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In this paper we examine when a twisted group ring, R'(G), has a semi-simple, artinian
quotient ring. In §1 we assemble results and definitions concerning quotient rings, Ore sets
and Goldie rings and then, in §2, we define R'(G). We prove a useful theorem for constructing
a twisted group ring of a factor group and establish an analogue of a theorem of Passman.
Twisted polynomial rings are discussed in §3 and I am indebted to the referee for informing
me of the existence of [4]. These are used as a tool in proving results in §4.

A group G is a poly- (torsion-free abelian or finite) group if G has a series of subgroups
{e} =Hy< H< H,<...<a H,= G such that H;/H;_, is either torsion-free abelian
or finite (i = 1, 2,...,n). These groups are considered here and we prove (Theorem 4.5)
that if such a group G has only a finite set S of periodic elements with [SI regular in R and R is
semi-prime, left Goldie, then R*(G) is semi-prime, left Goldie.

In §5 we define a class of groups € such that if G is a torsion-free element of ¥ and D is a
division ring then DY(G) is an Ore domain. We call these groups Ore groups and prove a
theorem similar to Theorem 4.5 for this class of groups.

Throughout, R will denote a ring with identity element 1 and G' a multiplicative group
with identity e. By artinian and noetherian we mean left artinian and left noetherian.

1. Goldie rings.

We restate the following definitions which appear in[2, pp. 228, 229].
An element of a ring R is regular if it is neither a left nor a right zero divisor. A set T of
regular elements of R which is multiplicatively closed is a left Ore set if, whenever a € R,

ceT,thereexista’ € R, ¢’ € Tsuchthatc’a = d'c.
A ring Q is a left quotient ring of R with respect to a set T of regular elements of R if

H Q2 =2R,
(ii) the elements of T"are units in Q,
(iii) the elements of Q have the form ¢! gwherece T,ae R.

If such a ring Q exists, it will be denoted by R;. When T is the set of all regular elements
of R we say that Q is the left quotient ring of R.

THEOREM 1.1. Let T be a set of regular elements of R. Then Ry exists if and only if T
is aleft Oresetin R.

t This work was supported by the Science Research Council and forms part of the author’s Ph.D.
thesis (Aberdeen). I wish to thank Professor D. A. R. Wallace for his invaluable encouragement and advice
and the referee for his helpful suggestions. In particular I am indebted to the referee for pointing out the method
of proof of Theorem 2.7. My original, longer proof followed the lines of [6, Appendices 2, 3].
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Proof. [3,p.170].

A ring R has finite left Goldie rank if it contains no infinite direct sum of non-zero left
ideals. Let S be a non-empty subset of R; then £(S), the left annihilator of S, is the left ideal
{aeR:as = OforallseS}. Aring Ris a left Goldie ring if (i) R has finite left Goldie rank
and (ii) R has ascending chain condition on left annihilators.

GoLDIE’S THEOREM [2, Theorem 1.37]. A ring R has a semi-simple artinian left quotient
ring if and only if R is a semi-prime left Goldie ring.

Lemma 1.2 [11, Corollary 2.5]. Let Q be an artinian ring with subring R such that every
element of Q has the form ¢ 'a, where c,a € R. Then Q is the left quotient ring of R.
For convenience, we formulate the following straightforward lemmas.

LemMA 1.3. Let RbearingandletT = R be aleft Ore set.

() Let L be a left ideal and let Ly = RyL, the left ideal in Ry generated by L. Then
Ly ={c'riceT,relL}.
(ii) Let L and J be left idealsin R. ThenLy nJy = (L nJ)q.
(iii) If L is a left annihilator in R, then Ly is a left annihilator in RrandLr n R = L.
(iv) If Ry is a left Goldie ring, then R is a left Goldie ring.

LEMMA 1.4. Let R, R,, ..., R, be a finite number of left Goldie rings. Then R =
R, ® R,®. . . @R, isalso aleft Goldie ring.

2. Twisted group rings,

DerINITION. Let G be a group with identity element e, R a ring with identity 1, R* the
group of central units of R and y: GXG — R* a 2-cocycle. [That is, y(g, h)y(gh, k) =
(g, hk)y(h, k), g, b, k € G]. Let R'(G) be the free left R-module with basis {§: g € G}. Define
multiplication in RY(G) by

g h =v(g, hgh (g,heQG)

extending this, by linearity, to the whole of R¥(G). Then RY(G) is an associative ring with
identity element y(e, ¢)~*e. We call RY(G) the twisted group ring of G over R with twist y.

We shall identify an element r € R with its image ry(e, ) ~!é in R'(G).

In this section we prove some results about R'(G) that we shall require later.

THEOREM 2.1. Let G be a group with a central normal subgroup Z and RY(G) a twisted
group ring such that y(g, z) = y(z, g) for all g € G and z € Z. Then there exists a twisted group
ring of G|Z over RY(Z) with twist & such that ’

R'(G) = [R'(2)}(G/2).
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Proof. Let T be a set of coset representatives for Z in G. Then every element of G is
uniquely represented in the form ¢z for some ¢t €T, ze Z. Thus given t,, t, € T there are a
unique 7(¢, ¢,) € Tand z € Zsuch that ¢, ¢, = 1(¢, t,)z. Then, in R(G),

By = (1, ) (b, t2)z = (g, 12)¥(z, (8, 1)) 2 7(ty, 1)
Thus
15,01t 1))t = y(ty, 2)9(z, ©(t1, 12)) ! Z € central units of R*(Z).

Let F = G/Z. Then for each fe Fthereis a unique ¢ € T'such that f = tZ. Defineé: FxF —»
(R(Z))* by

0(f1, f2) = 1,1,(n(ty, 12))™", where f, =4Z,f, =t,Z,t,,t,e T.

Given f;, f,, then ¢, ¢, and 7(¢, ;) are uniquely determined. Thus ¢ is well-defined and it is
readily verified that § is a 2-cocycle.

Hence we have defined [R'(Z)]*(F). We shall denote by f* the image in [R'(Z)]%(F) of an
element fe F.

Now we construct an isomorphism between RY(G) and [R'(Z)]*(F). As remarked earlier,
given g € G there are a unique te T and ze Z with g = ¢tz = zt. Then g = y(z,t)"'2f in
RY(G). Define 8: R(G) —» [R*(Z)}%(F) to be the R-homomorphism defined by

0:3 = y(z, )1zt > y(z, )" Z(1Z)*.

We show that @ is also a ring homomorphism. To do this, it is sufficient to show that 6(g,7,)=
0(31)0(F2) (91, 92 € G). Letg, = zt,,g; = z,t;, Wherezy, z; € Z,t,,t, € T. Then

3192 = (24, t1) "2, 19(25, )71 2,0,
= 9(z4, 1) 9(225 2) " 9(215 22)0(t4, 12) 212, h-tz
= (24, 1) W22, 12) 7021, 22002122, Z2)¥(23, ta) Wty 1) 212525 1y

(where t,t, = z3t3,23€Z,t3€T). Thus

0(3132) = ¥(zy, 1) '9(z2, t2) " 192y, 22021225 23)¥(23, 83) "1 9(t1s 12) 212225 (LZ)*.
Also

0(3.)0(3;) = ¥(z1s :) 7 2, (1,2)*9(z5, 12) ™ 2, (1,2)*
= 9(z1, 1) '(z2, 2) 192y, 25) 21—22 0t Z, t,Z)(t,Z)*.
Thus, recalling that

0(t,Z, 1,Z) = 115(F5) ™" = (11, 15)¥(z3, t3) " 2,
it follows that 6(3,) = 0(3,)6.).
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Hence 0 is a ring homomorphism and, since @ is clearly both one-one and onto, the re-
quired isomorphism is established.

COROLLARY 2.2. Let G be a group, Z a central normal subgroup of G and R a ring. Then
there exists a twisted group ring of G|Z over R(Z) with twist §, such that

R(G) = R(Z)/(G/Z).

Thus twisted group rings occur in a fairly natural way and we have a useful method of
expressing a group ring in terms of a subgroup and a factor group.

For Lemma 2.5 we shall require the following result. We denote the set of positive
integers by P.

LemMA 2.3. Let R be a semi-simple, artinian ring and let ne P. Let W = {we R*:
w" = 1}. Then W is finite.

Proof. Let S be the centre of R. Then, since R is semi-simple artinian, there exist
fields F,, F,, ..., F, (say) such that S = F,@F,®...@F,. ForweW, let (w;, w,,...,w,)
be the image of w in F,®F,P...@F,. Then w" = 1 implies that wf =1 (i =1,2,...,r).
Hence W = W,®W,D. . .DW,, where W, is the set of nth roots of unity in F;. But the set
of nth roots of unity in a field is finite. Hence W is finite.

COROLLARY 2.4. Let R be a semi-prime left Goldie ring andletne P. Let W = {w € R*:
w" = 1}. Then W is finite.

Proof. Let Q be the semi-simple, artinian quotient ring of R. Then W < {we Q*:
w" = 1} which, by the lemma, is finite.

DErFNITION.  Let RY(G) be a twisted groupringand let H £ G. Define
Cs(H) ={geG:gh =hg forall heH)}
= {g e Cs(H): (g, h) = y(h,g) forall heH}.

It is readily verified that C;(H) is a subgroup of G.

LEMMA 2.5. Let R be a semi-prime left Goldie ring and let R'(G) be a twisted group
ring. Let H be a subgroup of G. Then (i) Co(H) <0 C4(H) and (i) if, further, |H ] < 00, then
|Ce(H): Co(H)| < oo.

Proof. Letg,,g,€ Cec(H),he H. Then

Wg1 (92, B) _ 9(91, W92, B)o(hg s, g2)
¥k, 9:1)v(h, 92)  ¥(h, 9.1)¥(h, 92)¥(hg1, 92)
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_ 791, hg2)v(h, 92)7(g2, b)
y(h, 9192)7(91, 92)(h, 92)

_ 191, 92)7(9192, h)
y(h, 9192)7(91, 92)

= 7(9192: h)?(h: 9192)—1-

Now define 8,: C;(H) » R* by

0:(9) = (g, k)y(h, g)™* (g € Ce(H)).

Then, by the above argument, 8, is a group homomorphism, Ker 6, = {g € C;(H): y(g, h) =
y(h, g)} and hence

Cg(H) = hﬂHKer 0,,.

It follows that C;(H) < C(H).
Now suppose that |H| = n and let he H, g e Co(H). Then (hg)" = ah"g" for some
ae R. Buth" = etherefore i” € Rand so (hg)" = bg"forsome b € R. Thus

(hg) =g(hg)g=" = (gh)" = [¥(g, hy(h,g)"* hg]"
Therefore[y(g, h)y(h, g)~*]" = 1andso
Cs(H)/Ker 8, = subgroup of group of nth roots of unity in R*.

Hence, by Corollary 2.4, |C4(H): Ker 8,| < co. Further, since |H| < o, |Co(H): Co(H)| <
and the result is proved.
We now give a lemma concerning rings of quotients.

LemMA 2.6. (i) Let H <t G such that R'(G) has a left quotient ring and let T be the set of
regular elements in R'(H). Then Tis a left Ore set in R'(G).

(i) If R has a left quotient ring Q, then QY(G) is well-defined and is the left quotient ring
of R'(G) with respect to the set of regular elements of R.

Proof. (i) Adapt[12, Lemma 2.6].

(ii) This is clear.

We shall wish to know when RY(G) is semi-prime. We denote by PRY(G) the prime radical
of RY(G). In the ‘untwisted’ situation we have the following theorem due to D. Passman
[6, p. 162, see also 7] and I. Connell [6, Appendices 2 and 3].

THEOREM A. The group ring R(G) is semi-prime if and only if R is semi-prime and the

order of each finite normal subgroup of G is regular in R.
In[8, Theorem 3.7] Passman proves the following extension of this.
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THEOREM B. Let K be an algebraically closed field of characteristic p > 0 and K'(G) a
twisted group ring. Then KY(G) is semi-prime if and only if G has no finite normal subgroups of
order divisible by p.

Let X be any field of characteristic p > 0, F its algebraic closure and K(G) a twisted
group ring. Then FY(G) is well-defined and, arguing as in [1, Proposition 9], it can be shown
that

PK(G = K(G) n PF/(G).

It is immediate from this and Theorem B that, if G has no finite normal subgroups of order
divisible by p then, K¥(G) is semi-prime and we generalise this below in Theorem 2.7. The
converse of this, however, is not true. We recall a counter example discussed in [9]. Let K
be a field over which the polynomials x*"~a are irreducible for some a € K and where p =
char K. Let G = Zp®. Then we may construct a twisted group ring K¥(G) which is a field
and hence semi-prime. The orders of finite normal subgroups of G, however, are powers of p.

THEOREM 2.7. Let R be a semi-prime ring and one of the following: (i) commutative,
(i) a semi-direct product of simple rings, (iii) left Goldie. Let G be a group such that the order

of each finite normal subgroup is regular in R and let RY(G) be a twisted group ring. Then R'(G)
is semi-prime.

Proof. (i) Asin[1, proof of Theorem 5, p. 668].
(ii) Asin[1, proof of Proposition 10, pp. 669 and 670].
(iii)) Let Q be the semi-simple artinian left quotient ring of R. Then, by (ii),
Q'(G) is semi-prime and hence RY(G) is semi-prime.

3. Twisted polynomial rings.

DerINITION. Let R be a ring and §: R — R an automorphism of R. Let {x> be an
infinite cyclic group. We define Ry(x) to be the free left R-module with basis {x) and, for
r € R, we define multiplication on Ry(x) by

xr = 0(r)x
x“r =071(r)x"1,

extending by linearity to the whole of Ry(x). With this definition of multiplication R,(x)
is an associative ring.

Thus Rg(x) is a ring of polynomials in x and x~! with coefficients from R. The subring
of Ry(x) containing only the polynomials in non-negative powers of x, denoted by R,[x], is
called a twisted polynomial ring.

A.Horn in[4, §2] has proved the following.

THEOREM 3.1. Let R be a noetherian ring. Then R,[x] has an artinian left quotient ring if
and only if R has an artinian left quotient ring.
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From this we may deduce the following corollary.

COROLLARY 3.2, Let R have an artinian left quotient ring. Then Ry(x) has an artinian
left quotient ring.

Proof. Let Q be the left quotient ring of R. Then, by the theorem, Q,[x] has an artinian
left quotient ring 0. Since x'is regularin Qg[x], x ™" € @ (i € P) and hence

Ry(x) € Qy(x) = Q.

Itis now clear from Lemma 1.2 that § is the artinian left quotient ring of R,(x).

4. Quotient rings of R’(G). In this section we obtain sufficient conditions for RY(G) to
have a semi-simple artinian quotient ring, similar to but less stringent than those obtained by
P. Smith in [12, Theorem 2.18] for R(G). By Goldie’s Theorem, if RY(G) is to have a semi-
simple artinian left quotient ring, then it must itself be a semi-prime left Goldie ring and
therefore must have both a.c.c. on left annihilators and finite left Goldie rank.

LemMa 4.1. Let RY(G) be semi-prime and let H <1 G be such that (i) IG: H [ < o and
(i) R'(H) is semi-prime left Goldie. Then RY(G) is semi-prime left Goldie.

Proof. By Lemma 2.6, the set T of regular elements of R'(H) is a left Ore set in R(G).

Let S = [R(G)]r. Then S is semi-prime and S = Y, Q¢, where Q is the left quotient ring
ceC
of R'(H) and C is a set of coset representatives for H in G. But C is finite; therefore S is an

artinian Q-module and hence an artinian ring. It follows from Lemma 1.2 that S is the left
quotient ring of R'(G) and so, by Goldie’s Theorem, R"(G) is a semi-prime left Goldie ring.

LeEMMA 4.2. Let RY(G) have a left quotient ring and let H <1 G be such that

(i) R'(H) is semi-prime left Goldie, and
(ii) G/H is ordered.

Then R'(G) is semi-prime left Goldie.

Proof. We prove that every essential left ideal in RY(G) contains a regular element. Let
E be an essential left ideal in RY(G) and let

E, = {ae R'(H): goa+g,a,+...+g,a,€ E for some n and a;e R'(H) and where
goH < g,H<...<g,Hin G/H}.

Then E, is a left ideal in R'(H). Let ae R'(H), a # 0. Then there exists a = kb, +k,b,+
...+k,b,e R(G), b;e R(H), kyH < k,H < ... < k,H in G/H, such that aa # 0 and
ag e E. Therefore ba # 0and byae E, for some 1 £ i £ mand it follows that E, is essential
in R'(H). But R'(H) is semi-prime left Goldie; therefore E, contains a regular element of
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RY(H). That is, there exists x € E with. x = oc+g,¢,+. . .+7,c,, Where ¢; € R (H)), ¢ is
regularin R'(H)and g H < g,H < ... < g,H in G/H. 1t is readily verified that x is regular
in R'(G).

Now since every essential left ideal of RY(G) contains a regular element, Q, the left
quotient ring of RY(G), contains no proper essential left ideals and is therefore a semi-simple
artinian ring[2, p. 234 and p. 219].

CoRroLLARY 4.3. Let R'(G) be a twisted group ring and H <a G be such that G[H is
infinite cyclic and R'(H) is semi-prime left Goldie. Then RY(G) is semi-prime left Goldie.

Proof. G|H = {gH) for some g e G\H. Define 9: R'(H) —» R'(H) by 6(«) = gag ™"
(¢ € R'(H)). Then, since H<a G, 8 is an automorphism of R'(H) and, in the notation of §3,
with g = x, R'(G) = R'(H),(g). Now it follows from Corollary 3.2 that R*(G) has an artinian
left quotient ring and so, G/ H being an ordered group, RY(G) is semi-prime left Goldie.

LemMA 4.4, Let R'(G) be a twisted group ring and let H <a G be such that (i) R'(H)
is semi-prime left Goldie, and (ii) G/H is torsion-free abelian. Then RY(G) is semi-prime left
Goldie. :

Proof. G/H is an ordered group. Thus, from Lemma 4.2, it will be sufficient to prove that
RY(G) has a left quotient ring. To do so it is enough to show that R(G,) has a left quotient
ring for every subgroup G, such that G,/T is finitely generated. But G,/H is a direct sum of a
finite number of infinite cyclic groups and the required result follows by induction from
Corollary 4.3.

THEOREM 4.5. Let G be a poly- (torsion-free abelian or finite) group and let S be the set
of all periodic elements of G. Let R be semi-prime left Goldie and let S be finite with |S I regular
in R. "Then RY(G) is semi-prime left Goldie.

Proof. By Theorem 2.7, R'(G) is semi-prime and so the result follows by induction from
Lemmas4.1,4.4.

ExaMPLES of poly- (torsion-free abelian or finite) groups.

(i) Nilpotent groups with finite set of periodic elements. (A torsion-free nilpotent
group has central series with factors all torsion-free abelian [5, Theorem 1.2].)
(ii) Soluble groups with derived series whose factors have only a finite number of periodic
elements,
(iii) FC-soluble groups[10, pp. 121, 129] with series

{¢} =Hy<Hy< ..<H, =G

such that H;,,/H, is an FC-group whose torsion subgroup [10, p. 121, Theorem 4.32] is
finite(¢ = 0,1,...,n=-1).

((i) and (ii) are particular examples of (iii).)
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S. Ore groups.

DEerINITION. A ring Ris called a left Ore domain if

(i) R contains no proper zero divisors, and
(it) R satisfies the left Ore condition.

We shall be interested in the class of groups such that, given G torsion-free and an Ore
domain R, then RY(G)is an Ore domain. We therefore make the following definition.

DEerINITION. -Let & be the class of groups such that
())Ge¥4, HZ G=He%,
(i) Ge¥, H< G, [H] <w = G/He¥,
(iii) if G € ¥ is torsion-free, D is a division ring and DY(G) a twisted group ring, then
DY(G) is an Ore domain.
If G € € we call G an Ore group. Every periodic group is an Ore group. Also abelian groups,
nilpotent groups and FC-groups are Ore groups.

THEOREM 5.1. Let G be a group such that any twisted group ring D*(G), where D is a
division ring, is semi-prime left Goldie. Let R be a semi-prime left Goldie ring. Then R'(G) is
semi-prime left Goldie.

Proof. Let Q be the semi-simple artinian quotient ring of R. By Lemmas 2.6 and 1.3,
(iv), it is sufficient to prove that QY(G) is semi-prime left Goldie. Then

Q = M, (D,)®M,(D,)®. . . ®M,(D,)

for some integers n,, .. ., n, and division rings D;, D,, ..., D,. Also there exist orthogonal
central idempotents e, e,,...,e,€ Q such that M, (D)= Qe; (i = 1,2,...,r). Letg,heG.
Since y(g, k) is a central unit of R, y(g, h)e; is a central unit of D; (i = 1, 2, .. ., r) and thus,
defining y/(g, #) = y(g, h)e;, we have defined twisted group rings DI(G)(i = 1,2,...,r). It
follows that

0'(6) = M, (DY(G) ® M,(D¥(G) & ... ® M, (DI(G)).

Hence it is sufficient to prove that each M, (D¥(G)) is semi-prime left Goldie. But D}(G) has
a semi-simple artinian quotient ring Q,, by the hypotheses of the theorem; hence [11, Theorem
3.1] M,, (Q)) is the semi-simple artinian quotient ring of M, (D (G)).

COROLLARY 5.2. Let R be a semi-prime left Goldie ring and G a torsion-free Ore group.
Then R'(G) is semi-prime left Goldie.

Before the main theorem of this section we require the following lemma, the proof of
which is routine.

LemMma 5.3. Let G be a group and let S be the set of all periodic elements of G. Then
() Ce(S) = G,

(i) |S| < 0 = S< G,

(iii) |S| < 0 = |G: CG(S)| < o0,
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THEOREM 5.4. Let R be a semi-prime left Goldie ring and let G be an Ore group such that
the set S of all periodic elements of G is finite with |S| regular in R. Then R'(G) is semi-prime
left Goldie.

Proof. Let Cq(S) = {ge Cs(S): (g, s)=17(s, g) for all seS}. By Lemma 2.5,
|Ce(S): Ce(S)| < 0. Hence, since |G: Co(S)| < o, |G: C4(S)| < o. Also, by Theorem 2.7,
PRY(G) = 0 and so, by Lemma 4.1, it is sufficient to prove that R'(C4;(S)) is semi-prime left
Goldie. Let C = Cz(S)n S. Then C is a central subgroup of C4(S) and, since C € S,
gé = ¢g for all g e C4(S), ce C. Therefore, by Theorem 2.1, we may construct a twisted
group ring of C;(S)/C over R'(C) with twist § (say) such that

RY(Co(S)) = [R(C)IACS)/C).

But, since |C| < o0 and |C| is regular in R, RY(C) is semi-prime left Goldie (Lemma 4.1).
Also, since G is an Ore group, Cg(S) is an Ore group. Then, since C is the set of periodic
elements of C4(S) and C s finite, C4(S)/C is a torsion-free Ore group. It now follows from
Corollary 5.2 that [R(C)]X(C(S)/C) is a semi-prime left Goldie ring. That is, R"(Cs(S)) is
semi-prime left Goldie and hence RY(G) is also semi-prime left Goldie.

DerniTions. If & is a class of groups, L is the class of locally Z-groups consisting of
all groups G such that every finite subset of G is contained in a Z-subgroup.
% is called a local classif L¥ = %. [10,part1p. 5, part2p. 93].

THEOREM 5.5. The class € of Ore groups is a local class.

Proof. Let GeL¥. Let S be a finite subset of G and let H = {S). Since G € L%, there
exists Ke # such that S = K. Then H £ K and so He¥. From this it is clear that L%
satisfies (1) and (ii) of the definition of an Ore group. We must now prove that if G € LY is
torsion-free and D is a division ring then DY(G) is an Ore domain. To prove this we show that

(2) xy = Oifandonlyifx = Oory = 0(x, y € D'(G));

(b) given x, y € D(G), there exist x', ¥’ € D'(G) such that x'x = y'y.
Let x, y € D'(G); then there exists a finitely generated subgroup H such that x, y € D'(H).
Then H € ¥ so that H is a torsion-free Ore group and DY(H) is an Ore domain. Now, since

x, y € DY(H), they satisfy conditions (a) and (b). Hence DY(G) is an Ore domain, We have
shown that L% satisfies (i), (ii) and (iii) of the definition of . Hence L¥ < ¥ andso L% = ¥.

COROLLARY 5.6. Let G be a locally nilpotent group (locally FC group); then G is an Ore
group.

THEOREM 5.7. Let G be a locally nilpotent (locally FC) group. Then R(G) is semi-prime
left Goldie if and only if

(i) Ris semi-prime left Goldie, and
(ii) the subgroup S of all periodic elements of G is finite with |S | regularin R,
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Proof. That (i) and (ii) are sufficient for R(G) to be semi-prime left Goldie follows from
Theorem 5.4.

Conversely, let R(G) be semi-prime left Goldie. It is not hard to show that R must be a
left Goldie ring. Then, by Theorem A and the fact that the set of periodic elements of a
locally nilpotent (locally FC) group is a locally finite subgroup, it follows that (i) and (ii)
hold true.

THEOREM 5.8. Let G be a group and let H <1 G be such that H is periodic and G|H is an
Oregroup. Then G is an Ore group.

Proof. Let & = {G: G has a periodic normal subgroup H with G/H an Ore group}.
Clearly ¥ = &. Weshall prove that & satisfies the definition of % and hence that & = ¥.
Let G € & with H < Gsuch that His periodicand G/H e 4.

() If K £ G, then Kn H is a periodic normal subgroup of K. Also K/(Kn H) =
KH|/H £ G|He%. Hence K/(K n H)e % and it follows that K e .

(ii) Let K <a G, |K| < 0. Now HK/K =~ H|/(H n K) is a periodic normal subgroup
of G/K. Also (G/K)/(HK|K) = (G/H)/(HK|H)which belongs to %, since G/H € ¢ and HK/H=
K|(H n K)is a finite normal subgroup of G/H. Hence G/Ke Z.

(iii) If G is torsion-free, then His trivial and hence G € %.

We have shown that & satisfies conditions (i), (ii) and (iii) of the definition of ¥. Hence
x=¢.
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