Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-08T20:49:21.622Z Has data issue: false hasContentIssue false

9 - Does floral nectar improve biological control by parasitoids?

Published online by Cambridge University Press:  15 December 2009

George E. Heimpel
Affiliation:
Department of Entomology University of Minnesota USA
Mark A. Jervis
Affiliation:
Cardiff School of Biosciences (BIOSI1) Cardiff University UK
F. L. Wäckers
Affiliation:
Netherlands Institute of Ecology
P. C. J. van Rijn
Affiliation:
Netherlands Institute of Ecology
J. Bruin
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Introduction

The incorporation of plant diversity within agricultural systems has led to decreased insect pest densities in approximately 50% of studies in which monocultures and polycultures were directly compared (Risch et al. 1983; Andow 1991; Coll 1998; Gurr et al. 2000). One of the leading hypotheses explaining the observation of decreased pest densities under polycultures is that increased plant diversity can enhance the action of natural enemies of pests (the “enemies hypothesis” of Root 1973). Increased plant diversity can provide natural enemies with resources such as a favorable microclimate, alternative hosts or prey, or plant-based foods such as pollen, nectar, or honeydew (Landis et al. 2000). In this chapter, we focus on one of the more intuitively clear predictions encompassed within Root's enemies hypothesis – the idea that the presence of nectar-producing plants can improve biological control of pests by supplying parasitoids with sugar. Note that this idea includes two components: an outcome (improved biological control) and an underlying mechanism (nectar-feeding), both of which need to be demonstrated. We refer to the combined outcome and mechanism as the “parasitoid nectar provision hypothesis”.

The hypothesis that plant diversification can decrease pest pressure by providing sugar to parasitoids that would otherwise be sugar-limited has its origins in anecdotal or semi-quantitative observations of increased parasitism rates and biological control in the vicinity of flowering plants.

Type
Chapter
Information
Plant-Provided Food for Carnivorous Insects
A Protective Mutualism and its Applications
, pp. 267 - 304
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Doghairi, M. A. and Cranshaw, W. S.. 1999. Surveys on visitation of flowering landscape plants by common biological control agents in Colorado. Journal of the Kansas Entomological Society 72: 190–196.Google Scholar
Allen, W. W. and Smith, R. F.. 1958. Some factors influencing the efficiency of Apanteles medicaginis Muesebeck (Hymenoptera: Braconidae) as a parasite of the alfalfa caterpiller, Colias philodice eurytheme Boisduval. Hilgardia 28: 1–41.CrossRefGoogle Scholar
Altieri, M. A. and Whitcomb, W. H.. 1979. The potential use of weeds in the manipulation of beneficial insects. HortScience 14: 12–18.Google Scholar
Andow, D. A. 1988. Management of weeds for insect manipulation in agroecosystems. In Altieri, M. A. and Liebman, M. (eds.) Weed Management in Agroecosystems: Ecological Approaches. Baton Rouge, FL: CRC Press, pp. 265–302.Google Scholar
Andow, D. A. 1991. Vegetational diversity and arthropod population response. Annual Review of Entomology 36: 561–586.CrossRefGoogle Scholar
Andow, D. A. and Risch, S. J.. 1987. Parasitism in diversified agroecosystms: phenology of Trichogramma minutum (Hymenoptera: Trichogrammatidae). Entomophaga 32: 255–260.CrossRefGoogle Scholar
Atsatt, P. R. and O'Dowd, D. J.. 1976. Plant defense guilds. Science 193: 24–29.CrossRefGoogle ScholarPubMed
Auclair, J. L. 1964. Aphid feeding and nutrition. Annual Review of Entomology 8: 439–490.CrossRefGoogle Scholar
Bacon, J. S. D. and Dickinson, B.. 1957. The origin of melezitose: a biochemical relationship between the lime tree (Tilia spp.) and an aphid (Eucallipterus tiliae L.). Biochemical Journal 66: 289–297.CrossRefGoogle Scholar
Baggen, L. R. and Gurr, G. M.. 1998. The influence of food on Copidosoma koehleri (Hymenoptera: Encyrtidae), and the use of flowering plants as a habitat management tool to enhance biological control of potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae). Biological Control 11: 9–17.CrossRefGoogle Scholar
Baggen, L. R., Gurr, G. M., and Meats, A.. 1999. Flowers in tri-trophic systems: mechanisms allowing selective exploitation by insect natural enemies for conservation biological control. Entomologia Experimentalis et Applicata 91: 155–161.CrossRefGoogle Scholar
Baggen, L. R., G. M. Gurr and A. Meats. 2000. Field observations on selective food plants in habitat manipulation for biological control of potato moth by Copidosoma koehleri Blanchard (Hymenoptera: Encyrtidae). In Austin, A. D. and Dowton, M. (eds.) Hymenoptera: Evolution, Biodiversity and Biological Control. Collingwood, Australia: CSIRO, pp. 388–395.Google Scholar
Baker, H. G. and I. Baker. 1983. Floral nectar sugar constituents in relation to pollinator type. In Jones, C. E. and Little, R. J. (eds.). Handbook of Experimental Pollination Biology. New York: Van Nostrand Reinhold, pp. 117–141.Google Scholar
Beach, J. P., Williams, L. III, Hendrix, D. L., and Price, L. D.. 2003. Different food sources affect the gustatory response of Anaphes iole, an egg parasitoid of Lygus spp. Journal of Chemical Ecology 29: 1203–1222.CrossRefGoogle ScholarPubMed
Bellardio, F., Lombard, A., Patetta, A., and Vidano, C.. 1978 Indagini sui carboidrati presenti in foglie di Tilia cordata, melata di Eucallipterus tiliae e relativo miele. Apicoltura moderna 69: 5–12.Google Scholar
Berndt, L. A., Wratten, S. D., and Hassan, P. G.. 2002. Effects of buckwheat flower on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agricultural and Forest Entomology 4: 39–45.CrossRefGoogle Scholar
Bowie, M. H., Wratten, S. D., and White, A. J.. 1995. Agronomy and phenology of ‘companions plants’ of potential for enhancement of insect biological control. New Zealand Journal of Crop and Horticultural Science 23: 423–427.CrossRefGoogle Scholar
Bowie, M. H., Gurr, G. M., Hossain, Z., Baggen, L. R., and Frampton, C. M.. 1999. Effects of distance from field edge on aphidophagous insects in a wheat crop and observations on trap design and placement. International Journal of Pest Management 45: 69–73.CrossRefGoogle Scholar
Box, H. E. 1927. The introduction of braconid parasites of Diatraea saccharalis Fabr., into certain of the West Indian islands. Bulletin of Entomological Research 18: 365–371.CrossRefGoogle Scholar
Braman, S. K., Pendley, A. F., and Corley, W.. 2002. Influence of commercially available wildflower mixes on beneficial arthropod abundance and predation in turfgrass. Environmental Entomology 31: 564–572.CrossRefGoogle Scholar
Bugg, R. L. 1987. Observations on insects associated with a nectar-bearing Chilean tree, Quillaja saponaria Molina (Rosaceae). Pan-Pacific Entomologist 63: 60–64.Google Scholar
Bugg, R. L. and C. H. Pickett. 1998. Introduction: enhancing biological control – habitat management to promote natural enemies of agricultural pests. In Pickett, C. H. and Bugg, R. L. (eds.) Enhancing Biological Control. Berkeley, CA: University of California Press, pp. 1–23.Google Scholar
Bugg, R. L. and Waddington, C.. 1994. Using cover crops to manage arthropod pests of orchards: a review. Agriculture, Ecosystems and Environment 50: 11–28.CrossRefGoogle Scholar
Bugg, R. L. and Wilson, L. T.. 1989. Ammi visnaga (L.) Lamarck (Apiaceae): associated beneficial insects and implications for biological control, with emphasis on the bell-pepper agroecosystem. Biological Agriculture and Horticulture 6: 241–268.CrossRefGoogle Scholar
Bugg, R. L., Ehler, L. E., and Wilson, L. T.. 1987. Effect of common knotweed (Polygonum aviculare) on abundance and efficiency of insect predators of crop pests. Hilgardia 55: 1–53.CrossRefGoogle Scholar
Burkett, D. A., Kline, D. L., and Carlson, D. A.. 1999. Sugar meal composition of five north central Florida mosquito species (Diptera: Culicidae) as determined by gas chromatagraphy. Journal of Medical Entomology 36: 462–467.CrossRefGoogle Scholar
Byrne, D. N. and Miller, W. B.. 1990. Carbohyrate and amino acid composition of phloem sap and honeydew produced by Bemisia tabaci. Journal of Insect Physiology 36: 433–439.CrossRefGoogle Scholar
Cañas, L. A. and O'Neil, R. J.. 1998. Applications of sugar solutions to maize, and the impact of natural enemies on fall armyworm. International Journal of Pest Management 44: 59–64.CrossRefGoogle Scholar
Cappuccino, N., Houle, M. J., and Stein, J.. 1999. The influence of understory nectar sources on parasitism of the spruce budworm Choristoneura fumiferana in the field. Agricultural and Forest Entomology 1: 33–36.CrossRefGoogle Scholar
Casas, J., Nisbet, R. M., Swarbrick, S., and Murdoch, W. W.. 2000. Eggload dynamics and oviposition rate in a wild population of a parasitic wasp. Journal of Animal Ecology 69: 185–193.CrossRefGoogle Scholar
Casas, J., Driessen, C., Mandon, N., et al. 2003. Energy dynamics of a parasitoid foraging in the wild. Journal of Animal Ecology 72: 691–697.CrossRefGoogle Scholar
Chaney, W. E. 1998. Biological control of aphids in lettuce using in-field insectaries. In Pickett, C. H. and Bugg, R. L. (eds.) Enhancing Biological Control. Berkeley, CA: University of California Press, pp. 73–84.Google Scholar
Chumakova, B. M. 1960. Additional nourishment as a factor increasing activity of insect-pests parasites. Proceedings of All Union Scientific Research Institute of Plant Protection 15: 57–70. (Translated from Russian.)Google Scholar
Coll, M. 1998. Parasitoid activity and plant species composition in intercropped systems. In Pickett, C. H. and Bugg, R. L. (eds.) Enhancing Biological Control. Berkeley, CA: University of California Press, pp. 85–120.Google Scholar
Corbett, A. 1998. The importance of movement in the response of natural enemies to habitat manipulation. In Pickett, C. H. and Bugg, R. L. (eds.) Enhancing Biological Control. Berkeley, CA: University of California Press, pp. 25–48.Google Scholar
Corbett, A. and Plant, R. E.. 1993. Role of movement in the response of natural enemies to agroecosystem diversification: a theoretical evaluation. Environmental Entomology 22: 519–531.CrossRefGoogle Scholar
Corbett, A. and Rosenheim, J. A.. 1996. Impact of a natural enemy overwintering refuge and its interactions with the surrounding landscape. Ecological Entomology 21: 155–164.CrossRefGoogle Scholar
Costa, H. S., Toscano, N. C., Hendrix, D. L., and Henneberry, T. J.. 1999. Patterns of honeydew droplet production by nymphal stages of Bemisia argentifolii (Homoptera: Aleyrodidae) and relative composition of honeydew sugars. Journal of Entomological Science 34: 305–313.CrossRefGoogle Scholar
Davidson, E. W., Segura, B. J., Steele, T., and Hendrix, D. L.. 1994. Microorganisms influence the composition of honeydew produced by the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology 40: 1069–1076.CrossRefGoogle Scholar
Dowell, R. V. 1978. Ovary structure and reproductive biologies of larval parasitoids of the alfalfa weevil (Coleoptera: Cucurulionidae). Canadian Entomologist 109: 641–648.CrossRefGoogle Scholar
Driessen, G. and Hemerik, L.. 1992. The time and egg budget of Leptopilina clavipes, a parasitoid of larval Drosophila. Ecological Entomology 17: 17–27.CrossRefGoogle Scholar
Dyer, L. E. and Landis, D. A.. 1996. Effects of habitat, temperature, and sugar availability on longevity of Eriborus terebrans (Hymenoptera: Ichneumonidae). Environmental Entomology 25: 192–201.CrossRefGoogle Scholar
Dyer, L. E. and Landis, D. A.. 1997. Influence of noncrop habitats on the distribution of Eriborus terebrans (Hymenoptera: Ichneumonidae) in cornfields. Environmental Entomology 26: 924–932.CrossRefGoogle Scholar
Ellers, J., Alphen, J. J. M., and Sevenster, J. G.. 1998. A field study of size–fitness relationships in the parasitoid Asobara tabida. Journal of Animal Ecology 67: 318–324.CrossRefGoogle Scholar
English-Loeb, C., Rhainds, M., Martinson, T., and Ugine, T.. 2003. Influence of flowering cover crops on Anagrus parasitoids (Hymenopetera: Mymaridae) and Erythronevra leafhoppers (Homopetra: Cicadellidae) in New York vineyards. Agricultural and Forest Entomology 5: 173–181.CrossRefGoogle Scholar
Evans, E. W. 1993. Indirect interactions among phytophagous insects: aphids, honeydew and natural enemies. In Watt, A. D., Leather, S., Mills, N. J., and Walters, K. F. A. (eds.) Individuals, Populations and Patterns in Ecology. Andover, UK: Intercept Press, pp. 287–298.Google Scholar
Evans, E. W. and England, S.. 1996. Indirect interactions in biological control of insects: pests and natural enemies in alfalfa. Ecological Applications 6: 920–930.CrossRefGoogle Scholar
Evans, E. W. and Swallow, J. G.. 1993. Numerical responses of natural enemies to artificial honeydew in Utah alfalfa. Environmental Entomology 22: 1392–1401.CrossRefGoogle Scholar
Ewart, W. H. and Metcalf, R. L.. 1956. Preliminary studies of sugars and amino acids in the honeydews of five species of coccids feeding on citrus in California. Annals of the Entomological Society of America 9: 441–447.CrossRefGoogle Scholar
Fadamiro, H. Y. and Heimpel, G. E.. 2001. Effects of partial sugar deprivation on lifespan and carbohydrate mobilization in the parasitoid Macrocentrus grandii (Hymenoptera: Braconidae). Annals of the Entomological Society 94: 909–916.CrossRefGoogle Scholar
Fiori, J., Serra, G., Sabatini, P., et al. 2000. Analisi con HPLC di destrine in mieli di melata di Metcalfa pruinosa. Industrie Alimentari 34: 463–466.Google Scholar
Freeman-Long, R., Corbett, A., Lamb, C., et al. 1998. Beneficial insects move from flowering plants to nearby crops. California Agriculture September–October: 23–26.CrossRefGoogle Scholar
Froggatt, W. W. 1902. A natural enemy of the sugar-cane beetle in Queensland. New South Wales Agricultural Gazette 13: 63.Google Scholar
Gallego, V. C., Baltazar, C. R., Cadapan, E. P., and Abad, R. G.. 1983. Some ecological studies on the coconut leafminer, Promecotheca cumingii Baly (Coleoptera: Hispidae) and its hymenopterous parasitoids in the Philippines. Philippine Entomologist 6: 471–494.Google Scholar
Gilbert, F. and Jervis, M. A.. 1998. Functional, evolutionary and ecological aspects of feeding-related mouthpart specializations in parasitoid flies. Biological Journal of the Linnean Society 63: 495–535.CrossRefGoogle Scholar
Godfray, H. C. J. 1994. Parasitoids: Behavioral and Evolutionary Ecology. Princeton, NJ: Princeton University Press.Google Scholar
Gray, H. E. and Fraenkel, G.. 1954. The carbohydrate components of honeydew. Physiological Zoology 27: 56–65.CrossRefGoogle Scholar
Gruys, P. 1982. Hits and misses: the ecological approach to pest control in orchards. Entomologia Experimentalis et Applicata 31: 70–87.CrossRefGoogle Scholar
Gurr, G. M., S. D. Wratten, and P. Barbosa. 2000. Success in conservation biological control of arthropods. In Gurr, G. and Wratten, S. D. (eds.) Biological Control: Measures of Success. Dordrecht, the Netherlands: Kluwer Academic Publishers, pp. 105–132.CrossRefGoogle Scholar
Gurr, G. M., S. D. Wratten, N. A. Irvin, et al. 1999. Habitat manipulation in Australasia: recent biological control progress and prospects for adoption. Proc. 6th Australasian Applied Entomological Research Conference, vol. 2, pp. 7225–7234.
Györfi, J. 1951. Die Schlupfwespen und der Unterwuchs des Waldes. Zeitschrift für angewandte Entomologie 33: 32–47.CrossRefGoogle Scholar
Hagan, K. S. 1986. Ecosystem analysis: plant cultivars (HPR), entomophagous species and food supplements. In Boethel, D. J. and Eikenbary, R. D. (eds.) Interactions of Plant Resistance and Parasitoids and Predators of Insects. Chichester, UK: Ellis Horwood, pp. 151–197.Google Scholar
Harborne, J. B. 1988. Introduction to Ecological Biochemistry. London: Academic Press.Google Scholar
Hardy, I. C. W., Griffiths, N. T. and Godfray, H. C. J.. 1992. Clutch size in a parasitoid wasp: a manipulation experiment. Journal of Animal Ecology 61: 121–129.CrossRefGoogle Scholar
Hassan, V. E. 1967. Untersuchung über die Bedeutung der Kraut- und Strauchshicht als Nahrungsquelle für Imagines entomophager Hymenoptera. Zeitschrift für angewandte Entomologie 60: 238–265.CrossRefGoogle Scholar
Hastings, A. 2000. Parasitoid spread: lessons for and from invasion biology. In Hochberg, M. A. and Ives, A. R. (eds.) Parasitoid Population Biology. Princeton, NJ: Princeton University Press, pp. 70–82.Google Scholar
Helenius, J. 1990. Incidence of specialist natural enemies of Rhopalosiphum padi (L.) (Hom., Aphididae) on oats in monocrops and mixed intercrops with faba bean. Journal of Applied Entomology 109: 136–143.CrossRefGoogle Scholar
Heimpel, G. E. and Collier, T. R.. 1996. The evolution of host-feeding behaviour in insect parasitoids. Biological Reviews 71: 373–400.CrossRefGoogle Scholar
Heimpel, G. E., Lee, J. C., Wu, Z., et al. 2004. Gut sugar analysis in field-caught parasitoids: adapting methods used on biting flies. International Journal of Pest Management 50: 193–198.CrossRefGoogle Scholar
Heimpel, G. E., Mangel, M., and Rosenheim, J. A.. 1998. Effects of time limitation and egg limitation on lifetime reproductive success of a parasitoid in the field. American Naturalist 152: 273–289.CrossRefGoogle ScholarPubMed
Heimpel, G. E., Rosenheim, J. A., and Adams, J. M.. 1994. Behavioral ecology of host feeding in Aphytis parasitoids. Norwegian Journal of Agricultural Sciences (Suppl.) 16: 101–115.Google Scholar
Heimpel, G. E., Rosenheim, J. A., and Kattari, D.. 1997a. Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomologia Experimentalis et Applicata 83: 305–315.CrossRefGoogle Scholar
Heimpel, G. E., Rosenheim, J. A., and Mangel, M.. 1997b. Predation on adult Aphytis parasitoids in the field. Oecologia 110: 346–352.CrossRefGoogle Scholar
Hendrix, D. L. and Wei, Y.-A.. 1992. Homopteran honeydew sugar composition is determined by both the insect and plant species. Comparative Biochemistry and Physiology B 101: 23–27.CrossRefGoogle Scholar
Hendrix, D. L. and Wei, Y.-A.. 1994. Bemisiose: an unusual trisaccharide in Bemisia honeydew. Carbohydrate Research 253: 329–334.CrossRefGoogle ScholarPubMed
Henneberry, T. J., Forlow Jech, L., Torre, T., and Hendrix, D. L.. 2000. Cotton aphid (Homoptera: Aphididae) biology, honeydew production, sugar quality and quantity, and relationships to sticky cotton. Southwestern Entomologist 25: 161–174.Google Scholar
Hespenheide, H. A. 1985. Insect visitors to extrafloral nectaries of Byttneria aculeata (Sterculiaceae): relative importance and roles. Ecological Entomology 10: 191–204.CrossRefGoogle Scholar
Hirose, Y. 1998. Conservation biological control of mobile pests: problems and tactics. In Barbosa, P. (ed.) Conservation Biological Control. San Diego, CA: Academic Press.Google Scholar
Hopper, K. R. 1991. Ecological applications of elemental labeling: analysis of dispersal, density, mortality and feeding. Southwestern Entomologist (Suppl.) 14: 71–83.Google Scholar
Hopper, K. R. and Woolson, E. A.. 1991. Labeling a parasitic wasp, Microplitis croceipes (Hymenoptera: Braconidae) with trace elements for mark–recapture studies. Annals of the Entomological Society of America 84: 255–262.CrossRefGoogle Scholar
Huffaker, C. B., Kennet, C. E., and Tassan, R. L.. 1986. Comparisons of parasitism and densities of Parlatoria oleae (1952–1982) in relation to ecological theory. American Naturalist 128: 379–393.CrossRefGoogle Scholar
Hunter, F. F. and Ossowski, A. M.. 1999. Honeydew sugars in wild-caught female horse flies (Diptera: Tabanidae). Journal of Medical Entomology 36: 896–899.CrossRefGoogle Scholar
Idoine, K. and Ferro, D. N.. 1988. Aphid honyedew as a carbohydrate source of Edovum puttleri (Hymenoptera: Eulophidae). Environmental Entomology 17: 941–944.CrossRefGoogle Scholar
Idris, A. B. and Grafius, E.. 1995. Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environmental Entomology 24: 1726–1735.CrossRefGoogle Scholar
Irvin, N. A., S. D. Wratten, and C. M. Frampton. 2000. Understorey management for the enhancement of the leafroller parasitoid Dolichogenidea tasmanica (Cameron) in orchards at Canterbury, New Zealand. In Austin, A. D. and Dowton, M. (eds.) Hymenoptera: Evolution, Biodiversity and Biological Control. Collingwood, Australia: CSIRO, pp. 396–402.Google Scholar
Jackson, C. G. 1991. Elemental markers for entomophagous insects. Southwestern Entomologist (Suppl.) 14: 65–70.Google Scholar
Jackson, C. G., Cohen, A. C., and Verdugo, C. L.. 1988. Labeling Anaphes ovijentatus (Hymenoptera: Mymaridae) an egg parasite of Lygus (Hemiptera: Miridae), with rubidium. Annals of the Entomological Society of America 81: 919–922.CrossRefGoogle Scholar
Jacob, H. S. and Evans, E. W.. 1998. Effects of sugar spray and aphid honeydew on field populations of the parasitoid Bathyplectes curculionis (Thomson) (Hymenoptera: Ichneumonidae). Environmental Entomology 27: 1563–1568.CrossRefGoogle Scholar
Jacob, H. S. and Evans, E. W.. 2000. Influence of experience on the response of Bathyplectes curculionis (Hymenoptera: Ichneumonidae), a nonaphidophagous parasitoid, to aphid odor. Biological Control 19: 237–244.CrossRefGoogle Scholar
Janzen, T. A. and Hunter, F. F.. 1998. Honeydew sugars in wild-caught female deer flies (Diptera: Tabanidae). Journal of Medical Entomology 35: 685–689.CrossRefGoogle Scholar
Jervis, M. A. 1990. Predation of Lissonota coracinus (Gmelin) (Hymenoptera: Ichneumonidae) by Dolichonabis limbatus (Dahlbom) (Hemiptera: Nabidae). Entomologist's Gazette 41: 231–233.Google Scholar
Jervis, M. A. 1998. Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biological Journal of the Linnean Society 63: 461–493.CrossRefGoogle Scholar
Jervis, M. A. and Kidd, N. A. C.. 1993. Integrated pest management in European olives: new developments. Antenna 17: 108–114.Google Scholar
Jervis, M. A., and N. A. C. Kidd. 1996. Phytophagy. In Jervis, M. A. and Kidd, N. A. C. (eds.) Insect Natural Enemies. London: Chapman and Hall, pp. 375–394.CrossRefGoogle Scholar
Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A., and Kidd, N. A. C.. 2001. Life-history strategies in parasitoid wasps: a comparative analysis of “ovigeny”. Journal of Animal Ecology 70: 442–458.CrossRefGoogle Scholar
Jervis, M. A., Kidd, N. A. C., Fitton, M. G., Huddleston, T., and Dawah, H. A.. 1993. Flower-visiting by hymenopteran parasitoids. Journal of Natural History 27: 67–105.CrossRefGoogle Scholar
Jervis, M. A., Kidd, N. A. C., and Heimpel, G. E.. 1996. Parasitoid adult feeding and biological control: a review. Biocontrol News and Information 17: 1N–22N.Google Scholar
Jervis, M. A., N. A. C. Kidd, P. McEwen, M. Campos, and C. Lozano. 1992a. Biological control strategies in olive pest management. In Haskell, P. T. (ed.) Research Collaboration in European IPM Systems. Farnham, UK: British Crop Protection Council, pp. 31–39.Google Scholar
Jervis, M. A., Kidd, N. A. C., and Walton, M.. 1992b. A review of methods for determining dietary range in adult parasitoids. Entomophaga 37: 565–574.CrossRefGoogle Scholar
Kareiva, P. 1983. Influence of vegetation texture on herbivore populations: resource concentration and herbivore movement. In Denno, R. F. and McClure, M. S. (eds.) Variable Plants and Herbivores in Natural and Managed Systems. New York: Academic Press, pp. 259–289.Google Scholar
Kevan, P. G. 1973. Parasitoid wasps as flower visitors in the Canadian high arctic. Anzeiger Schädlungskunde 46: 3–7.Google Scholar
Koptur, S. 1992. Extrafloral nectary-mediated interactions between insects and plants. In Bernays, E. (ed.) Insect–Plant Interactions. Boca Raton, FL: CRC Press, pp. 81–129.Google Scholar
Landis, D. A. and Haas, M.. 1992. Influence of landscape structure on abundance and within-field distribution of Ostrinia nubilalis Hübner (Lepidoptera: Pyralidae) larval parasitoids in Michigan. Environmental Entomology 21: 409–416.CrossRefGoogle Scholar
Landis, D. A., and P. C. Marino. 1999. Landscape structure and extra-field processes: impact on management of pests and beneficials. In Ruberson, J. R. (ed.) Handbook of Pest Management. New York: Marcel Dekker, pp. 79–104.Google Scholar
Landis, D. A., Wratten, S. D., and Gurr, G. M.. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology 45: 175–201.CrossRefGoogle ScholarPubMed
Lee, J. C., and G. E. Heimpel. 2003. Nectar availability and parasitoid sugar feeding. Proc. 1st Int. Symp. Biological Control of Arthropods, Honolulu, pp. 220–225.
Leeper, J. R. 1974. Adult feeding behavior of Lixophaga sphenophori, a tachinid parasite of the New Guinea sugarcane weevil. Proceedings of the Hawaiian Entomological Society 21: 403–412.Google Scholar
Leius, K. 1961a. Influence of food on fecundity and longevity of adults of Itoplectis conquisitor (Say) (Hymenoptera: Ichneumonidae). Canadian Entomologist 93: 771–780.CrossRefGoogle Scholar
Leius, K. 1961b. Influence of various foods on fecundity and longevity of adults of Scambus buolianae (Htg.) (Hymenoptera: Ichneumonidae). Canadian Entomologist 93: 1079–1084.CrossRefGoogle Scholar
Leius, K. 1963. Effects of pollens on fecundity and longevity of adult Scambus buolianae (Htg.) (Hymenoptera: Ichneumonidae). Canadian Entomologist 95: 202–207.CrossRefGoogle Scholar
Leius, K. 1967. Influence of wild flowers on parasitism of tent caterpillar and codling moth. Canadian Entomologist 99: 444–446.CrossRefGoogle Scholar
Letourneau, D. K. 1987. The enemies hypothesis: tritrophic interactions and vegetational diversity in tropical agroecosystems. Ecology 68: 1616–1622.CrossRefGoogle ScholarPubMed
Lewis, D. J. and Domoney, C. R.. 1966. Sugar meals in Phlebotominae and Simuliidae (Diptera). Proceedings of the Royal Entomological Society (London) A 41: 175–179.CrossRefGoogle Scholar
Lewis, W. J. and Takasu, K.. 1990. Use of learned odours by a parasitic wasp in accordance with host and food needs. Nature 348: 635–636.CrossRefGoogle Scholar
Lewis, W. J., Stapel, J. O., Cortesero, A. M., and Takasu, K.. 1998. Understanding how parasitoids balance food and host needs: importance to biological control. Biological Control 11: 175–183.CrossRefGoogle Scholar
Liebig, G. 1979. Gaschromatographie und enzymatische Untersuchungen des Zuckerspektrums des Honigtaus von Buchnera pectinatae (Nordl.). Apidologie 10: 213–225.CrossRefGoogle Scholar
Lingren, P. D. and Lukefahr, M. J.. 1977. Effects of nectariless cotton on caged populations of Campoletis sonorensis. Environmental Entomology 6: 586–588.CrossRefGoogle Scholar
Lombard, A., Buffa, M., Belliardo, F., Patetta, A., and Marletto, F.. 1979. I carboidrati della melata di Tuberolachnus salignus Gmel. Apicoltura Moderna 70: 1–6.Google Scholar
Lombard, A., Buffa, M., Patetta, A., Manino, A., and Marletto, F.. 1987. Some aspects of the carbohydrate composition of callaphidid honeydew. Journal of Apicultural Research 26: 233–237.CrossRefGoogle Scholar
Lundgren, J. G., Heimpel, G. E., and Bomgren, S. A.. 2002. Comparison of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) augmentation with organic and synthetic pesticides for control of cruciferous Lepidoptera. Environmental Entomology 31: 1231–1239.CrossRefGoogle Scholar
Maingay, H. M., Bugg, R. L., Carlson, R. W., and Davidson, N. A.. 1991. Predatory and parasitic wasps (Hymenoptera) feeding at flowers of sweet fennel (Foeniculum vulgare Miller var. dulce Battandier and Tabut, Apiaceae) and spearmint (Mentha spicata L., Lamiaceae) in Massachusetts. Biological Agriculture and Horticulture 7: 363–383.CrossRefGoogle Scholar
Manino, A., Patetta, A., Marletto, F., Lombard, A., and Buffa, M.. 1985. Sequential carbohydrate variations from larch phloem sap to honeydew and to honeydew honey. Apicoltura 1: 93–103.Google Scholar
Maurizio, A. 1975. How bees make honey. In Crane, E. (ed.) Honey. London: Heinemann, pp. 77–105.Google Scholar
May, R. M., Hassell, M. P., Anderson, R. M., and Tonkyn, D. W.. 1981. Density dependence in host–parasitoid models. Journal of Animal Ecology 50: 855–865.CrossRefGoogle Scholar
Moller, H. and Tilley, J. A. V.. 1989. Beech honeydew: seasonal variation and use by wasps, honey bees, and other insects. New Zealand Journal of Zoology 16: 289–302.CrossRefGoogle Scholar
Murdoch, W. W., Reeve, J. D., Huffaker, C. B., and Kennet, C. E.. 1984. Biological control of olive scale and its relevance to ecological theory. American Naturalist 123: 371–392.CrossRefGoogle Scholar
Murdoch, W. W., Luck, R. F., Swarbrick, S. L., et al. 1995. Regulation of an insect population under biological control. Ecology 76: 206–217.CrossRefGoogle Scholar
Nemec, V. and Stary, P.. 1990. Sugars in honeydew. Biológia (Bratislava) 45: 259–264.Google Scholar
Nentwig, W. 1998. Weedy plant species and their beneficial arthropods: potential for manipulation in field crops. In Pickett, C. H. and Bugg, R. L. (eds.) Enhancing Biological Control. Berkeley, CA: University of California Press, pp. 49–72.Google Scholar
Ode, P. J., Antolin, M. F., and Strand, M. R.. 1996. Sex allocation and sexual asymmetries in intra-brood competition in the parasitic wasp Bracon hebetor. Journal of Animal Ecology 65: 690–700.CrossRefGoogle Scholar
Olson, D. M., Fadamiro, H., Lundgren, J. G., and Heimpel, G. E.. 2000. Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiological Entomology 25: 17–26.CrossRefGoogle Scholar
Orr, D. B. and Pleasants, J. M.. 1996. The potential of native prairie plant species to enhance the effectiveness of the Ostrinia nubilalis parasitoid Macrocentrus grandii. Journal of the Kansas Entomological Society 69: 133–143.Google Scholar
Patt, J. M., Hamilton, G. C., and Lashomb, J. H.. 1997. Foraging success of parasitoid wasps on flowers: interplay of floral architecture and searching behavior. Entomologia Experimentalis et Applicata 83: 21–30.CrossRefGoogle Scholar
Patt, J. M., Hamilton, G. C. and Lashomb, J. H.. 1999. Response of two parasitoid wasps to nectar odors as a function of experience. Entomologia Experimentalis et Applicata 90: 1–8.CrossRefGoogle Scholar
Payne, J. A. and Wood, B. W.. 1984. Rubidium as a marking agent for the hickory shuckworm (Lepidoptera: Tortricidae). Environmental Entomology 13: 1519–1521.CrossRefGoogle Scholar
Pedata, P. A., Hunter, M. S., Godfray, H. C. J., and Viggiani, G.. 1995. The population dynamics of the white peach scale and its parasitoids in a mulberry orchard in Campania, Italy. Bulletin of Entomological Research 85: 531–539.CrossRefGoogle Scholar
Percival, M. S. 1961. Types of nectar in angiosperms. New Phytologist 60: 235–281.CrossRefGoogle Scholar
Powell, W. 1986. Enhancing parasitoid activity in crops. In Waage, J. and Greathead, D. (eds.) Insect Parasitoids. London: Academic Press, pp. 319–340.Google Scholar
Reeve, J. D. and Murdoch, W. W.. 1985. Aggregation by parasitoids in the successful control of California red scale: a test of theory. Journal of Animal Ecology 54: 797–816.CrossRefGoogle Scholar
Risch, S. J., Andow, D. A., and Altieri, M.. 1983. Agroecosystems diversity and pest control: data, tentative conclusions, and new research directions. Environmental Entomology 12: 625–629.CrossRefGoogle Scholar
Rogers, C. A. 1985. Extrafloral nectar: entomological implications. Bulletin of the Entomological Society of America 31: 15–20.CrossRefGoogle Scholar
Roland, J. 2000. Landscape ecology of parasitism. In Hochberg, M. A. and Ives, A. R. (eds.) Parasitoid Population Biology. Princeton, NJ: Princeton University Press, pp. 83–100.Google Scholar
Romeis, J. and Wäckers, F. L.. 2000. Feeding responses by female Pieris brassicae butterflies to carbohydrates and amino acids. Physiological Entomology 25: 247–253.CrossRefGoogle Scholar
Root, R. B. 1973. Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43: 95–124.CrossRefGoogle Scholar
Rosenheim, J. A. 1998. Higher order predators and the regulation of insect herbivore populations. Annual Review of Entomology 43: 421–448.CrossRefGoogle ScholarPubMed
Sheehan, W. 1986. Response by specialist and generalist natural enemies to agroecosystem diversification: a selective review. Environmental Entomology 15: 456–461.CrossRefGoogle Scholar
Smith, A. D. M. and Maelzer, D. A.. 1986. Aggregation of parasitoids and density-independence of parasitism in field populations of the wasp Aphytis melinus and its host, the red scale, Aonidiella aurantii. Ecological Entomology 11: 425–434.CrossRefGoogle Scholar
Smith, S. M., Hubbes, M., and Carrow, J. R.. 1986. Factors affecting inundative release of Trichogramma minutum Ril. against the spruce budworm. Journal of Applied Entomology 101: 29–39.CrossRefGoogle Scholar
Stapel, J. O., Cortesero, A. M., Moraes, C. M., Tumlinson, J. H., and Lewis, W. J.. 1997. Extrafloral nectar, honeydew, and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environmental Entomology 26: 617–623.CrossRefGoogle Scholar
Stephen, F. M. and Browne, L. E.. 2000. Application of EliminadeTM parasitoid food to boles and crowns of pines (Pinaceae) infested with Dendroctonus frontalis (Coleoptera: Scolytidae). Canadian Entomologist 132: 983–985.CrossRefGoogle Scholar
Stephen, F. M., M. P. Lih, and L. E. Browne. 1996. Biological control of southern pine beetle through enhanced nutrition of its adult parasitoids. In Proc. North American Forest Insect Work Conference, Publication no.160, Texas Forest Service, Lufkin, TX, pp. 34–35.
Stephens, M. J., France, C. M., Wratten, S. D., and Frampton, C.. 1998. Enhancing biological control of leafrollers (Lepidoptera: Tortricidae) by sowing buckweat (Fagopyrum esculentum) in an orchard. Biocontrol Science and Technology 8: 547–558.CrossRefGoogle Scholar
Takasu, K. and Lewis, W. J.. 1993. Host- and food-foraging of the parasitoid Microplitis croceipes: learning and physiological state effects. Biological Control 3: 70–74.CrossRefGoogle Scholar
Takasu, K. and Lewis, W. J.. 1995. Importance of adult food sources to host searching of the larval parasitoid Microplitis croceipes. Biological Control 5: 25–30.CrossRefGoogle Scholar
Takasu, K. and Lewis, W. J.. 1996. The role of learning in adult food location by the larval parasitoid Microplitis croceipes (Hymenoptera: Braconidae). Journal of Insect Behavior 9: 265–281.CrossRefGoogle Scholar
Thompson, S. N. 1999. Nutrition and culture of entomophagous insects. Annual Review of Entomology 44: 561–592.CrossRefGoogle ScholarPubMed
Tooker, J. F. and Hanks, L. M.. 2000. Flowering plant hosts of adult hymenopteran parasitoids of central Illinois. Annals of the Entomological Society of America 93: 580–588.CrossRefGoogle Scholar
Topham, M. and Beardsley, J. W. Jr. 1975. Influence of nectar source plants on the New Guinea sugarcane weevil parasite, Lixophaga sphenophori (Villenueve). Proceedings of the Hawaiian Entomological Society 22: 145–154.Google Scholar
Treacy, M. F., Benedict, J. H., Walmsley, M. H., Lopez, J. D., and Morrison, R. K.. 1987. Parasitism of bollworm (Lepidoptera: Noctuidae) eggs on nectaried and nectariless cotton. Environmental Entomology 16: 420–423.CrossRefGoogle Scholar
Van den Bosch, R. and A. D. Telford. 1964. Environmental modification and biological control. In DeBach, P. (ed.) Biological Control of Insect Pests and Weeds. New York: John Wiley, pp. 459–488.Google Scholar
Emden, H. F. 1962. Observations on the effect of flowers on the activity of parasitic Hymenoptera. Entomologists' Monthly Magazine 98: 265–270.Google Scholar
Emden, H. F. 1988. The potential for managing indigenous natural enemies of aphids on field crops. Philosophical Transactions of the Royal Society of London Series B 318: 183–201.CrossRefGoogle Scholar
Van Emden, H. F. 1990. Plant diversity and natural enemy efficiency in agroecosystems. In Mackauer, M., Ehler, L. E., and Roland, J. (eds.) Critical Issues in Biological Control. Andover, UK: Intercept Press, pp. 63–80.Google Scholar
Hamburg, H. and Hassell, M. P.. 1984 Density dependence and the augmentative release of egg parasitoids against graminaceous stem borers. Ecological Entomology 9: 101–108.CrossRefGoogle Scholar
Handel, E. 1972. The detection of nectar in mosquitoes. Mosquito News 32: 458.Google Scholar
Handel, E. 1984. Metabolism of nutrients in the adult mosquito. Mosquito News 44: 573–579.Google Scholar
Handel, E., Haeger, J. S., and Hansen, C. W.. 1972. The sugars of some Florida nectars. American Journal of Botany 59: 1030–1032.CrossRefGoogle Scholar
Wäckers, F. L. 1994. The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. Journal of Insect Physiology 40: 641–649.CrossRefGoogle Scholar
Wäckers, F. L. 1999. Gustatory response by the hymenopteran parasitoid Cotesia glomerata to a range of nectar- and honeydew-sugars. Journal of Chemical Ecology 12: 2863–2877.CrossRefGoogle Scholar
Wäckers, F. L. and Steppuhn, A.. 2003. Characterizing nutritional state and food source use of parasitoids collected in fields with high and low nectar availability. IOBC/WPRS Bulletin 26: 209–214.Google Scholar
Wäckers, F. L., Bjornsten, A., and Dorn, S.. 1996. A comparison of flowering herbs with respect to their nectar accessibility for the parasitoid Pimpla turionellae. Proceedings of Experimental and Applied Entomology 7: 177–182.Google Scholar
Wei, Y. A., Hendrix, D. L., and Nieman, R.. 1996. Isolation of a novel tetrasaccharide, bemisiotetrose, and glycine betaine from silverleaf whitefly honeydew. Journal of Agricultural and Food Chemistry 44: 3214–3218.CrossRefGoogle Scholar
Wei, Y. A., Hendrix, D. L., and Neiman, R.. 1997. Diglucomelezitose, a novel pentasaccharide in silverleaf whitefly honeydew. Journal of Agricultural and Food Chemistry 45: 3481–3486.CrossRefGoogle Scholar
Wilkinson, T. L., Ashford, D. A., Pritchard, J., and Douglas, A. E.. 1997. Honeydew sugars and osmoregulation in the pea aphid Acyrthosiphon pisum. Journal of Experimental Biology 200: 2137–2143.Google ScholarPubMed
Wolcott, G. N. 1941. The establishment in Puerto Rico of Larra americana Saussere. Journal of Economic Entomology 34: 53–56.CrossRefGoogle Scholar
Wolcott, G. N. 1942. The requirements of parasites for more than hosts. Science 96: 317–318.CrossRefGoogle ScholarPubMed
Wolf, J. P. and Ewart, W. H.. 1955. Carbohydrate composition of the honeydew of Coccus hesperidum L.: evidence for the existence of two new oligosaccharides. Archives of Biochemistry and Biophysics 58: 365–372.CrossRefGoogle ScholarPubMed
Wratten, S. D., L. Berndt, G. Gurr, et al. 2003. Adding floral diversity to enhance parasitoid fitness and efficacy. Proc. 1st Int. Symp. Biological Control of Arthropods, Honolulu, pp. 211–214.
Wykes, G. R. 1952. An investigation of the sugars present in the nectar of flowers of various species. New Phytologist 51: 210–215.CrossRefGoogle Scholar
Yuval, B. and Schlein, Y.. 1986. Leishmaniasis in the Jordan Valley. III. Nocturnal activity of Phlebotomus papatasi (Diptera: Psychodidae) in relation to nutrition and ovarian development. Journal of Medical Entomology 23: 411–415.CrossRefGoogle ScholarPubMed
Zandstra, B. H. and Motooka, P. S.. 1978. Beneficial effects of weeds in pest mangement. Pest Articles and News Summary 24: 333–338.Google Scholar
Zhao, J. Z., Ayers, G. S., Grafius, E. J., and Stehr, F. W.. 1992. Effects of neighboring nectar-producing plants on populations of pest Lepidoptera and their parasitoids in broccoli plantings. Great Lakes Entomologist 25: 253–258.Google Scholar
Zoebelein, G. 1956. Der Honigtau als Nahrung der Insekten. I. Zeitschrift für angewandte Entomologie 38: 369–416.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×