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ABSTRACT

A first-order linear partial differential equation is
presented, giving the non-stationary potential functions U=U
- &,y,t) which give rise to a given family of evoling planar
orbits £ x,y,t) = c in two-dimensional dynamical system. It

is shown, that this equation is applied in celestial mechan-~
ics of variable mass.

INTRODUCT ION

A new approach to the classical imverse problem of find~

ing the potential from the orbits was made by V.Szebehely
1974). ’ )

Let

f&,y) = ¢c = const. 1)

is a given monoparametric family of planar orbits in dynami-
cal system determined by the eguations 6f motion in rectangu-
lar coordinates x and y

X=U_,y=1U )

then the potential U = U X,y) may be determined from Szebehe-
ly's equation
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where dots denote derivatives with respect to the time, sub~
scripts correspond to partial derivatives and h is the total
energy per unit mass of the body.

In the present paper we shall consider the inverse pro-
bhlem for tw-dimensional dissipative system.

THE DERIVATION OF THE EQUATION

Let us consider the two-dimensional dissipative system
determined by the equations of motion

Xx=U_ +aXx , y=U_+ ay , @)

where U = U&,y,t) and o = a(t) is an arbitrary function of
time. These equations admit the mon-stationary analogy of the
angular momentum integral

t
Xy -y =k, k =const. exp( S o (t)dt) (5)

t
o

For the family of orbits given by a twice differentiable
function £ x,y,t) = ¢ = const., we have along each orbit

x£f + vyf + f =0 (6)
From equations (5) and (6) the components of the velo-

city may be expressed as oy |

-kf - xf

y t )

x'_'xfx+yfy '

and
S,=kfx-yft
xfx+yfy

The time-derivative of equation (6) is
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. . «2 .. . . _
xfx + yfy + X fyy+ 2xy‘:Exy + 2xfxt + 2yfyt+ ftt =0 @)

Sabstituting equations 4) and (7) into the equation (8) one

obtains

2 2
£ - 2f £ F 4 £
£U +fU +k XXX XY X Y Y XX

x Yy (xfx+yfy)2

2k £ f -f f + f -f f
t (fy XX fx xy)x (fy Xy fx yy)y (9)

+ 2
(xfx + yfy)

fxfyt - fyfxt 5 X fxx + 2xyf&y+ y fyy
2k SEAE +E
x v E, + yE)

xf.xt + yE
- Xt~ vyt _ =
th xfx +ny uft +ftt 0

Equation (9) in polar coordinates r amd @ is

fo 2

K 2 2
f:',__Ur + ;!-Uo + r—s?— (I'f]’__rf9 + rfrf09
Y

2.3 2 t
- 2rfrfrgf9 +r fr + 2frf9) + 2 r—g?— (frfg
r

2f . f

rt ¢t _
rfrf-ro + rfrrfe) - (!ft + ftt =0 10)

The equation (9) (r (0)) is a first-order'linkad partial
differential equation, giving the nmon~-stationary potentials.
The solution of this equation is not unique.

AN EXAMPLE

As an example of solution of the eguation (10) one may
consider the motion along evolving spiral orbits

f@,8,t) = ry(Q+e cos 8) = P = const,, (1)

where Yy = vy (t) is a given function of time, e = const.
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Qbstituting (11) in (10) we obtain

2
S (- k . =
(1+e cos 8)U_ . sin &4 + ;3—— WP = 0, (12)
where
. <2 v
W= W) =L +2 - L a3)
Y ¥ Y

Equation (12) can be solved directly by the method of cha-
racteristics,

Then
dr _ _ _xr ds - du 1)
Yy(l+e cos &) =~  ye sin © k2Y
- ;3- + R.P

The general solution of equation (14) is

2 2 e
k™Y +W.r + ¢(r (l—cos 0) ), w5)

U =
P.x 2 (sin 9)- "¢

where ¢ is an arbitrary function of its argument.

THE EQUATIONS OF MODEL PROB.EMS IN CELESTIAL MECHANICS OF
VAR IAPLE MASS

Let us put in (15) ¢ = 0, then equation (15) determines
the force of the form
" 2, 5 -+ '
F=-5Y7+ws 16)
- pr _

From equation (16) under various values of the funhctions
k), a(t), y(t) we can obtain the following equations of
motion:

1. When k(t) = /GM (&), vy (t) = P = const., a7)

then we have from (16) the equation of aperiodic motion al=-
ong a conic section

d2+ r 1 dM d
r._ . r Al 4dr
d——z-t = - GM (t) r—3— + M 4t 4t ¢ (i8)
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2. When aft) = 0, k(t) = VP = const., v () = u (t), 19)

then in this case we obtain the equation of the model probklem
for a spiral motion

2> -+ 2
d'r _ ur oo d 1
= = ur (—); (20)
at? at? ¥
3. When
(t) 1 (21)

k(t) = TEY ! Y(t)=mr

then we receive the equation of motion of the model problem
of the evolution of binary system inside gravitating resis-
tant medium

dZ; ; 1l ]..1 Yy 2 Y 1 ﬁ i I- ->
d? u r—3— 3 (u y ) + ¥y -3 (u ¥ ) X Ir

(22)

The equations (18), (20), (22) play important role in celes-
tial mechanics of variable mass.
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