at a given location within the TNTI, for example on the
isosurface defined by ω2

th/ω
2
ref = 10−6, located at the very edge of the TNTI neighbouring

the non-turbulent region. In this way, positive values of yI correspond to the very edge
of the viscous superlayer and the non-turbulent region, whereas negative values of yI
are within the TNTI and the turbulent region. Given such local coordinate systems on
the TNTI, we calculate averages of any quantity φ at a given yI over all locations on
the TNTI where the local yI axis does not cross the TNTI more than once in the range
yI ∈ [−27η, +27η]. We use the notation φI to denote these average quantities, averaged
conditionally on the specified isosurface location.
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Figure 20. Vorticity magnitude and enstrophy values averaged conditionally on the distance from the
iso-enstrophy surface defined by ω2

th/ω
2
ref = 10−6 for the simulation PJ1.
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Figure 21. (a) Plot of ηω/η versus ω2
I /ω

2
ref for t/Tref = 50, PJ1 simulation. This plot is typical of all times

t/Tref between 30 and 100. (b) Profile of ηω along yI/η, with yI = 0 at ω2
th/ω

2
ref = 10−6.

Figure 20 shows the vorticity magnitude, |ω|I , and the enstrophy profile, ω2
I , averaged

conditionally on the distance from the enstrophy isosurface ω2
th/ω

2
ref = 10−6; the profiles

are normalised by the average values of the respective quantities at the centreplane. The
drastic change of both vorticity and enstrophy values in a very short distance is visible, as
shown previously in studies using similar methods, e.g. Nagata et al. (2018), Silva et al.
(2018) and Watanabe, da Silva & Nagata (2019).

We define the local length ηω ≡ ((dω2
I /dyI)(1/ω2

I ))
−1. In figure 21(a), we plot ηω/η

versus ω2
I /ω

2
ref . In agreement with ηT , ηω is an increasing function of enstrophy, ω2

I /ω
2
ref

in this case: iso-enstrophy surfaces get further away from each other on average as ω2
I /ω

2
ref

increases within the TNTI. At the very smallest enstrophy thresholds, ηω appears to tend
to a finite value that is significantly smaller than η, which is also in agreement with ηT at
high enough ReG (see (5.14)).

We also plot ηω/η versus yI/η in figure 21(b), where yI = 0 corresponds to the
iso-enstrophy surface ω2

th/ω
2
ref = 10−6. We see that the profile of ηω along yI is decreasing

exponentially with increasing yI . The linear region ends near yI/η ≈ −2.5. This is due
to some points where the normal enstrophy profiles do not decrease monotonically to
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zero when going towards the non-turbulent region, even though the local enstrophy values
always remain lower than the threshold value.

6. Conclusion

To determine the mean flow profile evolution, we have applied to the temporally
developing turbulent planar jet the approach typically applied to spatially developing free
turbulent shear flows. This approach is based on self-similarity and on mass, momentum
and turbulent kinetic energy balance equations (Townsend 1976; George 1989; Cafiero &
Vassilicos 2019). The turbulent kinetic energy equation involves the turbulence dissipation
rate, and one needs to specify the turbulence dissipation rate’s scalings in order to close the
problem. The mechanism for turbulence dissipation being the turbulence cascade, different
types of turbulence cascade (e.g. equilibrium, non-equilibrium, balanced non-equilibrium;
see Dairay et al. 2015; Vassilicos 2015; Goto & Vassilicos 2016; Cafiero & Vassilicos 2019)
in the presence of different types of large-scale coherent structures can lead to different
turbulence dissipation scalings (Goto & Vassilicos 2016; Ortiz-Tarin et al. 2021). In turn,
different dissipation scalings lead to different self-similar mean flow profile evolutions,
as found already in various spatially developing turbulent flows (e.g. Dairay et al. 2015;
Vassilicos 2015; Cafiero & Vassilicos 2019; Ortiz-Tarin et al. 2021), and to different TNTI
mean propagation speeds, as demonstrated by Cafiero & Vassilicos (2020) for the spatially
developing turbulent planar jet.

The temporally developing self-similar turbulent planar jet is exceptional because
the scalings of its mean flow profile evolution do not depend on the scalings of the
turbulence dissipation rate. Whatever the exponent m in (2.18), the scalings of the
centreline mean flow velocity u0 and jet width δ are given by (2.19) and (2.20). The
reason why the temporally developing self-similar jet is fundamentally different from its
spatially developing counterpart is that it conserves volume flux and has identically zero
cross-stream mean flow velocity, whereas spatially developing turbulent planar jets do not
conserve volume flux and do not have identically zero cross-stream mean flow velocity.
As a result, in the case of the temporally developing self-similar turbulent planar jet, the
jet width δ, the Kolmogorov length η and the Taylor length λ all grow as the square root
of time, and the centreline velocity u0, the Kolmogorov velocity uη and the TNTI mean
propagation speed all decay as the inverse square root of time, irrespective of turbulence
dissipation scaling. The Taylor length Reynolds number remains constant in time. All these
theoretical predictions and the assumptions on which they are based have been verified by
our DNS of a temporally evolving turbulent planar jet. Note that the volume flux that is
conserved in our flow is not conserved in many other flows with a TNTI besides spatially
developing jets such as wakes (e.g. Watanabe et al. 2016), boundary layers (e.g. Borrell
& Jimenez 2016) and mixing layers (e.g. Attili, Cristancho & Bisetti 2014; Balamurugan
et al. 2020). One should therefore be very careful if attempting to extend the applicability
of this paper’s results to other turbulent flows with a TNTI.

The prediction for the TNTI mean propagation speed has been made on the basis of:
(i) a proportionality between the turbulent jet volume and the jet width growth rates
that has been verified by our DNS; (ii) an assumption that the TNTI is fractal with a
well-defined fractal dimension; (iii) an assumption that the smallest geometrical scale
on the TNTI scales with the Corrsin length that characterises generation of vorticity by
viscous diffusion; and (iv) a particular way to blend assumptions (ii) and (iii) together,
(3.5). The geometrical picture of the TNTI returned by our DNS has turned out to be
more involved than assumptions (ii), (iii) and (iv), which make no reference to the TNTI’s
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inner structure. Even so, the prediction that the TNTI mean propagation speed evolves as
the inverse square root of time has been validated by our DNS.

The TNTI has an inner structure over a wide range of closely spatially packed
iso-enstrophy surfaces, and it turns out that different iso-enstrophy surfaces have different
fractal dimensions. These fractal dimensions vary from approximately 7/3 at the
innermost iso-enstrophy surface on the fully turbulent side of the TNTI, to close to 2 at the
outermost iso-enstrophy surface on the non-turbulent flow side of the TNTI. However,
the 7/3 value, which, according to the theory based on assumptions (i), (ii) and (iii),
corresponds to a TNTI mean propagation speed that scales with the Kolmogorov velocity
uη, is not well-defined in the sense that it is a fit through a range of scales where the
fractal dimension is not scale-independent as it should be. Lower fractal dimension values
between approximately 2.2 and under 2.1 are found for iso-enstrophy surfaces with lower
enstrophy values, i.e. towards the TNTI’s outer side. These lower fractal dimensions are
well-defined in a range of scales bounded by λ from below and δ from above. However,
the smallest geometrical scales on these iso-enstrophy surfaces are close to η, and the
scales between λ and η contribute significantly to the surface areas of the iso-enstrophy
surfaces even though these scales are not characterised by a well-defined fractal dimension.
The formula for the TNTI mean propagation speed vn obtained from assumptions (i), (ii)
and (iii) captures its time dependence because the time dependence is the same for all
iso-enstrophy surfaces. Perhaps remarkably, it also captures the iso-enstrophy dependence
of vn via the iso-enstrophy dependence of the fractal dimension. However, the DNS
invalidate (3.5), on which the formula for vn is partly based, and support a form such
as (5.5) instead.

Having found that different iso-enstrophy surfaces within the TNTI have different
sufficiently well-defined fractal dimensions over a range of scales bounded from below
by λ, and that length scales below λ on these surfaces do also contribute significantly
to their surface area, it is not possible to argue sweepingly that the Corrsin length ηI is
the smallest length scale on the fractal/fractal-like/multiscale TNTI. Aiming to keep the
model’s correct predictions while at the same time abandoning wrong premise (iv), we
nevertheless keep the main structure of our model by keeping assumptions (i) and (ii),
and modifying (iii) and (iv). For this, we introduce a generalised Corrsin length defined
on the basis of an iso-enstrophy surface-dependent turbulent viscosity νT that tends to the
fluid’s kinematic viscosity ν as the iso-enstrophy level tends to near-vanishing values at the
viscous superlayer, but is independent of ν at higher iso-enstrophy levels. We demonstrate
the physical viability of such a model, but leave for future investigation the detailed relation
between νT and the enstrophy production processes, which vary from being viscosity
dominated at the outer edge of the TNTI (viscous superlayer) to being controlled by
vortex stretching further in. We do, however, show with our DNS that the generalised
Corrsin length depends on iso-enstrophy levels similarly to the length scale ηω defined by
the local enstrophy gradients within the TNTI: in particular, ηω is smaller than η at the
outer edge of the TNTI, larger than η at the inner edge of the TNTI, and monotonically
increasing in between. Even if incomplete at this stage, our revised model predicts that
the mean propagation speed at the outer edge of the viscous superlayer is proportional to
the Kolmogorov velocity multiplied by the power 1/4 of the global Reynolds number. We
stress that this prediction is specific to temporally developing self-similar turbulent planar
jets, which are very idiosyncratic flows, and that it should not necessarily be extended to
spatially developing free turbulent shear flows. Current computational capabilities at our
disposal are insufficient for the wide range of global Reynolds number required to verify
this prediction.
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Appendix A

We are interested in fine details of the TNTI layer that is located at the boundary between
the turbulent and non-turbulent regions of the flow. At the outer edge of the TNTI, the
enstrophy value decays quickly to zero. We investigate how quantities such as Df and
vn vary with enstrophy threshold value. A wide range of enstrophy threshold values is
considered, all located in the plateaus shown in figure 7, and the lowest that we consider
here reach ω2

th/ω
2
ref = 10−6. In order to obtain relevant TNTI statistics at such very low

enstrophy levels, the DNS solution must be smooth and free of oscillations. When using
a classical 2/3 truncation de-aliasing method for the simulations with the pseudo-spectral
code, we observe numerical oscillations at these low enstrophy values, which makes it
impossible to investigate this very low enstrophy part of the TNTI layer. The limiting
effect of these oscillations has been mentioned in the study of Krug et al. (2017). The
solution is to use a modified de-aliasing method as explained in § 4. A similar procedure is
applied in Krug et al. (2017), with their choice of a pth-order Fourier exponential filter for
the de-aliasing. Our method, which has no effect on the modes unaffected by the aliasing,
is able to suppress the oscillations within the useful range of enstrophy. As we are dealing
with a very sharp interface and need to reduce our enstrophy thresholds to extremely low
values, the numerical oscillations naturally become observable at some point, particularly
without a special treatment being employed. This is due to the fact that the spectral method
does not underestimate the derivatives and does not smooth out sharp gradients, as is the
case with finite difference methods, for example.

In order to demonstrate how the classical sharp de-aliasing leads to some oscillations
and the effectiveness of our modified de-aliasing method, we compare two simulations
starting from identical initial conditions, solved by the same pseudo-spectral solver. The
first simulation was performed with the classical sharp de-aliasing method that truncates
the solution at all wavenumbers with modulus larger than 2/3kmax = N/3, and the second
simulation uses our modified de-aliasing method. As can be observed in figure 1(b), the
minimum value of the mean Kolmogorov scale η on the centreline appears just after the
transition, and we therefore compare the solutions of the two simulations at t/Tref = 26
where the grid resolution is most problematic. We also consider the simulation PJ5,
which has the highest Reλ peak. The two simulations are initialised with the same initial
conditions.

Figures 22(a,b) show the enstrophy in a normal streamwise plane for the two simulations
at t/Tref = 26. Figure 22(a) corresponds to the simulation with the modified de-aliasing,
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Figure 22. Enstrophy fields in a normal streamwise plane for two identical simulations PJ5: (a,c) with modified
de-aliasing (used in the present study), and (b,d) with classical 2/3 truncation, for (a,b) t/Tref = 26, and
(c,d) t/Tref = 50. The same colours are used for ω2/ω2

ref isocontours as in figure 8, where magenta and cyan
correspond to ω2/ω2

ref = 10−3 and 10−6, respectively.

and figure 22(b) is the case where the classical 2/3 truncation method is used. Oscillations
are clearly visible in the case of classical de-aliasing, even for normalised enstrophy levels
higher than 10−3, whereas the solution is smooth for all investigated enstrophy levels with
our modified de-aliasing method.

It should be noted that the oscillations are visible at fairly high enstrophy thresholds at
this instant, and that these oscillations gradually reduce with time, but do not disappear
at the targeted enstrophy thresholds ω2

th/ω
2
ref > 10−6 for t/Tref > 30 with the classical

2/3 truncation method. In figures 22(c,d), enstrophy contours are given for t/Tref > 50,
which is in the time range for which we investigate the TNTI characteristics. Although
some enstrophy isocontours appear to be smooth, local regions where the oscillations are
present may introduce significant problems. For example, the computation of Df would
be affected by these oscillations, as the isosurface becomes more volume filling in the
presence of these numerical artefacts.

To quantify the energy content of these oscillations, the energy and dissipation spectra
on the centreplane are compared for the two simulations in figure 23. The spectra look
identical for both cases, apart from the small peak at the very end of the resolved
wavenumbers that is present for the classical 2/3 truncation method. This shows how
difficult it is to assess the smoothness of the irrotational region and the external part of the
TNTI from energy and dissipation spectra.

In figure 24, the jet volume as a function of the enstrophy threshold (similar to figure 7)
is plotted at t/Tref = 26 for the two simulations with classical and modified de-aliasing
methods. A clear extension of the plateau towards lower values of ω2

th/ω
2
ref is seen when

the modified de-aliasing method is used. Meanwhile, the high threshold regions remain
unaffected by the modification, showing that the de-aliasing method works as planned.

970 A33-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.654


Length scales and the TNTI of a temporally developing jet

10–2
10–3

10–4

10–5

10–6

10–7

10–8

10–9

10–10

10–4

10–6

10–8

10–10

101

Modif ied de-aliasing
Classical de-aliasing

Modif ied de-aliasing
Classical de-aliasing

k

E(
k)

2
vk

2
E(

k)

102 103 101

k
102 103

(b)(a)

Figure 23. (a) Energy and (b) dissipation spectra at the centreplane of two identical simulations in terms of
flow parameters and initial conditions, one with modified de-aliasing, and the other with the classical 2/3
truncation method. Results are from the simulation PJ5 at t/Tref = 26.
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Figure 24. The jet volume defined as ω2 > ω2
th for the two simulations PJ5 at t/Tref = 26 with modified

de-aliasing (blue) and classical 2/3 truncation (orange).

It suppresses the weak oscillations at the outer regions of the TNTI, but the evolution of
the turbulent region is similar in both cases.

Appendix B

In § 5.6, the relation (5.10) for ηT/η has been simplified for the iso-enstrophy surfaces at
the very outer edge of the viscous superlayer by using Df 2 ≈ 2 due to the fact that Df 2 → 2
when ω2

th/ω
2
ref → 0. This simplification leads to (5.14), where a scaling due to the global

Reynolds number ReG is present with power −1/4.
In an attempt to obtain a data set spanning a range of Reynolds numbers to

investigate this scaling, additional simulations have been conducted with ReG = 6400
and ReG = 9600, which will be referred as PJ-Re6400 and PJ-Re9600, respectively.
The initial conditions and the solver properties remain the same as described in § 4.
The computational grid also remains the same as the PJ1–PJ5 simulations, due to the
computational constraints.
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Figure 25. Plots of (a) Reλ and (b) resolution dy/η at the centreplane of the planar jet for ReG = 3200 (PJ1
simulation), ReG = 6400 and ReG = 9600.
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Figure 26. Enstrophy contour field at a cut-section of the simulation PJ-Re6400 at t/Tref = 50, with
iso-enstrophy contours from ω2

th/ω
2
ref = 10−6 to 10−3 shown at the TNTI.

With the increase of ReG, the Reynolds number based on Taylor length scale Reλ at
the centreplane of the jet becomes Reλ ≈ 70 and Reλ ≈ 80 for the simulations PJ-Re6400
and PJ-Re9600, compared to Reλ ≈ 50 for the PJ1 simulation (labelled as ReG = 3200),
which can be seen in figure 25(a). Figure 25(b) shows the time evolution of the spatial
resolution normalised by the Kolmogorov scale at the centreplane after the transition to
the fully turbulent regime.

Following Appendix A, we focus on time t/Tref = 50 as this time is in the middle of
the investigated time range in this study to analyse the state of the data. Figure 26 shows
the enstrophy contours at the cut-section of the PJ-Re6400 simulation, along with the
enstrophy isosurfaces marked at the TNTI.

It is observed that numerical oscillations are present in the enstrophy isosurfaces due
to the reduction of the resolution of the simulations. The oscillations are present even at
the isosurfaces of enstrophy thresholds up to ω2

th/ω
2
ref = 10−4. Under these conditions,

the application of the box-counting algorithm is not possible for ω2
th/ω

2
ref � 10−3, while

(5.14) is obtained for the very outer enstrophy isosurfaces that have Df 2 ≈ 2.
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