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Abstract Using the Stückrad–Vogel self-intersection cycle of an irreducible and reduced curve in pro-
jective space, we obtain a formula that relates the degree of the secant variety, the degree and the
genus of the curve and the self-intersection numbers, the multiplicities and the number of branches of
the curve at its singular points. From this formula we deduce an expression for the difference between
the genera of the curve. This result shows that the self-intersection multiplicity of a curve in projective
N -space at a singular point is a natural generalization of the intersection multiplicity of a plane curve
with its generic polar curve. In this approach, the degree of the secant variety (up to a factor 2), the self-
intersection numbers and the multiplicities of the singular points are leading coefficients of a bivariate
Hilbert polynomial, which can be computed by computer algebra systems.
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1. Introduction

Let C ⊂ P
N
C

(N � 4) denote an irreducible and reduced non-degenerate projective
curve, where C is the field of complex numbers. The secant variety Sec C of C is a
three-dimensional variety, the degree of which can be computed by intersecting it with
a general (N − 3)-dimensional linear subspace Γ ⊂ P

N , and it is equal to the number of
ordinary double points of the projection πΓ : C → P

2 with centre Γ that are not images
of singular points of C. This number can be obtained by subtracting from the arithmetic
genus of the plane curve C̄ = πΓ (C) the geometric genus of C and the contributions of
those singular points that are projections of singular points of C.

In this paper we present a formula for the degree of SecC coming from the Stückrad–
Vogel self-intersection cycle of C (see [23]) and involving the genus, the degree, the
self-intersection numbers, the multiplicities and the number of branches of the curve at
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its singular points. This formula does not use a generic projection of the curve to P
2,

which might lead to too much computational complexity.
More precisely, by results of van Gastel [26] and Flenner and Manaresi [10], the self-

intersection cycle v(C, C) of Stückrad and Vogel [23] enables us to deduce the relation
between the degree d = deg C, the genus g, the degrees of the tangent variety TanC and
secant variety Sec C and the self-intersection numbers ji := j(C, C; Pi) at the singular
points P1, . . . , Ps of C ⊂ P

N , N � 4, as

(deg C)2 = deg C +
s∑

i=1

ji + deg Tan C + 2 deg Sec C.

Combining this with a well-known formula for the degree of TanC (see Proposition 3.3
and Remark 3.4), we get the following result.

Theorem 1.1. With the preceding notation, if mi and ri denote the multiplicity and
the number of branches of C ⊂ P

N (N � 4) at Pi, respectively,

deg Sec C =
(

d − 1
2

)
− g − 1

2

s∑
i=1

(ji − mi + ri).

The intersection multiplicities ji and the ramification indices mi − ri of Pi can be
expressed in terms of the local parametrization of the curve (see Proposition 4.2 and
Corollary 4.3 and [12, p. 264], respectively), but they can also be computed without
knowing a local parametrization, since ji and mi are leading coefficients of a bivariate
Hilbert polynomial (see [3, Theorem 4.1] applied to the local rings OC,Pi). In addition,
2 deg Sec C is a leading coefficient of a bivariate Hilbert polynomial (see Theorems 2.2
and 3.5).

If N = 3, then in the preceding theorem the degree of the secant variety has to be
replaced by the number ρ of secants of the curve C passing through a generic point of
P

3 = Sec C, and a generalization to singular curves of the secant formula by Peters and
Simonis [18] is obtained (see Proposition 3.7). Again, 2ρ is a leading coefficient of a
bivariate Hilbert polynomial.

Using a generic plane projection, we give a second formula, which expresses the differ-
ence between the genera of the curve in terms of invariants of the singular points. This
formula is obtained from Theorem 3.5 and Proposition 3.7, by expressing the degree of
the secant variety of C (or the number ρ) as a function of the degree, the arithmetic
genus and some local invariants of the singular points of C (see Corollary 3.13 and
Remark 3.10).

Theorem 1.2. If C ⊂ P
N , N � 2, is a non-degenerate projective curve of arithmetic

genus pa(C) and geometric genus g(C), C̄ is a generic plane projection of C, P̄ i is the
image of the singular point Pi under the projection, ci is the conductor ideal for OC,Pi

in OC̄,P̄i
, µ̄i is the Milnor number of C̄ at P̄ i and µi is the Milnor number of C at Pi,
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then

pa(C) − g(C) = 1
2

s∑
i=1

(ji − mi + ri − 2 dimC(OC̄,P̄i
/ciOC̄,P̄i

))

= 1
2

s∑
i=1

(ji − mi + ri − µ̄i + µi).

Moreover,

pa(C) − g(C) = 1
2

s∑
i=1

(ji − mi + ri)

holds if and only if the embedding dimension of C at each (singular) point P is at most 2.

This formula extends the classical genus formula of Max Noether for plane curves
(see [9, p. 180]) to higher dimensions. Since for a plane curve C the self-intersection
number j(C, C; Pi) = ji equals the intersection multiplicity of a generic polar curve
with the curve at the point Pi (see [9, Appendix] and [11, Example 2.2.10]), the self-
intersection multiplicity can be regarded as a natural generalization of the intersection
multiplicity of a plane curve with its generic polar curve.

We also illustrate our results by a few examples.

2. A short review of the Stückrad–Vogel intersection cycle

Let X, Y be closed subvarieties of the projective space P
N = P

N
K , where K is an alge-

braically closed field of characteristic 0. Proving a Bézout theorem for improper inter-
sections, Stückrad and Vogel [23] (see also [11]) introduced the cycles vk = vk(X, Y ) of
dimension k on X ∩ Y , which are obtained by a simple algorithm on the ruled join

J := J(X, Y ) := {(x : y) ∈ P
2N+1 | x ∈ X, y ∈ Y }

in the following way. Let ∆ := {(x : x) ∈ P
2N+1 | x ∈ P

N} be the diagonal, so ∆ is given
by

x0 − y0 = · · · = xN − yN = 0,

where x0, . . . , xN , y0, . . . , yN are homogeneous coordinates in P
2N+1. For the indetermi-

nates uij(0 � i, j � N), let L be the pure transcendental extension K(uij)0�i, j�N and
for a subvariety Z ⊂ P

N
K set ZL := Z ⊗K L.

Let Hi ⊆ JL := J ⊗K L (i = 0, . . . , N) be the divisor given by

li :=
N∑

j=0

uij(xj − yj) = 0.

Then, one defines the cycles βk and vk inductively by setting

βdim J := [J ].
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If βk is already defined, decompose the intersection

βk ∩ Hdim J−k = vk−1 + βk−1 (dimJ − N � k � dim J),

where the support of vk−1 lies in ∆ and where no component of βk−1 is contained in ∆.
It follows that vk is a k-dimensional cycle on XL ∩ YL

∼= JL ∩ ∆L. In general, v =
∑

kvk

is a cycle defined over L, which can also be written in the form

v =
∑
C

jC [C],

where C are the subvarieties of XL ∩ YL that appear in the cycle v and jC = j(X, Y ; C)
is a positive integer called the intersection number or the intersection multiplicity of X

and Y along C.
The part of the cycle vk that is defined over the base field K, the so-called K-rational

part or fixed part, will be denoted by rat(vk) and the remaining part, the so-called irra-
tional or movable part, will be denoted by mov(vk), that is,

vk = rat(vk) + mov(vk).

Using the theory of residual intersections, Flenner and Manaresi [10] gave a geometric
interpretation of the βk as the cycles of double points of generic linear projections and
of the non-K-rational components of v, at least in the case when X, Y are smooth and
meet smoothly (see [10] or [11, Chapter 8] for precise definitions and statements). In the
case of self-intersection, i.e. X = Y , from the more general result [10, Theorem 4.6] one
has the following.

Theorem 2.1 (Flenner and Manaresi [10, Corollary 4.9]). Let X ⊆ P
N be

an algebraic variety of dimension n. Let k be an integer such that 0 � k < n and
N � 2n − k − 1. Let p : XL → P

2n−k−1
L be the generic linear projection and let R(p) be

its ramification locus. Then, dim R(p) � k, and the associated k-cycle [R(p)]k is just vk

on the smooth locus Sm(X).

The degree of vk can be calculated as follows. Let I(J) and I(∆) be the ideals of
J and ∆, respectively, in the ring L[x0, . . . , xN , y0, . . . , yN ] and denote by m the ideal
(x0, . . . , xN , y0, . . . , yN ). Let A := (L[x0, . . . , xN , y0, . . . , yN ]/I(J))m, let I := I(∆)A and
let GI(A) :=

⊕
j�0I

j/Ij+1 be the associated graded ring of A with respect to I. Consider
the bigraded ring

R =
⊕
i,j�0

Ri,j =
⊕
i,j�0

Gi
m(Gj

I(A)) =
⊕
i,j�0

(miIj + Ij+1)/(mi+1Ij + Ij+1),

where R00 = A/m = L. Then, for i and j sufficiently large, the twofold sum transform∑j
q=0

∑i
p=0 dim Rpq of the bivariate Hilbert function of R can be written in the form

d∑
k=0

ck

(
i + k

k

)(
j + d − k

d − k

)
+ lower-order terms,
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where the non-negative integers ck are the generalized Samuel multiplicities of [3]. For
k = 0, . . . , d we set

ck(X, Y ) := ck(I) := ck.

Theorem 2.2 (Achilles and Manaresi [3, Corollary 4.2]). With the previous
notation, defining d = dimA = dimJ + 1,

c0(X, Y ) = deg β0, c1(X, Y ) = deg v0, c2(X, Y ) = deg v1, . . . , cd(X, Y ) = deg vd−1.

Moreover, if k > dim(X ∩ Y ) + 1, then ck(X, Y ) = 0.

The integers ck can be computed by using computer algebra systems (e.g. Cali [1]), in
which the calculation of the Hilbert series of a multi-graded ring has been implemented.

The main result of [23] is the following generalized Bézout theorem.

Theorem 2.3 (Stückrad and Vogel [23]).

deg X deg Y =
∑
i�0

deg vi + deg β0.

In [23] the number deg β0 was called the multiplicity of the empty set. It admits the
following geometric interpretation in terms of the embedded join XY . Recall that the
embedded join variety XY is, by definition, the closure of the image of J under the
rational map

π : J ��� P
N , (x : y) �→ x − y.

Theorem 2.4 (van Gastel [26]). We have that

deg β0 = deg XY deg(J/XY ),

where deg(J/XY ) is the mapping degree of π.

As usual, the mapping degree of π is defined to be 0 if π has fibres of positive dimen-
sion. It is equal to the number of points in the generic fibre if π is a finite map. When the
embedded join has the expected dimension, then deg β0 	= 0 and, by the previous theo-
rem, one can easily compute the product deg XY deg(J/XY ) by computing the integer
c0(X, Y ) = deg β0.

In the case X = Y , the embedded join is the secant variety Sec X. It is well known that
for a non-plane curve C ⊂ P

N (N � 3) the secant variety has the expected dimension
3 = 2 dimC + 1 = dimJ(C, C) (see, for example, [13, Exercise 11.25]).

In the case of curves, from [11, Proposition 8.2.12] (in which 1 is erroneously printed
instead of 2) and its proof, one has the following result.

Proposition 2.5. Let C, D ⊂ P
N , N � 4, be irreducible, reduced, non-degenerate

distinct curves. Then, deg(J(C, D)/CD) = 1 and deg(J(C, C)/ Sec C) = 2.

Corollary 2.6. Let C, D ⊂ P
N , N � 4, be irreducible, reduced, non-degenerate

distinct curves. Then,

deg CD = deg C deg D −
∑

P∈C∩D

jP = deg C deg D − deg v0.
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Proof. From the refined Bézout theorem we get that

deg C deg D =
∑

P∈C∩D

jP + deg(J(C, D)/CD) deg CD,

and by Proposition 2.5 we get that deg(J(C, D)/CD) = 1, from which we complete the
proof. �

3. Self-intersections of curves and secant formulae

In this section we will use the self-intersection cycle for projective curves in order to
derive secant formulae. Our formulae hold for arbitrary (possibly singular) curves. We
will start by fixing the notation for this section.

Notation 3.1. Let C ⊂ P
N
C

(N � 2) be an irreducible and reduced curve over the
complex numbers C of degree d. Let P1, . . . Ps be the singular points of C, that is,
Sing C = {P1, . . . , Ps}, and let mi denote the multiplicity of C at Pi.

Let τ : C̃ → C be the normalization of C. For each i = 1, . . . , s let Qi1, . . . , Qiri be the
points of C̃ over Pi, that is, τ−1(Pi) = {Qi1, . . . , Qiri}. We note that ri = rPi(C) is the
number of branches of C at Pi (i = 1, . . . , s), which is known to be equal to the number
of minimal primes of the completion of the local ring OC,Pi .

For a point P ∈ C, we denote by ÕC,P the integral closure of the local ring OC,P in
its field of fractions and by

δP (C) = dimC ÕC,P /OC,P = lengthOCP
ÕC,P /OC,P

the delta invariant or order of singularity of C at P (see, for example, [22, Chapter IV.2]).
We remark that δP (C) > 0 if and only if P ∈ Sing C, and by Milnor’s formula

2δP (C) = µP (C) + rP (C) − 1, (3.1)

where µP (C) is the (generalized) Milnor number in the sense of Buchweitz and Greuel [6,
Proposition 1.2.1], which is zero if and only if the curve C is smooth at P .

If we define by

δ(C) =
s∑

i=1

δPi(C)

the total delta invariant of C and by pa(C) and g(C) = pa(C̃) the arithmetic and
geometric genus of C, respectively, then (see [20, Theorem 8] or [22, Chapter IV.7,
Proposition 3])

δ(C) = pa(C) − g(C). (3.2)

If N � 3, following [21, Chapter IX, § 1] we denote by µ1(C) the rank of the curve C,
that is, the number of points P ∈ C such that the tangent line TC,P intersects a generic
linear subspace Λ of P

N of dimension N − 2, or, equivalently, the degree of the image of
C under the Gauss map C ��� G(1, N) (the Grassmannian of lines in P

N ) with respect
to the Plücker embedding (see, for example, [12, Chapter 2, § 4]). It is immediate that

µ1(C) = deg R(πΛ), (3.3)
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where R(πΛ) denotes the ramification locus of the linear projection πΛ : C → P
1 of the

curve C along the generic (N − 2)-plane Λ ⊂ P
N .

We denote by TanC the tangent variety of C, that is, the closure of the union of all
projective tangent lines to C at smooth points.

Proposition 3.2. For any non-plane curve C,

µ1(C) = deg TanC

holds.

Proof. By the definition of the rank we have that

µ1(C) = γ deg Tan C, (3.4)

where γ denotes the number of tangent lines to C passing through a generic point of
Tan C. We observe that if C is not a plane curve, then dim SecC = 3. By [11, Corol-
lary 4.3.3] it follows that the tangent lines to C at generic points do not intersect; hence,
γ = 1 and the proof is complete. �

The self-intersection cycle of C is

v(C, C) = [C] + rat(v0) + mov(v0) + β0. (3.5)

For a point P ∈ C we denote by jP the self-intersection number j(C, C; P ). Then,
by [2, Corollary 2.5] or [11, Corollary 5.4.13],

rat(v0) =
∑

P∈Sing C

jP [P ] =
s∑

i=1

ji[Pi];

hence, by taking degrees,

deg(rat(v0)) =
s∑

i=1

ji.

Proposition 3.3. Let C ⊂ P
N (N � 3) be a non-plane curve. With Notation 3.1 we

have that

deg(mov(v0)) = µ1(C) = deg TanC = 2d + 2g − 2 −
s∑

i=1

(mi − ri).

Proof. By [2, Corollary 2.5] or [11, Corollary 5.4.13], mov(v0) is the part of v0 sup-
ported on Sm(C) and, by [10, Theorem 4.6], it is the restriction to Sm(C) of the ramifica-
tion locus of a projection πΛ : C → P

1 of C along a generic (N−2)-plane Λ ⊂ P
N . By (3.3)

we have the first equality and by Proposition 3.2 we have the second one. The last equal-
ity can be deduced from the general Plücker formulae (see, for example, [12, p. 273]).
With the notation of [12], for k = 0 one has that d−1 + d1 = deg TanC and the total
ramification index of C (called β0 in [12, p. 268]) is

∑s
i=1(mi − ri). �
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Remark 3.4. The last equality of Proposition 3.3 can also be obtained in the following
way. With Notation 3.1, let τ : C̃ → C be the normalization of C and let τ ◦ π : C̃ → P

1

be the composition of τ and π. By Hurwitz’s formula (see, for example, [12, p. 216])

2d + 2g − 2 =
s∑

i=1

ri∑
j=1

(vQij
− 1) +

∑
P∈τ−1(Sm C)

(vP − 1), (3.6)

where vR denotes the ramification index of τ ◦ π at the point R ∈ C̃; hence,

deg mov(v0) =
∑

P∈τ−1(Sm C)

(vP − 1) = 2d + 2g − 2 −
s∑

i=1

ri∑
j=1

(vQij
− 1). (3.7)

For Pi ∈ Sing C and λ ∈ OPN ,Pi
a local equation for the hyperplane 〈Λ, Pi〉, we have

that
vQij = length(OC̃,Qij

/λOC̃,Qij
);

hence,
s∑

i=1

ri∑
j=1

(vQij
− 1) =

s∑
i=1

( ri∑
j=1

length(OC̃,Qij
/λOC̃,Qij

) − ri

)

=
s∑

i=1

(length(OC,Pi
/λOC,Pi

) − ri) =
s∑

i=1

(mi − ri).

Therefore,

deg mov(v0) = 2d + 2g − 2 −
s∑

i=1

(mi − ri),

as required.

Taking degrees in (3.5) and using Notation 3.1, from the above proposition and The-
orem 2.4 we have that

(deg C)2 = deg C +
s∑

i=1

ji + deg Tan C + deg Sec C deg(J/Sec C), (3.8)

that is,

d2 = d +
s∑

i=1

ji + 2d + 2g − 2 −
s∑

i=1

(mi − ri) + deg Sec C deg(J/Sec C), (3.9)

from which we can deduce the following theorem for the degree of the secant varieties of
non-degenerate curves in P

N (see also [25, Chapter 3] for ideas in this direction).

Theorem 3.5. Let C ⊂ P
N (N � 4) be a non-degenerate curve. With Notation 3.1,

we have that

deg Sec C =
c0(C, C)

2
=

(
d − 1

2

)
− g − 1

2

s∑
i=1

(ji − mi + ri).
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Proof. First note that dim SecC = 3. Hence, by Proposition 2.5 the rational map
J(C, C) ��� Sec C is finite of degree 2. Since, by Theorems 2.2 and 2.4,

deg β0 = c0(C, C) = deg Sec C deg(J(C, C)/ Sec C),

by (3.9) we complete the proof. �

Remark 3.6. With the notation of the preceding theorem, Dale proved in [8, Theo-
rem 4.3] that

deg Sec C = 1
2 (d2 − 3d − p1),

where d and p1 are the degrees of the Segre classes of the curve. Combining our formula
with Dale’s result, we obtain that

p1 = g + 1 − 1
2

s∑
i=1

(ji − mi + ri).

Applying (3.9) to singular curves in P
3 we obtain a generalization of the secant formula

of Peters and Simonis, whose result holds for n-dimensional non-singular projective vari-
eties in P

2n+1 (see [18, Theorem 3.4]). The formula we present in the next proposition
also holds for possibly singular curves.

Proposition 3.7. Let C ⊂ P
3 be a non-degenerate curve. Under Notation 3.1, the

number ρ of secants of C passing through a generic point of P
3 is given by

ρ =
(

d − 1
2

)
− g − 1

2

s∑
i=1

(ji − mi + ri).

Proof. We remark that Sec C = P
3 and the number 2ρ is the degree of the finite map

J(C, C) ��� P
3, that is, deg β0. By (3.9) the proof is complete. �

As a trivial consequence of Theorem 3.5 and Proposition 3.7 there exists the following
bound on the geometric genus of a space curve C ⊂ P

N , N � 3.

Corollary 3.8. Let C ⊂ P
N , N � 3, be a non-degenerate curve. Under Notation 3.1,

the bounds

g <

(
d − 1

2

)
− 1

2

s∑
i=1

(ji − mi + ri) �
(

d − 1
2

)
− s

2

exist.

Proof. For the second inequality, observe that in the formulae of Theorem 3.5, Propo-
sition 3.7 and Corollary 3.8 it holds that

ji − mi + ri > 0.

In fact, by the local version of Bézout’s theorem (see [4, Corollary 3.8] or [11, Corol-
lary 5.4.10]), for each singular point Pi ∈ C it holds that

ji � m2
i − mi � mi.
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Therefore,
s∑

i=1

(ji − mi + ri) � s.

�

Now, with Notation 3.1 and using a generic plane projection of the curve, we deduce
from Theorem 3.5 and Proposition 3.7 a formula for the difference between the arithmetic
genus pa(C) and the geometric genus g(C) of a curve C ⊂ P

N , N � 2, in terms of the
singularities of the curve (see Corollary 3.15). Our formula extends the classical genus
formula of Max Noether for plane curves to curves in P

N , N > 2. This is possible by
expressing the degree of the secant variety of C as a function of the degree and the
arithmetic genus of C (see Corollary 3.13). We begin with a lemma for which we need to
introduce the following notation.

For each P ∈ Sing C we consider an affine chart containing P and we regard P as a
point in C

N . There, we take the cone C5(C, P ) (in the sense of Whitney [27, p. 212])
of limits of secant vectors to the germ (C, P ). We remark that this cone was called the
limit of secant variety of C at P in [11]. More precisely, a vector v belongs to C5(C, P )
if and only if there are sequences of points {qn}, {rn} of C converging to P and complex
numbers λn such that λn(qn − rn) → v. By [5, Propostion IV.1] it is known that the
affine cone P + C5(C, P ) consists of a finite number of 2-planes, each of them passing
through a tangent line to C at P .

For each (N − 3)-dimensional subspace Γ of P
N we denote by πΓ : C → P

2 the restric-
tion of the linear projection P

N \ Γ → P
2 to C. We set CΓ := πΓ (C) and PΓ := πΓ (P ).

We recall that rP (C) denotes the number of branches of C at P .

Lemma 3.9. For each non-degenerate curve C ⊂ P
N , N � 4, there exists a dense

open subset A of the Grassmannian G(N − 3, N) of (N − 3)-dimensional subspaces of
P

N such that, for all Γ ∈ A, the following hold.

• The singularities of the plane curve CΓ are precisely the s distinct points
PΓ

1 , . . . , PΓ
s that are images of the singular points of C and deg Sec(C) ordinary

double points.

• For each P ∈ Sing C, rP Γ (CΓ ) = rP (C) and the Milnor number µP Γ (CΓ ) is
constant as Γ varies in A.

Proof. Let A be the open subset of G(N − 3, N) such that any Γ ∈ A intersects the
secant variety Sec(C) at deg Sec(C) distinct points that are not on the projective closures
in P

N of the affine cones Pi + C5(C, Pi), i = 1, . . . , s, and such that through each of the
points of Sec(C) ∩ Γ there passes exactly one secant line to C, which is not a tangent
line, not a trisecant line and not a line meeting C in two points with intersecting tangent
lines. The open subset A satisfies the statement of the lemma. For the smooth case see,
for example, [14, Chapter IV, Propositions 3.4, 3.7 and Theorem 3.10]; for the singular
case see [5, Chapter IV]. �

https://doi.org/10.1017/S0013091513000497 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000497


A degree formula for secant varieties of curves 315

Remark 3.10. Note that

1
2 (µP Γ (CΓ ) − µP (C)) = δP Γ (CΓ ) − δP (C) =: 
P (C)

is constant as Γ varies in A (the first equality follows by Milnor’s formula (3.1)). The
local analytic invariant 
P (C) has been studied by Briançon et al . [5, Chapter IV, (b)].

If we denote by cP the conductor ideal of the local ring OCΓ ,P Γ in the local ring OC,P ,
the invariant 
P (C) can also be described as (see [17, Proposition 1.5 and Theorem 3.6])


P (C) = dimC(OCΓ ,P Γ /cP OCΓ ,P Γ ) = dimC(OC,P /OCΓ ,P Γ ).

From this description and by the local criterion for isomorphism (see, for example, [13,
Theorem 14.9 and Corollary 14.10]) it is clear that 
P (C) = 0 if and only if the embedding
dimension of C at P , which we will denote by emdimP (C), is at most 2.

Lemma 3.11. For each non-degenerate curve C ⊂ P
N , N � 4, there exists a dense

open subset A of G(N − 3, N) such that for each Γ ∈ A we have that

δ(CΓ ) − δ(C) = deg Sec(C) +
∑
P


P (C),

where P runs over all (singular) points of C with emdimP (C) � 3.

Proof. Let A ⊂ G(N − 3, N) be the open subset of the previous lemma. We note
that if Γ ∈ A, then the linear projection πΓ : C → CΓ ⊂ P

2 is one-to-one except in
the preimages of the deg Sec(C) ordinary double points of CΓ , which correspond to the
deg Sec(C) bisecants of C intersecting Γ .

Moreover, if P is a singular point with emdimP (C) = 2, then the curve germs (C, P )
and (CΓ , PΓ ) are isomorphic (see, for example, [13, p. 179]). Hence, in this case the
invariant 
P (C) = 0 (see [5, Remarque IV.5]). �

For space curves we have an analogous result.

Lemma 3.12. Maintaining the above notation, let C be a non-degenerate irreducible
and reduced curve in P

3
C

and let ρ(C) be the number of secants of the curve passing
through a generic point of P

3
C
. Then,

δ(CΓ ) − δ(C) = ρ(C) +
∑
P


P (C),

where P runs over all (singular) points of C with emdimP (C) = 3.

Proof. Let Γ ∈ P
3 be a point not on the projective closures in P

3 of the cones
C5(C, P ) at the singular points P of C and such that through Γ there pass exactly ρ(C)
secant lines to C, which are not tangent lines, not trisecant lines and not lines meeting
C in two points with intersecting tangent lines.

If we apply the same argument used in the proof of Lemma 3.9 to the linear projection
πΓ : C → P

2, the proof is complete. �
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From the above lemmas, we have the following corollaries.

Corollary 3.13. With the preceding notation, if N � 4, the following holds:

deg Sec(C) =
(

d − 1
2

)
− pa(C) −

∑
P


P (C),

where P runs over all (singular) points of C with emdimP (C) � 3.

Proof. By (3.2) and taking into account that g(C) = g(CΓ ), we obtain that

δ(CΓ ) − δ(C) = pa(CΓ ) − g(CΓ ) − (pa(C) − g(C))

= pa(CΓ ) − pa(C)

=
(

d − 1
2

)
− pa(C).

Now the proof follows by Lemma 3.11. �

Corollary 3.14. With the preceding notation, if N = 3, the following holds:

ρ(C) =
(

d − 1
2

)
− pa(C) −

∑
P


P (C),

where P runs over all (singular) points of C with emdimP (C) = 3.

The following result extends the classical genus formula of Max Noether for plane
curves to curves in P

N , N � 3.

Theorem 3.15. If N � 2, with the preceding notation, setting 
i := 
Pi(C), then

pa(C) − g(C) = 1
2

s∑
i=1

(ji − mi + ri − 2
i).

Moreover,

pa(C) − g(C) = 1
2

s∑
i=1

(ji − mi + ri)

holds if and only if for each point P ∈ C the embedding dimension is at most 2.

Proof. The formula is known in the case N = 2 (see [9, Noether’s genus formula on
p. 180]), since for a plane curve C the self-intersection number j(C, C; Pi) = ji equals
the intersection multiplicity of a generic polar curve with the curve at the point Pi (see,
for example, [11, Example 2.2.10] and [9, Appendix 5]).

For N � 3 it is an immediate consequence of our main results, Theorem 3.5 and
Proposition 3.7, taking into account the previous two corollaries. �
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Remark 3.16. The preceding proposition shows that for curves C ⊂ P
N the self-

intersection multiplicity j(C, C; Pi) is a natural generalization of the intersection multi-
plicity of a generic polar curve with the curve at the point Pi, which makes sense only
for plane curves. In the plane, both multiplicities coincide.

We illustrate our results with two examples of curves C ⊂ P
n, n > 3, with a singular

point of embedding dimension greater than 2 (Example 3.17) and embedding dimen-
sion 2 (Example 3.18). In Example 3.17 it is interesting to see how the δ-invariant of the
singular point grows under projection to P

2. Finally, we give an example of a curve in
P

3 (Example 3.19) in order to illustrate the computation of the number of secants pass-
ing through a general point of P

3 according to Proposition 3.7. In all these examples the
curves have precisely one singular point P , for which jP and mP can be easily obtained by
a single computer calculation as in [1, sample file Segre4.txt]. Then the Stückrad–Vogel
intersection cycle v(C, C) is

v(C, C) = [C] + jP [P ] + [P1] + · · · + [Pt],

where t = deg TanC and P1, . . . , Pt are movable points on C \ {P}. We also remark
that the contribution of the empty set (deg β0 in Theorem 2.3) to the Bézout number is
2 deg Sec C (Examples 3.17 and 3.18) or 2ρ (Example 3.19).

Example 3.17. Let C ⊂ P
4 be the curve defined by the homogenous ideal

(x0x4 − x2
3, 4x2

2 − 17x2
3 − 191x2

4, 4x2
1 − x2

3 − 15x2
4)

in K[x0, . . . , x4]. Then, C is a curve of degree d = 8, which is singular only at the point
P = (1 : 0 : 0 : 0 : 0). By a computer calculation we obtain that jP = 12, mP = 4 and
1
2c0(C, C) = deg Sec(C) = 14. Moreover, we have pa(C) = 5, rP (C) = 4, emdimP (C) = 3
and g(C) = 1. Finally, by (3.8) and Proposition 2.5, deg Tan(C) = 16.

In this example, since C is a complete intersection, we can compute δ(C) = δP (C)
by using Lê’s formula (see [16]) for the Milnor number µP (C) of the curve germ at P

and taking into account Milnor’s formula µP (C) = 2δP (C) − rP (C) + 1. We apply Lê’s
result [16] to the germ of the holomorphic map f = (f1, f2, f3) : (C4, 0) → (C3, 0) with
f1 = 4x2

1 +4x2
2 −18x2

3 −206x2
4, f2 = 4x2

2 −17x2
3 −191x2

4 and f3 = x4 −x2
3. Then, denoting

by O the ring of germs of holomorphic functions at 0 ∈ C
4 and by Jl, l = 1, 2, 3, the ideal

generated by f1, . . . , fl−1 and all the (l × l)-minors of the matrix (∂fi/∂xj), i = 1, . . . , l,
we get that

µP (C) = dimC O/J1 − dimC O/J2 + dimC O/J3 = 1 − 8 + 12 = 5;

hence, δP (C) = 4.
If we consider a generic plane projection C̄ of C and if we denote by P̄ the image of

P , we conclude, by Lemma 3.11 and taking into account that

δ(CΓ ) − δ(C) =
(

d − 1
2

)
− pa(C)
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(see the proof of Corollary 3.13), that

δP̄ (C̄) =
(

d − 1
2

)
− pa(C) − deg Sec(C) + δP (C) = 6.

Such a generic projection can be obtained as the composition of the linear projections
from the point (0 : 0 : 0 : −1 : 1) into the P

3 given by x4 = 0 and from the point
(0 : −1 : 1 : 1) ∈ P

3 into the P
2 of x2 = 0. The resulting plane curve C̄ has, in fact, 15

distinct singular points, say Q1, . . . , Q14 with δQ1(C̄) = · · · = δQ14(C̄) = 1 and P̄ with
δP̄ (C̄) = 6.

Example 3.18. Let C ⊂ P
5 be the curve defined by the homogenous ideal

(x0x3 − x2
1, x0x4 − x1x2, x1x4 − x2x3, x0x5 − x2

2,

x1x5 − x2x4, x3x5 − x2
4, 2x2

0 + x0x2 + x0x5 + x2x5 − x3x5)

in K[x0, . . . , x5]. Then, C is a curve of degree d = 8 and genus g = 1, which is singular
only at the point P = (0 : 0 : 0 : 1 : 0 : 0) with emdimP (C) = 2. Furthermore, jP = 4,
mP = 2 and rP = 2, so deg Sec C = 18. In fact, SecC is a complete intersection of two
hypersurfaces of degrees 3 and 6, respectively.

Example 3.19. Let C ⊂ P
3 be the curve defined by the homogenous ideal

(x2
1 + x2

3 − x0x2, x
2
2 − x1x3) ⊂ K[x0, . . . , x3].

Then, C is a curve of degree d = 4 and genus g = 0, which is singular only at the point
P = (1 : 0 : 0 : 0) with emdimP (C) = 2. Furthermore, jP = 2, mP = 2 and rP = 2, so
ρ = 2 by Proposition 3.7. In this example the projection from the point (0 : 0 : 1 : 0)
gives a generic projection of C into the plane of x2 = 0. The image of C is the plane
curve of

x2
0x1x3 − x4

1 + 2x2
1x

2
3 − x4

3 = 0,

which has three ordinary double points, one of which is the image of the singular point P .

4. Intersection numbers for curves

In view of Theorem 3.5 and Proposition 3.7 it is important to know how to calculate
for two curves C, D ⊂ P

N
C

(N � 3) the intersection multiplicities jP = j(C, D; P )
of C and D at a point P ∈ C ∩ D. We recall that in the case of a self-intersection
of C only the singular points P1, . . . , Ps of C have to be considered. Of course, the
intersection multiplicities jP can be calculated using their algorithmic definition, but
this requires primary decomposition and is quite hard to do; see [24, Example 2], where
the self-intersection of the curve C ⊂ P

3 given parametrically by (s6, s4t2, s3t3, t6) is
computed. This computation can also be done by using computer algebra systems and the
generalized Samuel multiplicities of [3] (see [1]; in particular the sample file Segre4.txt).

A better way is to use a formula of Cha̧dzyński et al . [7], which expresses j(C, D; P )
in terms of local parametrizations of C and D near P , or the natural extension of this
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formula to the case of self-intersection given by Krasiński [15]. We use this result below
to compute the self-intersection numbers ji in the case of monomial curves. Ranestad’s
result [19, Proposition 3.1] on the degree of secant varieties of monomial curves is then
a corollary of Theorem 3.5.

In order to calculate j(C, D; P ), we may consider C and D as analytic curves locally
in a neighbourhood Ω of P = 0 ∈ C

N and we may assume that C = C1 ∪ · · · ∪ Cm

and D = D1 ∪ · · · ∪ Dn, where Ci, Dj are analytic curves in Ω having irreducible
germs at 0. Then, by the bilinearity of the intersection cycle v(C, D) we have that
j(C, D; 0) =

∑
i,jj(Ci, Dj ; 0). Hence, we may restrict our considerations to analytic

curves C and D with irreducible germs at 0. By Puiseux’s theorem such curves have local
parametrizations. To formulate the result of [7], we need the order of a holomorphic map
λ = (λ2, . . . , λN ) : C → C

N−1, which is defined as ordλ := min{ordλi | i = 2, . . . , N},
where ord λi means the order of λi at 0.

Proposition 4.1 (Cha̧dzyński et al . [7, Theorem 1]; Krasiński [15, Theo-
rem 4]). Let Ω be a neighbourhood of 0 ∈ C

N (N � 2) and let C and D be analytic
curves in Ω with irreducible germs at 0. In addition, let

U � t �→ (tp, ϕ(t)) ∈ C and V � τ �→ (τ q, ψ(τ)) ∈ D

be parametrizations of C and D in Ω, respectively (U and V are neighbourhoods of 0 in
C), let ordϕ > p, let ordψ > q, and let η and ε be primitive roots of unity of degree q

and p, respectively.

• If 0 is an isolated point of intersection of C and D, then

j(C, D; 0) =
1
q

q∑
i=1

ord(ϕ(tq) − ψ(ηitp)) =
1
p

p∑
i=1

ord(ψ(tp) − ϕ(εitq)).

• If 0 is a singular point of C, then

j(C, C; 0) =
p−1∑
i=1

ord(ϕ(t) − ϕ(εit)).

Recall that a monomial curve C ⊂ P
N (N � 2) is defined to be the image of an

injective morphism P
1 → P

N defined by monomials. After ordering the monomials by
ascending degree it is, therefore, given by

(s : t) �→ (sd : sd−a1ta1 : · · · : sd−aN−1taN−1 : td),

where a1 < a2 < · · · < aN = d are positive integers. Without loss of generality we may
assume that gcd(a1, . . . , aN ) = 1, so d = deg C. The only possible singular points of C

are the two points P = (1 : 0 : · · · : 0) and Q = (0 : · · · : 0 : 1). The curve C is singular
at P if and only if a1 > 1 and it is singular at Q if and only if d − aN−1 > 1.

In order to apply Theorem 3.5 to monomial curves we need an expression for the
intersection numbers j(C, C; P ) and j(C, C; Q) in terms of the numerical data of the
curve.
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Proposition 4.2. Let C ⊂ P
N
C

(N � 2) be a monomial curve of degree d defined
by the sequence of positive integers a1 < a2 < · · · < aN = d. For i = 1, . . . , N − 1 set
bi = d−aN−i, gi = gcd(a1, . . . , ai), hi = gcd(b1, . . . , bi), bN = d and gN = hN = 1. Then,

jP = j(C, C; P ) =
N−1∑
i=1

ai+1(gi − gi+1) and jQ = j(C, C; Q) =
N−1∑
i=1

bi+1(hi − hi+1).

Proof. By symmetry it is enough to prove the formula for j(C, C; P ). A local
parametrization of C in a neighbourhood of P is given by (ta1 , ϕ(t)) with ϕ(t) =
(ta2 , . . . , taN ). If ε denotes an a1th primitive root of unity, then by Proposition 4.1 one
has that

jP =
a1−1∑
k=1

ord(ϕ(t) − ϕ(εkt)) (4.1 a)

=
a1−1∑
k=1

ord((ta2 , . . . , taN ) − ((εkt)a2 , . . . , (εkt)aN ))

=
a1∑

k=1

ord((1 − εka2)ta2 , . . . , (1 − εkaN )taN ). (4.1 b)

The orders appearing in (4.1 b) can be a2, . . . , aN or 0. The order will not be a2 if and
only if ka2 is a multiple of a1, and this happens g2 = gcd(a1, a2) times. Taking away
from (4.1 b) all orders equal to a2 we get the contribution a2(a1 − g2) = a2(g1 − g2) to
jP , which is just the first term of

N−1∑
k=1

ak+1(gi − gk+1).

Now collect among the g2 remaining terms of (4.1 b) the orders equal to a3. Such an order
is not equal to a3 if and only if both ka3 and ka2 are multiples of a1, and this happens
g3 = gcd(a1, a2, a3) times. Therefore, we have g2 − g3 orders equal to a3, which we take
away as before. Their contribution to jP is just the second term of

∑
i

ai+1(gi − gi+1).

Proceeding in this way we obtain

jP =
N−1∑
i=1

ai+1(gi − gi+1).

Note that gN = 1 and, therefore, the number of as in

N−1∑
i=1

ai+1(gi − gi+1)
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is
(g1 − g2) + · · · + (gN−1 − gN ) = g1 − gN = a1 − 1,

which is just the number of terms in (4.1 a). �

As an application of Theorem 3.5, Proposition 4.2 yields the following result of Rane-
stad (see [19, Proposition 3.1]) for the degree of the secant variety of a monomial curve.

Corollary 4.3. With the notation of Proposition 4.2 and under the assumption that
N � 4, one has that

deg Sec C =
(

d − 1
2

)
− 1

2

( N−1∑
i=1

ai+1(gi − gi+1) − a1 +
N−1∑
i=1

bi+1(hi − hi+1) − b1

)
− 1.
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