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PROJECTIVE APPROXIMATIONS 

K. VARADARAJAN 

Introduction. Let R be an associative ring with 1 ^ 0. Throughout we 
will be considering unitary left /^-modules. Given a chain complex C over 
R, a free approximation of C is defined to be a free chain complex F over 
R together with an epimorphism r:F —> C of chain complexes with the 
property that H(r):H(F) ~ H(C). In Chapter 5, Section 2 of [3] it is 
proved that any chain complex C over Z has a free approximation r:F —> 
C. Moreover given a free approximation r:F —» C of C and any chain 
map/ : / 7 ' —» C with F ' a free chain complex over Z, there exists a chain 
map <p:F' —> F with TO<JP = / . Any two chain maps <p, ^ of i7 ' in F with 
r o <jp = T o 1// are chain homotopic. The proof given in [3, pp. 225-226] is 
valid word for word when Z is replaced by a principal ideal domain R. A 
projective approximation of C could be defined as a projective complex C 
together with an epimorphism r:P —» C with H(r)\H(P) ~ / / (C) . 
Observing that any submodule of a projective module is projective 
whenever R is a Hereditary ring, the proof on pages 225-226 of [3] yields 
the result that any chain complex C over a Hereditary ring admits a 
projective approximation r:P —> C. Moreover, given a chain map/ :P ' —» C 
with P ' projective, there exists a lift <p:P' —» P off (i.e., T O <p = /"). If <p, \p 
are any two lifts o f / t h e n <p and ^ are chain homotopic. In [2] A. Dold 
proves the existence of a projective approximation r:P —> C of C under 
any one of the following conditions: 

(1) R is an arbitrary ring and C is a positive chain complex over R. 
(2) R is a ring of finite global dimension and C is an arbitrary chain 

complex over R. Actually he deduces this from a decomposition result 
(Hilfssatz 3.7 in [2] ) which asserts the following: Let / :P ' ^ C b e a chain 
map with P' projective. Assume either P' and C are both positive or that R 
has finite global dimension. Then there exists a factorization / = g o / 
where i:P' —» P is an injective chain map with P/i(P') projective (hence P 
also projective) and g:P —» C an epimorphism with H(g):H(P) ~ H(C). 
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In case P and C are positive, P could be chosen to be positive. His proof 
uses techniques from double complexes. 

Given a projective approximation T:P —> C of C and a chain map/:F -» 
C with P projective, questions about the existence of a lift y\P -> ? of/ 
and homotopy uniqueness of lifts are not dealt with in [2]. Under one of 
the restrictions that either the chain complexes to be considered should all 
be positive or the ring R has to have finite global dimension Dold states 
the following result (Korollar 3.2 in [2] ). Let [X, Y] denote the additive 
group of chain homotopy classes of chain maps from X to Y, where X, Y 
are chain complexes over R. Let <p:X —> Y be a chain map with H(<p):H(X) 
~ / / ( Y) and P a projective chain complex over R. Then the map [/] —» [<p 
o f] yields an isomorphism [P, X] —> [P, Y]. This is again deduced as a 
consequence of Satz 3.1 in [2] which itself follows immediately from 4.3, 
Chapter XVII of [1]. The proof of this result in [1] depends heavily on 
powerful "Hyperhomology" techniques dealing with double complexes 
and spectral sequences. As an immediate consequence of Korollar 3.2 of 
[2] we see that if r:P —> C is a projective approximation of C and/ : / " —» C 
is any chain map with Pf projective, then there exists a chain map <p:Pr —> 
P with T o <p ~f(~ means chain homotopic). Korollar 3.2 does not imply 
the existence of an actual lift of/ 

The main results proved in our present paper could be stated as follows. 
For any module M we denote the projective dimension of M by h.d M. 

THEOREM 1. Let R be any ring and C a chain complex over R. Assume 
either that C is positive or that there exists a fixed integer r with h.d ///(C) 
= r for all i. Then there exists a projective approximation P —> C of C. In 
case C is positive there exists a free approximation F —» C of C. 

THEOREM 2. Let C be a positive chain complex over a ring R and P —» C a 
positive, projective approximation of C Let f.Pf —> C be any chain map with 
P' positive and projective. Then there exists a lift y\P' —> P off 

Iff g are maps of P' into C which are chain homotopic and <p, \p are 
arbitrary lifts off g then y ~ $. 

In case R has finite global dimension, say r then h.d M ta r for any 
P-module M. As a particular case of Theorem 1, we get the result that any 
chain complex C over a ring R of finite global dimension has a projective 
approximation. Thus Theorem 1 strengthens the result of Dold stated 
earlier in the introduction. Our method of proof is quite direct and simple 
and avoids complicated hyperhomology arguments involving double 
complexes and spectral sequences. 
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1. Positive chain complexes. As usual, for any chain complex C we 
denote the module of /-cycles of C by Zj(C) and the module of 
/-boundaries by Bt(C). 

LEMMA 1.1. Let fC —> C be a chain map and j a given integer. 
Suppose 

y ; + 1 : C 7 + 1 - * q + 1 and HjiQ-^iHjiC) 

are onto. Then 

fj\Zj{C):Zj(C) - Zj(C) andfi\Bj(C):Bj(C) -»• B,(C) 

are onto maps. 

Proof. Writing 5' for the boundary map in C and 8 for the boundary 
map in C, from the assumption that fj+\\Cj+ \ —> C j + 1 is onto, we 
immediately see that 

y + xofj+x-.Cj+x^BjiC) 

is onto. But Sy + 1 ofj+\ = fj o 8j+\. Hence any element in Bj(C) can be 
written asj/J(5/ + 1c) for some c G Cj+X. This proves that 

JJ\BJ(C):BJ(C) -> Bj(C) 

is onto. 
Let x' G Z7(C). Writing [xr] for the homology class of x', the 

assumption that Hj(f):Hj(C) —» Hj(C') is onto yields an element x G 
Zy-(C) with \fj(x) ] = [*']. This means 

x' -fj(x) G BjiC). 

Hence, there exists a b G Py(C) with JC' — //(-*) = .//(£)• This yields x' = 
fj(x + 6) and JC + 6 G Z / C ) . 

Definition 1.2. A projective complex P together with an epimorphism 
T:P —> C will be called a. projective approximation of C if 

H(T):H(P) =* / / (C) . 

In case P is free, it will be called a /ree approximation of C. 

COROLLARY 1.3. Ifr.P —» C w any projective approximation of C then 

T\B(P):B(P) -> P ( Q and T\Z(P):Z(P) -> Z(C) 

#r£ frctf/z epimorphisms. 

https://doi.org/10.4153/CJM-1984-012-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-012-7


PROJECTIVE APPROXIMATIONS 181 

Proof. This is immediate from Lemma 1.1. 

From now onwards in Section 1, we will be dealing only with positive 
chain complexes. A chain complex C will be said to be positive if C; = 0 
for j < 0. Thus the word chain complex will mean a positive chain 
complex for the rest of Section 1. For any complex C and any integer k ^ 
0, C^k) will denote the £-selection of C, namely C) = Q for / ^ k and 
C) = 0 for i > k. The boundary map ô:C) —> C)-\ is the same as 
8:Cj —> Cj-\ for i ^ k. A complex C will be said to be of dimension ^ k if 
C/ = 0 for /' > k or equivalently if C = C ^ . 

PROPOSITION 1.4. Le/ C be a chain complex and k an integer = 0. Let P 
be a projective complex of dimension = k and f.P —> C a chain map 
satisfying the following conditions'. 

(i) ft'.Pj -> C/ zs onto for i = k 

(ii) fk\Zk(P):Zk(P):Zk(P) -> Z*(C) w o/ito, W 

(hi) Hi(f)\Hi(P) —* Hj(C) is an isomorphism for i < k. 

Then there exists a projective complex P' with dim P' = k -\- 1, P ' ^ = P 
<2«d a c/za/>2 map f\Pf —> C extending f and satisfying 

(a) /£+ ! :P^+ ! -> Q + ! w owto 
( ^ A + j I Z ^ ^ P O i Z ^ j C n -> Z*+1(C) is onto, and 
(c) Hk(fy.Hk(F) ~ / / , (C) . 

Prtftf/. Write g^ f o r / J Z ^ P ) . By assumption gk:Zk(P) —> ZA(C) is onto. 
Let 

** = g*~Wo). 
Choose an epimorphism a:S -^ Kk with 5" projective. Writing /ẑ  for gk\Kk 

= fk\Kk we know that hk:Kk —> Bk(C) is onto. Since 

Q + 1 - ^ t ( C ) - > 0 

is exact and 5 is projective, there exists a map /?:£ —> Q + i with 

(1) 8 ^ + 1 o ft = hko a. 

Clearly /ẑ  o a:S —» Bk(C) is onto. 
Choose an epimorphism y.T^ Zk + \(C) with P projective. Define P' as 

follows: 

P>(k) = P; p, = S ® Ty P\ = 0 for / > k + 1 
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and let 

8P
k+l:S@T->P'k= Pk 

be given by ôf+iO, 0 = a(s). Observe that a(s) G Kk c Zk(P) c Pk. 
Now 

«fo«f+,(*,<) = «£(«(*)) = 0 
since a(s) G Zk(P). Thus P' is a projective complex with dim P' ^ k 
+ 1. 

D e f i n e / : F -> C by 

/ ; = /• for / ^ * 

a n d / ^ + 1 : S 0 r - > C by 

We claim tha t / ' iP ' —» C is a chain map. We have only to check that 

«* + i/*+i(*, 0 = /*«f+i(*, 0 for any (s, t) e S ® T. 

Now, 

«A + i / k i f r 0 = ô* + i0(*) + 8 * + I Y ( 0 = fi*+,)8(5) 

(since y(/) G Zfc+i(C)) and 

f'k8k+](s, t) = fka(s) = hka(s). 

From (1) we see that 
pi 

8k+\f'k+\(s, 0 = / * 8 * + i(.s, /). 

Clearly (0,/) G Zk + x(P') for any / G P. Since/^+1(0, /) = y(/) and y:P 
—* Z^ + ](C) is onto, it follows that 

(2) fk+x\Z'k+x(Py.Zk+x(P') -> Z*+,(C) is onto. 

Let c G Q + i . Then, since 8k+\ o /?:S —> Bk(C) is onto, we get an s G S 
with $k+\P(s) = 8k+\c. Hence 

c - p(s) G Zk+x(C). 

Since y:P —» Zfc + i(C) is onto, there exists a / G Pwith c — /?(.?) = y(/). 
Hence 

c = P(s) + y(t) =f'k+](s,t). 

This shows that 
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(3) A + i : n + i = S © r - > Ck + l is onto. 

Also, Zk(P') = Zk(P) and Bk(F) = ôf+ 1(S ® T) = «(5) = K*. 
Thus 

/}tlZ*(/") = A|Z*(/>) = gk:Zk(P) -> Zk(C) 

is onto and Bk(P') = Kk = g * ~ W O )• 

It follows that /£ induces an isomorphism of 

Hk(F) = Zk(P')/Bk(P') = Zk(P)/Kk 

onto Hk(C). This completes the proof of Proposition 1.4. 

PROPOSITION 1.5. Let C be any positive chain complex. Then there exists a 
positive, projective approximation f.P —> C of C. 

Proof. Choose an epimorphism/o'A) ~~* Q W l t n PQ projective. Assume k 
= 0 and that we have constructed projective complexes (z)P and chain 
maps Wf'S^P —> C for 0 ^ i ^ k satisfying the following conditions. 

(a) (l)P = the i-th skeleton of (/ + 1)P for 0 ^ / ^ k - 1 
(b)(/ + i)/](0/> = (Of 
(c) {l)fj:(i)Pj -> Cy is onto for 0 ^ j ^ i 
(d) MflZii^Py.ZiiWp) -* Zi(C) is onto and 
(e) H({i)f):Hj(^P) -> f/,-(C) is an isomorphism of y < /. 

The construction of the epimorphism/0:P0 ~* Q starts the inductive step 
at k = 0. Applying Proposition 1.4, we get a projective complex <A + 1)P 
with {k^P = the A>th skeleton of ^k+l)P and a chain map (*+1)/:(*+ D/> -> c 
extending ^fSk^P -> C such that 

(ÂC+1)A+i:(* + 1 ) ^ + i ^ Q + 1 and 

( / c + 1 ) A + i lZ, + 1(^ + 1)P):Z, + 1 ( ( / c + 1)^) - Z , + 1(C) 

are onto and 

^ ( ( " + 1)/):^((/c+1)^)^^(C). 

f 
Then P A C defined by P(/:> = <*>P and / lP ( / : ) = <*>/ satisfies the 

requirements of Proposition 1.5. 

PROPOSITION 1.6. Let C be a positive chain complex and P —> C a positive, 
projective approximation of C. Then there exists a positive, free approxima-
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tion F —> C with P a subcomplex of F, f\P = r and Pt a direct summand of 
Fjfor each i = 0. 

Proof Set Q-\ = 0. Choose a projective module Q0 such that P0 © <20 

= FQ is free. Assume k > 1 and that we have chosen projective modules 

Co, • • • > Qk-\ w i t h A © ft-i © 0/ = Fiis f r e e f o r ° = ' < k- W e c a n 

choose a projective module Q^ with / ^ © ft^-i © Qk = Fk is free. 
Define 

fif:/} = />,- © ft-! © ft -> Ft.x = />,-_! © ft-2 © ft-, 

by 

8/ (*/, Qi-h Qi) = (8/*i> 0, g , - , ) 

for any JCZ- G Ph qt G ft, gz_j G ft_j. Then it is clear that (F, SF) is a 

chain complex. Moreover 

Ker fif = Z,-(P) © 0 © ft and Im fif+, = £,(/>) © 0 © ft. 

It follows that the obvious inclusion mapy:P —> F given byy'(x) = (JC, 0, 0) 
for any x G PÉ is a chain map with H(j)\H(P) ~ H(F). The m a p / : / 7 - ^ C 
given by 

.//C*/, qi-u Qi) = T(*i) 

for any (xn q\-\, qt) G Fl is a chain map satisfying the requirements of 
Proposition 1.6. 

We end this section by remarking that Lemma 1.1 and Corollary 1.3 are 
valid for all chain complexes C. We started assuming C to be positive from 
Proposition 1.4 onwards. 

2. Chain complexes C with h.d //Z(C) = r for all i. We now deal with 
chain complexes which are not necessarily positive. 

PROPOSITION 2.1. Let C be a chain complex which satisfies the condition 
that h.d ///(C) = r where r is a fixed integer. Then there exists an exact 

f 
sequence 0^A-^P^C-^0 with P projective, H(f):H(P) -> / / (C) 
onto and h.d Ht(A) ^ Max (0, r — 2) for all i. 

Proof. Let T]Z:ZZ(C) —» //,(C) denote the canonical quotient map. Let 
oLj'.Sj —» Zi(C) be an epimorphism with Sj projective. Write Kt for 
ai (Bj(C)). We then have a commutative diagram of exact rows with 
vertical maps epimorphisms: 
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0 >Kj 

a,\K, 

•+Sj *Hi(C) > 0 

Oil 

0 >B,(C) >Zi{C) >H,(C) >0 

DIAGRAM 1 

A 
Let Tj+\ Kj be an epimorphism with r / + ] projective. Then clearly 

(4) al o /?z:rz+i —» Bj(C) is an epimorphism. 

Since 

C / + 1 - i l > 5 l - ( C ) - ^ 0 

is exact and T/ + 1 is projective, there exists a map g/+i :^/+i —» Q+i 
with 

(5) S/+igi + i = «/ ° A-

Let Pi = St © rz- and define 

8Ï:Pi = StQTi^Pi-i = Si-iQTi-i 

by 

8f(xhyi) = (ft-iU-), 0). 

Observe that 

A - i ( ^ ) e #,-_, c 5,--!. 
p p p 

Clearly 8I-_1 o 6; = 0. Hence {P, Ôr} is a chain complex. Clearly each Pt 

is projective. Define/:/*/ —> Cz by 

fi(Xi,yi) = ai(xi) + g/(j/)-

Then 

(since a / + 1 (x / + 1 ) e Z/ + i(C)) and 

8i + ig/+1(^+1) = «/o A ( j / + i) 
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by (5). Also 

/•8f+i(*,-+i,.y,-+i) =fi(Pi(yi+\),0) = « I A O I + I)-

This shows that 8 / + 1 / -+ 1 = /-8/+1 proving tha t / :P -» C is a chain map. 
Given a G CZ + 1, since azo j8z-:r/+i —» #Z(C) is onto, we find aj>/+i G T /+I 
with 

8Û = a, o A O z + i) = 8g/+i(j>,-+i). 

Hence a — g/ + 1(j/ + 1) G ZZ + ](C). Since a / + 1 :S z + 1—> ZZ + I ( C ) is onto, we 
get 

a - g/ + iO/ + i) = a/+i(*/+i) 

for some xi+\ G S^+J. This means 

a = az + i(xz+1) + g m O z + l) = fi+\(*i+h yt+Ù-

T h e n / + 1 : P / + 1 -» Cz + l is onto for each /. 
Also 

Zj(P) = Ker Sf = Sz 0 Ker ft.j and 

*,•(/>) = Im 8f+1 = ft(rz + 1) e 0 = ^ 0 0. 

Hence 

Ht(P) = ( V ^ ) © K e r A - i . 

Also the restriction of the map Ht{f)\Hi{P) -> #/(C) to S,/^- is the 
isomorphism of Si/Kt onto Ht(C) induced by TJZ O at. Hence / / z ( / ) : / / / ( i ) ) 
—» ///(C) is a split epimorphism, with the inverse of the isomorphism Sl/Kl 

~ ///(C) as a splitting. It follows that Ker / / / ( / ) and Ker /?z_i are two 
direct summands of Sj/Kj in Ht(P). Hence 

Ker W ) ^ Ker A - i 

under some isomorphism. The exact sequences 

0 -> Ker ft_! -> Tz -> ^C>_! -> 0 and 

0 ^ ^ z _ 1 - ^ z _ 1 - ^ / / z _ 1 ( C ) - ^ 0 , 

with T; and 5' /_1 projective yield h.d Ker /}z-_i ^ Max (0, r — 2). This 
implies 

h.d (Ker Ht(f) ) ë Max (0, r - 2). 

Let yl = Ker/ . Then in the exact homology sequence 
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. . . -» H,{A) "> H{(P) >Hi(C) -> Hi-X(A) -> #,-_,(?) 
H,(f) 3 

>Hi-{(C)-> 
H,-i(f) 

Since Hj(f):Hj(P) —» ///(C) is an epimorphism for each /, it follows 
that 

Hl(A)^KtxHl(f). 

Hence h.d H{(A) ^ Max(0, r — 2). This completes the proof of 
Proposition 2.1. 

Remark 2.2. It is perhaps worthwhile observing that in case C reduces to 

S € 

a single module C0 = M with h.d M ^ r, if 0 -> # -» Pi -> P0 -» M -> 
0 is exact with Pj , P0 projective, then h.d K ^ Max (0, r — 2). If P is the 
complex 

- ^ O - ^ P J - ^ P Q - ^ O - * . . . 

then c:P —» M is a map with 

//0(e)://0(P) ~ M, 

/ / , (P) - A: = Ker /^(c) and 

//y(P) = 0 for7: ¥= 0, 1; and 

h.d A: ë Max (0, r - 2). 

PROPOSITION 2.3. Let C be a chain complex which satisfies h.d ///(C) = 1 
/or a// /. Then there exists a projective approximation f:P —> C of C 

Proof The proof is similar to that of Proposition 2.1. If az-:5/ —> Z/(C) is 
an epimorphism with 5/ projective, whenever h.d ///(C) = 1, the module 
A'/ = Ker rj/ O at is automatically projective. Hence we could take P/ + 1 = 
Kt and /}/ = \d^r Then for the complex P defined as in the proof of 
Proposition 2.2, we would have Ht(P) = Sj/Kj (since Ker /?/_j = 0, /?,__] 
being the identity map of Kt-\). The map/ iP —» C is an epimorphism with 
H(f):H(P) ~ //(C). 

3. Proof of theorem 1. Now, we take up the proof of Theorem 1. Let C 
be a positive chain complex. Then from Propositions 1.5 and 1.6 we see 
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/ 
that there exists a positive free approximation F —> C of C. Suppose on 
the other hand C is not necessarily a positive chain complex but satisfies 
the restriction h.d H}(C) = r for all /, where r is a fixed integer ^ 0. If r = 
1, Proposition 2.3 guarantees the existence of a projective approximation 

f\P —> C of C. Suppose r §= 2. We then use induction on r. By Proposition 
2.1 there exists an epimorphism/:P —» C with P projective, 

h.d (Ker H,(f) ) ^ r - 2 and H.ify.H^P) -> //,(C) 

a split epimorphism for all /. Let Cy denote the mapping cone o f /andy :C 
—> Cy the inclusion of C in Cf. Then we have an exact sequence 

0 - > C ^ C y - ^ S P ^ O . 

In the associated homology exact sequence 

8 j* 8 j* 

...^Hi+l(2P)^Hi(C)^Hi(Cf)^Hi(lP)^Hi-l(C)^Hi^(Cf) 

Ht(P) Ht-X{P) 

each of the maps 8\Hl+\ÇLP) —> Hj(C) is onto. Hence 

Hi(Cf)^ Ker # , -_ , ( / ) . 

It follows that h.d Hj(Cf) = r — 2. By the inductive assumption there 
exists a projective approximation g —> Cf of Cf. Denoting the natural 
epimorphism Cf-^> 2 P by Ï] we see that T J O T : ^ 2 P is an epimorphism. 
If L = Ker 17 o T then we have a commutative diagram 

DIAGRAM 2 

where the two rows are exact sequences of chain complexes. Since r.Q —» 
Cy is an epimorphism, it follows easily from the above commutative 
diagram that r/L\L —> C is an epimorphism. Since 
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H(T):H(Q) ~ H(Cf\ 

from the exact homology sequences and the five lemma we immediately 
see that 

H(T/L):H(L) ^ H(C). 

Since Qt and (2P),- are projective for each z, the top exact sequence splits 
for each / and yields projectivity of Ll for each /'. Thus r/L.L —» C is a 
projective approximation to C. This completes the proof of Theorem 1. 

4. Proof of theorem 2. Since r0:P0 —> C0 is onto and PQ is projective, 
there exists a map <p0:P&~^ A) with T0 O <p0 = /o- Let /c i^ 0 and assume we 
have constructed maps <p7-:P/ —» P, for 0 = i ^ k satisfying 

(i) TM = / - a n d \ . 

U v <P/-l"z = Oj o q)j J 

Since T £ + 1 : / \ + 1 —» Q + i is onto and P^+i is projective, there exists a 
map 6k+x\P

f
k+x -» P* + 1 with T^ + 1 O ^ + 1 = fk + \. Consider the map 

Pk-àk + \0k+\ ~ <Pkàk + \:P'k+\ -^ ?k-

Then 

Tk ° fik = T A + 1#£+1 - Tfc<pfc8fc+1 

= f>k+\Tk + \0k+\ — fk$k+\ 

= $k+lfk+\ ~ fk$k+\ 

(6) = 0 since f:P' —» C is a chain map. 

Let L = Ker T. Since H(r):H(P) ~ H{C) we immediately get / / (L) = 0. 
Since L is a positive chain complex, there exists a positive projective 
approximation, say Q —» L of L. Then g is a positive, projective complex 
with H(Q) = 0. Hence Q is chain contractible. Let Sj'.Qj —» (?/+i yield a 
contraction of (X 

From rk o /?£ = 0 (from (6) ) we see that fik(Pk+\) c ^ - Also 

$kfik = $k(ak + \0k + \ ~ <Pk8k+\) 

= - 8k<pk8k + ] 

<Pk-\Sk8k+\ 

0. 
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Thus f}/<(Pk+\) c Zk(L). Since e:Q —» L is a projective approximation to 
L, from Lemma 1.1 it follows that 

€k\Zk(Q):Zk(Q) -> Zk(L) 

is onto. The projective nature of Pk+\ now yields a map 

a*-'jP*+i "^ z * ( £ ) with ekoak = Pk. 

Consider the map <pk+\:Pk+l -^ Pk+X defined by 

We then have 
p P P 

S*+HP* + i = 8k + \0k + \ - 8* + ic*+iSW 

(since L is a subcomplex of P) 

= 8k+\h+\ - *kàk+\sk<*k 

(since c.Q —> L is a chain map) 

= * r + i ^ + i - e*( i d£A ~ Sk-\8k)<*k 

= Sk+\0k + \ - £k<*k + tkSk-\8kak 

= ^ r + i ^ + i - & (because 8 ^ = 0) 

= a*+i0*+i - {8^ + i ^ + i ~ <pk8k+i} 

= VkOk+\-
p P' 

Thus 8k + \0k + \ = <pk8k + ]. Moreover, 
TA + m + i = TA- + I # A + I — Tk+\£k + \$kak-

From ĉ  + 1 (g^+ 1 ) = Lk+X = Ker T* + 1 we see that 

T*+HPfc+l = TA + l̂ A + l = A+l-

This completes the proof of the inductive step in the construction of the 
chain map <p:P' —» JP satisfying T<JP = / . 

Suppose qp, <p are any two lifts of f. Then r(<p — <p) = 0. Hence 

(v - 5)(P') c L. 

Thus cp — q>:P' —» L is a chain map. Since e:Q —» L is a positive, projective 
approximation of L, by what we have proved already there exists a chain 
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map y:P' —> Q with <p — <p = e y. Now Q is chain contractible. Hence y ~ 
0. It follows that <}p-<p~0or<]p~<p. This shows that any two lifts <p, <p of 
the same map / are chain homotopic. 

Now, let/ — g:P' -» C and let /)/:?• -> C7+1 yield a chain homotopy 
between/and g. Since 

T / + i />m-!±Vc/+1->o 
is exact, and P\ projective there exist maps Et\P\ -^ Pi+] with rz + \Et = Dz. 
Then 

(7) =«r+ iA + A-iôf 

= gl - / • . 

Let \:P'i —> Pz be given by 

\ = 8i+\Ei + ^ / - i 8 / -

Then 

<5ZXZ = M m £ / + ^Ei-\^ = «/ Et-xSP'i 

and 

^•-18/ = (fi/^i-i + ^i-2*/- i)5/ = SiEi-\8i • 

Hence the Xz's yield a chain map X:P' —» P. From (7) we get r\ = g — f. 
However, we know that *// — <p is also a lift of g — / . Since X and \p — cp are 
lifts of the same map g — / , by what we have proved already we see that X 
and \p — <p are chain homotopic. Let GZ:PZ' —> Pz+i satisfy 

8/+1G/ + Gy-ifi/ = i/// - <pt - Xz. 

Thus we get 

\pi - q>j = Sl + ]Gl + Gj-iSf + X 

= $i+\Gi + G/-1Ô/ + 5Z + 1£Z + £•/-! 8/ . 

Hence Jt = Gz + Ef.P'i —» Pz + 1 satisfy the condition that 

Ô/+1// + / / - IS / = & - v/. 

This shows that \p and <p are chain homotopic. This completes the proof of 
Theorem 2. 
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T T 

COROLLARY 4.1. Let P —» C a«J P' —» C 6e <z«y /WO positive, projective 
approximations of a positive chain complex C. Then there exists a chain map 
<p\P —» Pf with T' O <p = T. Any such chain map <p:P —» P' /s a chain 
equivalence. 
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