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Abstract

Objective: To develop and validate an automated surveillance system for healthcare-associated Clostridioides difficile infections (HA-CDI).

Design: Multicenter cohort study.

Setting: 16 acute care hospitals.

Patients: Patients admitted to participating hospitals between 2013 and 2022.

Methods: An automated surveillance system was developed with retrospective extraction from admission/discharge/transfer and laboratory
databases and compared with conventional surveillance based on clinical definitions collected prospectively by infection control professionals.
Comparison of HA-CDI incidence rates calculated by automated vs conventional surveillances were performed with χ2, incidence rate ratios,
and linear regression. A subset of discordant cases was further investigated by reviewing medical records.

Results: Overall, conventional surveillance reported 3,211 cases of HA-CDI for an incidence rate of 4.94 per 10,000 patient-days. Automated
surveillance detected 4,708 cases, for an incidence rate of 7.24 per 10,000 patient-days (incidence rate ratio, 1.47; 95% CI, 1.40–1.53). Full
concordance between both surveillance methods was observed in 62% of cases, while 34% of cases were detected only by automated
surveillance, and 4% were detected by conventional surveillance only. Between 2013 and 2022, an identical declining trend in HA-CDI
incidence rates of –0.54 cases per 10,000 patient-days was observed with both surveillance methods. A subset of 49 cases detected only by
automated surveillance were reviewed; the main reasons for discrepancy were delayed testing (39%), colonization (24%), misclassifications
(14%), and interinstitutional transfers (12%).

Conclusions: HA-CDI incidence rates calculated by automated surveillance were higher than those of conventional surveillance, but the
overestimation was consistent over time, suggesting that a correction factor could improve precision.

(Received 25 September 2024; accepted 12 December 2024)

Introduction

Healthcare-associated infections represent a major but preventable
complication that can increase patients’ length of hospitalization,
morbidity, and mortality.1 Clostridioides difficile infections (CDI)

remain one of the most prevalent healthcare-associated infection.2

To better understand its epidemiology, detect outbreaks, and
improve its control, surveillance and reporting of CDI incidence
rates have been implemented in numerous jurisdictions.3,4 This
conventional surveillance is mainly conducted through manual
chart review by qualified health professionals.4 To increase inter-
institutional comparability, recommendations regarding optimal
surveillance methods have been published and provide guidance
regarding definitions, denominators, and reporting of infection
rates.5,6 The Institut National de Santé Publique du Québec in the
Canadian province of Quebec (population 9 million), imple-
mented a mandatory CDI surveillance program in 2004 following
the onset of the NAP1/B1/027 epidemic.7 As of August 2023, all
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95 acute care facilities admitting >1,000 patients per year have the
obligation to participate. This program relies on infection control
professionals (ICPs) to assess and report cases of CDI based on
standardized case definitions, using a combination of clinical and
laboratory criteria, and to classify them into categories such as
healthcare-associated CDI (HA-CDI) and community-associated
CDI.7 Despite being the gold standard, this conventional
surveillance method has some drawbacks and is laborious, costly,
and time-consuming.8 The surveillance definitions also contain
some subjective elements (such as the assessment of other causes
that could explain the diarrhea) and relies on professionals’ clinical
interpretation which makes it susceptible to errors and biases and
complicates interinstitutional comparisons.9–12 Automated sur-
veillance using computerized algorithms, which could estimate
CDI incidence rates using information readily available in
healthcare electronic databases without the need for human input
and interpretation, could help solve some of these issues by
providing an efficient and uniform surveillance method that may
reduce the ICPs’ workload.9,13 In the United States, the National
Healthcare Safety Network of the Centers for Disease Control and
Prevention offers 2 options for reporting CDI: an automated
electronic laboratory-identified algorithm and a conventional
infection surveillance reporting by ICPs.14 The current study
aimed to develop and validate an automated surveillance system
for the detection of HA-CDI in multiple Quebec hospitals.

Methods

Setting

We performed a retrospective cohort study of patients admitted
between April 1, 2013, and March 31, 2022, in 16 acute care
hospitals (10 academic and 6 community) representing 25% of all
HA-CDI cases in Quebec in 2022.

Definitions

For conventional surveillance purposes, CDI is defined as either
(1) diarrhea (i.e. ≥3 unformed or liquid stools within 24 hours and
symptoms lasting ≥24 hours without any other known etiology)
combined with a positive assay for toxigenicC. difficile from a stool
sample; or (2) visualization of pseudomembranes by colonoscopy;
or (3) a histopathologic diagnosis.

A CDI event is categorized as HA-CDI if symptoms appeared
≥3 calendar days after admission and up to 4 weeks after discharge.
Cases in which the patient developed symptoms within the first 3
calendar days of admission, and those with no history of
hospitalization within the previous 4 weeks, are considered
community-associated. Recurrent CDI is defined as a relapse of
symptoms < 8 weeks after the end of the previous treatment; these
cases are excluded from the surveillance data. Incidence rates are
calculated as the number of cases per 10,000 patients-days and are
reported per 4-week period. HA–CDI incidence rates per hospital
in the province of Quebec are publicly available.7 Data from
neonatal intensive care units, nurseries, psychiatric wards, long-
term care, and ambulatory care are excluded from the surveillance
program.

Automated surveillance

An automated surveillance system was developed using data
extracted from Nosokos (Nosotech, Rimouski, Canada), an
infection control software already in place in the participating
institutions. Data extraction included information for C. difficile

testing, sampling date, patient location, and dates of admission and
discharge. All dates included precision to minutes level.
Information regarding bowel habits and diarrhea, colonoscopy
reports, or histopathology reports were not available and thus not
integrated.

Positive C. difficile tests included toxin detection by nucleic acid
amplification testing (NAAT) for toxin B gene or enzyme
immunoassay (EIA) that detects both toxin A and/or B antigen
(ToxAB).7 Positive assays for glutamate dehydrogenase enzyme
had to be confirmed with a second confirmatory assay (NAAT or
ToxAB EIA) to be considered positive.

For automated surveillance, positive toxin tests are considered
to represent CDI. A CDI case is categorized as HA-CDI if the
sample was collected ≥3 calendar days after admission and up to 4
weeks after discharge. All other cases were considered as outpatient
cases or infections acquired in another facility.7

Automated surveillance was also designed to exclude certain
cases: duplicate cases (defined as a second positive C. difficile test
for the same patient in the same hospital within a 2-week period),
recurrent cases (defined as a second positive C. difficile test for the
same patient in the same hospital within a 10-week period), cases
from nonparticipating facilities and non-hospitalized patients, and
cases with incomplete data (Figure 1). The denominators, patient-
days, used to calculate automated surveillance incidence rates were
identical to those from conventional surveillance.

Analysis

Standard descriptive analyses were performed to describe the
number of tests carried out during the study period, the types of
assays and the proportion of positive tests. Aggregated data were
analyzed for the entire study period to estimate the global HA-CDI
incidence rate per 10,000 patient-days for automated surveillance
and conventional surveillance by combining data from all 16
institutions. These rates were compared by χ2 and incidence rate
ratios (IRR) with 95% confidence intervals (CI). We analyzed the
capacity of automated surveillance to detect secular trends in HA-
CDI incidence by comparing the trends (slopes) in the aggregated
incidence between 2013 and 2022 reported by both methods
using ANOVA.

At the level of individual institutions, we investigated the
capacity of automated surveillance to predict institutional HA-CDI
incidence rates reported by conventional surveillance by calculat-
ing the overall incidence rates for each hospital using each
surveillance method. Each institutional automated surveillance
incidence rate was compared with conventional surveillance using
Poisson regression. We used a 95% CI on the global institutional
rate ratio to detect hospitals whose automated surveillance
incidence rate departs more importantly from their conventional
surveillance rates than others. To investigate the impact of
automated surveillance on each institution’s HA-CDI incidence
relative to others, we ranked each hospital from the lowest to the
highest incidence based on automated and conventional surveil-
lance methods.

We examined the degree of global concordance between each
surveillance method in the attribution of individual HA-CDI cases.
CDI cases that were deemed as a HA-CDI case by both methods
were considered concordant, whereas those that were considered
as HA-CDI in only one of the two methods were considered
discordant. The sensitivity, specificity, positive predictive value,
and negative predictive value were also calculated in comparison
with conventional surveillance as gold standard. A subset of
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discordant HA-CDI cases was investigated by reviewing the
patients’ electronic records to determine the causes of discrepancy.

Correction factor

Considering that some variables that are essential to assess
potential cases of CDI in conventional surveillance are not
electronically available (for example, the use of laxatives and the
number of bowelmovements per day), we expected that automated
surveillance would overestimate the number of HA-CDI cases and
incidence rates. We explored the effect of applying a correction
factor derived from a linear regression on automated surveillance

vs conventional surveillance yearly HA-CDI infection rates
aggregated by hospital groups. The quality of fit of the linear
model on the data was evaluated with the coefficient of
determination (R2). We then compared the corrected automated
surveillance HA-CDI annual infections rates with conventional
surveillance infection rates.

The institutional research ethics committees for each partici-
pating institution approved the retrospective extraction of data for
analysis with a waiver of individual patient consent.

Results

During the study period that included 6.49 million patient-days of
surveillance, a total of 140,125 C. difficile laboratory tests were
performed in the participating institutions, of which 15,145 were
positive, for an overall positivity rate of 11%. Of these positive tests,
50.8% were NAAT for toxin B gene and 49.2% were ToxAB EIA.
During the study period, 3,211 cases of HA-CDI were reported by
conventional surveillance. By comparison, automated surveillance
detected 4,708 possible HA-CDI cases. Automated surveillance
detected 2,185 non-nosocomial CDI cases while conventional
surveillance reported 2,413 such cases. By contrast, 8,293 cases
were excluded by automated surveillance while 9,562 were
excluded by conventional surveillance.

The overall HA-CDI incidence rate reported by conventional
surveillance was of 4.94 per 10,000 patient-days. Automated
surveillance had an incidence of 7.24 per 10,000 patient-days, for
an IRR (HA-CDI detected by automated surveillance divided by
HA-CDI detected by conventional surveillance) of 1.47 (95% CI,
1.40–1.53; P < .001).

Comparison of HA-CDI incidence rates over time

The HA-CDI incidence followed a similar downward trend in each
surveillance method (Figure 2). Over the course of the study period
(9 years), the aggregated HA-CDI rates reported by conventional
surveillance decreased at a rate of –0.54 cases per 10,000 patient-
days (95% CI, –0.90 to –0.17, P = .01). Similarly, HA-CDI
incidence calculated by automated surveillance also decreased by –
0.54 cases per 10,000 patient-days (95%CI, –0.90 to –0.19; P= .01).
There was no difference between the decreasing trend detected by
both methods (P = .98 by ANOVA).

Interinstitutional comparison of HA-CDI incidence rates

The IRR were also calculated for each hospital (Figure 3). Although
the range of IRR varied between 0.74 and 2.92, there was a general
trend for automated surveillance to detect a higher HA-CDI
incidence in most institutions. The IRR was significantly greater
than 1 in 10/16 (63%) institutions, whereas only a single institution
had an IRR<1. Three institutions had an IRR that was significantly
higher than their peers’. The greater discrepancy among these
institutions was associated with a change in ranking relative to
their colleagues, from 12th to 16th position, 5th to 9th, and from
13th to 15th, respectively (Figure 4). Overall, only a single hospital
occupied the same ranking in both surveillance strategies (1st in
both systems), while the greatest movement in ranking was a
position change of 4 (from 12th to 16th position).

Global concordance of HA-CDI cases and performance of
automated surveillance

Looking at the global concordance of HA-CDI cases identified by
either automated or conventional surveillance, 62% of HA-CDI

Figure 1. The automated surveillance algorithm for categorization of positive C.
difficile tests consists of one starting point: a recognized positive C. difficile laboratory
test. Next are exclusions: for tests that are not recognized, incomplete data, tests not
linked to the declaring institution, duplicates (other positive test <2 weeks),
recurrences (other positive test <10 weeks), patient in a unit excluded from
surveillance, patient that was not hospitalized. If a sample was collected ≥3 calendar
days after admission of<4 weeks after discharge, the case was considered healthcare-
associated. Remaining tests were considered community-associated.
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cases were concordant, 34% were detected by automated
surveillance only, and 4% were detected by conventional
surveillance only. Thus, automated surveillance overestimates
the number of cases, but infrequently misses a HA-CDI case
detected by conventional surveillance. Using conventional sur-
veillance as gold standard, automated surveillance showed a 93.9%
sensitivity, 84.4% specificity, 64.1% positive predictive valuem and
97.9% negative predictive value.

Causes of discrepancy

We reviewed a sample of 49 discrepant cases detected only by
automated surveillance, in a single center to gain insight on the
potential cause(s) of divergence between the two methods. The
main reasons for discrepancy were (1) a delay between the onset of
symptoms and the collection of a stool sample forC. difficile testing
(39%), (2) patients colonized by C. difficile rather than being

infected (24%), (3) misclassification of HA-CDI (14%),
(4) interinstitutional transfers (12%), and (5) miscellaneous
reasons such as manual errors, recurrent cases, or cases diagnosed
in other institutions (10%). An example of delayed testing would be
a patient with CDI symptoms appearing on the second day of
hospitalization, but for which a stool sample was collected onDay 3
and tested positive for C. difficile, and was thus classified as
nosocomial by automated surveillance.

Correction factor

Linear regression analysis of yearly data aggregated by groups of
hospitals showed a strong positive association between HA-CDI
rates estimated by automated surveillance vs conventional
surveillance, with a coefficient of determination (R2) of 0.91
(Figure 5). This linear regression yielded a linear trendline
equation of y= 1.12xþ 1.46, where y represents HA-CDI

Figure 2. Linear graph illustrating the annual aggregated healthcare-associated Clostridioides difficile infection (HA-CDI) incidence rates calculated by automated vs conventional
surveillance methods among 16 hospitals in Quebec, Canada over a 9-year period. Linear trendlines to detect secular trends in HA-CDI incidence are also shown with dotted lines
for both methods.

Figure 3. Incidence rate ratio (IRR) and 95%
confidence intervals (CI) for healthcare-associ-
ated Clostridioides difficile infections (HA-CDI)
incidence rate calculated by automated vs
conventional surveillance. The overall IRR and
95% CI is illustrated by the horizontal bars. The
sample size of each institution is illustrated by
the size of the dot.
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incidence rates calculated by automated surveillance and x
represents HA-CDI incidence rates calculated by conventional
surveillance. Using this formula, we hypothesized that the
application of a correction factor could improve the automated
surveillance’s capacity to estimate HA-CDI incidence rates as
measured by conventional surveillance. This correction factor
would consist in subtracting 1.46 from the HA-CDI incidence rate
calculated by automated surveillance and dividing this result by
1.12. This correction of automated surveillance would provide a
more accurate estimate of conventional surveillance. (Figure 6).

Discussion

CDI surveillance is widely conducted across jurisdictions. Most
current programs rely on trained auditors, a method that is time-
consuming and laborious, as it relies on humans to detect and assess
potential cases of CDI. The possibility to conduct automated
surveillance has drawn interest of researchers worldwide.15

Although we found good concordance between the results of
automated and conventional surveillances, automated surveillance
overestimated the number of HA-CDI cases by 47%. These results
are in line with previous studies that found that automated HA-CDI
algorithms tend to overestimate the number of HA-CDI cases, by
proportions ranging from 29% to 73%.9,13,16–18 A retrospective study
conducted in 2019 in another Canadian province, Alberta, found

that automated surveillance overestimated by 43% when compared
to conventional surveillance.17

We found that the causes of the overestimation of automated
surveillance were not unique to our algorithm and have been
reported previously in other papers.9,13,17–21 These included delay
between the onset of symptoms and the collection of a sample for
testing, testing of patients who did not fulfill the case definition for
CDI (for example due to the presence of <24h of diarrhea), testing
in other institutions, manual errors, and recurrent cases.9,13,17–21

Delayed testing and patients not fulfilling a CDI definition were the
main causes of discrepancies that were found in our population. In
fact, assessment of symptomatology is not currently included in
most automated surveillance methodologies, which makes it
presently challenging to differentiate between infection and
colonization. However, it must be stressed that these limitations
are likely to be addressed in the future by adding additional
databases as hospitals gradually move from written medical charts
to electronic ones. Hence, it is plausible that automated
surveillance will become more precise in the future.

The comparison of HA-CDI incidence rates detected by
automated surveillance between NAAT and ToxAB EIA testing
were not possible, since many hospitals used both techniques over
the years. Many of them shifted from EIA to NAAT, and the
reported HA-CDI rates to Public Health did not specify the testing
methodology.

Figure 4. Sankay diagram illustrating the change in
overall ranking of participating institutions when health-
care-associated Clostridioides difficile infections (HA-CDI)
incidence rates are computed by automated versus
conventional surveillances.

Antimicrobial Stewardship & Healthcare Epidemiology 5

https://doi.org/10.1017/ash.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/ash.2025.5


As clinical information is not readily available electronically,
HA-CDI incidence rates calculated with automated surveillance
are unlikely to match a manual method. However, our study
identified that the overestimation is relatively stable over time, and
that a simple mathematical correction factor can improve the
algorithm’s precision and provide a relatively accurate estimate of
the actual HA-CDI incidence rates, especially as the sample size
increases.

Large-scale implementation of automated surveillance for HA-
CDI could help strengthen the current surveillance program by
achieving two main goals: to observe the evolution of infections
through time and to compare infection rates between hospitals
more uniformly. In fact, automated surveillance provides clear,
objective, and identical criteria to each hospital whereas conven-
tional surveillance may differ due to the professionals’ personal
judgment and may be affected by cognitive biases.11,12 Therefore,

implementing automated surveillance may make comparisons
between different hospitals easier and more reliable.

Most CDI surveillance programs do not include in-depth
quality assessment of the data reported by participating institu-
tions. Our study identified inter-hospital variation in the
automated to conventional surveillance HA-CDI incidence rate
ratios. Even though the causes of this discrepancy remain unclear
at the moment, this observation raises the possibility that
automated surveillance algorithms could be used to detect
institutions that underreport or overreport hospital-acquired
infections. This information could become valuable to monitor
the quality of data reported by ICPs.22 It is important to stress that
even the current “gold standard” contains some level of
subjectivity. Hence, the variability between the automated and
conventional surveillances does not necessarily reflect flaws in the
algorithm but could also reflect, in part, variations in patient

Figure 5. Scatter plot illustrating yearly healthcare-
associated Clostridioides difficile infections (HA-CDI)
incidence rates calculated by automated vs conventional
surveillance methods for each group of hospitals among
16 hospitals in Quebec, Canada over a 9-year period.
Linear regression yielded a linear trendline equation of
y = 1.12xþ 1.46, where y represents HA-CDI incidence
rates calculated by automated surveillance and x
represents HA-CDI incidence rates calculated by conven-
tional surveillance. Coefficient of determination
(R2)= 0.91.

Figure 6. Linear graph illustrating the annual aggregated healthcare-associated Clostridioides difficile infection (HA-CDI) incidence rates calculated by conventional surveillance,
automated surveillance, and automated surveillance adjusted with the correction factor among 16 hospitals in Quebec, Canada over a 9-year period.
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populations or in the local application of the surveillance method
and definitions. It is difficult to estimate which method is closer to
reality.23

Our study has strengths. By spanning nearly a decade and
enrolling 16 hospitals, it identified that automated surveillance
could detect secular trends in incidence that are nearly identical to
those seen by conventional surveillance. It also identifies strategies
that take advantage of automated surveillance for quality
monitoring, and determined that correction factors could be
potentially applied to improve the precision of automated
surveillance. It also has limitations. Confirmation of the usefulness
of correction factors should be performed on an external validation
cohort. This study did not analyze the real-world impact of the
implementation of the algorithm, such as the impact on ICPs’
workload, the acceptability by IT teams, ICPs and the Ministry of
Health, and the feasibility of a large-scale implementation. Still, we
believe our results are valuable to help understand the potential
future uses of this emerging technology.

In summary, this multicenter study identified that automated
surveillance could provide useful to improve various aspects of
C. difficile infection surveillance programs. Further studies are
required to gain further insight on this promising technology.
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