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Abstract. Let G be a complex semi-simple group, aitda compact Riemann surface. The moduli
space of principaz-bundles onX, and in particular the holomorphic line bundles on this space and
their global sections, play an important role in the recent applications of Conformal Field Theory to
algebraic geometry. In this paper we determine the Picard group of this moduli space&wber
classical 1G> type (we consider both the coarse moduli space and the moduli stack).
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Introduction

This paper is concerned with the moduli space of princi@dbundles on an
algebraic curve of positive genus, f6ra complex semi-simple group. While the
casds = SL,, which corresponds to vector bundles, has been extensively studied in
algebraic geometry, the general case has attracted much less attention until recently,
when it became clear that these spaces play an important role in Quantum Field
Theory. In particular, i is a holomorphic line bundle on the moduli spacg, the
spaceH (Mg, L) is essentially independent of the cur¥e and can be naturally
identified with what physicists call trepace of conformal blocksssociated to the
most standard Conformal Field Theory, the so-called WZW-model. This gives a
strong motivation to determine the group Rif;) of holomorphic line bundles on

the moduli space.

Up to this point we have been rather vague about what we should call the moduli
space of7-bundles onX . Unfortunately there are two possible choices, and both
are meaningful. Becaug&-bundles have usually nontrivial automorphisms, the
natural solution to the moduli problem is not an algebraic variety, but a slightly
more complicated object, the algebraic stadl;. This has all the good properties
one expects from a moduli space; in particular, a line bundlefens the functorial
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assignment, for every variety and everyG-bundle onX x S, of a line bundle
on S. There is also a more down-to-earth object, the coarse moduli Space
of semi-stable7-bundles; the group Pid/) is a subgroup of P{o\), but its
geometric meaning is less clear.

In this paper we determine the groups(Rig;) and Pi¢ M) for essentially
all cassical semi-simple groups, i.e. of typeB, C, D andG>. Since the simply-
connected case was already treated in [L-S] (see also [K-N]), we are mainly con-
cerned with non simply-connected groups. One new difficulty appears: the moduli
space is no longer connected, its connected components are naturally indexed
by 71(G). Let G be the universal covering a¥; for eachs € m1(G), we con-
struct a natural ‘twisted’ moduli stackt% which dominates\,. (For instance
if G = PGL,, it is the moduli stack of vector bundles da of rankr and fixed
determinant of degre& with ¢2?/" = §.) This moduli stack carries in each case a
natural line bundleD, the determinant bundle associated to the standard represen-
tation of G. We can now state some of our results; for simplicity we only consider
the adjoint groups.

Theorem. Pute, = 1if the rank ofG is even if it is odd. Letd € m1(G).

(a) The torsion subgroup oPic(MY,) is isomorphic toHY(X, w1 (G)). The
torsion-free quotient is infinite cyclic, generated By if G = PGL,, by D¢ if
G = PSp,, or PSOy,.

(b) The groupPic(MY,) is infinite cyclic, generated bp™*c if G = PGL,, by
D%c if G = PSpy, or PSOy;. 1

Unfortunately, though our method has some general features, it requires a case-by-
case analysis; after our preprint appeared a uniform topological determination of
Pic(M) has been outlined by C. Teleman [T]. As a consequence of our analysis
we prove that wheldr is of classical oG, type, the moduli spac#/ is locally
factorial exactly wherG is special in the sense of Serre (this is now also proved
for exceptional groups [So]). Nevertheless it is always a Gorenstein variety.

Notation

Throughout this paper we denote lya smooth projective connected curve over
C of positive genus (see [La] for the genus 0 case); we fix a pooitX. We let

G be a complex semi-simple group; byGabundle we always mean a principal
bundle with structure grou@@. We denote byM  the moduli stack parameterizing
G-bundles onX, and byM the coarse moduli variety of semi-statdfebundles
(see Section 7).

! The statement ‘Pid/c) is generated bfp*’ must be interpreted a®* descends td/s, and
the line bundle o/ thus obtained generates Pi¢s)’ — and similarly for (a).
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Part I: The Picard group of the moduli stack

1. The stackMg

(1.1) Our main tool to study Pi@ 1) will be the uniformization theorem of [B-L],
[F2] and [L-S], which we now recall. We denote By~ the loop groug7(C((2))),
viewed as an ind-scheme ov@rby L* G the sub-group schent@(C[[z]]), and by
Qg the infinite GrassmanniahG/L™G; it is a direct limit of projective integral
varieties [oc. cit.). Finally let Lx G be the sub-ind-groug/(O(X — p)) of LG.
The uniformization theorem defines a canonical isomorphism of stacks

Mg — LxG\Qq.

Let G — G be the universal cover af; its kernel is canonically isomorphic
to m1(G). We want to compare the stackd and M. For each integen, we

identify the groupu,, of n-roots of 1 toZ /nZ using the generate?™/™.

LEMMA 1.2. (i) The groupro(LG) is canonically isomorphic ta1(G).

(i) The quotientmap G — Q¢ induces a bijectiomy(LG) — mo(Q¢). Each
connected component Qf; is isomorphic toQ.

(iii) The groupro(LxG) is canonically isomorphic téf (X, 71(G)).

(iv) The groupL x G is contained in the neutral compondiitG)° of LG.

Proof. Letusfirstprove (i) wher¥ is simply connected. In that case, there exists
a finite family of homomorphisms,: G, — G such that for any extensiald of
C, the subgroups, (K) generate(K) [S1]. Since the ind-grouf,(C((z))) is
connected, it follows thak G is connected. N

In the general case, consider the exact sequenreerd(G) - G — G — 1
as an exact sequenceéifle sheaves ob* := SpedC((z)). SinceH(D*,G) is
trivial [S2], it gives rise to an exact sequence®froups

1— LG/m(G) — LG — HY(D*,m(G)) — 1. (1.2a)

The assertion (i) follows from the connectedness6fand the canonical isomor-
phismH(D*, m1(G)) — 71(G) (Puiseux theorem).

To prove (i), we first observe that the groilip G is connected: for any <
L*G(C), the mapF,: G x Al — L*G defined byF, (g,t) = g~ 1vy(tz) satisfies
F,(v(0),0) = 1 andF,(1,1) = v, hence connectg to the origin. Therefore the
canonical mapro(LG) — mo(LG/LTG) is bijective. Moreover it follows from
(1.2a) that LG)° is isomorphic toL.G /71 (G), which gives (ii).

Consider now the cohomology exact sequenceXdnassociated to the exact
sequence » m1(G) — G — G — 1. SinceH(X*, G) is trivial [Ha], we get an
exact sequence @-groups

1— LxG/m(G) = LxG — HYX*,m1(G)) — 1. (1.2b)
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Since the restriction maf(X, 1 (G)) — HY(X*,m1(@)) is bijective andL xy G
is connected ([L-S], Proposition 5.1), we obtain (iii).

Comparing (1.2a) and (1.2b) we see that (iv) is equivalent to saying that the
restriction mapH(X*, m1(G)) — HY(D*,71(G)) is zero. This follows at once
from the commutative diagram of restriction maps

~

HY(X,m1(Q)) HY(X* m1(Q))

H(D,m1(G)) HY(D*,m1(G))

and the vanishing off (D, 1 (G)). O

Foré € m1(G), let us denote byLG)? the component of.G¢ corresponding t@
via Proposition 1.2 (i).

PROPOSITION 1.3. (aJhere is a canonical bijectiong(Mg) — m1(G).
(b) For § € m1(G), let MY, be the corresponding componentfc; let ¢ be
any element ofLG)?°(C). There is a canonical isomorphism

ME (LG O\ Qg

Proof. The first assertion follows from the uniformization theorem and Lem-
ma 1.2, (i), (i) and (iv). Again by the uniformization theorem?, is isomor-
phic to LxG\(LG)°/L*G; left multiplication by ¢~ induces an isomorphism

of (LG)’/L*G onto (LG)°/LTG = Q, and therefore an isomorphism of

LxG\(LG)’/L*G onto(("* LxG )\ Q- O

Proposition 1.3(a) assigns to a6ybundle P on X an element of m1(G) such
that P defines a point oM Y,; we will refer to§ as thedegreeof P.

We will use Proposition 1.3 to determine the Picard groupM%; therefore
we first need to compute Ri@g). We denote by the number of simple factors of
Lie(G).

LEMMA 1.4. The Picard group oQg is isomorphic taz®.
Proof Write G as a product[ G, of almost simple simply connected groups.
=1

PutQ = Q5 andQ; = Qéi; the Grassmannia@ is isomorphic to[[ Q;. The
Picard group oB; is free of rank 1 [M]; we denote b§? 5. (1) its positive generator.
The projectionsQ — Q; define a group homomorphishi Pic(Q;) — Pic(Q);
we claim that it is bijective.
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Let £ be aline bundle o®; there are integer8n;) such that the restriction of
Lto{gi} x - x Qjx---x{gs}, forany(g;) € [I Q; and anyj, is isomorphic to
Og, (m;). ThenLisisomorphic ta&; Og, (m;): by writing eachQ; as a direct limit
of varietiesQZ(") , we are reduced to prove that these two line bundles are isomorphic
overl_i[ QE"), which follows immediately from the theorem of the square. O

PROPOSITION 1.5For § € m1(G), letqf; : Q5 — M, be the canonical projec-
tion (Proposition 1.3)The kernel of the homomorphism

(q&;)*: Pic(M) — Pic(Qg) = Z°

is canonically isomorphic té7*( X, 71 (G)), and its image has finite index.

Proof. Since ¢, identifies M, to the quotient ofQ~ by ("' LxG ¢, line
bundles onM‘SG correspond in a one-to-one way to line bundles@gn with a
(¢! Lx G ¢)-linearization ([V], ex. 7.21); in particular, the kernel 6f%)* is
canonically isomorphic to the character group HémG, C*). From the exact
sequence (1.2b) and the triviality of the character group.ef ([L-S], Corollary
5.2) we see thatthe group Hohy G, C*) isisomorphic to Hortid 1 (X, 71(G)), C*),
which can be identified by duality witH (X, m1(G)).

Write G = [1 G; as in Lemma 1.4. The image of(G) under the-th projection
i=1

pi: G — G, is a central subgroug; of G;; we denote by7; the quotieni;/A;,
so thatp; induces a homomorphistd — G;. Let§; be the image of in m1(G;).
Choosing a nontrivial representatipnGG; — SL, gives rise to a commutative

diagram
pri
Qs — Q5 — Qs1,
) d;
Ulel el dsL,

0 0;
M e M ——— My,

The pull back of the determinant bundleon Mgy, to Qsi, is Og(1) [B-L], and
the pull back 0f0¢ (1) to Q; 1= Q is Og,(d,) for some integed, (the Dynkin

index of p, see [L-S]). Thereforer; Og,(d,) belongs to the image df’)*. It
follows that this image has finite index. O

Remarkl.6. In the sequel we will be mostly interested in the case wieie
almost simple; them1(G) is canonically isomorphic tp,, or tou, x u,. We thus
get that the torsion subgroup of Bi‘el‘sG) is J,, in the first case and, x J> in
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the second, wherg, denotes the kernel of the multiplication hyin the Jacobian
of X.

2. The twisted moduli stack MZ,

(2.1) Proposition 1.5 takes care of the torsion subgroup qf\?ig); to complete

the description of this group we need to determine the imaQq?p)f*, or more
precisely to describe geometrically the generators of this image. To do this we will
again compare with the simply connected case, by constructing foreeery (G)

a ‘twisted’ moduli stackM% which dominates\g;.

Let A be a central subgroup 6f, together with an isomorphise — ] [T
j=1

Using this isomorphism we identifyl to a subgroup of the torug = (G,,)*;
let C4G be the quotient off x T by the diagonal subgrougd. The projection
0:C4G — T/A = T induces a morphism of stacks de¥! -, — M. For each
elemend = (d,...,ds) of Z%, let us denote by x (dp) the rational point ofM
defined by(Ox (d1p), ..., Ox(dsp)). The fiberM%,A of det atOx (dp) depends
only, up to a canonical isomorphism, of the classl@hodulor = (rq,...,7s).

If S'is acomplex scheme, an object/trt‘(’;,A(S) is by definition aC 4 G-bundle
PonX x S together with &-bundle isomorphism aP x A% T with theT-bundle
associated t@ x (dp). If d = 0, giving such an isomorphism amounts to reduce the
structure group of’ to Kerd = G- in other words, the stack/l&A is canonically
isomorphic taMg.

(2.2) The projectionp:C4G — G/A induces a morphism of stacks
. MCC‘J,A — Mg/a. The exact sequence

15 A 0G0 P% @A) xT 1

gives rise to a cohomology exact sequence
HYX,A) - HYX,C4G) - HY(X,G/A) x HY(X,T) —» H?*(X, A)

from which we deduce that the degreée 1(G) of the (G/A)-bundler(P), for
P e MY, ,(C), satisfies(6) e>™@/" = 1, wherep is the natural homomorphism

of m1(G/A) onto A C (G,,)* ande®™/" stands for the elemere?™ i@/, ..
¢?mi%:/75) of (Gy)*. We denote bM{; , the open and closed substack{(My; )

ofM‘(‘LA,whered = (d1,...,ds)isthe unique element @ suchthat < d; < r;
andp(6) e?™/" = 1 (if G is simply connecteds is bijective andM¢, , is simply
M, 4). The induced morphism: M, , — M, , is surjective.

We will be mostly interested in the case whdns the center of7; then we
will denote simply byMg the stackMg’A, for any choice of the isomorphism
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A — Il p,, (up to a canonical isomorphism, the statk’, , does not depend
j=1 )

on this choice). I belongs tor1(G) C 71(Gad), ONe getp(d) = 1 hencead = 0:
by the above remark, the notati(M‘é is thus coherent with the one introduced in
Proposition 1.3.

Examples2.3. (a) We take7 =SL,., A = pu,. The groupC,G is canonically
isomorphic toGL ,; the stackMdSL can be identified with the stack of vector

bundlesE on X with an isomorphism”E — Ox (dp).

(b) We take forG the groupOgy or Sp,, for A its center, with the unique
isomorphismA — p,. The groupC 4G is the groupC'Oy or C'Sp,; of automor-
phisms ofC? respecting the bilinear form up to a (fixed) scalar. The statk can
therefore be viewed as parameterizing vector bunéllea X with a (symmetric or
alternate) non-degenerate bilinear form with valua8 jn(dp). Similarly, the stack
M%ozl parameterizes vector bundlEsn X with a non-degenerate quadratic form
q:S’E — Ox(dp) and arorientation i.e. an isomorphismw: detE -~ Ox (dip)
such thatw®? coincides with the quadratic form induced ppn detE.

(c) We takeG = Spin,, A = pu,. ThenC4G is the Clifford group andMg;}A is
the moduli stackM g, considered in [O].

(2.4) Choose any elemette (LGaq)’(C); reasoning as in Proposition 1.3, one
gets a canonical isomorphism?, —~ ("1 LxG )\ Qg (see also [B-L], 3.6 for
the case? = SL,). In particular, the stack1, is connected. Moreover, we see as
in the proof of Proposition 1.5 that the torsion subgroup of Pi¢, ) is canonically
isomorphic toH* (X, 71(G)).

Let us apply the above construction to the gratipwith 4 = m1(G). Let
d € m1(G). From the exact sequence (1.2a), we see ¢hat the image of an
element of(LG)?. Comparing with Proposition 1.3, we see that the morphism
q%: Qz — MY, factors as

1)

q~
d . €} § T 0
g Qg —% ME T MY,

This shows us the way to determine the group(Ri¢,): we will first compute
Pic(M,) whenG is simply connected a& = SOy, then determine which powers
of the generator(s) descendM‘SG_

3. The Picard group of Mpg,

According to (1.3), the connected componentsMbg, are indexed by the
integersd with 0 < d < r; the componentM&s, is dominated by the moduli

stackM¢,  parameterizing vector bundléon X with an isomorphism” E —
Ox(dp) (2.33).
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Recall that thedeterminant bundlé on Mg, is the dual of the line bundle
detR(pr2).(€), wheref is the universal bundle o x Mg, . It follows from
[B-L], Proposition 9.2, thaD generates P((M%L,) and that its inverse image on
Q generates P{@). Therefore our problem is to determine which powergof
descend toVgg, .

PROPOSITION 3.1The smallest power @ which descends td1&, is D"

Proof. Since it preserves the Killing form, the adjoint representation defines
a homomorphism AdSL, — SO,.. Let f:M%LT — Msorz be the induced
morphism of stacks; since Ad factors througsL,., f factors through/\/lgGLT.
By [L-S], the determinant bundl®sp on Mso, admits a square ro@®; one has
f*Dso = D% since the Dynkin index of Ad isi2 hencef *P = D", which implies
thatD" descends.

Let J be the Jacobian ok, and £ the Poincag bundle onX x J whose
restriction to{p} x J is trivial. Consider the vector bundles

F=r0Yg " (dp) and G =03 e L dp)

onX x J.We denote by ; the multiplication by~ in J, and puty. ; = Idy x7 .
Sincer¥, ;L & L7, one hag'%, ;G = F ® L 1, hence the projective bundles
P(F) andr.,. ; P(G) are isomorphic. Therefore we have a commutatidagram

of stacks
J ! M
Ty ™
g
J MgGLrv

wheref andg are the morphisms associatedAiandP(G) respectively.

Thus if D descends toVgg, , the class off*D* in the Neron-Severi group
N S(J) must be divisible by?. An easy computation shows that the clasgap
in NS(J) isr(r — 1) times the principal polarization; it follows that must divide
kr(r — 1), which means that must dividek. O

Remark3.2. One can consider more generally the gr@up SL, /u, for each
integers dividing r, and the corresponding stackzlg for d € ©Z (mod.rz).
It can be proved thathe line bundleD* descends tou, if and only if & is a
multiple ofs/(s, %) [La]. The ‘only if’ part is proved exactly as above, but the

1 By this we always mean 2-commutative, e.g. in our case the two funetorg andg o r; are
isomorphic.
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other implication requires some descent theory on stacks which lies beyond the
scope of this paper.

4. The Picard group of Mpsp,,

According to Proposition 1.3 the moduli stasKpsp, has 2 componentM‘ész!
(d = 0,1); the componenIM‘,%Sle is dominated by the algebraic stacMéle

parameterizing vector bundles of rankéh X with a symplectic form\2E —
Ox (dp) (Example 2.3b). LeD denote the determinant bundle mgpﬂ (i.e. the

determinant of the cohomology of the universal bundlé(@nMngI); itis the pull

back of the determinant bundi& on M, by the morphisny: Mgpﬂ — ME
associated to the standard representation.

LEMMA 4.1. The groupPic(M$, ) is generated byp.
Proof. Consider the commutative diagram

F
QSle QSLzl
d d
4sp,, qsi,,
d f d
MSPzz MS'—zl ’

wheref andF are induced by the embeddiSg, — SLy, and¢d: Qg — M%
is the canonical projection (2.4). One Has= f*Dy, (quZZ)*Do = OQSLZI (1) by
[B-L], 5.5, andF*(’)QSLZI (1) = (’)QSle (1) since the Dynkin index of the standard
representation ddp,; is 1 ([L-S], Lemma 6.8). It follows that the homomorphism
(quﬂ)* : Pic(/\/ldsz ) — Pic(Qsp,) = Z Og(1) is surjective. On the other hand,

the proof of Proposition 6.2 in [L-S] shows that it is injective; our assertion fol-
lows. O

In view of the above remarks, Proposition 1.5 and (2.4) provide us with an exact
sequence

0 — J — Pic(Mpsy, ) T Pic(M$E, ) = Z D;
we now determine the image of:

PROPOSITION 4.2The smallest power @ which descends t.@/l‘,%spz! isDif
is evenD? if  is odd.
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Proof. The stackMngl parameterizes vector bundlés with a symplectic

form : A°E — Ox(dp) (2.3b). For such a pair, the fornfy defines a quadratic
form on A2E with values inOx (2dp), hence arOx-valued quadratic form on
NE(—dp). PutN = (21 -1); let f4 : Mg, — Mso, be the morphism of stacks
which associates tOF, ) the pair (N> E(—dp), N%p). Since the representation
N%: Sp, — SOy factors throughPSp,,, the morphisny, factors as

aqd d
fa: Msp,, = Mpgp, = Msoy -

The pull back undef; of the determinant bundle oktso,, is D?~2 (2] — 2 is the
Dynkin index of the representatias). But we know by [L-S] that this determinant
bundle admits a square root, hefie ! descends t(M%SpH. On the other hand, the

same argument applied to the adjoint representation show®thdescends (see
the proof of Proposition 3.1). We conclude tii descends, and th@ descends
whenl is even.

To prove thaD does not descend whéis odd, we use the notation of the proof
of Proposition 3.1, and consider ahx .J the vector bundlé{ = L% & £~Y(dp)?,
endowed with the standard hyperbolic alternate form with valué¥itp). We see
as inloc. cit.that thePSp,,-bundle associated & descends under the isogeny 2
(observe thal{ ® £ descends, and use the exact sequenee G,,, — C'Sp,; —

— PSp,;, — 1). Therefore the morphisth: J — M%DZI defined byH fits in a
commutative diagram

h

d
J Msp,,
2y
J Mgy, -
Since the class of *D in NS(J) is 2 times the principal polarization, it follows
thatD does not descend. O

5. The Picard group of Mpso,

(5.1) Let us consider first the moduli staskso, , for » > 3. It has two components

o, distinguished by the second Stiefel-Whitney clas& u,. The Picard
group of these stacks is essentially described in [L-S]: to each theta-characteristic
k on X is associated a Pfaffian line bundR whose square is the determinant
bundleD (determinant of the cohomology of the universal bundleXor Mg, );
according to Proposition 1.5, there is a canonical exact sequence

0— Jp, 2 PigMgp ) - Z =0,
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where the torsion free quotient is generated by any ofthis.
We can actually be more precise. B¢X') be the subgroup of Ri&') generated
by the theta-characteristics; it is an extensiod diy .J5.

PROPOSITION 5.2The mapx +— P, extends by linearity to an isomorphism
P:0(X) — Pic(M¥, ), which coincides wittk on /5.

In other words, we have a canonical isomorphism of extensions

0— N - 0(X) -Z —0
A
0— I Pic(Mso,) zZ —0.

Proof. It suffices to prove the formul®.z, = P, ® A(a) for any theta-
characteristie: and elemend of .J5.

Let £ be the Poincd bundle onX x .J, normalized so that its restriction
to {p} x J is trivial. Putd = 0if w = 1,d = 1 if w = —1. The vector
bundle£(dp) ® L~1(—dp) ® O™ 2, with its natural quadratic form and orientation,
defines a morphismr J — M¥, . Letus identify.J with Pic®(.J) via the principal
polarization. Then the required formula is a consequence of the following two
assertions:

(@) One hag*P.xa = (¢°Px) ® « for every theta-characteristicand element
« of Js;
(b) The map™ : Pic(/\/t’é’or)tOrs — Jo is the inverse isomorphism of

Let us prove (a). The line bundigP,, is the pfaffian bundle associated to the
quadratic bundI€ (dp) ® L ~Y(—dp)) and tox. Now it follows from the construction
in [L-S] that for any vector bundl&’ on X x S, the pfaffian of the cohomology of
E & (Kx ® E*), endowed with the standard hyperbolic form with value&ig,
is the determinant of the cohomology Bf Because the choice df ensures that
the determinant of the cohomology is the samefandL(p), we conclude that
g* P, is the determinant of the cohomology 61 x, i.e. the line bundl€® ;(©,,).
SinceO 5. = O + «, the assertion (a) follows.

Since we already know that FEth‘/lgor)tors is isomorphic to.J, (Proposition
1.5), (a) implies thay* is surjective, and therefore bijective. Henge= ¢g* o A
is an automorphism off,. This construction extends to any family of curves
f: X — S, defining an automorphism of the local syst&?y. (i) overS. Since
the monodromy group of this local system is the full symplectic gr8p{J>) for
the universal family of curves, it follows thatis the identity. O

(5.3) This settles the case of the grds@,; let us now consider the grolRsS0O,,
forr =21 > 4. The moduli spac81pso, has 4 components, indexed by the center
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Z of Spiny,. This group consists of the elemerts, —1,¢, —¢} of the Clifford
algebraC(C?), with e2 = (—1)! ([Bo], Algébre 1X). Each componenttysc, ,

for § € Z, is dominated by the algebraic staM‘SsoZl (2.1). Ford € {1}, thisis

the same stack as above; the stad@% U Mgng parameterizes vector bundles
with a quadratic form with values i@ x (p) and an orientation (2.3b). Changing
the sign of the orientation exchanges the two compongttsand M —¢ (this
corresponds to the fact thatnd—e are exchanged by the outer automorphism of
Spin(27) defined by conjugation by an odd degree element of the Clifford group).

LEMMA 5.4. The torsion free quotient (ﬂ‘ic(Mégﬂ) is generated by the deter-
minant bundleD.

Proof. The same proof as in Lemma 4.1 shows that the pull badk bf the
morphismqgézl: Qspiny, — Mfscéﬂ is Og(2) (the Dynkin index of the standard
representation @0y is 2). Therefore it suffices to prove tHathas no square root
in Pic(Mgg, ).

Let V be al-dimensional vector space; we consider the vector bundle
T =(V®&cOx)® (V*®c Ox(p)), with the obvious hyperbolic quadratic form
q:S°T — Ox(p) and isomorphisrw: detT” —~+ Ox (Ip). We choose the sign of
w so that the triplel™ := (T, q,w) defines a rational point oM, and put
T = (T,q,~w) € Mgg,(C). The groupG = GL(V) acts onT', and this
action preserves the quadratic form and the orientation. This defines a morphism
1 of the stackBG classifyingG-torsors intoMgng: if S is aC-scheme and® a
G-torsor onS, one puts (P) = P x% TZ*.

Recall [L-MB] that theC-stack BG is the quotient of Spe€ by the trivial
action ofG; in particular, line bundles oBG correspond in a one-to-one way to
G-linearizations of the trivial line bundle on Sp€cthat is to characters @f. In
our situation, the line bundléD will correspond to the character 6f by which
G acts on deRI'(X,T). As G-modules, we have

detRI(X,T) & detRT(X, V ®@c Ox) ® detRT\(X, V* ®c Ox(p)).

Now if L is a line bundle onX, the G-module deRT'(X,V ®c L) is isomor-
phic to defV ® HO(L)) ® de(V ® HY(L))~* = detV)X("). We conclude that
detRI'(X,T) is isomorphic to dgt/*), i.e. that.*D corresponds to the character
det'l: G — C*. Since det generates H§@1, C*), our assertion follows' O

PROPOSITION 5.5Leté € Z. The line bundlé (resp.D?) descends OM‘,ZSOZI

if [ is even(resp. od{; the corresponding line bundles Ohl‘,isoﬂ generate the
Picard group.

Proof. We first prove that the Pfaffian bundl®&s do not descend t(M‘,ZSOZl.
If 6 € {£e}, this follows from the above lemma. §f € {£1}, we consider the

1 This argument has been shown to us by V. Drinfeld.
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action of J, on Mﬁsoﬂ deduced from the embedding C SOy;: each element
a € Jy (trivialized atp) defines an automorphism — still denoted- of the stack
M%EOZI, which maps a quadratic bundl&, ¢,w) onto (E ® a,q ® iq,w ® &),
wherei,: a® =5 Oy is the isomorphism which coincideszatvith the square of
the given trivialization.

We claim thatv*P,; is isomorphic tdPg,, for every theta-characteristicand
elementa of J,. This is easily seen by using the following characterization of
P ([L-S], 7.10): let€ be the universal bundle oF x Mgifoﬂ; then the divisor

O = div Rpra. (€ ® k) is divisible by 2 in DivMiéOZl, andP,, is the line bundle
associated t(%@n. By construction1x x a)*& is isomorphic ta€ ® «, hence

a*0, =div Rpro.((1x X @)*E @ k =div Rpra. (€ @ a ® k) = Okga,

which implies our claim. Since the map— P, is injective (Proposition 5.2), we
conclude tha®,, does not descend.

The rest of the proof follows closely the symplectic case (Proposition 4.2). For
d = 0, 1, the representatiot? defines a morphism of staclg: M%OZI — Msoy
which factors throughM,%SOZl. The pull back undep, of a square root of the
determinant bundle i®'~1; sinceD? descends, one concludes tlHadescends
when! is even and>? when! is odd.

To prove thatD does not descend whéns odd, one considers the quadratic
bundle}’ on X x .J defined by

HO = LO% @ (£~ ifo=1
= Lp)® oL (-p)® ifi=-1
= (L@ L Y(p))®! if & = e,

with the standard hyperbolic quadratic form, and opposite orientations for the cases
0 =eandd = —e.
As above, this gives rise to a commutative diagram

h

0
J MSOZI
2y
J Mpso,

from which one deduces thatdoes not descend, since the classd@ in N.S(J)
is 2 times the principal polarization. O
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Part II: The Picard group of the moduli space

6. C"-extension associated to group actions

This part is devoted to the Picard group of the moduli splfge The case of a
simply connected group being known, we will considd: as a quotient oMg

by the finite groupH*(X, 71(G)). Therefore we will first develop some general
tools to study the Picard group of a quotient variety.

(6.1) Let H be a finite group acting on a normal projective variéty over C
(or, more generally, any variety with%(M, 0%,) = C*), and L a line bundle
on M such thath*L = L for all h € H. We associate to this situation a central
C*-extension

15 C" - &H, L)L H -1,

the groups (H, L) consists of pairgh, k), whereh runs overH andh is an auto-
morphism ofL, coveringh, andp is the first projection.

(6.2) We will need a few elementary properties of these groups:

(@) Let f: M' — M be aH-equivariant rational map. Pulling back automor-
phisms induces an isomorphisft: £(H, L) — £(H, f*L).

(b) Recall that the isomorphism classes of cenralextensions off form a
commutative group, canonically isomorphichs (H, C*). The class in this group
of £(H,L"), for r € N, equalsr times the class of (H, L). More precisely,
the mapy,: £(H,L) — E(H, L") given by, (h,h) = (h,h®") is a surjective
homomorphism, with kernel the groyg of r-roots of unity, and therefore induces
an isomorphism of the push-forward &{H, L) by the endomorphism— ¢ of
C*onto&(H,L™).

(c) Let M’ be another projective variety’ a finite group acting od/’, L’ a
line bundle onV/” preserved byi’. The mapf (H,L) x E(H',L') — £(H x H',
LR L") givenby((h,h), (h',h")) — (hxh',hrh') is a surjective homomorphism,
with kernelC* embedded by — (t,¢71).

(d) Let K be a normal subgroup df. The groupH /K acts onM /K let Lo
be a line bundle o/ /K preserved by this action, andthe pull back ofLq to
M. Then the extensiofi(H, L) is the pull back o€ (H /K, Lo) by the projection
H— H/K.

(6.3) A H-linearizationof L is a section of the extensiaf(H, L). Such a lin-

earization allows us to define, for each paintof M, an action of the stabilizer
H,, of min H on the fibreL,,; this action is given by a character &f,,, denoted

by Xm.
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Let m: M — M/H be the quotient map; if.o is a line bundle on the quotient
M /H, the line bundld. = 7* L has a canonicdl -linearization. By construction
it has the property that at each pointof M, the charactex,, of H,, is trivial.

The converse is true (‘Kempf's lemma’), and is actually quite easy to prove in our
set-up. Since twdi -linearizations differ by a character &f, we can restate this
lemma as follows: assume thatadmits aH-linearization; then, descends to

M /H if and only if there exists a charactgrof H such thaty,, = x|z, for all

m e M.

It follows from the above description that the kernel of the homomorphism
m*:Pic(M/H) — Pic(M) consists of theH -linearizations of0,, such that the
associated charactexs, are trivial, i.e. of the characters é&f which are trivial
onthe stabilizerél,,,. In particular, if the subgroups,,, generatdd, 7* is injective.

(6.4) Let M’ be another projective variety with an action &f, and L’ a line
bundle admitting aH -linearization. TheH-linearizations ofL. and L’ define a
H-linearization ofL X L'; at each pointm, m'), the corresponding character of
H(ypmry = Hm N Hyy 1s the product of the characteys, of H, andy’ , of H,,
associated to the linearizationsbfandL’. As a consequence, assume thatnd

L X L' descend taV//H and(M x M')/H respectively, and thal = U,,,H,,;
thenZ’ descends td/’/H.

(6.5) From (6.2b) we see thdte smallest positive integersuch thatL™ admits
a H-linearization is the order of (H, L) in H?(H,C*). We want to know which
powers ofL." descend td///H.

Let » be a multiple ofn. The class: of £(H, L) in H?(H,C*) comes from
an element off?(H, p,.), which means that there exists a cocyete Z2(H, u,)
representing, or in other words a map: H — £(H, L) such thapp o o = Idy
ando(hh') = o(h) o(h') (mod.u, ) —let us call such a mapsection(mod. i1,.) of
E(H, L). Composingr with the homomorphisnp,.: £(H, L) — £(H, L") (6.2b)
gives a section of the extensié\H, L"), that is aH-linearization ofL".

Let m be a point ofM. Using this H-linearization we get a charactgy, of
H,, (6.3), which can be computed as follows: foe H,, the element-(h) acts
on L,,, and we have,,(h) = (o(h),)". Assume moreover thédt” = 1 for all
h € H; then the element(h)" of £(H, L) belongs to the centeZ*. ThusL"
endowed with théf -linearization deduced from descends td//H if and only if
o(h)" = 1forall hin UH,,. Using 6.3 we can conclude:

PROPOSITION 6.6Assume that the order 6f H, L) in H?(H,C*) and of every
element ofH dividesr. Leto: H — £(H, L) be a section(mod. ). Then

L™ descends taV//H if and only if there exists a character of H such that
o(h)" = x(h) for all h € H fixing some point oM .
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In the applications we have in mind we will always hav#,, = H. In this
case we get the following condition, which depends only on the exte&$inL)
and not on the variety/:

COROLLARY 6.7.Assume that every elementiéffixes some point idZ. Then
L™ descends taV//H if and only if the maph — o"(h) from H to C* is a
homomorphism.

(6.8) From now on we will assume that the finite grotpis abelian In that
case there is a canonical isomorphisnif{ H, C*) onto the group ARH, C*) of
bilinear alternate forms oi with values inC* (see e.g. [Br], V.6, exer. 5) : to a
centralC*-extensiond -2+ H corresponds the formsuch thate(p(z), p(y)) =
zyz~ly~! € Kerp = C*. Conversely, givere € Alt(H,C*), one defines an
extension offf in the following way: choose any bilinear forpt H x H — C*
such thak(a, 8) = ¢(a, B)e(B,a)~1; takeH = H x C*, with the multiplication
law given by

(a,t) (B, u) = (a+ B, tup(a, B)),
the homomorphism: H — H being given by the first projection.

(6.9) Letr be an integer such thatd = 0. Then the groupd?(H,C*) =
Alt(H, C*) is also annihilated by. Lete € Alt(H, C*); we can choose the bilinear
form ¢ with values inu,.. Consider the extension defined as abovebyhe map
o: H — H defined byr(a) = (o, 1) is a section (modu, ). An easy computation
givesa(a)” = p(a, @)z € {1,—1}. One hasr? (a) = 1, ando ()" = 1
for all « if r is odd. If r is even, the function: a — o(«)" is ‘quadratic’ in
the sense that(a 4 3) = e(a)e(3) e(a, B)™/2. In particular, we see that” is a
homomorphism if and only if the alternate forf/? (with values inu,) is trivial.

In summary:

PROPOSITION 6.10AssumeH is commutative, annihilated by, let ¢ be the
alternate form associated t6(H, L). The line bundlel.?" descends toV//H;
moreover” descends, exceptifis even and the forra’/2 is not trivial. In this
last case, if every element &f has some fixed point o, L™ does not descend.

Example6.11. LetA be an abelian variety of dimensigrn> 1, and® a divisor on

A defining a principal polarization. Let,. be the kernel of the multiplication by

in A. The groupf (A, O(r®)) is the Heisenberg group which plays a fundamental
role in Mumford’s theory of theta functions; the corresponding alternate form
er: Ar X Ay — p, is the Weil pairing. The groug, acts on the linear systemo|,

and the morphismi — |r©|* associated to this linear systemAs-equivariant;

comp4199.tex; 27/04/1998; 8:29; v.7; p.16

https://doi.org/10.1023/A:1000477122220 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000477122220

THE PICARD GROUP OF THE MODULI OK7-BUNDLES ON A CURVE 199

therefore by (6.2a), the extensifA,., O),¢|- (1)) isisomorphic tE (4,, O(rO)).
It follows easily that (A, O),¢|(1)) corresponds to the nondegenerate ferm.
Let s be a positive integer dividing; an easy computation shows that
(6.12)the restriction ok, to A, is equal toe}/*.

We conclude from the proposition that:

— the line bundle)(2s) descends tgrO|/As;
— the line bundle)(s) descends tor©|/A; if s is odd orr/s is even, but does
notdescend ifs is even and-/s odd.

7. The moduli spaceMq

For the rest of this paper we assume that the genus &f > 2.

(7.1) Recall [R1, R2] that &-bundle P on X is semi-stable(resp. stablg if
for every parabolic subgroul, every dominant charactegr of TT and everyll-
bundle P" whose associated-bundle is isomorphic t@, the line bundleP], has
nonpositive (resp. negative) degree.

Let p: G — G’ be a homomorphism of semi-simple groups, @&hdG-bundle.
If P is semi-stable th&’-bundleP, = P x& G' is semi-stable; the converse is
true if p has finite kernel. In particulaP is semi-stable if and only if its adjoint
bundle Ad P) is semi-stable.

We denote by the coarse moduli space of semi-stable princ@dlundles
on X (loc. cit). It is a projective normal variety. Let1¢? be the open substack
of M corresponding to semi-stabig-bundles; there is a canonical surjective
morphismf: M — Mg. Foré € m1(G), f maps the componeiM¢$)? onto
the connected componemg of M parameterizingz-bundles of degreé&.

The definition of (semi-) stability extends to any reductive gréu@a H -bundle
P is semi-stable (resp. stable) if and only if tt#¢/Z°)-bundleP/Z° has the same
property, whereZ® is the neutral component of the centerdf The construction
of the moduli spacé/y makes sense in this set-up; each componedgfis
normal and projective.

Let Z be the center ofy; we choose an isomorphistd — [Tu,,. Let
§ € T1(Gag). The construction of the ‘twisted’ moduli stagkt?, (Section 2) obvi-
ously makes sense in the framework of coarse moduli spaces. We get a coarse mod-
uli spaceMg, which parameterizes semi-stalile, G-bundles with determinant
Ox (dp), such that the associatéth-bundle has degreg with p(8) e274/" = 1
(2.2). The open substaoktg“ of M¢, parameterizing semi-stable bundles maps
surjectively ontoMg. If A is a central subgroup af, there is a canonical mor-
phismz: M2, — Mg/A which is a (ramified) Galois covering with Galois group
H'(X,A). The next lemma will allow us to compare the Picard groups of these
moduli spaces by applying the results of Section 6, in particular Proposition 6.10,
to the action of71(X, A) on MY..
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LEMMA 7.2. Letd € m1(Gag)-
(a) The moduli spacMg is unirational.
(b) Any finite order automorphism (Mg has fixed points.

Proof. (a) The proof in [K-N-R], Corollary 6.3, for the untwisted case extends
in a straightforward way: by (2.4) we have a surjective morpl‘@@e MY so
the open subset @ parameterizing semi-stable bundles maps surjectively onto

Mg. SinceQ is a direct limit of an increasing sequence of generalized Schubert
varieties, which are rational, the lemma follows.

(b) This is actually true for any finite order automorphignof a projective
unirational varietyM. One (rather sophisticated) proof goes as follows: there
exists a desingularizatiohd of M to which g lifts to an automorphisng [H],
necessarily of finite order. Sindé (M, Oy;) is zero fori > 0, we deduce from
the holomorphic Lefschetz formula th@has fixed points, hence algo O

Recall that the moduli spadé; is constructed asgood quotienfSe] of a smooth
schemeR by a reductive grouf’ [R1] — this implies in particular that the closed
points of M correspond to the closed orbits Bfin R. In order to compare the
Picard groups of P{d//;) and Pi¢M;), we will need a more precise result:

LEMMA 7.3. There existsa presentationmg“ as a quotientof asmooth scheme
R by a reductive groufp’, such that the moduli spad\e{g is a good quotient ol
byT.

Proof. We will explain the proof in some detail for the untwisted case, then
indicate how to adapt the argument to the general situation.

We fix a faithful representatiop: G — SL, and an integetV such that for
every semi-stabl&-bundleP, the vector bundI€’,(Np) is generated by its global
sections and satisfied*(X, P,(Np)) = 0. Let M = r(N + 1 — g). For any
complex schemé, we denote byR(S) the set of isomorphism classes of pairs
(P, ), whereP is aG-bundle onX x S whose restriction toX x {s}, for each
closed points € S, is semi-stable, and: O} = pra.P,(Np) an isomorphism.
We define in this way a functdg; from the category o€-schemes to the category
of sets; we claim that it is representable by a sch&nelf G = SL,, this follows
from Grothendieck theory of the Hilbert scheme [G1]. In the general case, we
observe that reductions @ of the structure group of 8L,.-bundleP correspond
canonically to global sections of the bundtéG; it follows that R, is isomorphic
to the functor of global sections @ /G, whereP is the universaBL,.-bundle on
X X RsgL,. Again by [G1], this functor is representable by a schdae which is
affine overRg, .

Putl’ = GLj,. The groupl’ acts onR., and therefore ok, by the rule
g-(P,a) = (P,ag™'). This action lifts to the universal-bundle? overX x Rq
as follows: by construction the universal péR, «) is isomorphic ta((Id xg)*P,

a o g), hence there is an isomorphism G@fbundleso,: (Id xg)*P — P such
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thata o g1 = pra.(0g,) © . Sincep is faithful this isomorphism is uniquely

determined byrz. (0, ,), hence depends only grand defines the required lifting.
The I'-equivariant morphisnpp: R¢ — M induces a morphism of stacks
@p:[Ra/T] — M which is easily seen to be an isomorphism. We also have a
I'-equivariant morphismp: R — Mg; if there exists a good quotiedit;/ /T,
the universal property af/; implies thaty)» must induce an isomorphism of this
guotient ontoM¢. The existence of such a good quotient is classical in the case
G = SL, (possibly after increasing’); for generalG, since the canonical map
Ra — Rsi, is T-equivariant and affine, the existence of a good quotiei$f
by T" implies the same property fdk thanks to a lemma of Ramanathan ([R1],
lemma 4.1).
Let us finally consider the twisted case. We choose an embedding of the center

Z of G in atorusT = G£,, and an embedding G — [I GL,, such thap(Z) is
i=1

central; we putS = ([IGL,,) x (T/Z). The map(g,t) — (t~1p(g),t mod. Z)

of G x T into S defines an embedding 6f;G into S, which maps the center of
C7G into the center oF, so that a8, G-bundleP on X is semi-stable if and only
if the associated-bundle is semi-stable. We then argue as before, replaiing
by S. O

PROPOSITION 7.4Assume that the grou@is almost simple. The groliq M)
is infinite cyclic, and the homomorphism: Pic(MJ,) — Pic(Mg) is injective.

The second assertion follows from Lemma 7.2(b) and (6.3); it is therefore
enough to prove the first one whéhis simply connected. The proof then is the
same as in the untwisted case ([L-S] or [K-N]): since the smt% is smooth, the
restriction map PigMY%,) — Pic(M‘gss) is surjective, hence by Proposition 1.5 the
group Pioé/\/l‘é“) is cyclic; it remains to prove that the pull back homomorphism
Pic(ME,) — Pic(M%*) is injective.

4,88

We choose a presentation 8f ;" as a quotient of a smooth schemieby a
reductive groud”, such that the moduli spa(Mg is a good quotient oR by I

(Lemma 7.3); then line bundles cM‘éss (resp. onM ) correspond to line bundles
on R with aI'-linearization (resp. &-linearizations such that(vy), = 1 for each
(7,7) € I' x R such thatyr = r), hence our assertion. a

In what follows we will identify the group Pid/g) with its image in Pi(ﬁMg);
our aim will be to find its generator.

8. The Picard groups of Mspin, and Mg,

(8.1) In this section we complete the results of [L-S] in the simply connected case.
The cases$s = SL, or Sp,, are dealt with irloc. cit. We now consider the case
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G = Spin,; we denote byD the determinant bundle al/spin  associated to the
standard representatienof Spin, in C".

PROPOSITION 8.2Letr be an integet> 7. The groupPic(Mspin ) is generated
by D.

Proof. Choose a presentation.dfg;, as a quotient of a smooth schefdy
a reductive grouf’, such thatMspi, is a good quotient of? by ' (Lemma 7.3).
Let S be the universabpin,-bundle onX x R. We fix a theta-characteristicon
X ; this allows us to define the pfaffian line bundg on R, which is a square root
of detRpry.(S, ® k) [L-S]. The action ofl” on S defines d'-linearization ofP,.

By [L-S] we know that the group df-linearized line bundles oR (isomorphic
to Pig Mgy, ) is generated byP,, so all we have to prove is th&, itself
does not descend tB/ /T, i.e. to exhibit a closed point € R whose stabilizer
in " acts nontrivially on the fibre oP, at s. If s corresponds to a semi-stable
Spin,.-bundleP, its stabilizer is the group AuP); since the formation of pfaffians
commutes with base change, its actionN®,); is the natural action of AgP) on
(A"HO(X, P, ® 1)) T [L-S].

To constructP we follow [L-S], Proposition 9.5: we choose a staldé,-
bundle@ and a stabl&O, _4-bundleQ’ with w»(Q) = w2(Q') = 1. Let H be the
subgroups0Oy x SO,_4 0f SO,., andH its inverse image ispin,.. The H-bundle
Q x Q' hasw, = 0 by construction, hence admitsastructure; we choose one,
and take forP the associate8pin,-bundle. Lety be a central element @ lifting
the elemen{—1,1) of H. Then+y defines an automorphism &f, which acts on
the associated vector bundi = Q, ® Q. as(—Id, Id) (we use the same letter
to denote the standard representation of all orthogonal groups in sight). Therefore
~ acts on(P,,)s by multiplication by(—1)""(@=®x) But h%(Q, ® ) is congruent
to wy(Q) (mod. 2) [L-S, 7.10.1], hence our assertion. O

Remark8.3. Forr < 6 the groupSpin, is of type A or C, so we already have
a complete description of Ri#/spin, ). It is worth noticing that the above result
does not hold for < 6: using the exceptional isomorphisms one checks easily that
Pic(Mspin, ) is generated by a square root@ffor » = 5 or 6 and a fourth root for

r = 3 —while it is isomorphic t&? for r = 4.

We now consider the case whéhis of type G,. The groupG is the auto-
morphism group of the octonion algeb®aover C ([Bo], Algebre I, App.); in
particular it has a natural orthogonal representatian the 7-dimensional space
O/C. We denote byD the determinant bundle al/; associated to this represen-
tation.

PROPOSITION 8.4The groupPic(M¢;) is generated byp.

Proof. As before we choose a presentation\dfy as a quotient of a smooth
schemeR by a reductive groug’, such thatMs = R//T'; choosing a theta-
characteristia: on X allows to define a pfaffian line bundig, on R, with a natural
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I-linearization. By [L-S], Theorem 1.1, generates the group bflinearized line
bundles onR; we must again prove that it does not descen® fgI’, i.e. exhibit a
G-bundleP such that AutP) acts nontrivially o\M*HO(P, ® k).

Let V be a 3-dimensional vector space o¥er. The algebreD has a basis
(ea)acy, With multiplication rule

€a €3 = 6(0[, /8) €a+p,

for a certain function: V' x V' — {£1}. Suppose given a homomorphism- L,

of V into J. We view J as the moduli space for degree 0 line bundles with
a trivialization atp; for each pair(a, 3) in V we have a unigue isomorphism
uag: Lo ® Lg — L3 cOmpatible with these trivializations. We endow g -

moduleA = @V L., with the algebra structure defined by the mam A — A
ac

which coincides witle(«, 3) uqs 0N L, @ L. Itis a sheaf of) x -algebras, locally
isomorphic ta0x ®c O. Let P be the associate@-bundle (the sections d? over
an open subsét of X are algebraisomorphisms6f ®c O ontoA;;). Since the
pull back of P to any finite covering ofX on which theL,’s are trivial is trivial,
P is semi-stable. The vector bundi& is simply @0 L,. Letx:V — {£1} be

a nontrivial character; the diagonal endomorphisttw)).cv 0f A is an algebra
automorphism, and therefore defines an automorphiesmP, which acts onP,
with eigenvaluegy(a))a0. Hencer acts onA™>HO(P, ® «) by multiplication
by (—1)", with b = 3= (4)— 1 h°(La ® ). Since the functiomr — h%(L, © k)
(mod. 2) is quadratic, an easy computation gives thit even if and only if the
image of Kery in .J» is totally isotropic with respect to the Weil pairing. Clearly
we can choose our map — J, and the charactey so that this does not hold; this
provides the required example. O

9. The Picard group of M2

In the study of Pi¢M,), contrary to what we found for the moduli stacks, the
degree’ plays an important role. We treat first the degree 0 case, which is easier.
Let us start with the casé;. We recall that the determinant bundbeexists on the
moduli spacelfs, ., and generates its Picard group.

PROPOSITION 9.1LetG = SL, /u,, with s dividingr.

() If s is odd orr/s is evenPic( M) is generated bp?.
(b) If s is even and/s is odd,Pic(M) is generated bp.

In particular, Pic(Mgg, ) is generated bP" if r is odd and byD?" if r is even.
Proof. We identify Mg, with the moduli space of semi-stable vector bundles
of rankr and trivial determinant oiX. Let .J9~1 be the component of the Picard
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variety of X parameterizing line bundles of degige 1, and® ¢ J9~1 the canon-
ical theta divisor. It is shown in [B-N-R] that fat general inMs, ., the condition
HO(X,E ® L) # 0 defines a divisoD(E) in .J9~1 which belongs to the linear
system|r®|, and that the rational map: Ms ,—— — |r©| thus defined satis-
fies D*O(1) = D. Using (6.2a) we deduce that the alternate form associated to
£(J,, D) is the inverse of the Weil pairing; its restriction toJ; is e;"/* (6.12).
From Proposition 6.10, we conclude that the line bund@lésn case (a) an®?
in case b) descend /2.

It remains to prove that these line bundles are indeed in each case generators of
Pic(MY). Consider first the case= r. Since the extensiafi(J,., D) is of orderr
in HZ(JT, C*), the smallest power dP which admits aJ,-linearization isD", so
the conclusion follows from Proposition 6.10. In the general caséyput Mg,
and assume that some pov@¥ of D descends td// J;. Observe thad//J,. can
be viewed as the quotient 81/ J; by J,. /.

Assume that /s is even. We know by Proposition 6.10 tha#*"/s descends to
M/ J,; sincer is even, this implies by what we have seen thati®ides Zr/s,
hence that: is a multiple ofs. If /s is odd, thenD*"/s descends by Proposition
6.10, and thereforg is a multiple ofs or 2s according to the parity of. O

(9.2) We now consider the case of the orthogonal and symplectic grakip=150.

or Sp, (r even), we will denote b the determinant bundle oW/, i.e. the pull
back of the determinant bundle a#_, by the morphism associated to the standard
representation. We know that the group(Rigp, ) is generated bp ([L-S], 1.6),
and that PicMspin_ ) is generated by the pull back Df(Proposition 8.2); it follows
that the Picard group of each componenifio, is generated bf. It remains to
consider the groupBSp,; andPSOy;.

PROPOSITION 9.3LetG = PSpy, or PSOy (I > 2).

(a)If I is evenpPic(M2) is generated b2,

(b) If 1 is odd,Pic(M?) is generated byp*.

Proof. The extensioif(.J2, D) is the pull back taJ; of the Heisenberg exten-
sion of Jy, and the corresponding alternate formejs(6.12). We deduce from
Proposition 6.10 thab? descends td/2 if I is even, and thab* descends bub?
does not ifl is odd.

It remains to prove thab does not descend whéis even. Let us consider for
instance the case of the symplectic group; for every integere puth,, = Msp,
and denote b¥,, the determinant line bundle av,,. Writel = p+ ¢, wherep and
g are odd (e.gp = 1,¢ = [ — 1), and consider the morphism M, x M, — M,
given byu((E, @), (E',¢')) = (E® E', o ® ¢'). Itis Jo-equivariant and satisfies
u*D; = D,KD,. The group/> x J, acts onM,, x M,; from (6.2c) one deduces that
the alternate form corresponding to the extensiéJz x .J,, D, ®D,) is given by
e((a, &), (B8,0")) = ea(, B) e2(c!, B'). If D; descends td/;/.J>, thenD, K D,
descends toM,, x M,)/.J>, and we can apply (6.2d) to the variey, x M, and
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the diagonal embeddingy C J> x J». We conclude that the forra is the pull
back of an alternate form o#, by the sum map/, x J, — Jo. This is clearly
impossible, which proves th@y does not descend f;/ .J>.

The same argument applies to the orthogonal groups, except that one has to be
careful about the definition d#/1: we take it to be the Jacobian &f, by associating
to a line bundlex on X the vector bundle:® o~ with the standard isotropic form.
ThenD; is the line bundle)(20). The alternate form associatedd6J>, D;) is
e2, and the rest of the argument applies without any change. O

Remarkd.4. There remains one case to deal with. Whesreven, the center
of Spiny, is isomorphic tqu, x u,, S0 it contains two subgroups of order 2 (besides
the kernel of the homomorphis8pin,, — SOy;). These subgroups are exchanged
by the outer automorphisms &pin,;, so the corresponding quotient groups are
canonically isomorphic; let us denote them®ySinceM, dominatesZ\J,QSOZI, it
follows from Proposition 9.3 thab? descends td/2. If [ is not divisible by 4,
one can show tha® does not descend &2, so Pi¢M2) is generated by?. If
[ = 4, one sees using the triality automorphism thadescends; we do not know
what happens far= 4m, m > 2.

10. The Picard group of Mg,

In this section we consider the compona#f;, of the moduli spacéZpgy, , for

0 < d < r. Itis the quotient by/,. of the moduli spacMgLr of semi-stable vector
bundles of rank and determinar®x (dp). We denote by the g.c.d. of- andd. If
Alis avector bundle oX of rankr /¢ and degreér(g — 1) —d) /6 whichis general
enough, the conditiof°(X, E @ A) # 0 defines a Cartier divisor ob/g, ; the
associated line bundlé (sometimes called thineta line bundlgis independent
of the choice of4, and generates F{nglLT) [D-N].

PROPOSITION 10.1The groupPic(Mg, ) is generated by’ if r is odd and
by £% if r is even.

Choose a stable vector bundieof rankr /s and determinan® x (—%p), and
consider the morphism E — E® A of M¢,_into Mgl_r%. By definition. is the
pull back of the determinant bundlI2 on the target. The mapis J,-equivariant,
hence induces an isomorphish/,, D) = £(J,, L). We have seen in the proof
of Proposition 9.1 that the alternate form associatefl(t§., D) is e;’"/‘s; hence
the smallest power of which descends tMgGLT is £. Therefore it is enough to

prove thatC’ descends td/g; whenr is odd and that? but not£’ descends
whenr is even.

We will prove this by reducing to the degree 0 case with the help of the Hecke
correspondence. Let us denote simphlsthe moduli spacM%LT of stable vector
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bundles of rank and determinan®x (p) on X. There exists a Poincabundlef
onX x M; we denote by, its restriction to{p} x M, viewed as a vector bundle
on M. We fix an integeh with 0 < h < r and letP = Gy (h, £,) the Grassmann
bundle parameterizing rank locally free quotients of,. A point of P can be
viewed as a paifE, F') of vector bundles with € M, E(—p) C F C E and
dim(E,/F,) = h.

LEMMA 10.2. If E is general enough i/, for any pair(E, F') in P the vector
bundleF is semi-stable, and stablegf> 3.

Proof. We will actually prove a more precise resultdfis a vector bundle on
X, define thestability degrees(G) of G' as the minimum of the rational numbers
w(G") — u(G") over all exact sequences© G' - G — G” — 0. One has
s(G) > 0if and only if G is semi-stables(G) > 0 if and only if G is stable, and
s(G) = g — 1 whenG is a general stable vector bundle [L, Hi].

Let E, F' be two vector bundles o, with E(—p) C F C E. The lemma will
follow from the inequality

s(F)>s(F)—1

(note that sincé” and F' play a symmetric role, this implids(E) — s(F)| < 1).
Let Q, be the sheaf//F (with support{p}), andh the dimension of its fibre at
p. Let F' be a subbundle of, of rankr’. From the exact sequence® F/F' —
E/F" — @, — 0 we get

h

r—r!

WE/F') = y(F') = p(B/F') — —— — u(F') > s(E) —

r—r

Let K, := Ker(E, — @)p). The exact sequence-8 E(—p) - F — K, — 0
induces an exact sequence-® E' — F' — K,, with E' := F' N E(—p).

Therefore
) , , , r—h r—h
WE/F') = p(F') > w(B(=p)/E) = p(B') = —= > s(B) = ——.
. h r—h . .
Since one of the two numbers—; and —— is < 1, we get the required
r—r T
inequality. O

Let us denote by’ the moduli spacMé[Th. Using the lemma we get a diagram
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(‘Hecke diagram’), where (resp.q’) associates to a pai¥, F') the vector bundle
E (resp.F, providedF is semi-stable).

Let £ and £’ be the theta line bundles di andM'. Let § be the g.c.d. of
and 1— h.

LEMMA 10.3. One hasKp = ¢* £~ @ ¢"*£'~9.
Proof. Let E be a general vector bundle if; let us compute the restriction of
¢"* L' to the fibreg~%(E). On X x P we have a canonical exact sequence

0—=F = (Ix xq)*€ = (p)«Qp — 0,

whereQ,, is the universal quotient bundle gf&£, on P and:, the embedding of
P ={p} xPinX xP.Foreach poinP = (E, F) of P this exact sequence gives
by restriction toX x { P} the exact sequence® F — E — Q, — 0definingP;
in particular, one ha§'x . (py = F, and the mag’: P-—— M’ is the classifying
map associated t#. It follows thatq* L’ is the determinant bundle associated to
F ® A, whereA is a vector bundle of rank/§ and appropriate degree.

Now letE € M; putG = ¢ }(E) = G(h, E,), and denote by: X x G — X
andp: X x G — G the two projections. The restriction of the above exact sequence
to X x G gives, after tensor product with A, an exact sequence

O FRrm A= 1" (E®A) — (ip)*Q;/5 —0;
applying Rp, and taking determinants, we obtain
detRp.(F ® n*A) = (detQ,)"/? = Og(r/d).

The restriction ofKp to G is Kg = Og(—r); since Pi¢P) is generated by
Op(1) andg* Pic(M), one can writedk p = ¢"* L'~ ® ¢* L* for some integed. To
computez we consider the restriction qf £ to a general fibrg’~1(F): by lemma
(10.2) this fibre can be identified with the Grassmann vaety — h, F},), and
the same argument as above shows that the restrictighfois equal toOg(r),
that is to the restriction oK;l. This givesa = —1, hence the lemma. O

Observe that the groug, acts in a natural way o®, by the rulea - (E, F) =
(E ® a, F ® a); the Hecke diagram ig,.-equivariant.

LEMMA 10.4. Lets be an integer dividing. The canonical bundl&p descends
to P/Js, except ifs is even andi andr /s are odd; in this last casé(% descends.
Proof. (a) We first prove thak(,; descends td//J,. Let 7 andp denote the
projections fromX x M onto X and M respectively. By deformation theory,
the tangent bundI&), is canonically isomorphic td&'p. (Endo(E)), whereEndy
denotes the sheaf of traceless endomorphisms; it followgdhats the inverse of
the determinant bundle dBjp. (Endp(E)). SinceEndp(E) has trivial determinant,
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this is also equal to détp..(Endo(£) ® n* L) for any line bundlel on X (see e.g.
[B-L], 3.8); thereforeK]Ql is the pull back of the generatdrof Pic(Ms, , ) by
the morphismM — Mg, . which mapsE to Endo(E). This morphism factors
through the quotient// J,., hence our assertion.

(b) Therefore we need only to consider the relative canonical bukiglg;,
with its canonical/,-linearization. Letx € J,, and letP = (E, F') be a fixed point
of o in P; we want to compute the tangent mBp(«) to « at P. The vector bundle
E € M is fixed bya, and the action of on the fibreg1(E) = G(F,) is induced
by the automorphismx of E, obtained from the isomorphisgp,: £ - F ® o
(note thaty,, hence alsay, are uniquely determined up to a scalar, siftés
stable).

Let0— K, — E, — @, — 0 be the exact sequence corresponding.tdhe
tangent space tG(£,) at P is canonically isomorphic to Hofk,, @), hence
its determinant is canonically isomorphic(ttetE,) " ® (detQ,)"; we conclude
that defl’» () is equal to(det@)”, whered is normalized so thai” = 1.

(c) It remains to compute dét Now the fixed points ot on M are easy to
describe [N-R]: let be the order ofy, andr: X — X the associategtales-sheeted
covering; a vector bundl® on X satisfiest ® o = E if and only if it is of the
form =, E for some vector bundI€ on X, of rankr/s. To evaluatep,, atp, we can
trivialize £ in a neighborhood of ~1(p): write & = *T', whereT' = O"/*. Then
one hasr,E = eza/ T ® o, and the isomorphism, maps identicaly’ ® o

1€L/8
onto (T ® a'~1) ® a. It follows that the eigenvalues @f are thes-th roots of 1,
each counted with multiplicity'/s. This implies in particular det = ¢"(-1/2,
where( is a primitive s-th root of 1, and therefore d&p (o) = (—1)"~ V5. The
lemma follows. O

(10.5) Proof of Proposition(10.1). We first observe that a line bundleon M
descends td// J if and only if its pull back toP descends t®/.J;. In fact, we
know by (6.2a) thatG-linearizations ofL. correspond bijectively by pull back to
G-linearizations ofy* L; for o € Js, any fixed pointE of a in M is the image of
a pointP € P fixed by «, so with the notation of (6.3) one hgs: (o) = xp(a),
which implies our assertion.

Similarly, a line bundle ord/’ descends td/’/ J, if and only if its pull back to
P descendst®/Js: what we have to check in order to apply the same argument is
that every component of the fixed locus [ziX«) is dominated by a component of
Fixp («), and conversely that every component offHiz) dominates a component
of Fix,s («). But this follows easily from the description of the fixed pointsxof
given above (10.4c).

We first consider the cade = 1. If r is odd, we know from Proposition 9.1
and Lemma 10.4 that”™ andKp = ¢* L1 ® ¢"*£'~" descend t®/ J,; it follows
that £ descends td//.J,.. Assume that is even. EndowK» with its canonical
Jy-linearization,£” with the J,.-linearization defined in (6.10), and £ with the
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J-linearization deduced from the isomorphigt = ¢* L1 ® ¢"*£'~". Leta be
an element of order in J,., andP a fixed point of« in P; we know thatx acts on
(Kp) p by multiplication by—1 (10.4c) and ofig"* L") p by multiplication bye(«)
(6.10), hence it acts ofy*L) p by multiplication by—e(«a). Since—e(a + 3) #
(—e(a) (—e(B))) whena and 3 are two elements of order orthogonal for the
Weil pairing, we conclude that does not descend, while of couré descends.
We now apply the same argument wiharbitrary. If r is odd, K» andg¢* L
descend, hencé&’? descends. If is even, we get d,-linearization ory*£"? such
that an element of orderr in .J, acts by multiplication by(—1)"*¢(«); again
this implies thatC"? does not descend, whilg?’ descends. O

Remark10.6. The methods of this section allow to treat more generally in
most cases the groL, /u, for s dividing . We will contend ourselves with an
example, which we will need below: the caSe= SLy;/u, (I > 1). The moduli
spaceM has two components, namely2 (treated in Proposition 9.1) and the
quotientM(, of M{ . by Jo. The theta line bundI€ on MY,  is the pull back of
the determinant bundle dngM under the may — E ® A, whereA is a stable
vector bundle of rank 2 and degred. It follows from Proposition 9.1 thaf?
descends td/,; on the other hand, by Proposition 101,and thereforeC do not
descend if is odd. We shall now prove that descends td/., whenl is even

LetA\: M§,, — Mst,,_,, be the morphisnk — A>E(—p). One checks easily
that the pull back of the determinant bundleon Ms,,, , is £'* (e.g. by
pulling back to the moduli stack, and using the fact that the Dynkin index of
the representatioh” is 2/ — 2). Now X factors throughVig, , /.J, therefore£!*
descends to this quotient. Whérs even, this implies that itself descends.

11. The Picard groups ofMpsp, and Mpsg,

(11.1) In the cas€’;, it remains only to consider the componMﬁSpZI, which is
the quotient by/, of the moduli spacMPlsle of semi-stable pair§éF, p), where

E is a vector bundle of ranki2on X and¢:A°E — Ox(p) a non-degenerate
alternate form. LeZ denote the pull back of the theta line bundle by the natural
mapMg, — Mg,

PROPOSITION 11.2. (a)he groupPic(Mslpﬂ) is generated by..
(b) The groupPic(Mgs,, ) is generated byC if I is even, and by’? if  is
odd.

Proof. By Proposition 7.4 to prove (a) it suffices to prove thas not divisible.
Choose an elemertd, ) of M§, _, and consider the map: Mg, — Mg,

given byu(E) = (E,det) & (A, ). The pull back ofC is the theta line bundl®
on Mg, ,, hence the assertion (a).
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Let us prove (b). By Remark 10.6 we already know tbétlescends thl,szl ,
and thatC descends ifis even. Consider the morphiglmMéL2 — Mslp2l given by

1(E) = (E,dey®. One hag.*L£ = ©', so if £ descend®' descends td/}g, ,;
by Proposition 10.1 this implies thats even. O

(11.3) Let us consider the group = PSO,. The moduli spacéd/q has 4 compo-
nents, indexed by the centgt, —1, ¢, —¢} of Spiny; (5.3).

The componenMplSOZl has already been dealt with in Proposition 9.3. The
componenMFTslOz is the quotient by the action 0% of the moduli spacMgéZI of
semi-stable quadratic bundles wiih = 1. LetD denote the determinant bundle
on this moduli space.

PROPOSITION 11.4The groupPic(MF?S}oZl) is generated byD? if [ is even, by
D4if 1 is odd.

Proof. The same proof as in 9.3 shows ti#¥t descends td/[,;sloﬂ if is even,
and thatD* descends bub? does not ifl is odd. To prove thaP does not descend
when! is even> 3, we apply the argument &c. cit. to the morphismy: J X x
Mgg, , — Mgg, deduced from the natural embedd®@, x SOy_» — SOy
(note thatw, is additive andvs(a @ a~1) = 0 fora € JX).

When! = 2 we consider the morphism Mg x M3 — Mg, which asso-
ciates to a pail(F, F') the vector bundleHom(E, F') with the quadratic form
defined by the determinant and the orientation deduced from the canonical isomor-
phism detE* ® F) — (detE)? @ (detF)2. One hag*D = L X L, whereL
is the theta line bundle ol/g, . SinceL does not descend fd3 , (Proposition
10.1), it follows from the commutative diagram

ML o< M U
SL, SL, SOy

1 1 -1
Mpgi, X Mpg|, — Mpgq,

thatD does not descend fil5g, . O

We now consider the compone :I:SEOZI corresponding to the elements and

—e of the center oBpin,,. Each of these is the quotient By of the moduli space
Msﬁl of semi-stable quadratic bundlgs, ¢, w), whereF is a vector bundle of rank

21, ¢:S°E — Ox(p) a quadratic form and: detE — Ox(Ip) an isomorphism
compatible withg; changing the sign ofs exchanges\/¢ and M (5.3). We

comp4199.tex; 27/04/1998; 8:29; v.7; p.28

https://doi.org/10.1023/A:1000477122220 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000477122220

THE PICARD GROUP OF THE MODULI OK7-BUNDLES ON A CURVE 211

denote byZ, the pull back of the theta line bundle MSLIZI under the natural map
+
MSOEZI — MSLIZI'

PROPOSITION 11.5The groupPic(MF%sgoﬂ) is generated by, whenl is even,
and by£? whenl is odd.

Proof. We already know that the theta line bundle descenMégzl/Jz when
[ is even and that its square descends whendd (10.6), so we have only to prove
that £; does not descend whéis odd.

Let us first consider the cage= 3. If E is a vector bundle of rank 4 and
determinanOx (p) on X, the bundleA’E carries a quadratic form with values
in Ox(p) (defined by the exterior product) and an orientation. We thus get a
morphismA: M&,, — Mg such that\(E ® a) = ME) ® o? for o € Js. An
easy computation shows thatLs is the theta line bundle oMled, which does
not descend t(M,%Gl_4 (10.1); our assertion follows.

Forl odd> 5, we consider the morphism M35 x Mg§, — Mg§, deduced
from the embeddingO,;, ¢ x SO —— SOy. It is Jr-equivariant (with respect
to the canonical action af, on the spaceMgfém, and the diagonal action on
the product), and the pull bagk L, is isomorphic tof; 3 X L3. Assume thatZ,
descends td/[,?sfoﬂ; sinceL;_3 descends, we deduce from 6.4 tifatdescends,
contradicting what we just proved. O

12. Determinantal line bundles

(12.1) We can express the above results in a more suggestive way. Aésume
is of type A, B,C or D; let § € 71(G). We identify Pi¢ M) to a subgroup of
Pic(/\/l%“). Leto be the standard representationdin C” (for G = SL,., Spin,

or Sp,), andD,, the corresponding determinant bundIeM'fSG;“. The results of

sections 8 to 11 express the generator of}?ﬂg) as a certain power d@,.. Using

the fact that the pull back 1% of the theta line bundle of/g, is (Dy) @,
one finds:

PROPOSITION 12.2Assume thaf? is one of the groupBGL ., PSp, or PSOy.
Pute, = 1if the rank of G is even2 if it is odd. Letd € m1(G). The group
Pic(M,) is generated byD, )"« for G = PGL,, and by(D,)*« for the other
groups.

(12.3) To produce line bundles (Mg we have already used the following recipe:
to any representatign G — SL y we associate the pull bagk, of the determinant
bundle under the morphisrﬂn{g — Ms,,, deduced fromp. These line bundles
generate a subgroup Rig¢ M) of Pic(MZ). We suspect that this subgroup is
actually equalto Pid\/,), i.e. that all line bundles oM, can be constructed from
representations a¥. We have checked this in some cases:
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PROPOSITION 12.4Assume(F is of classical type or of typé/,, and either
simply connected or adjoint or isomorphic3®,. Then, for every € 71(G), one
hasPicge M) = Pic(M,).

Proof. The simply connected case, and also the ¢ase SO,, follow from
[L-S], Proposition 8.2 and 8.4.

The other groups are those which appear in the above Proposition; let us denote
by e the positive integer such théD, )°¢ generates P{@/2). If p is a repre-
sentation of7, with Dynkin indexd,, the line bundleD, on M, is isomorphic to
(D,)%/% (d, is 1 for the typesd, C' and 2 forB, D). It follows thateg divides
d,/d,, and that our assertion is equivalent to saying thais the g.c.d. of the
numbersi,/d, whenp runs over the representations@f

Let us consider the cage = PGL,. We havalpyg = 2r, which settles the case
r even. Ifr is odd, consider the representatiS?n@ AN —2 of SL,; sincey, acts
trivially, it defines a representatignof PGL,., whose Dynkin index is

d, = dg> dimN"~2 + d;o dims?

(7’—1—2)(2)—1—(7‘—2)(7142_1) =3 -2

Then(dad,d,) = r = eq, which proves the result in this case.

ForG = PSp,, easy computations giving = 2/ + 2 anddAz = 2] — 2, hence
eq = (dpad, dp2). FOrG = PSOy;, one hasiag = 2(2] — 2) anddsz =2(20 + 2),
hencee; = (&Ad, Az )/ds. m|

Remarkl2.5. We can also prove the equality RitM2) = Pic(MY) for G =
SL,/u, whens andr/s are coprime. Reasoning as above and using Proposition
9.1, we needto prove that the g.c.d. of thé&s is 2s if s is even, and if itis odd. We
consider the representatipp = S” ® A*~? for 1 < p < s. Using some nontrivial

S

combinatorics we can prove the reIatiEpdpp = (—1)°s2. Sincedag = 2r we
p=1
find that the g.c.d. of thé,’s divides(2r, s?) = s(2Z, s), hence our assertion

13. Local properties of the moduli spaced/q

(13.1) AG-bundleP is calledregularly stablef it is stable and its automorphism
group is equal to the centéf(G) of G. The open subsdt/[(rfg of Mg corre-
sponding to regularly stabl@-bundles is smooth, and its complemeniig; is of
codimensiorn> 2, except whenX is of genus 2 ands maps ontdP? GL;: this is

seen exactly as the analogous statement for Higgs bundles, which is proved in [F1],
theorem 11.6. In what follows we will assume that we are not in this exceptional
case, leaving to the reader to check that our assertions extend by using the explicit
description ofMsy, in genus 2.
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Let i be the natural injection ofM? into M. Then the map, identifies
Pic(M?) with the Weil divisor class group €M), that is the group of isomor-
phism classes of rank 1 reflexive sheaved/n (see [Re], App. to Section 1); the
restriction mag*: Pic(M¢) — Pic( M ?) corresponds to the inclusion Pid) C
Cl(M¢). Local factoriality of My is equivalent to the equality Rit/) = Cl(M¢).

We already know from [D-N] and [L-S] thaV/; is locally factorial whenG is
SL, or Sp,,. We want to show that these are essentially the only cases where this
occurs.

PROPOSITION 13.2Let G be a simply connected group, containing a factor of
typeB; (I > 3), D; (I > 4), F4 or G2. ThenM¢; is not locally factorial.

The same result holds@ contains a factor of typg; [So]. This has the amusing
consequence th#tte semi-simple groups for which M¢; is locally factorial are
exactly those which argpecialin the sense of Serre, i.e. such that @lbundles
are locally trivial for the Zariski topologysee [G2]).

Proof of the PropositionWe can assume thét is almost simple. Choose a
presentation oM as a quotient of a smooth scherléby a reductive grouf’,
such thatM¢ is a good quotient o by T' (Lemma 7.3). We denote by the
standard representation @ in caseG = Spin,, in C’ if G is of typeG>, and
the orthogonal representation @r® with highest weightw, if G is of type F;
(we use the standard notation of [Bo], Lie VII). LBtbe the determinant bundle
on R associated t@. As in the proof of Proposition 8.2, the choice of a theta-
characteristios on X allows us to define a square roBf, of D on R, with a
canonical-linearization. We will show thaP,, descends to the open sub3&t®,
but not toM¢;, thus showing that the restriction map is not surjective.

The first assertion is clear@ is of type F; or G2, because thef (G) is trivial,
soI" acts freely on the open subset Bfcorresponding to regularly stabi@-
bundles. Supposg = Spin,; letQ be aG-bundle, and: an element o (G). The
image ofz in SO, is either 1 or possibly-1if r is even; sincé®(Q, ®x) = rhd(x)
(mod. 2) by [L-S], 7.10.1, we conclude thatacts trivially onA™>*HO(Q, ® k),

i.e. on the fibre ofP,; at@ (8.2).

We already know thaP, does not descend &/ whenG = Spin, (Propo-
sition 8.2) orG is of type G, (Proposition 8.4); it remains to show that the class
of D is not divisible by 2 in Pi€M¢;) whenG is of type F4. There is a natural
inclusion Sping C G, which induces a morphisrﬁ:Mspi,r18 — Mg. An easy
computation gives that the Dynkin index of the restrictio®fong of the standard
representation off is 6. Since the Dynkin index of the standard representation of
Sping is 2, it follows thatf*D is isomorphic t0D§’3, whereDy is the generator
Pic(Mspin,); this implies thatD is not divisible by 2 in Pi¢)M¢). O

We now treat the case of a non simply connected group. We start with two
lemmas which are certainly well known, but for which we could find no reference:
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LEMMA 13.3. Letm: Y — Y be a ramified Galois covering, with abelian Galois
group A. If « is étale in codimensiof, the varietyY” is not locally factorial.

Proof. LetA = Hom(A, C*). LetY° be an open subset &f such that” — Y°
has codimensiop 2 and the induced covering' Y° — Y°isétale. This covering
corresponds to a homomorphismA — Pic(Y°) such thatr.O, = ® L(x).

XEA
If Y is locally factorial, the restriction map RiE) — Pic(Y°) is bijective, soL
extends to a homomorphisrh — Pic(Y') which defines argtale covering of”
extendingr®, and therefore equal ta Thenr is étale, contrary to our hypothesis.

LEMMA 13.4. Let S be a schemeH an algebraic group,A a closed central
subgroup ofA, P a principal H-bundle onS. The cokernel of the natural homo-
morphismAut(P) — Aut(P/A) is canonically isomorphic to the stabilizer &f
in HY(X, A) (for the natural action of7*(X, A) on H*(X, H)).

Proof. Denote byAut (P) the automorphism bundle of thé-bundle P. We
have an exact sequence of groups aver

1— Ag — Aut (P) — Aut (P/A) — 1

(to check exactness one may repldtéy the trivial H-bundle, for which this is
clear). The associated cohomology exact sequence reads

1 A — Aut(P) — Aut(P/A) — HY(S, A) -2 HY(S, Aut (P)).

The maph associates to am-bundle « the class of theAut (P)-bundle

a x4 Aut (P), which is canonically isomorphic tBsom, (P, « x4 P); the element
h(«) is trivial if and only if this last bundle admits a global section, which means
exactly thaty x“ P is isomorphic taP, hence the lemma. O

PROPOSITION 13.5SupposeZ is not simply connected; let € m1(G). The
moduli spaceMé is not locally factorial.
Proof. We first prove that the Galois covering Mg — Mg is étale above

(MZ)™e9, We putA = 71(G), and choose an isomorphisi — [] 1,5 We use
j=1

freely the notation of (2.1). We denote Bythe groupC 4G = (G xT)/A. LetQ e
(MZ)®9 and P a point ofMg aboveQ); we will use the same letters to denote the
corresponding bundles. Using the isomorphigid = G x (T'/A), the condition
m(P) = @ means thatthéH /A)-bundleP/A is isomorphic taQ x Ox (dp). Since
Aut(Q) is reduced to the center 6f, the map AutP) — Aut(P/A) is surjective;
we deduce from Lemma 13.4 that the stabilizePah H*(X, A) is trivial, i.e.w
is étale atP.

It follows that the abelian coverr:Mg — MY, is étale in codimension one.

Since it is ramified by Lemma 7.2, we conclude from Lemma 13.3Mais not
locally factorial.
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Finally we observe that, though the moduli space is not locally factorial in most
cases, it is always Gorenstein (this is proved in [K-N], theorem 2.8, for a simply
connectedy):

PROPOSITION 13.6The moduli spacé/; is Gorenstein.

Proof. We choose again a presentation\df; as a quotient of a smooth scheme
R by a reductive grouf’, such thatM is a good quotient o2 by I' (Lemma
7.3); we denote b the universal bundle oA x R, and byR™9the open subset
of R corresponding to regularly stable bundles. Since the cen@risikilled by
the adjoint representation, the vector bundlgRfldescends to a vector bundle
on X x M9 that we will still denote A@P). Deformation theory provides an
isomorphisntly.es —> R'pra.(AdP); sinceHO(X,Ad(P)) = 0 for P € M5S,
the line bundle déTMgg is isomorphic to deRpr,. (Ad P), that is to the restriction

to Mg?g of the determinant bundiPag associated to the adjoint representation.
SinceM is Cohen—Macaulay, it admits a dualizing sheatvhich is torsion-

free and reflexive ([Re], App. of Section 1). The reflexive sheame;C}, which

are isomorphic abova/,;°, are isomorphicloc. cit), hencew is invertible. O
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