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1
In this note we present some rather loosely connected results on Banach

algebras together with some illustrative examples. We consider various
conditions on a Banach algebra which imply that it is finite dimensional. We
also consider conditions which imply the existence of non-zero nilpotents, and
hence the existence of finite dimensional subalgebras. In the setting of Banach
algebras quasinilpotents figure more prominently than nilpotents. We give
an example of a non-commutative Banach algebra in which 0 is the only quasi-
nilpotent; this resolves a problem of Hirschfeld and Zelazko (4).

Throughout, all Banach algebras will be taken over the complex field.
For the standard Banach algebra terms employed here we refer the reader to
Rickart (8). We write Sp(A, x) for the spectrum of A- in A, and r{x) for the
spectral radius of x.

2
Theorem 1 extends a result of LePage (7).
Theorem 1. Let A be a Banach algebra with unit such that Ax2 = Ax (x e A).

Then A is semi-simple, commutative and finite dimensional.
Proof. A is semi-simple and commutative by (7).
Suppose that A has no proper idempotents. Given xe A, x ^ 0, there

exists ye A such that yx2 = x. Then yx is idempotent by (7), yx = 1. There-
fore A is a division algebra, A = Cl.

Next, A cannot contain an infinite sequence of pairwise orthogonal idem-
potents. Suppose {en} is such a sequence. Choose Xn > 0 such that

00

x= Z KenzA,
n = 1

and let y e A be such that yx2 = x. Then
00 00

n = 1 n = 1

Therefore, for each n, Xnyen = en,

1 = r(en) = *Xyen) ^ Anr(y)r(en) = Xnr(y),
which is impossible.

t The second author acknowledges the financial support of a Science Research Council
studentship.
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Let {ey. j = 1, ..., m} be a family of pairwise orthogonal non-zero idem-
potents. For each,/, either Ae} has no proper idempotents or there exist non-
zero idempotents pjy qj e Aej such that e,- = pj -+qj, pfi, = 0. Since A cannot
contain an infinite sequence of pairwise orthogonal idempotents, we may
suppose that {ey. j = 1, ..., m) is chosen so that Ae} has no proper idempotents
for each j , and 1 = et +. . . + em. For each j , Aes satisfies the given condition
on principal ideals and so Ae} = Cej. Therefore A has dimension m.

Remarks. (1) There is an alternative proof of Theorem 1 which uses
Shilov's idempotent theorem to show that the open-and-closed subsets of the
carrier space of A form a partition of the carrier space into singletons.

(2) The converse of Theorem 1 is immediate from Wedderburn's theorem.

(3) The assertion of Theorem 1 clearly fails without the assumption of a
unit element.

(4) Let A = C[0, 1], the algebra of continuous complex functions on [0, 1].
Then Ax2 = Ax for each invertible element x, and the set of invertible elements
is dense in A. For this example we have the weaker condition that

Ax2 = Ax(xe A). (*)

It would be of interest to characterise those Banach algebras A which satisfy (*).

(5) Let A be an arbitrary Banach algebra and let x e A be quasinilpotent
but not nilpotent. Grabiner (3) shows that the sequence {Ax"} is strictly
decreasing.

Theorem 2. (Kaplansky (6)). Let A be a semi-simple Banach algebra such
that Sp(A, x) is finite for each x e A. Then A is Jinite-dimensional.

Corollary 3. Let A be a Banach algebra such that Sp(A, x) is finite for
each x e A. Then A/R is finite dimensional, where R is the radical of A.

Corollary 4. Let X be a complex Banach space such that every compact
operator on X has finite rank. Then X is finite dimensional.

Remarks. (1) The proof of Theorem 2 as given by Kaplansky can be
simplified. In particular, in the commutative case it is enough to show that
the carrier space of A has only a finite number of components.

(2) A further proof of Theorem 2 is given in Dixon (2).

Let A be a Banach algebra with unit element and let B be a closed sub-
algebra of A with 1 e B. Given x e B, we have

SpG4, x)czSp(B, x), dSp(A, x) = dSp(B, x).

In particular, if Sp(A, x) is finite, then SpG4, x) = Sp(B, x). Zelazko (9)
shows for commutative A that

Sp(A, x) = Sp(B, x) (xe B, B any closed subalgebra of A)
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if and only if Sp(̂ 4, x) is totally disconnected for each xe A. In the opposite
direction we may ask if it is possible to remove the topological interior of
Sp(A, x) by considering Sp(C, x) for some superalgebra C of A.

Example 5. Let A be the algebra of all bounded linear operators on 12\
and let t be the unilateral shift operator. Then Sp(/4, t) = {X e C: \ X | g 1}
Since every singular element of A is a topological divisor of zero, X-t is a
topological divisor of zero, and hence permanently singular, for each

A e SpO4, 0
(see (8) p. 185, and p. 20).

3
We consider now the existence of non-zero nilpotents and quasinilpotents

in Banach algebras. Theorem 6 is due to Kaplansky (see Dixmier (1), p. 58).

Theorem 6. A C*-algebra is commutative if and only ifO is the only nilpotent.

The next result is entirely algebraic.

Theorem 7. An algebra of operators on a complex vector space which contains
a non-central operator of finite rank also contains a non-zero nilpotent.

Proof. Let A be an algebra of operators on a complex vector space and let
b be a non-central finite rank operator in A. Since b has finite rank, the sub-
algebra bAb is finite dimensional and hence its radical consists of nilpotents.
Suppose bAb is semi-simple. By Wedderburn's theorem, bAb is isomorphic
to a finite direct sum of full matrix algebras and hence contains non-zero nil-
potents unless it is commutative. Suppose now that bAb is also commutative.
Let {et: i = 1, ..., k} be a spanning subset of minimal idempotents of bAb,
and let t e A. For each /, ett—ejei and tet — ejei are nilpotent. If these are
all zero then ett = tet (i = 1, ..., k), and so

ct-tc (teA,cebAb),

{btf = {tbT (teA,n = 2, 3, ...).

Then bt2b2t = b2t2bt = tb2t2b. It follows that (bt-tbf = 0, and we have
bt— tb non-zero for some t e A.

Corollary 8. Let A be an irreducible Banach algebra of operators and let
A contain a non-zero finite rank operator. Then A contains a non-zero nilpotent.

Proof. The centre of A is either (0) or the scalar multiples of the identity.

LePage (7), and Hirschfeld and Zelazko (4) show that if A is a complex
Banach algebra such that

inf{r(x): || x || =
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then A is commutative. This raises the question whether every non-com-
mutative Banach algebra contains non-zero quasinilpotents. Hirschfeld and
Rolewicz (5) give an example in which 0 is the only divisor of zero.

Theorem 9. There exists a non-commutative Banach algebra in which 0 is
the only quasinilpotent.

Proof. Let A be the free algebra on two symbols u, v, i.e. the algebra of all
finite linear combinations of words in u and v. The set of all such words is
denumerable, {wn}, and we take the standard enumeration given by

u, v, u2, uv, vu, v2, u3, u2v, ...
Let B be the algebra of all infinite series x = Zanwn where || x \\ = £ | an | < oo.
Then B is a non-commutative Banach algebra. Let x e B, x / 0, and let ap

be the first non-zero coefficient in the series Eantvn. Then the coefficient of
wm

p in Z1 is precisely a™ and so

|| xm | | £ | <xp\
m ( m = 1,2,3,...),

Observe that B is an infinite dimensional non-commutative Banach algebra
in which the set of quasinilpotents coincides with the set of nilpotents. A
slight modification of the construction gives another interesting example.

Example 10. Let A be as in Theorem 9, let v(wn) denote the length of the
word wn, and let C be the algebra of all infinite series x = 2anwn where

||x|| =I|aJ/v(O!<a>.
Then C is a non-commutative radical Banach algebra which is an integral
domain.

Proof. It is straightforward that C is a non-commutative Banach algebra.
Let x e C and let & be a positive integer. Then

X <

K,l KJ
•••+v(wnt)}!v(vvn:)!

~ k\
and so r(x) = 0. It is clear that C is an integral domain.

Observe that C can be regarded as an algebra of compact operators on A.
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