NUMERICAL INVARIANTS IN HOMOTOPICAL ALGEBRA, I

K. VARADARAJAN

Introduction. Classically $C W$-complexes were found to be the best suited objects for studying problems in homotopy theory. Certain numerical invariants associated to a $C W$-complex X such as the Lusternik-Schnirelmann Category of X, the index of nilpotency of $\Omega(X)$, the cocategory of X, the index of conilpotency of $\Sigma(X)$ have been studied by Eckmann, Hilton, Berstein and Ganea, etc. Recently D. G. Quillen [6] has developed homotopy theory for categories satisfying certain axioms. In the axiomatic set up of Quillen the duality observed in classical homotopy theory becomes a self-evident phenomenon, the axioms being so formulated. In addition to the category of based topological spaces there are at least two other familiar categories which satisfy the axioms of Quillen. For any ring A the category $C_{+}(A)$ of chain complexes over A which are bounded below is known to satisfy the axioms of Quillen [6]. The category of semi-simplicial sets also satisfies the axioms of Quillen. This paper is devoted to the development of the theory of Lusternik-Schnirelmann Category and Cocategory etc. in the axiomatic set up of Quillen.

Part of $\S 1$ deals with some known facts about categories which we need later. A reference for this is [5]. For the sake of completeness we include them here without proofs.

1. Preliminaries about categories. Let \mathscr{C} be an arbitrary category. Recall that a map $j \in \operatorname{Hom}(X, Y)$ is called monic if $\varphi, \theta \in \operatorname{Hom}(A, X)$, $j \circ \varphi=j \circ \theta \Rightarrow \varphi=\theta$. By a subobject of X in \mathscr{C} we mean a pair (E, i) where E is an object in \mathscr{C} and $i: E \rightarrow X$ is monic.
1.1 Lemma. Suppose

Diagram 1
is a commutative diagram in \mathscr{C} with i_{1}, i_{2} monic. Then φ is unique and monic.

[^0]Let $f: X \rightarrow Y$ be a given map in \mathscr{C}. Let \mathscr{F} be the family of subobjects (E, i) of Y satisfying the condition that there exists a map $g: X \rightarrow E$ with $i \circ g=f$. Since i is monic it follows that whenever such a g exists it is unique. For any $\left(E_{1}, i_{1}\right)$ and $\left(E_{2}, i_{2}\right)$ in \mathscr{F} a map of $\left(E_{1}, i_{1}\right)$ into $\left(E_{2}, i_{2}\right)$ is defined to be a map $\varphi: E_{1} \rightarrow E_{2}$ in \mathscr{C} satisfying $i_{2} \circ \varphi=i_{1}$ From 1.1 it follows that φ, whenever it exists, is unique and monic.
1.2 Lemma. Let $\left(E_{1}, i_{1}\right)$ and $\left(E_{2}, i_{2}\right)$ be objects in \mathscr{F} and $\varphi: E_{1} \rightarrow E_{2}$ be a map in \mathscr{F}. Suppose $g_{1}: X \rightarrow E_{1}$ and $g_{2}: X \rightarrow E_{2}$ are the unique maps satisfying $i_{1} \circ g_{1}=f=i_{2} \circ g_{2}$. Then $\varphi \circ g_{1}=g_{2}$.

Proof. We have $\left.i_{2} \circ\left(\varphi \circ g_{1}\right)=\left(i_{2} \circ \varphi\right) \circ g_{1}\right)=i_{1} \circ g_{1}=f=i_{2} \circ g_{2}$. The fact that i_{2} is monic now yields $\varphi \circ g_{1}=g_{2}$.
1.3 Definition. The image of f is defined to be a universal object in \mathscr{F}, that is to say it is an object (D, j) in \mathscr{F} with the property that if (E, i) is any other object in \mathscr{F} there exists a map θ of (D, j) into (E, i).

Such a θ is necessarily unique by (1.1). Also the image of f when it exists is unique up to an isomorphism in the category \mathscr{F} since it is defined by a universal property. We denote the image of f by $\operatorname{Im} f$.
1.4. Definition. Let $\left(E_{1}, i_{1}\right)$ and $\left(E_{1}, i_{2}\right)$ be subobjects of X in \mathscr{C}. By their union (in X) we mean a subobject (E, i) of X having the following properties:
(a) There exist maps $j_{1}: E_{1} \rightarrow E, j_{2}: E_{2} \rightarrow E$ satisfying $i \circ j_{1}=i_{1}$ and $i \circ j_{2}=i_{2}$.
(b) If (F, k) is any subobject of X with maps $k_{1}: E_{1} \rightarrow F, k_{2}: E_{2} \rightarrow F$ satisfying $k \circ k_{1}=i_{1}, k \circ k_{2}=i_{2}$ then there exists a unique map $l: E \rightarrow F$ satisfying $k \circ l=i$.
1.5. Definition. Two subobjects (E, i) and $\left(E^{\prime}, i^{\prime}\right)$ of X are said to be isomorphic as subobjects of X if there exists an isomorphism $\theta: E \rightarrow E^{\prime}$ in \mathscr{C} satisfying $i^{\prime} \circ \theta=i$.

The union of subobjects $\left(E_{1}, i_{1}\right),\left(E_{2}, i_{2}\right)$ of X being defined by a universal property, it follows that whenever there is a union it is unique up to an isomorphism as a subobject of X.

Let A_{1}, A_{2} denote the following axioms.
$\left(A_{1}\right)$ Any $\operatorname{map} f: X \rightarrow Y$ in \mathscr{C} admits an $\operatorname{Im} f$.
$\left(A_{2}\right)$ Any two subobjects $\left(E_{1}, i_{1}\right),\left(E_{2}, i_{2}\right)$ of any object X of \mathscr{C} have a union.
1.6. Remark. It is clear that in Definition 1.4 the roles of $\left(E_{1}, i_{1}\right)$ and $\left(E_{2}, i_{2}\right)$ can be interchanged. Thus if (E, i) is the union of $\left(E_{1}, i_{1}\right)$ and $\left(E_{2}, i_{2}\right)$ it follows that (E, i) is also the union of $\left(E_{2}, i_{2}\right)$ and (E_{1}, i_{1}).

We denote the union of the subobjects $\left(E_{1}, i_{1}\right),\left(E_{2}, i_{2}\right)$ of X by $\left(E_{1}, i_{1}\right) \cup$ (E_{2}, i_{2}).
1.7. Proposition. Let $\left(E_{q}, i_{q}\right) q=1,2,3$ be any three subobjects of X. Let
$(E, i)=\left(E_{1}, i_{1}\right) \cup\left(E_{2}, i_{2}\right) ;(F, j)=(E, i) \cup\left(E_{3}, i_{3}\right)$ and $\left(E^{\prime}, i^{\prime}\right)=\left(E_{2}, i_{2}\right) \cup$ $\left(E_{3}, i_{3}\right) ;\left(F^{\prime}, j^{\prime}\right)=\left(E_{1}, i_{1}\right) \cup\left(E^{\prime}, i^{\prime}\right)$. Then (F, j) and $\left(F^{\prime}, j^{\prime}\right)$ are isomorphic as subobjects of X.
1.8. Theorem. Let \mathscr{C} be any category satisfying axioms A_{1} and A_{2}. Let

Diagram 2
be a push-out diagram in \mathscr{C}. Let $\left(E_{q}, i_{q}\right)=\operatorname{Im} \mu_{q}(q=1,2)$ and $(E, i)=$ $\left(E_{1}, i_{1}\right) \cup\left(E_{2}, i_{2}\right)$. Then $i: E \rightarrow Y$ is an isomorphism.

Proof. Let $\alpha_{q}: X_{q} \rightarrow E_{q}$ be the map satisfying $i_{q} \circ \alpha_{q}=\mu_{q}(q=1,2)$. Since $(E, i)=\left(E_{1}, i_{1}\right) \cup\left(E_{2}, E_{2}\right)$ there exist maps $j_{q}: E_{q} \rightarrow E$ such that $i \circ j_{q}=i_{q}$. Write θ_{q} for $j_{q} \circ \alpha_{q}$. Then $i \circ \theta_{q} \circ f_{q}=i \circ j_{q} \circ \alpha_{q} \circ f_{q}=i_{q} \circ \alpha_{q} \circ f_{q}=\mu_{q} \circ f_{q}$. The commutativity of Diagram 2 gives $i \circ \theta_{1} \circ f_{1}=i \circ \theta_{2} \circ f_{2}$. Since i is monic, $\theta_{1} \circ f_{1}=\theta_{2} \circ f_{2}$. Hence

Diagram 3
is a commutative diagram. Since by assumption Diagram 2 is a push-out diagram it follows that there exists a unique map $\lambda: Y \rightarrow E$ such that

Diagram 4
and

Diagram 5
are commutative. From $i \circ \lambda \circ \mu_{1}=i \circ \theta_{1}=i \circ j_{1} \alpha_{1}=i_{1} \circ \alpha_{1}=\mu_{1}$ and $i \circ \lambda \circ \mu_{2}=i \circ \theta_{2}=i \circ j_{2} \circ \alpha_{2}=i_{2} \circ \alpha_{2}=\mu_{2}$ we see that

Diagram 6

Diagram 7
are commutative. From the fact that Diagram 2 is a push-out diagram it follows immediately that $i \circ \lambda=\operatorname{Id}_{Y}$.

Also $i \circ(\lambda \circ i)=(i \circ \lambda) \circ i=\operatorname{Id}_{Y} \circ i=i=i \circ \operatorname{Id}_{E}$. Since i is monic we get $\lambda \circ i=\operatorname{Id}_{E}$.

Thus $i: E \rightarrow Y$ is an isomorphism with $\lambda: Y \rightarrow E$ as its inverse.
1.9. Definition. Suppose $f: X \rightarrow Y$ is a map in \mathscr{C} and (E, i) a subobject of Y. The inverse image of (E, i) by f is defined to be a subobject (F, j) of X satisfying the following conditions:
(i) $f \circ j$ factors through i, i.e. there exists a map $\varphi: F \rightarrow E$ such that $i \circ \varphi=f \circ j$.
(ii) If $\left(F^{\prime}, j^{\prime}\right)$ is any other subobject of X with the property that there exists a map $\varphi^{\prime}: F^{\prime} \rightarrow E$ with $i \circ \varphi^{\prime}=f \circ j^{\prime}$ then there exists a unique map $\mu: F^{\prime} \rightarrow$ F satisfying $j \circ \mu=j^{\prime}$.

Remarks. (a) Since $i: E \rightarrow Y$ is monic, whenever a map $\varphi: F \rightarrow E$ exists satisfying $i \circ \varphi=f \circ j$ then it has to be unique.
(b) The inverse image being defined by a universal property is unique up to an isomorphism as a subobject of X, whenever it exists.
(c) The map $\mu: F^{\prime} \rightarrow F$ postulated to exist in (ii) above is monic by (1.1).

Axiom A_{3}. For every map $f: X \rightarrow Y$ in \mathscr{C} and every subobject (E, i) of Y there exists an inverse image by f.
1.10. Lemma. Let \mathscr{C} be a category satisfying axioms A_{1} and A_{3}. Let $f: X \rightarrow Y$ be any map in \mathscr{C} and $(E, i)=\operatorname{Im} f$. Let (F, j) be the inverse image of (E, i) by f. Then $j: F \rightarrow X$ is an isomorphism.

Axiom A_{4}. Let $f: X \rightarrow Y$ be any map in \mathscr{C} and $\operatorname{Im} f=(E, j)$. For any subobject (F, i) of E there exists a subobject (D, μ) of X satisfying
(00) $\operatorname{Im} f \circ \mu=(F, j \circ i)$.
1.11. Proposition. Let \mathscr{C} be a category satisfying axioms A_{1}, A_{3} and A_{4} and $f: X \rightarrow Y$ any map in \mathscr{C}. Let $\operatorname{Im} f=(E, i)$ and (F, j) any subobject of E. Let (C, ν) be the inverse image of $(F, j \circ i)$ by f. Then $\operatorname{Im} f \circ \nu=(F, j \circ i)$.
1.12. Proposition. Let \mathscr{C} be a category for which axioms A_{1}, A_{2} and A_{3} are valid. Let $f: X \rightarrow Y$ be any map in \mathscr{C}. Let $\left(E_{k}, i_{k}\right)$ be subobjects of X and $\left(B_{k}, j_{k}\right)$ subobjects of Y (for $\left.k=1,2\right)$. Let $(E, i)=\left(E_{1}, i_{1}\right) \cup\left(E_{2}, i_{2}\right)$ and $(B, j)=\left(B_{1}, j_{1}\right) \cup\left(B_{2}, j_{2}\right)$ with $\lambda_{k}: E_{k} \rightarrow E, \mu_{k}: B_{k} \rightarrow B$ the unique maps satisfying $i \circ \lambda_{k}=i_{k}, j \circ \mu_{k}=j_{k}(k=1,2)$. Suppose there exists maps $\theta_{k}: E_{k} \rightarrow$ B_{k} satisfying $f \circ i_{k}=j_{k} \circ \theta_{k}(k=1,2)$. Then there exists a map $\theta: E \rightarrow B$
(necessarily unique) such that the following diagram is commutative.

1.13. Lemma. Let \mathscr{C} be a category satisfying axiom A_{3}. Let $f: X \rightarrow Y$ and $g: X \rightarrow Z$ be any two maps in \mathscr{C}. Let (E, i) be any subobject of Z. Let (F, j) be the inverse image of (E, i) by g and (C, ν) the inverse image of (F, j) by f. Then (C, ν) is the inverse image of (E, i) by $g \circ f$.
2. Some propositions on model categories. In this section \mathscr{C} denotes a model category in the sense of D. G. Quillen [6]. The notations and the terminology we follow are those of [6]. In particular by a trivial fibration we mean a fibration which is also a weak equivalence. We use the abbreviation w.e. to denote a weak equivalence. We briefly recall the definition of a model category.

Definition. By a model category we mean a category \mathscr{C} together with three classes of maps in \mathscr{C}, called fibrations, cofibrations and weak equivalences, satisfying the following axioms.
$M_{0}: \mathscr{C}$ is closed under finite limits and colimits.
M_{1} : Given a solid arrow diagram

Diagram 9
where i is a cofibration, p a fibration and where either i or p is a w.e., then the dotted arrow exists.
M_{2} : Any map f may be factored $f=p i$ where i is a cofibration and $w . e$. and p is a fibration. Also $f=q j$ where j is a cofibration and p a fibration and w.e.
M_{3} : Fibrations are stable under composition, base change, and any isomorphism is a fibration. Cofibrations are stable under composition, cobase change and any isomorphism is a cofibration.
M_{4} : The base extension of a map which is both a fibration and a w.e. is a w.e. The cobase extension of a map which is both a cofibration and a w.e. is a w.e.
M_{5} : Let
$X \xrightarrow{f} Y \xrightarrow{g} Z$
be maps in \mathscr{C}. Then if two of the maps f, g and $g \circ f$ are weak equivalences then the third is. Any isomorphism is a w.e.
2.1. Proposition. Let $f, g \in \operatorname{Hom}(X, Y)$ and $f \sim^{l} g$. Let $p: E \rightarrow X$ be any trivial fibration. Then $f \circ p \sim^{l} g \circ p$.

Proof. Let $X \times I$ be a cylinder object for X such that there exists a left homotopy $h: X \times I \rightarrow I$ between f and g. Let

$$
X \vee X \xrightarrow{\partial_{0}+\partial_{1}} X \times I \longrightarrow X
$$

be such that $\partial_{0}+\partial_{1}$ is a cofibration, σ a w.e., $\sigma \circ\left(\partial_{0}+\partial_{1}\right)=\nabla_{X}$ and Diagram 9 (a) below commutative.

Diagram 9 (a)
Let

Diagram 10
denote the pull-back of p by σ. Since p is a w.e. and a fibration by axioms M_{3} and M_{4} for model categories [6] it follows that p^{\prime} is a trivial fibration. By axiom $M_{5}, \sigma \circ p^{\prime}$ is a w.e. But $\sigma \circ p^{\prime}=p \circ \sigma^{\prime}$. Hence $p \circ \sigma^{\prime}$ is a w.e. Since p is a w.e. again by axiom $M_{5} \sigma^{\prime}$ is a w.e.

In Diagram 11 below we have $\sigma \circ\left(\partial_{0} \circ p+\partial_{1} \circ p\right)=p \circ \nabla_{E}$.

Diagram 11
Since the inner square in Diagram 11 is a pull-back diagram there exists a unique map $\partial_{0}{ }^{\prime}+\partial_{1}{ }^{\prime}: E \vee E \rightarrow P$ along the dotted arrow making Diagram 11 commutative. Let $h^{\prime}=h \circ p^{\prime}: P \rightarrow Y$. Then

$$
\left\{\begin{array}{l}
h^{\prime} \circ \partial_{0^{\prime}}=h \circ p^{\prime} \circ \partial_{0}{ }^{\prime}=h \circ \partial_{0} \circ p=f \circ p \tag{}\\
h^{\prime} \circ \partial_{1}=h \circ p^{\prime} \circ \partial_{1}^{\prime}=h \circ \partial_{1} \circ p=g \circ p .
\end{array}\right.
$$

From the commutativity of the triangle marked (a) in Diagram 11 and the equations $\left(^{*}\right)$ we see immediately that

is a commutative diagram. In here σ^{\prime} is a w.e. Hence $f \circ p \sim^{l} g \circ p$.
2.2. Remark. Proposition 2.1 can be contrasted with the following facts already proved in [6].
(i) If $f, g \in \operatorname{Hom}(B, C)$ satisfy $f \sim^{l} g$ then $u \circ f \sim^{l} u \circ g$ for any map $u: C \rightarrow D$ in \mathscr{C}.
ii() If further C is fibrant then $f \circ v \sim^{i} g \circ v$ for any $v: A \rightarrow B$ in \mathscr{C}.
2.3. Proposition. Let $f, g \in \operatorname{Hom}(X, Y)$ be such that $f \sim^{r}$ g. Let $i: Y \rightarrow Y^{\prime}$ denote any trivial cofibration. Then i of $\sim^{\top} i \circ g$.

This is precisely the dual of 2.1.
2.4. Proposition. Let Y, Z be fibrant and $i: Y \rightarrow Z$ a w.e. If $f, g \in$ Hom (X, Y) are such that $i \circ f \sim^{r} i \circ g$ then $f \sim^{r} g$.

Proof. Let Z^{I} be a path object for Z with a right homotopy $k: X \rightarrow Z^{I}$ between $i \circ f$ and $i \circ g$. Let

$$
Z \xrightarrow{\tau} Z^{I} \xrightarrow{\left(d_{0}, d_{1}\right)} Z \times Z
$$

be such that τ is a w.e., $\left(d_{0}, d_{1}\right)$ is a fibration, $\left(d_{0}, d_{1}\right) \circ \tau=\nabla_{Z}$ and Diagram 13 below commutative.

Diagram 13
Let

be pull-back diagrams. If $\theta=\beta \circ \alpha$ then it follows that Diagram 16 below is a pull-back diagram.

We have $\left(d_{0}, d_{1}\right) \circ \tau \circ i=(i \times i) \circ \Delta_{Y}$ in Diagram 17 below.

Diagram 17

Since the inner square is a pull-back diagram it follows that there exists a unique map $\mu: Y \rightarrow M$ along the dotted arrow making Diagram 17 commutative. Clearly

Diagram 18
where $p_{1}: Z \times Z \rightarrow Z, p_{Y}: Y \times Z \rightarrow Y$ are projections to the first factors, is a pull-back diagram. This together with the fact that Diagram 14 is a pull-back immediately yields that Diagram 19 below is a pull-back.

Diagram 19
Now, $d_{0}: Z^{I} \rightarrow Z$ is a trivial fibration since Z is fibrant. Hence by axioms M_{3} and M_{4} it follows that $\varphi_{0}: N \rightarrow Y$ is a trivial fibration. In particular φ_{0} is a w.e. Moreover $i \circ \varphi_{0}=d_{0} \circ \beta$ and i, d_{0}, φ_{0} are weak equivalences. By axiom M_{5} we see immediately that β is a w.e. From $d_{1} \circ \beta=\varphi_{1}$ (Diagram 14) and the fact that d_{1} is a w.e. it follows that φ_{1} is a w.e.

Similarly it is possible to show that

Diagram 20
is a pull-back. Since Y is fibrant the projection $p_{2}: Y \times Z \rightarrow Z$ to the second factor is a fibration. Moreover $\varphi_{1}=p_{2} \circ\left(\varphi_{0}, \varphi_{1}\right)$. Hence by axiom M_{3} the $\operatorname{map} \varphi_{1}$ is a fibration. We have earlier shown that φ_{1} is a w.e. Thus φ_{1} is a trivial fibration. By axiom $M_{4}, \nu_{1}: M \rightarrow Y$ is a w.e. From $\nu_{1} \circ \mu=1_{Y}$ (Diagram 17) and axiom M_{5} we immediately see that μ is a w.e.

In Diagram 21 we have $\left(d_{0}, d_{1}\right) \circ k=(i \times i) \circ(f, g)$.

Diagram 21

Since the inner square is a pull-back, there exists a unique map $k^{\prime}: X \rightarrow M$ along the dotted arrow making Diagram 21 commutative.

From the commutativity of the triangle marked (a) in Diagram 17 and of the triangle marked (b) in Diagram 21 we immediately see that Diagram 22 below is commutative.

Moreover μ is a w.e. This proves that $f \sim^{r} g$.
2.5. Corollary. Let Y, Z be fibrant and $i: Y \rightarrow Z$ a w.e. Then $i_{*}: \Pi^{r}(X, Y)$ $\rightarrow \Pi^{r}(X, Z)$ is a set theoretic injection for any X in \mathscr{C}.
2.6. Proposition. Let A, B be cofibrant and $h: A \rightarrow B$ any w.e. If $f, g \in$ Hom (B, C) are such that $f \circ h \sim^{l} g \circ h$ then $f \sim^{l} g$.

This is the dual of Proposition 2.4.
2.7. Corollary. Let A, B be cofibrant and $h: A \rightarrow B$ any w.e. Then $h^{*}: \pi^{l}(B, C) \rightarrow \pi^{l}(A, C)$ is a set theoretic injection for any C in \mathscr{C}.

As in [6] for any object A of $\mathscr{C}, p_{A}: Q(A) \rightarrow A$ (respectively $i_{A}: A \rightarrow R(A)$) will denote a trivial fibration (respectively a trivial cofibration) with $Q(A)$ cofibrant (respectively $R(A)$ fibrant). Then as explained in [6] given any map $f: A \rightarrow B$ in \mathscr{C} it is possible to find a $\operatorname{map} Q(f): Q(A) \rightarrow Q(B)$ (respectively
$R(f): R(A) \rightarrow R(B)$) such that $f \circ p_{A}=p_{B} \circ Q(f)$ (respectively $R(f) \circ i_{A}$ $=i_{B} \circ f$). Moreover such a $Q(f)$ (respectively $R(f)$) is unique up to lefthomotopy (respectively right homotopy).
2.8. Lemma. Let $f, g \in \operatorname{Hom}(A, B)$. Then $R Q(f) \sim R Q(g)$ if and only if $i_{B} \circ f \circ p_{A} \sim i_{B} \circ g \circ p_{A}$.

Proof. Diagram 23 below is clearly a commutative diagram for any $\varphi \in \operatorname{Hom}(A, B)$.

Since $R Q(B)$ is fibrant and $i_{Q(A)}: Q(A) \rightarrow R Q(A)$ is a trivial cofibration, by the dual of Lemma 7, § 1, Chapter I of [6] it follows that

$$
i_{Q(A)}^{*}: \pi^{\tau}(R Q(A), R Q(B)) \rightarrow \pi^{\tau}(Q(A), R Q(B))
$$

is a set theoretic bijection. Since both $Q(A)$ and $R Q(A)$ are cofibrant and $R Q(B)$ is fibrant we have

$$
\begin{array}{r}
\pi^{\tau}(R Q(A), R Q(B))=\pi^{l}(R Q(A), R Q(B))=\pi(R Q(A), R Q(B)) \quad \text { and } \\
\pi^{r}(Q(A), R Q(B))=\pi^{r}(Q(A), R Q(B))=\pi(Q(A), R Q(B))
\end{array}
$$

Thus $i_{Q(A)}{ }^{*}: \pi(R Q(A), R Q(B)) \rightarrow \pi(Q(A), R Q(B))$ is a set theoretic bijection. From the commutativity of the upper square in Diagram 23 for f and g separately in place of φ we now get

$$
\begin{equation*}
R Q(f) \sim R Q(g) \Leftrightarrow i_{Q(B)} \circ Q(f) \sim i_{Q(B)} \circ Q(g) \tag{5}
\end{equation*}
$$

Let us assume that $R Q(f) \sim R Q(g)$. Then $i_{Q(B)} \circ Q(f) \sim i_{Q(B)} \circ Q(g)$. From (i) of Remark 2.2 we immediately get $R\left(p_{B}\right) \circ i_{Q(B)} \circ Q(f) \sim^{l} R\left(p_{B}\right) \circ$ $i_{Q}\left(B_{B}\right) \circ Q(g)$. However, since $Q(A)$ is cofibrant and $R(B)$ is fibrant $\pi^{l}(Q(A)$, $R(B))=\pi^{r}(Q(A), R(B))=\pi(Q(A), R(B))$. Hence $R\left(p_{B}\right) \circ i_{Q(B)} \circ Q(f) \sim$ $R\left(p_{B}\right) \circ i_{Q(B)} \circ Q(g)$. From Diagram 23 we see that $R\left(p_{B}\right) \circ i_{Q(B)} \circ Q(f)=$ $i_{B} \circ f \circ p_{A}$ and $R\left(p_{B}\right) \circ i_{Q(B)} \circ Q(g)=i_{B} \circ g \circ p_{A}$. Hence $R Q(f) \sim R Q(g) \Rightarrow$ $i_{B} \circ f \circ p_{A} \sim i_{B} \circ g \circ p_{A}$.

Conversely, assume $i_{B} \circ f \circ p_{A} \sim i_{B} \circ g \circ p_{A}$. Then $R\left(p_{B}\right) \circ i_{Q(B)} \circ Q(f) \sim$ $R\left(p_{B}\right) \circ i_{Q(B)} \circ Q(g)$. Since $R Q(B)$ and $R(B)$ are fibrant and $R\left(p_{B}\right): R Q(B) \rightarrow$
$R(B)$ is a w.e. from Proposition 2.4 we get $i_{Q(B)} \circ Q(f) \sim^{r} i_{Q(B)} \circ Q(g)$. Again since $\pi^{\tau}(Q(B), R Q(B))=\pi(Q(B), R Q(B))$ it follows that $i_{Q(B)} \circ Q(f) \sim$ $i_{Q(B)} \circ Q(g)$. Now (5) gives $R Q(f) \sim R Q(g)$. This completes the proof of Lemma 2.8.

From now on we will assume that the model category \mathscr{C} in addition to satisfying the axioms $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}$ of Quillen also satisfies the axiom W mentioned below.
(W) If $f: A \rightarrow B, g: C \rightarrow D$ are weak equivalences then $f \times g: A \times$ $B \rightarrow C \times D$ and $f \vee g: A \vee B \rightarrow C \vee D$ are also weak equivalences.
2.9. Lemma. $\operatorname{Let}^{2}, g_{i} \in \operatorname{Hom}\left(A_{i}, B_{i}\right)$ and $f_{i} \sim^{l} g_{i}(i=1,2)$. Then $f_{1} \times f_{2} \sim^{l}$ $g_{1} \times g_{2}$ and $f_{1} \vee f_{2} \sim^{l} g_{1} \vee g_{2}$.

There exist commutative diagrams

Diagram 24

Diagram 25
with σ_{1} and σ_{2} weak equivalences. It follows that Diagrams 26 and 27 below are commutative.

Diagram 26

Diagram 27

From axiom (W) we see that $\sigma_{1} \times \sigma_{2}$ and $\sigma_{1} \vee \sigma_{2}$ are weak equivalences. Hence $f_{1} \times f_{2} \sim^{l} g_{1} \times g_{2}$ and $f_{1} \vee f_{2} \sim^{l} g_{1} \vee g_{2}$.
2.10. Lemma. Let $f_{i}, g_{i} \in \operatorname{Hom}\left(A_{i}, B_{i}\right)$ and $f_{i} \sim^{r} g_{i}(i=1,2)$. Then $f_{1} \times$ $f_{2} \sim^{\top} g_{1} \times g_{2}$ and $f_{1} \vee f_{2} \sim^{\top} g_{1} \vee g_{2}$.

Proof. There exist commutative diagrams

with τ_{1} and τ_{2} weak equivalences. It follows that Diagrams 30 and 31 below are commutative.

By axiom (W) $\tau_{1} \times \tau_{2}$ and $\tau_{1} \vee \tau_{2}$ are weak equivalences. Hence $f_{1} \times f_{2} \sim^{r}$ $g_{1} \times g_{2}$ and $f_{1} \vee f_{2} \sim^{\top} g_{1} \vee g_{2}$.
2.11. Remark. The three categories which we mentioned in the introduction do satisfy axiom (W) also. Hence our results apply to all these three categories.
2.12 Proposition. Let $f_{k}, g_{k} \in \operatorname{Hom}\left(A_{k}, B_{k}\right)(k=1,2)$ be such that $R Q\left(f_{k}\right) \sim$ $R Q\left(g_{k}\right)$. Then
(a) $R Q\left(f_{1} \times f_{2}\right) \sim R Q\left(g_{1} \times g_{2}\right)$, and
(b) $R Q\left(f_{1} \vee f_{2}\right) \sim R Q\left(g_{1} \vee g_{2}\right)$.

Proof of (a). By hypothesis, $R Q\left(f_{k}\right) \sim R Q\left(g_{k}\right)$. Lemma 2.8 gives $i_{B_{k}} \circ f_{k} \circ p_{A k} \sim i_{B k} \circ g_{k} \circ p_{A_{k}}$. Lemma 2.10 now yields

$$
\left(i_{B_{1}} \circ f_{1} \circ p_{A_{1}}\right) \times\left(i_{B_{2}} \circ f_{2} \circ p_{A_{2}}\right) \sim^{+}\left(i_{B_{1}} \circ g_{1} \circ p_{A_{1}}\right) \times\left(i_{B_{2}} \circ g_{2} \circ p_{A_{2}}\right) .
$$

In other words,

$$
\begin{align*}
\left(i_{B_{1}} \times i_{B_{2}}\right) \circ\left(f_{1} \times f_{2}\right) \circ\left(p_{A_{1}} \times p_{A_{2}}\right) \sim^{+}\left(i_{B_{1}} \times i_{B_{2}}\right) \circ(& \left(g_{1} \times g_{2}\right) \circ \tag{6}\\
& \left(p_{A_{1}} \times p_{A_{2}}\right)
\end{align*}
$$

Since $p_{A_{1}}$ and $p_{A_{2}}$ are fibrations it follows that $p_{A_{1}} \times p_{A_{2}}: Q\left(A_{1}\right) \times Q\left(A_{2}\right) \rightarrow$ $A_{1} \times A_{2}$ is a fibration. By axiom $(W), p_{A_{1}} \times p_{A_{2}}$ is also a w.e. Since $Q\left(A_{1} \times A_{2}\right)$ is cofibrant it follows from axiom M_{1} that there exists a map $\lambda: Q\left(A_{1} \times A_{2}\right) \rightarrow$ $Q\left(A_{1}\right) \times Q\left(A_{2}\right)$ along the dotted arrow in Diagram 32 making it commutative.

From (6) and the dual of (i), Remark 2.2 we get

$$
\begin{array}{r}
\left(i_{B_{1}} \times i_{B_{2}}\right) \circ\left(f_{1} \times f_{2}\right) \circ\left(p_{A_{1}} \times p_{A_{2}}\right) \circ \lambda \sim^{r}\left(i_{B_{1}} \times i_{B_{2}}\right) \circ\left(g_{1} \times g_{2}\right) \circ \\
\left(p_{A_{1}} \times p_{A_{2}}\right) \circ \lambda .
\end{array}
$$

But $\left(p_{A_{1}} \times p_{A_{2}}\right) \circ \lambda=p_{A_{1} \times A_{2}}$. Hence

$$
\begin{equation*}
\left(i_{B_{1}} \times i_{B_{2}}\right) \circ\left(f_{1} \times f_{2}\right) \circ p_{A_{1} \times A_{2}} \sim^{r}\left(i_{B_{1}} \times i_{B_{2}}\right) \circ\left(g_{1} \times g_{2}\right) \circ p_{A_{1} \times A_{2}} . \tag{7}
\end{equation*}
$$

Since $i_{B_{1} \times B_{2}}$ is a trivial cofibration and $R\left(B_{1}\right) \times R\left(B_{2}\right)$ is fibrant by axiom M_{1} there exists a map $\mu: R\left(B_{1} \times B_{2}\right) \rightarrow R\left(B_{1}\right) \times R\left(B_{2}\right)$ along the dotted
arrow in Diagram 33, making it commutative.

By axiom (W) $i_{B_{1}} \times i_{B_{2}}$ is a w.e. It follows from axiom M_{5} that μ is a w.e. Now, relation (7) is the same as

$$
\begin{equation*}
\mu \circ i_{B_{1} \times B_{2}} \circ\left(f_{1} \times f_{2}\right) \circ p_{A_{1} \times A_{2}} \sim^{\tau} \mu \circ i_{B_{1} \times B_{2}} \circ\left(g_{1} \times g_{2}\right) \circ p_{A_{1} \times A_{2}} . \tag{8}
\end{equation*}
$$

Also, both $R\left(B_{1} \times B_{2}\right)$ and $R\left(B_{1}\right) \times R\left(B_{2}\right)$ are fibrant. Hence Proposition 2.4 yields
(8) $i_{B_{1} \times B_{2}} \circ\left(f_{1} \times f_{2}\right) \circ p_{A_{1} \times A_{2}} \sim^{\top} i_{B_{1} \times B_{2}} \circ\left(g_{1} \times g_{2}\right) \circ p_{A_{1} \times A_{2}}$.

Since $Q\left(A_{1} \times A_{2}\right)$ is cofibrant and $R\left(B_{1} \times B_{2}\right)$ is fibrant (8) gives

$$
i_{B_{1} \times B_{2}} \circ\left(f_{1} \times f_{2}\right) \circ p_{A_{1} \times A_{2}} \sim i_{B_{1} \times B_{2}} \circ\left(g_{1} \times g_{2}\right) \circ p_{A_{1} \times A_{2}}
$$

Lemma 2.8 now gives $R Q\left(f_{1} \times f_{2}\right) \sim R Q\left(g_{1} \times g_{2}\right)$.
Proof of (b). As in (a),

$$
R Q\left(f_{k}\right) \sim R Q\left(g_{k}\right) \Rightarrow i_{B_{k}} \circ f_{k} \circ p_{A_{k}} \sim i_{B_{k}} \circ g_{k} \circ p_{A_{k}}
$$

The second part of Lemma 2.10 yields

$$
\left(i_{B_{1}} \circ f_{1} \circ p_{A_{1}}\right) \vee\left(i_{B_{2}} \circ f_{2} \circ p_{A_{2}}\right) \sim^{l}\left(i_{B_{1}} \circ g_{1} \circ p_{A_{1}}\right) \vee\left(i_{B_{2}} \circ g_{2} \circ p_{A_{2}}\right) .
$$

In other words,
(9) $\quad\left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(f_{1} \vee f_{2}\right) \circ\left(p_{A_{1}} \vee p_{A_{2}}\right) \sim^{l}\left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(g_{1} \vee g_{2}\right) \circ$

$$
\left(p_{A_{1}} \vee p_{A_{2}}\right)
$$

Since

$$
Q\left(A_{1} \vee A_{2}\right) \xrightarrow{{ }^{p} A_{1} \vee A_{2}} A_{1} \vee A_{2}
$$

is a trivial fibration and $Q\left(A_{1}\right) \vee Q\left(A_{2}\right)$ is cofibrant, by axiom M_{1} there exists a map $\alpha: Q\left(A_{1}\right) \vee Q\left(A_{2}\right) \rightarrow Q\left(A_{1} \vee A_{2}\right)$ along the dotted arrow in Diagram

34 below making it commutative.

By axiom (W), $p_{A_{1}} \vee p_{A_{2}}$ is a w.e. Since $p_{A_{1} V_{A_{2}}}$ is a w.e. it follows from M_{5} that α is a w.e. Also $p_{A_{1}} \vee p_{A 2}=p_{A_{1} V_{A 2}} \circ \alpha$ together with (9) yields

$$
\begin{aligned}
\left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} V_{A 2}} \circ \alpha \sim^{l}\left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(g_{1} \vee g_{2}\right) \circ \\
p_{A_{1} \vee_{A 2}} \circ \alpha .
\end{aligned}
$$

Both $Q\left(A_{1}\right) \vee Q\left(A_{2}\right)$ and $Q\left(A_{1} \vee A_{2}\right)$ are cofibrant and α is a w.e. Hence Proposition 2.6 yields

$$
\left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} \vee A_{2}} \sim^{l}\left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(g_{1} \vee g_{2}\right) \circ p_{A_{1} V_{A_{2}}}
$$

From (i), Remark 2.2 we now get

$$
\begin{aligned}
i_{R\left(B_{1}\right) \vee} \vee\left(B_{2}\right) & \circ\left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} \vee_{A 2}} \sim^{l} i_{R\left(B_{1}\right) \vee} \vee_{R\left(B_{2}\right)} \circ \\
& \left(i_{B_{1}} \vee i_{B_{2}}\right) \circ\left(g_{1} \vee g_{2}\right) \circ p_{A_{1} \vee_{A}} .
\end{aligned}
$$

Writing θ for the composite $i_{R\left(B_{1}\right) \vee{ }_{R\left(B_{2}\right)}}\left(i_{B_{1}} \vee i_{B_{2}}\right)$ the above relation can be written as
(10) $\quad \theta \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} V_{A 2}} \sim^{l} \theta \circ\left(g_{1} \vee g_{2}\right) \circ p_{A_{1} \vee_{A 2}}$.

By axiom (W) $i_{B_{1}} \vee i_{B_{2}}$ is a w.e. Hence θ is also a w.e. by M_{5}.
Since $R\left(R\left(B_{1}\right) \vee R\left(B_{2}\right)\right)$ is fibrant and

$$
B_{1} \vee B_{2} \xrightarrow{B_{1} \vee B_{2}} R\left(B_{1} \vee B_{2}\right)
$$

is a trivial cofibration it follows by axiom M_{1} that there exists a map γ : $R\left(B_{1} \vee B_{2}\right) \rightarrow R\left(R\left(B_{1}\right) \vee R\left(B_{2}\right)\right)$ along the dotted arrow in Diagram 35 making it commutative.

Since θ and $i_{B_{1} \vee_{B 2}}$ are weak equivalences by M_{5} we see that γ is a w.e. Since $\theta=\gamma i_{B_{1} \vee_{B 2}}$ relation (10) is the same as

$$
\gamma \circ i_{B_{1} \vee_{B_{2}}} \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} \vee_{A_{2}}} \sim^{\gamma} \gamma \circ i_{B_{1} \vee_{B_{2}}} \circ\left(g_{1} \vee g_{2}\right) \circ p_{A_{1} \vee_{A_{2}}} .
$$

Since $Q\left(A_{1} \vee A_{2}\right)$ is cofibrant, Lemma 5.1, §1, Chapter I of [6] gives

$$
\gamma \circ i_{B_{1} \vee_{B_{2}}} \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} \vee_{A_{2}}} \sim^{\tau} \gamma \circ i_{B_{1} \vee_{B_{2}}} \circ\left(g_{1} \vee g_{2}\right) \circ p_{A_{1} \vee_{A_{2}}} .
$$

Both $R\left(B_{1} \vee B_{2}\right)$ and $R\left(R\left(B_{1}\right) \vee R\left(B_{2}\right)\right)$ are fibrant and γ a w.e. From Proposition 2.4 we now get

$$
i_{B_{1} \vee_{B_{2}}} \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} \vee_{A 2}} \sim^{\top} i_{B_{1} \vee_{B 2}} \circ\left(g_{1} \vee g_{2}\right) \circ p_{A_{1} \vee_{A_{2}}}
$$

The fact that $Q\left(A_{1} \vee A_{2}\right)$ is cofibrant and $R\left(B_{1} \vee B_{2}\right)$ is fibrant now gives

$$
i_{B_{1} \vee B_{2}} \circ\left(f_{1} \vee f_{2}\right) \circ p_{A_{1} \vee \vee_{2}} \sim i_{B_{1} \vee B_{2}} \circ\left(g_{1} \vee g_{2}\right) \circ p_{A_{1} \vee \mathcal{A}_{2}}
$$

An application of Lemma 2.8 now yields

$$
R Q\left(f_{1} \vee f_{2}\right) \sim R Q\left(g_{1} \vee g_{2}\right)
$$

2.13. Definition. Let A, X be objects of \mathscr{C}. We say that X dominates A (or X dominates A in homotopy) if there exist maps $f: A \rightarrow X, g: X \rightarrow A$ such that $R Q(g \circ f) \sim 1_{R Q(A)}$.

Since $R Q(g \circ f) \sim R Q(g) \circ R Q(f)$ the above condition is equivalent to $R Q(g) \circ R Q(f) \sim 1_{R Q(A)}$. By Lemma 2.8, the condition $R Q(g \circ f) \sim 1_{R Q(A)}$ is equivalent to $i_{A} \circ(g \circ f) \circ p_{A} \sim i_{A} \circ p_{A}$. We write $X>A($ or $A<X)$ to denote that X dominates A. If \mathscr{T} is the model category of topological spaces, every object in \mathscr{T} is fibrant. $C W$-complexes are also cofibrant. When X and A are $C W$-complexes the concept of homotopy domination introduced here agrees with the classical concept introduced by J. H. C. Whitehead [8]. When X and A are not $C W$-complexes, in general the concept of homotopy domination introduced by us differs from the concept introduced by J. H. C. Whitehead. But it appears that Definition 2.13 is the best suited for our purposes.
2.14. Proposition. Let $X>A$ and $Y>B$. Then
(i) $X \times Y>A \times B$
(ii) $X \vee Y>A \vee B$.

Proof. Let

$$
A \xrightarrow{f} X \xrightarrow{g} A \quad \text { and } \quad B \xrightarrow{\theta} Y \xrightarrow{\varphi} B
$$

be such that $R Q(g \circ f) \sim 1_{R Q(A)}$ and $R Q(\varphi \circ \theta) \sim 1_{R Q(B)}$.
Consider the diagrams

$$
\begin{aligned}
& A \times B \xrightarrow{f \times \theta} X \times Y \xrightarrow{g \times \varphi} A \times B \text { and } \\
& A \times B \xrightarrow{f \vee \theta} X \times Y \xrightarrow{g \vee \varphi} A \times B .
\end{aligned}
$$

Now, $1_{R Q(A)} \sim R Q\left(1_{A}\right)$ and $1_{R Q(B)} \sim R Q\left(1_{B}\right)$ and hence

$$
R Q(g \circ f) \sim R Q\left(1_{A}\right), \quad R Q(\varphi \circ \theta) \sim R Q\left(1_{B}\right)
$$

By Proposition 2.12 we get

$$
\begin{aligned}
& R Q((g \circ f) \times(\varphi \circ \theta)) \sim R Q\left(1_{A} \times 1_{B}\right)=R Q\left(1_{A \times B}\right) \sim 1_{R Q(A \times B)} \quad \text { and } \\
& R Q((g \circ f) \vee(\varphi \circ \theta)) \sim R Q\left(1_{A} \vee 1_{B}\right)=R Q\left(1_{A} \vee B\right) \sim 1_{R Q(A \vee B)} .
\end{aligned}
$$

In other words,

$$
\begin{aligned}
& R Q((g \times \varphi) \circ(f \times \theta)) \sim 1_{R Q(A \times B)} \quad \text { and } \\
& R Q((g \vee \varphi) \circ(f \vee \theta)) \sim 1_{R Q(A \vee B)} .
\end{aligned}
$$

This completes the proof of 2.14 .
2.15. Propostition. If $A>B$ and $B>C$ then $A>C$.

Proof. Let

$$
B \xrightarrow{f} A \xrightarrow{g} B \quad \text { and } C \xrightarrow{\theta} B \xrightarrow{\varphi} C
$$

be such that $R Q(g \circ f) \sim 1_{R Q(B)}$ and $R Q(\varphi \circ \theta) \sim 1_{R Q(C)}$. Consider

$$
C \xrightarrow{f \theta} A \xrightarrow{\varphi g} C .
$$

We have

$$
\begin{aligned}
& R Q((\varphi g) \circ(f \theta))=R Q(\varphi \circ(g \circ f) \circ \theta) \\
& \quad \sim R Q(\varphi) \circ R Q(g \circ f) \circ R Q(\theta) \\
& \quad \sim R Q(\varphi) \circ R Q(\theta) \quad\left(\text { since } R Q(g \circ f) \sim 1_{R Q(B)}\right) \\
& \quad \sim R Q(\theta \circ \varphi) \\
& \quad \sim 1_{R Q(C)}
\end{aligned}
$$

This proves $A>C$.
As in [6] we will write $[X, Y]$ for the set $\pi(R Q(X), R Q(Y))$ of homotopy classes of maps of $R Q(X)$ into $R Q(Y)$. Recall that a model category \mathscr{C} is called a pointed model category if the initial object ϕ is isomorphic to the final object *. In particular one can take $\phi={ }^{*}$. From now on we will be considering a pointed model category \mathscr{C} satisfying axiom W in addition to the axioms $M_{1}, M_{2}, \ldots, M_{5}$ of Quillen.
2.16. Definition. An object X of \mathscr{C} is said to be contractible if $[X, X]=0$.

Given any map $\alpha: R Q(X) \rightarrow R Q(Y)$ we denote the homotopy class of α by $[\alpha]$. Given any $f: X \rightarrow Y$ we denote the homotopy class of $R Q(f): R Q(X)$ $\rightarrow R Q(Y)$ by $\langle f\rangle$. Clearly $\left\langle 1_{X}\right\rangle=\left[1_{R Q(X)}\right]$. The following are trivial to see.
(i) X is contractible if and only if $\left\langle 1_{X}\right\rangle=0$.
(ii) X is contractible $\Leftrightarrow[X, Y)=0$ (respectively $[Y, X]=0$) for every $Y \in \mathscr{C}$.
(iii) X is contractible $\Leftrightarrow X$ is dominated by $*$.

Let $H \circ \mathscr{C}$ denote the homotopy category of \mathscr{C}. In § 2, Chapter I of [6] a functor from $(H \circ \mathscr{C})^{0} \times(H \circ \mathscr{C})$ to the category of groups, denoted, by [, $]_{1}$ is constructed and further it is proved that there exist functors Σ (called the suspension functor) and Ω (called the loop functor) from $H \circ \mathscr{C}$ to $H \circ \mathscr{C}$ and canonical isomorphisms $[\Sigma A, B] \simeq[A, B]_{1} \simeq[A, \Omega B]$.
2.17. Lemma. If A is contractible so are ΣA and ΩA.

Proof.

$$
\begin{aligned}
A \text { contractible } & \Rightarrow[A, B]=0 \quad \text { for all } B \in \mathscr{C} \\
& \Rightarrow[A, \Omega C]=0 \text { for all } C \in \mathscr{C} \\
& \Rightarrow[\Sigma A, C]=0 \text { for all } C \in \mathscr{C} \\
& \Rightarrow \Sigma A \text { contractible. }
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
A \text { contractible } & \Rightarrow[B, A]=0 \quad \text { for all } B \in \mathscr{C} \\
& \Rightarrow[\Sigma C, A]=0 \quad \text { for all } C \in \mathscr{C} \\
& \Rightarrow[C, \Omega A]=0 \text { for all } C \in \mathscr{C} \\
& \Rightarrow \Omega A \text { contractible }
\end{aligned}
$$

Let $A \in \mathscr{C}_{c}$ (i.e. A is a cofibrant object in \mathscr{C}) and $A \times I$ any cylinder object for A. Let

$$
A \vee A \xrightarrow{\partial_{0}+\partial_{1}} A \times I \xrightarrow{\sigma} A
$$

be such that $\partial_{0}+\partial_{1}$ is a cofibration, σ a w.e and $\sigma \circ\left(\partial_{0}+\partial_{1}\right)=\nabla_{A}$. Since A is cofibrant the maps $\partial_{0}: A \rightarrow A \times I$ and $\partial_{1}: A \rightarrow A \times I$ are cofibrations. The cofibre $C A$ of ∂_{0} will be called a cone object for A. Let $v: A \times I \rightarrow C A$ be the natural map. Then by the very definition of the cofibre of ∂_{0} Diagram 36 below is a push-out diagram.

Diagram 36
By axiom $M_{2}, \sigma \rightarrow C A$ is a cofibration. Thus $C A \in \mathscr{C}{ }_{c}$.
2.18. Lemma. For any $A \in \mathscr{C}_{c}$ any cone object $C A$ of A is contractible.

Proof. The Puppe exact sequence corresponding to the cofibration sequence

$$
A \xrightarrow{\partial_{0}} A \times I \xrightarrow{v} C A
$$

yields the following exact sequence

$$
\begin{aligned}
{[\Sigma(A \times I), B] \xrightarrow{\left(\Sigma \partial_{0}\right)^{*}}[\Sigma A, B] \xrightarrow{\partial}[C A, B] \xrightarrow{\nu^{*}}[A \times I, B] } \\
\xrightarrow{\partial_{0}^{*}}[A, B]
\end{aligned}
$$

for every $B \in \mathscr{C}$. Since ∂_{0} is a w.e. it follows that $\partial_{0}{ }^{*}$ and $\left(\Sigma \partial_{0}\right)^{*}$ are isomorphisms $\left(\left(\Sigma \partial_{0}\right)^{*}\right.$ is an isomorphism of groups and $\partial_{0}{ }^{*}$ is an isomorphism of pointed sets). By a standard argument we get $[C A, B]=0$. Here B is an arbitrary object of \mathscr{C}. Hence $C A$ is contractible.
3. Lusternik-Schnirelmann category and cocategory. From now on unless otherwise mentioned \mathscr{C} will denote a pointed model category in the sense of Quillen satisfying further axioms $A_{1}, A_{2}, A_{3}, A_{4}$ mentioned in § 1, axiom W mentioned in $\S 2$ and axiom A_{5} below.
A_{5}. Let $f: X \rightarrow Y$ be any map in $\mathscr{C},\left(E_{k}, i_{k}\right)(k=1,2, \ldots, r)$ a finite number of subobjects of Y and $(E, i)=$ the union of the subobjects $\left(E_{k}, i_{k}\right)(k=1,2, \ldots, r)$, which is well-defined up to an isomorphism as a subobject of Y because of Remark 1.6 and Proposition 1.7.
Let $\left(F_{k}, j_{k}\right)$ be the inverse image of (E_{k}, i_{k}) by f and $(F, j)=$ the union of $\left(F_{k}, j_{k}\right)(k=1,2, \ldots, r)$. Under these conditions axiom A_{5} states that (F, j) is the inverse image of (E, i) by f.

All the three categories mentioned in the introduction do satisfy all these axioms.

For any integer $k \geqq 0$ the diagonal map $X \rightarrow X^{k+1}$ will be denoted by $\Delta_{k+1, X}$ (on Δ_{k+1} when there is no possibility of confusion). Let $E_{i, k+1}$ for $1 \leqq i \leqq k+1$ be defined by $E_{i, k+1}=X \times \ldots \times X \times * \times X \times \ldots \times X$ with $*$ at the i th place and X at other places. Let $\mu_{i, k+1, X}$ (or $\mu_{i, k+1}$) be the map of $E_{i, k+1}$ to X^{k+1} given by

$$
\mu_{i, k+1}=1_{X} \times \ldots \times 1_{X} \times 0 \times 1_{X} \times \ldots \times 1_{X}
$$

with 0 at the i-th place and 1_{X} at all other places. Then $\left(E_{i, k+1}, \mu_{i+k, 1}\right)$ is a subobject of X^{k+1}. Let $\left(T^{k}(X), j_{k, X}\right)$ \{or $\left(T^{k}(X), j\right)$ when there is no possibility of confusion $\}$ be the union of ($E_{i, k+1}, \mu_{i+k, 1}$) for $1 \leqq i \leqq k+1$. Motivated by G. W. Whitehead's definition [7] we introduce the notion of LusternikSchnirelmann Category of an object X, denoted by Cat X (or W - cat X) in the following way. (W stands for Whitehead.)
3.1. Definition. Let k be any integer $\geqq 0$. We say that Cat $X \leqq k$ if there exists a map $\varphi: X \rightarrow T^{k}(X)$ satisfying $R Q\left(\Delta_{k+1}\right) \sim R Q(j \circ \varphi)$.
3.2. Lemma. Cat $X \leqq k \Leftrightarrow$ there exist maps $\alpha_{i}: X \rightarrow X$ for $1 \leqq i \leqq k+1$ satisfying
(i) $R Q\left(\alpha_{i}\right) \sim 1_{R Q(X)}$;
(ii) $\left(\alpha_{1}, \ldots, \alpha_{k+1}\right): X \rightarrow X^{k+1}$ can be written as $j \circ \varphi$ for some $\varphi: X \rightarrow T^{k}(X)$.

Proof. Let Cat $X \leqq k$. Then there exists a map $\varphi: X \rightarrow T^{k}(X)$ such that $R Q\left(\Delta_{k+1}\right) \sim R Q(j \circ \varphi)$. Let $\alpha_{i}=p_{i}(j \circ \varphi): X^{k} \rightarrow X$ where $p_{i}: X^{k+1} \rightarrow X$ is the i-th projection. Then

$$
\begin{aligned}
R Q\left(\alpha_{i}\right)=R Q\left(p_{i} \circ(j \circ \varphi)\right) & \sim R Q\left(p_{i}\right) \circ R Q(j \circ \varphi) \\
& \sim R Q\left(p_{i}\right) \circ R Q\left(\Delta_{k+1}\right) \\
& \sim R Q\left(p_{i} \circ \Delta_{k+1}\right) \\
& \sim R Q\left(1_{X}\right) \\
& \sim 1_{R Q(x)} .
\end{aligned}
$$

Clearly $\alpha_{1}, \ldots, \alpha_{k+1}$) $=j \circ \varphi$.
Conversely, assume there exist maps $\alpha_{i}: X \rightarrow X$ with $R Q\left(\alpha_{i}\right) \sim 1_{R Q(X)}$ and $\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)=j \circ \varphi$ for some $\varphi: X \rightarrow T^{k}(X)$. By Proposition 2.12 (a) we get $R Q\left(\alpha_{1} \times \ldots \times \alpha_{k+1}\right) \sim R Q\left(1_{X} \times \ldots \times 1_{X}\right)=R Q\left(1_{x k+1}\right)$. Hence

$$
\begin{aligned}
R Q\left(\alpha_{1}, \ldots, \alpha_{k+1}\right) & =R Q\left(\left(\alpha_{1} \times \ldots \times \alpha_{k+1}\right) \circ \Delta_{k+1}\right) \\
& \sim R Q\left(\alpha_{1} \times \ldots \times \alpha_{k+1}\right) R Q\left(\Delta_{k+1}\right) \\
& \sim R Q\left(\Delta_{k+1}\right) .
\end{aligned}
$$

This shows that Cat $X \leqq k$.
To make sure that Definition 3.1 makes sense we have to prove the following:
3.3. Lemma. Cat $X \leqq k \Rightarrow$ Cat $X \leqq k+1$.

Proof. Let $\alpha_{i}: X \rightarrow X(1 \leqq i \leqq k+1)$ be maps satisfying
(i) $R Q\left(\alpha_{i}\right) \sim 1_{R Q(X)}$ and
(ii) there exists a map $\varphi: X \rightarrow T^{k}(X)$ such that $\left(\alpha_{1}, \ldots, \ldots, \alpha_{k+1}\right)=$ $j_{k} \circ \varphi$ where we write j_{k} for $j_{k, X}$.

Let $\lambda_{i}: E_{i, k+1} \rightarrow T^{k}(X)(1 \leqq i \leqq k+1)$ be the maps satisfying $j_{k} \circ \lambda_{i}=$ $\mu_{i, k+1}$. By Lemma 1.1 the λ_{i} 's are monic. Let $\left(F_{i}, l_{i}\right)$ be the inverse image of $\left(E_{i, k+1}, \lambda_{i}\right)$ by φ. Then by axiom A_{5} the union of $\left(F_{i}, l_{i}\right)$ for $1 \leqq i \leqq k+1$ is X. Let $\theta_{i}: F_{i} \rightarrow E_{i, k+1}$ satisfy $\lambda_{i} \circ \theta_{i}=\varphi \circ l_{i}$. Then $\mu_{i, k+1} \circ \theta_{i}=j_{k} \circ \lambda_{i} \circ \theta_{i}$ $=j_{k} \circ \varphi \circ l_{i}$. Writing ψ for the map $\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)$ we see that $\mu_{i, k+1} \circ \theta=$ $\psi \circ l_{i}$. Define $\alpha_{k+1}=1_{X}$. Then $R Q\left(\alpha_{k+2}\right) \sim 1_{R Q(X)}$ clearly $E_{i, k+1} \times X=E_{i, r+2}$ and $\mu_{i, k+1} \times 1_{X}=\mu_{i, k+2}$. If $\epsilon_{i}: F_{i} \rightarrow E_{i, k+1} \times X$ is the map given by $\epsilon_{i}=$ $\left(\theta_{i}, l_{i}\right)$, then $\mu_{i, k+2 \epsilon_{i}}=\left(\psi, \alpha_{k+2}\right) \circ l_{i}$. Hence by Proposition 1.12, there exists a map

$$
\epsilon: X \rightarrow \Gamma
$$

where (Γ, ν) is the union of ($E_{i, k+2}, \mu_{i, k+2}$) for $1 \leqq i \leqq k+1$ satisfying

$$
\nu \circ \epsilon=\left(\psi, \alpha_{k+2}\right)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+2}\right) .
$$

However $T^{k+1}(X)=$ the union of $E_{i, k+2}$ for $1 \leqq i \leqq k+2$. Hence there exists a map $\lambda: \Gamma \rightarrow T_{k}^{+1}(X)$ satisfying $j_{k+1} \circ \lambda=\nu$. Then $\nu \circ \epsilon=j_{k+1} \circ \lambda \circ \epsilon$. Thus if we define $\bar{\varphi}: X \rightarrow T^{k+1}(X)$ by $\bar{\varphi}=\lambda \circ \epsilon$ then

$$
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+2}\right)=j_{k+1} \circ \bar{\varphi}
$$

Hence Cat. $X \leqq k+1$.
3.4. Definition. The category of an object X of \mathscr{C} is defined to be k if Cat $X \leqq$ k and it is not true that Cat. $X \leqq k-1$.

It is clear from the definition that Cat. $X=0 \Leftrightarrow X$ is contractible.
3.5. Lemma. If $X>A$ then Cat $A \leqq$ Cat X.

Proof. Suppose Cat $X \leqq k$. Let

$$
A \xrightarrow{f} X \xrightarrow{g} A
$$

be such that $R Q(g \circ f) \sim 1_{R Q(A)}$ and $\alpha_{i}: X \rightarrow X(1 \leqq i \leqq k+1)$ satisfy
(i) $R Q\left(\alpha_{i}\right) \sim 1_{R Q(X)}$ and
(ii) there exists $\varphi: X \rightarrow T^{i}(X)$ with $j_{k, X} \circ \varphi=\left(\alpha_{1}, \ldots, \alpha_{k+1}\right)$.

Let $\beta_{i}: A \rightarrow A$ be given by $\beta_{i}=g \circ \alpha_{i} \circ f$. Then

$$
\left.R \beta_{B i}\right) \sim R Q(g) \circ R Q\left(\alpha_{i}\right) \circ R Q(f) \sim R Q(g) \circ R Q(f) \sim 1_{R Q(A)} .
$$

Moreover it is clear from Proposition 1.12 that there exists a map $\theta: T^{k}(X) \rightarrow$ $T^{k}(A)$ satisfying

$$
j_{k, A} \circ \theta=(g \times \quad \times g) \circ j_{k, X} \quad(k+1 \text { factors } g)
$$

It is now easy to see that $j_{k, A} \circ(\theta \circ \varphi \circ f)=\left(\beta_{1}, \ldots, \beta_{k+1}\right)$. Hence Cat $A \leqq k$.
3.6. Corollary. For any two objects X, Y in, Cat $X \leqq$ Cat $(X \times Y)$.

Proof. This is because $X \times Y>X$.
3.7. Definition. Two objects X and Y of \mathscr{C} are defined to be of the same "homotopy type" if there exist maps $f: X \rightarrow Y, g: Y \rightarrow X$ satisfying $R Q(g \circ f) \sim 1_{R Q(X)} . R Q(f \circ g) \sim 1_{R Q(Y)}$.
3.8. Remarks. (a) If X and Y are of the same homotopy type with $f: X \rightarrow Y$, $g: Y \rightarrow X$ satisfying $R Q(g \circ f) \sim 1_{R Q(X)}, R Q(f \circ g) \sim 1_{R Q(Y)}$ then $\gamma(f): X$ $\rightarrow Y$ is an isomorphism in $H \circ \mathscr{C}$. However X, Y being isomorphic in $H \circ \mathscr{C}$ in general does not imply that X, Y are of the same homotopy type in the above sense.
(b) The usual definition of homotopy type in the category of based topological spaces differs from the above definition given by us. But for our purposes Definition 3.6 appears to be the best suited.
(c) Suppose $X \in \mathscr{C}_{\text {cr }}$. Then clearly X^{k+1} is fibrant. In this case W-Cat $X \leqq k \Leftrightarrow$ there exists a map $\varphi: X \rightarrow T^{k}(X)$ such that $\Delta_{k+1} \sim j_{k} \circ \varphi$. Actually in this case $Q\left(X^{k+1}\right)$ is also fibrant and hence $R Q\left(X^{k+1}\right)=Q\left(X^{k+1}\right)$. From the definition of W-Cat X we have W-Cat $X \leqq k \Leftrightarrow$ there exists a map $\varphi: X \rightarrow$ $T^{k}(X)$ such that $R Q\left(j_{k} \circ \varphi\right) \sim R Q\left(\Delta_{k+1}\right)$. Since $R Q\left(X^{k+1}\right)=Q\left(X^{k+1}\right)$ this condition is equivalent to $Q\left(j_{k} \circ \varphi\right) \sim Q\left(\Delta_{k+1}\right)$. Since X is cofibrant and both $Q\left(X^{k+1}\right)$ and X^{k+1} are fibrant and $p_{x^{k+1}}: Q\left(X^{k+1}\right) \rightarrow X^{k+1}$ is a trivial fibration it follows from Lemma 7, § 1, Chapter I of [6] that $Q\left(j_{k} \circ \varphi\right) \sim Q\left(\Delta_{k+1}\right) \Leftrightarrow$ $j_{k} \circ \varphi \sim \Delta_{k+1}$.
3.9. Proposition. If X and Y are of the same homotopy type then Cat $X=$ Cat Y.

Proof. This follows immediately from Lemma 3.5.
Following Ganea $[\mathbf{1 ; 2 ; 3}]$ we would like to introduce the concept of inductive category of an object $X \in \mathscr{C}$. Before doing this we will recall certain facts. Let $A, Y \in \mathscr{C}_{c}$ (i.e. A and Y are cofibrant) and $f: A \rightarrow Y$ a cofibration. Let $u: Y \rightarrow C$ denote the cofibre of f. By the very definition of the cofibre of f Diagram 37 below is a push-out.

Diagram 37
By axiom $M_{3}, * \rightarrow C$ is a cofibration. Thus $C \in \mathscr{C}{ }_{c}$. Let Diagram 38 below

Diagram 38
be such that each of the squares (a), (b), (c) is a push-out, where $A \times I$ is a given cylinder object for A.

Since

Diagram 39
is a push-out diagram it follows (from the fact that (a) is push-out) that

Diagram 40
is a push-out. Hence L is a cone object $C A$ for A. Also

is a push-out. Hence N is a suspension object ΣA for A. We denote M by $Y \cup_{f} C A$. We will refer to $Y \cup_{f} C A$ as got from Y by attaching a cone object of A by means of f. Now, Diagram 38 can be written as follows:

The fact that (b) is a push-out gives a unique map $\varphi: Y \cup_{f} C A \rightarrow C$ making Diagram 42 below commutative.

Diagram 42
If we write $\langle\varphi\rangle$ for the homotopy class of $R Q(\varphi)$ in $\operatorname{Hom}_{H 0^{\mathscr{C}}}\left(Y \cup_{f} C A, C\right)=$ $\pi\left(R Q\left(Y \cup_{f} C A\right), R Q(C)\right)=\left[Y \cup_{f} C A, C\right]$, then the dual of Proposition 3 in $\S 3$, Chapter I of [6] can be summarized as follows:

Let $\partial: C \rightarrow \Sigma A$ denote the composition of the maps

$$
C \xrightarrow{n} C \vee \Sigma A \xrightarrow{0+1} \Sigma A
$$

where $n: C \rightarrow C \vee \Sigma A$ is the right co-action of ΣA on C constructed in $\S 3$, Chapter I of [6]. Then

is a commutative diagram in $H \circ \mathscr{C}$ with $\langle\varphi\rangle$ an isomorphism in $H \circ \mathscr{C}$.
The inductive category of an object X in \mathscr{C}, denoted by Ind Cat X is defined inductively as follows.
3.10. Definition. Ind Cat $X=0$ if and only if X is contractible. Ind Cat $X \leqq k$ if there exists a cofibration $A^{f} \rightarrow Y$ with $A, Y \in \mathscr{C}_{c}$ satisfying the following conditions:
(i) Ind Cat $Y \leqq k-1$ and
(ii) The cofibre C of f dominates X.
3.11. Remarks. (1) Since (a) and (b) are push-outs in Diagram 38^{\prime} it follows that ν and μ are cofibrations. Since A, Y lie in \mathscr{C}_{c} it follows that $C A$ and $Y \cup_{f} C A$ also lie in \mathscr{C}_{c}.
(2) Suppose in the category \mathscr{C} every object is fibrant. Then $\varphi: Y \cup, C A \rightarrow$ C is a homotopy equivalence. In fact, in this case $Y \cup_{f} C A$ and C both lie in $\mathscr{C}_{c \rho}$. Hence $\langle\varphi\rangle^{-1}$ is represented by a map $\theta: C \rightarrow Y \cup_{f} C A$. Then $\theta \circ \varphi=$ $R Q(\theta \circ \varphi) \sim 1_{Y} \cup_{f C A}$ and $\varphi \circ \theta=R Q(\varphi \circ \theta) \sim 1_{C}$. Also in this case, condition (ii) in Definition 3.10 can be replaced by (ii)' below:
(ii)' $Y \cup_{f} C A$ dominates X.

Incidentally, it also follows in this case that (ii)' is independent of the cylinder object $A \times I$ chosen.
(3) Let \mathscr{T}_{*} denote the pointed model category of based topological spaces and $C_{+}(\wedge)$ the category of chain complexes over \wedge which are bounded below, where \wedge is a given ring. The zero chain complex is the initial and the final object in $C_{+}(\wedge)$. Serre fibrations are by definition the fibrations in \mathscr{T}_{*} and epimorphisms are by definition the fibrations in $C_{+}(\Lambda)[6]$. Thus in \mathscr{T}_{*} and $C_{+}(\wedge)$ all the objects are fibrant.

In the category of based semi-simplicial complexes the fibrations are by definition those maps which are also Kan fibrations. Thus not all objects are fibrant in this category.

3.12. Lemma. If $X>Z$ then Ind Cat $Z \leqq$ Ind Cat X.

Proof. This is an immediate consequence of Proposition 2.15.
3.13. Proposition. If in the category \mathscr{C} every object is fibrant then W-Cat $X \leqq$ Ind Cat X for all $X \in \mathscr{C}$.

Proof. The proposition is trivially true when Ind Cat $X=0$. Assume the proposition valid whenever Ind Cat $X \leqq k-1$.

Let Ind Cat $X=k$. Then there exist a cofibration $f: A \rightarrow Y$ with $A, Y \in$ \mathscr{C}_{c}, Ind Cat $Y \leqq k-1$ and $Y \cup_{\rho} C A>X$.

By the inductive assumption W-Cat $Y \leqq k-1$. Hence there exist maps $\alpha_{i}: Y \rightarrow Y$ for $1 \leqq i \leqq k$ satisfying (i) and (ii) below:
(i) $\alpha_{i} \sim 1_{Y}$ (observe that $R Q(Y)=Y$)
(ii) there exists a map $\varphi: Y \rightarrow T^{k-1}(Y)$ satisfying $j_{k-1, Y} \circ \varphi=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$. Since $\mu: Y \rightarrow Y \cup_{f} C A$ is a cofibration and $Y \cup_{f} C A$ is fibrant, by the homotopy extension theorem (dual to the corollary of Lemma 2, §1, Chapter I of [6]) we get maps $\beta_{i}: Y \cup_{f} C A \rightarrow Y \cup_{f} C A$ for $1 \leqq i \leqq k$ satisfying (iii) and (iv) below:
(iii) $\beta_{i} \sim 1_{Y \cup f C A}$
(iv) $\beta_{i} \circ \mu=\mu \circ \alpha_{i}$.

Also $j: C A \rightarrow Y \cup_{f} C A$ is a cofibration (since (b) is a push-out in Diagram 38^{\prime}). Since $C A$ is contractible we have $j \sim 0$. By the homotopy extension theorem there exists a map $\beta: Y \cup_{f} C A \rightarrow Y \cup_{f} C A$ such that $\beta \sim 1_{Y} \cup_{f} C A$ and $\beta \circ j=0$.

Define $\beta_{k+1}=\beta$. Consider the map

$$
\left(\beta_{1}, \ldots, \beta_{k+1}\right): Y \cup_{f} C A \rightarrow\left(Y \cup_{f} C A\right)^{k+1}
$$

Since $\beta_{k+1} \circ j=\beta \circ j=0$ it follows that there exists a map $\theta: C A \rightarrow$ $T^{k}\left(Y \cup_{f} C A\right)$ such that Diagram 44 below is commutative.

Diagram 44
Also $\left(\beta_{1} \circ \mu, \ldots, \beta_{k+1} \circ \mu\right): Y \cup_{f} C A \rightarrow\left(Y \cup_{f} C A\right)^{k+1}$ is the same as the composition of the maps

$$
\begin{aligned}
Y \xrightarrow{\left(\alpha_{1}, \ldots, \alpha_{k}, 1_{Y}\right)} & Y^{k+1} \\
& \xrightarrow{\mu \times \ldots \times \mu \times\left(\beta_{k+1} \circ \mu\right)}\left(Y \cup_{f} C A\right)^{k+1} .
\end{aligned}
$$

From the proof of Lemma 3.3 it follows that there exists a map $\varphi: Y \rightarrow T^{k}(Y)$ such that

$$
\left(\alpha_{1}, \ldots, \alpha_{k}, 1_{Y}\right)=j_{k, Y} \circ \varphi
$$

Also from Proposition 1.12 it follows immediately that there exists a map $\theta: T^{k}(Y) \rightarrow T^{k}\left(Y \cup_{f} C A\right)$ such that $\left\{\mu \times \ldots \times \mu \times\left(\beta_{k+1} \circ \mu\right)\right\} \circ j_{k, Y}=$ $j_{k, Y \cup f C A} \circ \bar{\theta}$. In other words, Diagram 45 below is commutative. Define $\theta^{\prime}=\bar{\theta} \circ \varphi$. Then $j_{k, Y} \cup_{f C A} \circ \theta^{\prime}=\left(\beta_{1} \circ \mu, \ldots, \beta_{k+1} \circ \mu\right)$.

Diagram 45

Let the inverse image of $\left(T^{k}\left(Y \cup_{f} C A\right), j_{k, Y \cup f C A}\right)$ by the map

$$
\left(\beta_{1}, \ldots, \beta_{k+1}\right): Y \cup_{f} C A \rightarrow\left(Y \cup_{f} C A\right)^{k+1}
$$

be denoted by (Γ, i). Since

$$
\left(\beta_{1}, \ldots, \ldots, \beta_{k+1}\right) \circ \mu=\left(\beta_{1} \circ \mu, \ldots, \beta_{k+1} \circ \mu\right)=j_{k, Y \cup f C A} \circ \theta^{\prime}
$$

it follows that the inverse image of

$$
\left(T^{k}\left(Y \cup_{f} C A\right), j_{k, Y \cup f C A}\right) \text { by }\left(\beta_{1}, \ldots, \beta_{k+1}\right) \circ \mu
$$

is $\left(Y, 1_{Y}\right)$. Hence by Lemma 1.13, the inverse image of (Γ, i) by μ is $\left(Y, 1_{Y}\right)$. Similarly it follows that the inverse image of (Γ, i) by $j: C A \rightarrow Y \cup, C A$ is $\left(C A, 1_{C A}\right)$. It follows that there exists maps $\epsilon_{1}: Y \rightarrow \Gamma, \epsilon_{2}: C A \rightarrow \Gamma$ such that $i \circ \epsilon_{1}=\mu$ and $i \circ \epsilon_{2}=j$.

Let $\left(L_{1}, i_{1}\right)=\operatorname{Im} \mu$ and $\left(L_{2}, i_{2}\right)=\operatorname{Im} j$. Because of the existence of ϵ_{1} and ϵ_{2} satisfying $i \circ \epsilon_{1}=\mu$ (respectively $i \circ \epsilon_{2}=j$) it follows that there exists a map $\lambda_{1}: L_{1} \rightarrow \Gamma$ (respectively $\lambda_{2}: L_{2} \rightarrow \Gamma$) satisfying $i \circ \lambda_{1}=i_{1}$ (respectively
$i \circ \lambda_{2}=i_{2}$). Since

Diagram 46
is a push-out, it follows from Theorem 1.8 that $\left(Y \cup_{f} C A, 1_{Y \cup_{f C A}}\right)=\left(L_{1}, i_{1}\right)$ $\cup\left(L_{2}, i_{2}\right)$. (up to an isomorphism). The existence of λ_{1} and λ_{2} satisfying $i \circ \lambda_{1}=i_{1}, i \circ \lambda_{2}=i_{2}$ now gives a map $\lambda: Y \cup_{f} C A \rightarrow \Gamma$ such that

Diagram 47
is commutative. Thus $i \circ \lambda=1_{Y \cup f C A}$. Also $i \circ(\lambda \circ i)=(i \circ \lambda) \circ i=$ $\left(1_{Y} \cup, C A\right) \circ i=i=i \circ 1_{\Gamma}$. Since i is injective $\lambda \circ i=1_{\Gamma}$. Thus $i: \Gamma \rightarrow$ $Y \cup_{f} C A$ is an isomorphism. This shows that the inverse image of $\left(T^{k}\left(Y \cup_{f} C A\right)\right.$, $\left.j_{k, Y \cup f C A}\right)$ by $\left(\beta_{1}, \ldots, \beta_{k+1}\right)$ is ($\left.Y \cup_{f} C A, 1_{Y \cup f C A}\right)$. Hence there exists a map $\gamma: Y \cup_{f} C A \rightarrow T^{k}\left(Y \cup_{f} C A\right)$ satisfying $\left(\beta_{1}, \ldots, \beta_{k+1}\right)=j_{k, Y \cup, C A}$. Thus W-Cat $Y \cup_{f} C A \leqq k$. Since $Y \cup_{f} C A$ dominates X it follows from Lemma 3.5 that W-Cat $X \leqq k$. This completes the proof of Proposition 3.13.

3.14. Lemma. Ind Cat $\Sigma X \leqq 1$ for any $X \in \mathscr{C}{ }_{c}$.

Proof. $\nu: A \rightarrow C A$ is a cofibration with cofibre ΣA (refer to Diagram 38^{\prime}). Since $C A$ is contractible we get Ind Cat $\Sigma A \leqq 1$.

The definition of inductive cocategory (or simply the cocategory) of an object X in \mathscr{C} is exactly dual to the definition of inductive category. The cocategory of X denoted by Cocat X is defined as follows:
3.15. Definition. Cocat $X=0$ if and only if X is contractible. Cocat $X \leqq k$ if there exists a fibration $E^{p} \rightarrow B$ with E, B in \mathscr{C}_{f} satisfying the following conditions
(i) Cocat $E \leqq k-1$;
(ii) $F>X$ where $i: F \rightarrow E$ is the fibre of p.
3.16. Lemma. If $X>Z$ then Cocat $Z \leqq$ Cocat X. If X and Y are of the same homotopy type then Cocat $X=$ Cocat Y.

Proof. This is immediate consequence of Proposition 2.15.
3.17. Remark. For defining the invariants Ind Cat X and Co-cat X for an
object X in \mathscr{C} it is not necessary that the pointed model category \mathscr{C} satisfy axioms A_{1} to A_{5} introduced by us and $3.10,3.12,3.15$ and 3.16 are all valid for pointed model categories satisfying axiom W.
4. The invariants Nil X and Conil X. In this section \mathscr{C} will denote a pointed model category in the sense of Quillen. We do not assume anything more (\mathscr{C} need not satisfy axioms A_{1} to A_{5} and W). Following Ganea we will introduce two invariants nil X and conil X. These will be invariants associated to an object X in $H \circ \mathscr{C}$ and will depend only on the isomorphism class of X in $H \circ \mathscr{C}$. We denote the product of two objects A and B in $H \circ \mathscr{C}$ by $A \times_{H} B$. All the maps and diagrams in this section will be in $H \circ \mathscr{C}$.

For any $X \in H \circ \mathscr{C}$ it is known that ΩX is a group object in $H \circ \mathscr{C}$. For any object A in $H \circ \mathscr{C}$ we write A^{2} for $A \times_{H} A$ and for any map $f: A \rightarrow B$ in $H \circ \mathscr{C}$ we write f^{2} for $f \times_{H} f$. Let $\varphi:(\Omega X)^{2} \rightarrow \Omega X$ be the composition of the maps

$$
\begin{aligned}
(\Omega X)^{2} \xrightarrow{\Delta(\Omega X)^{2}}(\Omega X)^{2} \times(\Omega X)^{2} \xrightarrow{1^{2} \times \nu^{2}}(\Omega X)^{2} \times_{H}(\Omega X)^{2} \\
\xrightarrow{\mu \times \mu} \Omega X \times_{H} \Omega X \xrightarrow{\mu} \Omega X
\end{aligned}
$$

where $\mu: \Omega X \times \Omega X \rightarrow \Omega X$ is the "multiplication" and $\nu: \Omega X \rightarrow \Omega X$ the "inversion" under which ΩX is a group object in $H \circ \mathscr{C}$.

Write 0×1 for the map

$$
\Omega X \times_{H} \Omega X \xrightarrow{0 \times 1} \Omega X \times_{H} \Omega X=(\Omega X)^{2}
$$

which is 0 on the first factor and $1_{\Omega X}$ on the second factor.
4.1. Lemma. $\varphi \circ(0 \times 1)=0\left[\Omega X \times_{H} \Omega X, \Omega X\right]$.

Proof. Since $\Delta_{(\Omega X)}=\left(1^{2}, 1^{2}\right)$ where $1=1_{\Omega X}$ we have

$$
\varphi=\mu \circ(\mu \times \mu) \circ\left(1^{2} \times \nu^{2}\right) \circ\left(1^{2}, 1^{2}\right)
$$

Also

$$
\begin{aligned}
& (\mu \times \mu) \circ\left(1^{2} \times \nu^{2}\right) \circ\left(1^{2}, 1^{2}\right) \circ(0 \times 1) \\
& \quad=(\mu \circ(1 \times 1) \circ(1 \times 1) \circ(0 \times 1) \\
& \quad=(\mu \circ(0 \times 1), \mu \circ(0 \times \nu)) .
\end{aligned}
$$

$\mu \circ(0 \times 1): \Omega X \times_{H} \Omega X \rightarrow \Omega X$ is the same as p_{2}, the second projection in

$$
[\Omega X \times \Omega X, \Omega X]=\operatorname{Hom}_{H \circ \&}\left(\Omega X \times_{H} \Omega X, \Omega X\right)
$$

and

$$
\mu \circ(0 \times \nu)=\mu \circ(0 \times 1) \circ(1 \times \nu)=p_{2} \circ(1 \times \nu)=\nu \circ p_{2} .
$$

Hence $\varphi \circ(0 \times 1)=\mu \circ\left(p_{2}, \nu \circ p_{2}\right)=\mu \circ(1, X) \circ p_{2}$. But $\mu \circ(1, \nu)=0$ (μ is the "multiplication" in ΩX and ν the inversion and 0 the neutral element for the group object $\Omega X)$. Hence $\varphi \circ(0 \times 1)=0$.

The commutator map $\varphi_{k}:(\Omega X)^{k} \rightarrow \Omega X$ of weight k (for any integer $k \geqq 1$) is defined by induction on k as follows.
4.2. Definition. The commutator map φ_{1} of weight 1 is defined to be the identity map $1_{\Omega X}$ of ΩX. For $k \geqq 2$ the commutator map φ_{k} of weight k is the composite

$$
(\Omega X)=(\Omega X)^{k-1} \times \Omega X \xrightarrow{\varphi_{k-1} \times 1} \Omega X \times \Omega X \xrightarrow{\varphi} \Omega X
$$

where φ is the map in (11).
4.3. Lemma. If $\varphi_{k}=0$ in $\left[(\Omega X)^{k}, \Omega X\right]$ then $\varphi_{k+1}=0$ in $\left[(\Omega X)^{k+1}, \Omega X\right]$.

Proof. When $\varphi_{k}=0$ we have

$$
\varphi_{k+1}=\varphi \circ\left(\varphi_{k} \times 1\right)=\varphi \circ(0 \times 1)=0 \quad \text { by Lemma 4.1. }
$$

4.4. Definition. For any $X \in H \circ \mathscr{C}$ we define nil X to be the smallest integer $k \geqq 0$ such that $\varphi_{k+1}=0$ (if such an integer exists). If no such integer exists nil X is defined to be ∞.

Lemma 4.3 is needed to see that Definition 4.4 makes sense.
The definiton of conil X is completely dual to the definition of nil X. We omit it.

For any group π let nil π denote the index of nilpotence of the group π.
4.5. Proposition. For any $Y \in H \circ \mathscr{C}$ we have

$$
\text { nil } Y=\operatorname{Sup}_{X \in H^{\circ} \mathscr{G}} \text { nil }[\Sigma X, Y] .
$$

Proof. We have $[\Sigma X, Y] \simeq[X, \Omega Y]$ (as groups) and the commutator of any k elements f_{1}, \ldots, f_{k} in $[X, \Omega Y$] is given by the composite

$$
X \xrightarrow{\Delta_{k}} X^{k} \xrightarrow{f_{1} \times \ldots \times f_{k}}(\Omega Y)^{k} \xrightarrow{\varphi_{k}} \Omega Y
$$

This immediately gives nil $[\Sigma X, Y] \leqq$ nil Y.
Conversely, suppose nil $[X, \Omega Y] \leqq k-1$ for all $X \in H \circ \mathscr{C}$. In particular nil $\left[(\Omega Y)^{k}, \Omega Y\right] \leqq k-1$. Let $p_{i}:(\Omega Y)^{k} \rightarrow \Omega Y$ be the i-th projection. $(1 \leqq i \leqq$ $k)$. Then the composite

$$
(\Omega Y)^{k} \xrightarrow{\Delta_{k},(\Omega Y)^{k}}\left((\Omega Y)^{k}\right)^{k} \xrightarrow{p_{1} \times \ldots \times p_{k}}(\Omega Y)^{k}
$$

is clearly the identity element in [$\left.(\Omega Y)^{k},(\Omega Y)^{k}\right]$. Hence

$$
\varphi_{k}=\varphi_{k} \circ\left(p \times \ldots \times p_{k}\right) \circ \Delta_{k,(\Omega Y)} k \quad \text { in }\left[(\Omega Y)^{k}, \Omega Y\right] .
$$

Since $\varphi_{k}\left(p_{1} \times \ldots \times p_{k}\right) \circ \Delta_{k,(\Omega Y)} k$ denotes the commutator of the elements p_{1}, \ldots, p_{k} in $\left[(\Omega Y)^{k}, \Omega Y\right]$ we have $\varphi_{k} \circ\left(p_{1} \times \ldots \times p_{k}\right) \circ \Delta_{k,(\Omega Y)} k=0$. Hence $\varphi_{k}=0$. Hence nil $Y \leqq k-1$. This completes the proof of Proposition 4.5.
4.6. Proposition. For any $X \in H \circ \mathscr{C}$ we have

$$
\text { Conil } X=\operatorname{Sup}_{Y \in H^{\circ} \mathscr{C}} \operatorname{nil}[X, \Omega Y] \text {. }
$$

Proof. This is the dual of Proposition 4.5.
It is clear that nil X and conil X depend only on the isomorphism class of X in $H \circ \mathscr{C}$.

For any two objects A, B in $H \circ \mathscr{C}$ we denote their union in $H \circ \mathscr{C}$ by $A \vee_{H} B$. (Actually $R(R Q() A \vee R Q(B)$) where \vee denotes the union in \mathscr{C} gives the union of A and B in $H \circ \mathscr{C}$). It is known that for any $X \in H \circ \mathscr{C}$, ΣX is a cogroup object in $H \circ \mathscr{C}$. We write $\mu^{\prime}: \Sigma X \rightarrow \Sigma X \vee_{H} \Sigma X$ for the comultiplication in ΣX.
4.7. Lemma. Let $\alpha: \Sigma X \rightarrow \Sigma X \times_{H} \Sigma X$ and $\beta: \Sigma X \rightarrow \Sigma X \times_{H} \Sigma X$ denote the maps $\left(1_{\Sigma X}, 0\right)$ and $\left(0,1_{\Sigma X}\right)$ respectively. Then in $\left[\Sigma X, \Sigma X \times_{H} \Sigma X\right]$ we have $\alpha \cdot \beta=\beta \cdot \alpha$.

Proof. $\alpha \cdot \beta$ is given by the composite

$$
\Sigma X \xrightarrow{\mu^{\prime}} \Sigma X \vee_{H} \Sigma X \xrightarrow{\alpha+\beta} \Sigma X \times_{H} \Sigma X
$$

and $\beta \cdot \alpha$ is given by the composite

$$
\Sigma X \xrightarrow{\mu^{\prime}} \Sigma X \vee_{H} \Sigma X \xrightarrow{\beta+\alpha} \Sigma X \times_{H} \Sigma X
$$

Let $p_{1}: \Sigma X \times_{H} \Sigma X \rightarrow \Sigma X$ and $p_{2}: \Sigma X \times_{H} \Sigma X \rightarrow \Sigma X$ be the first and second projections. Then

$$
\begin{aligned}
& p_{1} \circ(\alpha \cdot \beta)=p_{1} \circ\left(\left(1_{\Sigma X}, 0\right)+\left(0,1_{\Sigma X}\right)\right) \circ \mu^{\prime} \\
& \quad=\left(1_{\Sigma X}+0\right) \circ \mu^{\prime}=1_{\Sigma X} \quad \text { since } \mu^{\prime}: \Sigma X \rightarrow \Sigma X \bigvee_{H} \Sigma X
\end{aligned}
$$

is the comultiplication for the co-group structure on ΣX in $H \circ \mathscr{C}$. Similarly,

$$
\begin{aligned}
& p_{2} \circ(\alpha \cdot \beta)=p_{2} \circ\left(\left(1_{\Sigma X}, 0\right)+\left(0,1_{\Sigma X}\right)\right) \circ \mu^{\prime}=\left(0+1_{\Sigma X}\right) \circ \mu^{\prime}=1_{\Sigma X} \\
& p_{1} \circ(\beta \cdot \alpha)=p_{1} \circ\left(\left(0,1_{\Sigma_{X}}\right)+\left(1_{\Sigma X}, 0\right)\right) \circ \mu^{\prime}=\left(0+1_{\Sigma X}\right) \circ \mu^{\prime}=1_{\Sigma_{X}} \\
& p_{2} \circ(\beta \cdot \alpha)=p_{2} \circ\left(\left(0,1_{\Sigma X}\right)+\left(1_{\Sigma X}, 0\right)\right) \circ \mu^{\prime}=\left(1_{\Sigma X}+0\right) \circ \mu^{\prime}=1_{\Sigma X} .
\end{aligned}
$$

Since $\left(p_{1 *}, p_{2 *}\right):\left[\Sigma X, \Sigma X \times_{H} \Sigma X\right] \rightarrow[\Sigma X, \Sigma X] \times[\Sigma X, \Sigma X]$ is an isomorphism we get $\alpha \cdot \beta=\beta \cdot \alpha$.
4.8. Proposition. Let

$$
\begin{equation*}
F \xrightarrow{i} E \xrightarrow{p} B, \quad F \times_{H} \Omega B \xrightarrow{m} F \tag{12}
\end{equation*}
$$

be a fibration sequence in $H \circ \mathscr{C}$. Let $A \in H \circ \mathscr{C}$ and

$$
\ldots \rightarrow[\Sigma A, \Omega B] \xrightarrow{\partial}[\Sigma A, F] \xrightarrow{i_{*}}[\Sigma A, E] \rightarrow \ldots
$$

be part of the "Eckmann-Hilton" exact sequence corresponding to the fibration sequence (12). Then the image of $\partial:[\Sigma A, \Omega B] \rightarrow(\Sigma A, F]$ lies in the centre of [$\mathbf{\Sigma} A, F]$.

Proof. Let $g \in[\Sigma A, F]$ and $\lambda \in[\Sigma A, \Omega B]$ be artitrary. Then $\partial \lambda \in[\Sigma A, F]$ is given by the composite

$$
\Sigma A \xrightarrow{\lambda} \Omega B \xrightarrow{\left(0,1_{\Omega B}\right)} F \times_{H} \Omega B \xrightarrow{m} F
$$

Let $\tau: \Sigma A \rightarrow \Sigma A$ denote the inversion in the co-group object ΣA. We want to prove that the commutator of g and $\partial \lambda$ in the group [$\Sigma A, F]$ is the neutral element $0 \in[A, F]$. The commutator of g and $\partial \lambda$ is given by the composite

$$
\Sigma A \xrightarrow{\psi} \Sigma A \vee_{H} \Sigma A \xrightarrow{g+\partial \lambda} F
$$

where ψ is the co-commutator map given by the composition of

$$
\begin{aligned}
& \Sigma A \longrightarrow \quad \mu^{\prime} \Sigma A \vee_{H} \Sigma A \xrightarrow{\mu^{\prime} \vee \mu^{\prime}} \\
& \left(\Sigma A \vee_{H} \Sigma A\right) \vee_{H}\left(\Sigma A \vee_{H} \Sigma A\right) \xrightarrow{(\tau \vee \tau) \bigvee(\tau \vee \tau)} \\
& \left(\Sigma A \vee_{H} \Sigma A\right) \vee_{H}\left(\Sigma A \vee_{H} \Sigma A\right) \longrightarrow \Sigma A \vee_{H} \Sigma A .
\end{aligned}
$$

Consider the following diagram

$$
\begin{equation*}
\Sigma A \vee_{H} \Sigma A \xrightarrow{\alpha+\beta} \Sigma A \times_{H} \Sigma A \xrightarrow{g \times 1_{\Sigma A}} F \times_{H} \Sigma A \xrightarrow{1_{F} \times \lambda} F \tag{13}
\end{equation*}
$$

where $\alpha=\left(1_{\Sigma_{A}}, 0\right)$ and $\beta=\left(0,1_{\Sigma_{A}}\right)$. We have

$$
\begin{aligned}
m \circ\left(1_{F} \times \lambda\right) \circ\left(g \times 1_{\Sigma_{A}}\right) \circ \alpha & =m \circ\left(1_{F} \times \lambda\right) \circ\left(g \times 1_{\Sigma_{A}}\right) \circ\left(1_{\Sigma_{A}}, 0\right) \\
& =m \circ(g, 0) \\
& =g
\end{aligned}
$$

since m is a right action of the group object ΩB on F.
Also

$$
\begin{aligned}
m \circ\left(1_{F} \times \lambda\right) \circ\left(g \times 1_{\Sigma_{A}}\right) \circ_{B} & =m \circ\left(1_{F} \times \lambda\right) \circ\left(g \times 1_{\Sigma_{A}}\right) \circ\left(0,1_{\Sigma_{A}}\right) \\
& =m \circ(0, \lambda) \\
& =m \circ\left(0,1_{\Omega B}\right) \circ \lambda \\
& =\partial \lambda .
\end{aligned}
$$

Thus the composition of the maps in (13) is $g+\partial \lambda$. Denoting $m \circ\left(1_{F} \times \lambda\right) \circ$ $\left(g \times 1_{\Sigma_{A}}\right)$ by γ we have $g+\partial \lambda=\gamma \circ(\alpha+\beta)$.

Hence $(g+\partial \lambda) \circ \psi=\gamma \circ(\alpha+\beta) \circ \psi$. The composite $(\alpha+\beta) \circ \psi: \Sigma A \rightarrow$ $\Sigma A \times_{H} \Sigma A$ gives the commutator of α and β in $\left[\Sigma A, \Sigma A \times_{H} \Sigma A\right]$. By Lemma 4.7 this is the neutral element $0 \in\left[\Sigma A, \Sigma A \times_{H} \Sigma A\right]$. Hence $(g+\partial \lambda) \circ \psi=$ $\gamma \circ 0=0$ in $[\Sigma A, F]$.

This completes the proof of Proposition 4.8.
4.9. Remark. In the case of \mathscr{T}_{*} Proposition 4.8 has been proved by Hilton. A proof can be found in [4].
4.10. Proposition. Let
(14) $\quad F \xrightarrow{i} E \xrightarrow{p} B, \quad F \times_{H} \Omega B \xrightarrow{m} F$
be a fibration sequence in $H \circ \mathscr{C}$. Then
nil $F \leqq 1+$ nil E.
Proof. Consider the part

$$
\ldots \rightarrow[\Sigma X, \Omega B] \xrightarrow{\partial}[\Sigma X, F] \xrightarrow{i_{*}}[\Sigma X, E] \rightarrow \ldots
$$

of the "Eckmann-Hilton" exact sequence corresponding to the fibration sequence (14) where $X \in H \circ$ is arbitrary. From Proposition 4.8 we see that $\partial[\Sigma X, \Omega B] \subset$ centre of the group [$\Sigma X, F]$. It follows immediately that

$$
\operatorname{nil}[\Sigma X, F] \leqq 1+\operatorname{nil}[\Sigma X, E]
$$

Since

$$
\text { nil } F=\operatorname{Sup}_{X \in H^{\circ} \mathscr{G}} \text { nil }[\Sigma X, F]
$$

we get

$$
\text { nil } F \leqq 1+\operatorname{nil} E .
$$

4.11. Proposition. Let

$$
\begin{equation*}
A \xrightarrow{f} X \xrightarrow{v} C, \quad n: C \rightarrow C \vee \Sigma A \tag{15}
\end{equation*}
$$

be a cofibration sequence in $H \circ \mathscr{C}$. Then
Conil $C \leqq 1+$ Conil X.
Proof. This is the dual of Proposition 4.10.
If \mathscr{C} is a pointed model category satisfying axiom W in addition to the axioms of Quillen we have already observed (Remark 3.17) that for every $X \in \mathscr{C}$ we can define Ind Cat X and Cocat X ($=$ the inductive cocategory of X). Since X is also an object of $H \circ \mathscr{C}$ nil X, conil X are defined.
4.13. Theorem. Let \mathscr{C} be a pointed model category satisfying axiom W. Then for any $X \in \mathscr{C}$,
(16) nil $X \leqq$ Cocat X, and

Conil $X \leqq$ Ind Cat X.
Proof. If X is contractible nil $X=0=$ conil X and so the inequalities (16) are trivially valid. The general case follows from the definition of Cocat X (respectively Ind Cat X) and Proposition 4.10 (respectively Proposition 4.11).

Finally we want to comment that all the results in § 4 of this paper are generalizations of results obtained by Ganea [3]. Ganea dealt with pointed $C W$-complexes. Our results are valid in the general set-up of Quillen.

References

1. T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. Lond. Math. Soc. 10 (1960), 623-639.
2. - Fibrations and cocategory, Comment. Math. Helv. 35 (1961). 15-24,
3. Sur quelques invariants numeriques du type d'homotopie. Cahiers de topologie et geometrie differentielle, Ehresmann Seminar, Paris, 1962.
4. P. J. Hilton, Homotopy theory and duality, Lecture Notes, Cornell University, 1959.
5. S. Maclane, Categories for the working mathematician, (Springer-Verlag, Berlin, 1971).
6. D. G. Quillen, Homotopical algebra, Springer Lecture Notes 43, 1967.
7. G. W. Whitehead, The homology suspension, Colloque de Topologie Algebrique, Louivan 1956, pp. 89-95.
8. J. H. C. Whitehead, Combinatorial homotopy, I, Bull. Amer. Math. Soc. 55 (1949), 213-245.

University of Calgary, Calgary, Alberta

[^0]: Received February 11, 1974 and in revised form, September 16, 1974. This research was supported by N.R.C. grant A-8225.

