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Extrapolation of Lp Data from a Modular
Inequality
Steven Bloom and Ron Kerman

Abstract. If an operator T satisfies a modular inequality on a rearrangement invariant space Lρ(Ω, µ),
and if p is strictly between the indices of the space, then the Lebesgue inequality

∫
|T f |p ≤ C

∫
| f |p

holds. This extrapolation result is a partial converse to the usual interpolation results. A modular
inequality for Orlicz spaces takes the form

∫
Φ(|T f |) ≤

∫
Φ(C| f |), and here, one can extrapolate to

the (finite) indices i(Φ) and I(Φ) as well.

1 Introduction

Let (Ω, µ) be a complete σ-finite, nonatomic measure space. Denote by M(Ω, µ),
the class of real-valued measurable functions on Ω and by S(Ω, µ) the simple, inte-
grable functions in M(Ω, µ). Suppose T is a sublinear operator mapping S(Ω, µ) into
M(Ω, µ). The classical (Lebesgue) norm inequality for such T,

[∫
Ω

|T f (x)|p dµ(x)

] 1/p

≤ C

[∫
Ω

| f (x)|p dµ(x)

] 1/p

(1)

is equivalent to the modular inequality

∫
Ω

|T f (x)|p dµ(x) ≤

∫
Ω

|C f (x)|p dµ(x).(2)

In both, p is a fixed index, 1 ≤ p <∞, and C > 0 is independent of f .
One generalization of (2) replaces the modular t p by any Young’s functionΦ(x) =∫ x

0 φ(t) dt , where φ is increasing on R+ = (0,∞), φ(0+) = 0, and limx→∞ φ(x) =
∞. This results in∫

Ω

Φ
(
|T f (x)|

)
dµ(x) ≤

∫
Ω

Φ
(

C| f (x)|
)

dµ(x),(3)

the general modular inequality. The corresponding generalization of (1) is the Orlicz
norm inequality

‖T f ‖Φ,µ ≤ C‖ f ‖Φ,µ,(4)
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26 Steven Bloom and Ron Kerman

in which, for g in the Orlicz space LΦ = LΦ(Ω, µ),

LΦ(Ω, µ) =

{
g ∈ M(Ω, µ) :

∫
Ω

Φ

(
|g(x)|

C
dµ(x)

)
<∞ for some C > 0

}
,

we have

‖g‖Φ,µ = inf

{
λ > 0 :

∫
Ω

Φ

(
|g(x)|

λ
dµ(x)

)
≤ 1

}
.

A recent book on modular inequalities is Kokilashvili and Krbec [4]. See also the
earlier one by Musielak [9]. For a detailed account of Orlicz spaces see Krasnosel’skii
and Rutickii [5], Lindenstrass and Tzafiri [6], or Rao and Ren [10].

Writing

Φ(t) = t log Φ(t)
log t ,(5)

one can think of (3) as an inequality like (2) in which the index p varies with t .
In Section 2, we recall the definition of the Orlicz-Matuszewska-Maligranda indices
i(Φ) and I(Φ), for which 1 ≤ i(Φ) ≤ I(Φ) ≤ ∞. In some sense, the lower index
i(Φ), and the upper index, I(Φ), are, respectively, the least possible and the greatest
possible exponent in (5). Our main result, Theorem 3, asserts, among other things,
that, if i(Φ) < I(Φ), then (3) implies (2) for all p with i(Φ) < p < I(Φ).

As a simple illustration of this extrapolation result, consider the Young function

Φ(t) =

{
tq if t ≤ 1

tr if t > 1,

1 < r < q < ∞. Here, i(Φ) = r, I(Φ) = q, and so, by Theorem 3, (3) yields
(2) whenever r < p < q (in fact, one has (2) for the endpoints r and q also; see
Theorem 7). We observe that, for this particular Φ, the Orlicz norm inequality (4) is

‖T f ‖Lq+Lr ≤ C‖ f ‖Lq+Lr ,(6)

where

‖h‖Lq+Lr �

[∫
[|h|<1]

|h|q dµ

] 1/q

+

[∫
[|h|≥1]

|h|r dµ

] 1/r

.

Taking (Ω, µ) to be the real line R with Lebesgue measure and

T f (x) = g(x)

∫ 1

0
f (y) dy, x ∈ R,

for g ∈ (Lq +Lr)(R), we have, in strong contrast to the modular case, (6) not implying
(2) for any p, r < p < q.
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The precise connection between modular and Orlicz norm inequalities will be
given at the end of this section. In Section 2, we use this theorem to define modular
inequalities in the general setting of rearrangement-invariant spaces. The extrapo-
lation result, Theorem 3 is then proven in Section 3. An example is given to show
that Theorem 3 is best possible in a certain sense. The last section has a proof, due
to Nigel Kalton, that one can extrapolate to the (finite) indices when dealing with
modular inequalities of the form (3).

We remark that the theory presented here for nonatomic measures can be car-
ried out along similar lines for purely atomic measures with all atoms having equal
measure.

Theorem 1 Suppose that (Ω, µ) is a complete, σ-finite, nonatomic measure space and
that T is a sublinear operator mapping S(Ω, µ) into M(Ω, µ). LetΦ be a Young function.
For each ε > 0, define the measure εµ of the measurable set E ⊂ Ω by (εµ)(E) = ε·µ(E).
Then the modular inequality (3) holds if and only if

‖T f ‖Φ,εµ ≤ C‖ f ‖Φ,εµ f ∈ S(Ω, µ),(7)

with C > 0 independent of f and ε, 0 < ε < µ(Ω).

Proof The proof is similar to the one for the case µ(Ω) = ∞ in Proposition 2.5
of [2]. Suppose (7) holds. For f ∈ S(Ω, µ), with

∫
Ω
Φ(C| f |) dµ > 1

µ(Ω) , put ε =(∫
Ω
Φ(C| f |) dµ

)−1
. Since ‖ f ‖Φ,εµ ≤

1
C , ‖T f ‖Φ,εµ ≤ 1. Thus,

∫
Ω

Φ(|T f |) dµ ≤
1

ε
=

∫
Ω

Φ(C| f |) dµ.

Conversely, given (3), fix an f ∈ S(Ω) and an ε, 0 < ε < µ(Ω), with 0 < α =

‖ f ‖Φ,εµ <∞. Then,
∫
Ω
Φ( | f |

α
)ε dµ = 1, and so

∫
Ω

Φ

(
|T f |

Cα

)
ε dµ ≤ ε

∫
Ω

Φ

(
| f |

α

)
dµ ≤ 1

which shows that

‖T f ‖Φ,εµ ≤ Cα = C‖ f ‖Φ,εµ.

2 Rearrangement Invariant Spaces

Let (Ω, µ) be a complete, σ-finite measure space, and let M+(Ω, µ) denote the class
of all nonnegative, measurable functions on Ω. A functional ρ : M+(Ω, µ)→ [0,∞]
is called a function norm if it satisfies
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1.

ρ( f + g) = ρ( f ) + ρ(g), for f , g ∈ M+(Ω, µ)

ρ(c f ) = cρ( f ), for c ≥ 0, f ∈ M+(Ω, µ)

ρ( f ) = 0 if and only if f = 0 a.e.;

2. 0 ≤ fn ↑ f µ-a.e. implies ρ( fn) ↑ ρ( f );
3. E measurable with µ(E) <∞ implies ρ(χE) <∞ and

∫
Ω

fχE dµ <∞ whenever
ρ( f ) <∞.

The Banach function space Lρ(Ω, µ), determined by ρ, is defined by

Lρ(Ω, µ) = { f ∈ M(Ω, µ) : ρ(| f |) <∞},

where the norm ‖ · ‖ρ,µ at f is

‖ f ‖ρ,µ = ρ(| f |).

The space Lρ(Ω, µ) is said to be a rearrangement-invariant (r.i.) space if f ∈ Lρ(Ω, µ)
implies g ∈ Lρ(Ω, µ) and ‖g‖ρ,µ = ‖ f ‖ρ,µ, whenever g is equimeasurable with f ; that
is

µ f (λ) := µ
(

[x ∈ Ω : | f (x)| > λ]
)
= µ
(

[x ∈ Ω : |g(x)| > λ]
)

for all λ > 0. In this case, it is shown in [1, pp. 62–64] that there is a function norm

σ on M+
((

0, µ(Ω)
)
,m
)

such that Lσ
((

0, µ(Ω)
)
,m
)

is an r.i. space and

‖ f ‖ρ,µ = σ( f ∗) for f ∈ Lρ(Ω, µ).(8)

Here, f ∗ is the usual nonincreasing rearrangement of f ,

f ∗(t) = inf{λ > 0 : µ f (λ) ≤ t}, 0 < t < µ(Ω),

so that

µ
(

[x ∈ Ω : | f (x)| > λ]
)
= m
([

t ∈
(

0, µ(Ω)
)

: f ∗(t) > λ
])
.(9)

Orlicz spaces are important examples of r.i. spaces, as are the Lorentz spaces Lpq =
Lpq(Ω, µ), 1 < p <∞, 1 ≤ q ≤ ∞, whose norms are given by

‖ f ‖pq =



[∫∞

0

(
sµ f (s)

1
p
) q ds

s

] 1
q when q <∞

sups>0 sµ f (s)
1
p when q =∞.

The associate norm ρ ′ of the function norm ρ is defined for g ∈ M+(Ω, µ) by

ρ ′(g) = sup

{∫
Ω

| f g| dµ : f ∈ M+(Ω, µ), ρ( f ) ≤ 1

}
.(10)
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As proved in [1, pp. 8–13], ρ ′ is a function norm. The space Lρ
′
(Ω, µ) is called the

associate space of Lρ(Ω, µ). The generalized Hölder inequality, which is an immediate
consequence of (10), says that f ∈ Lρ(Ω, µ), g ∈ Lρ

′

(Ω, µ) implies
∫
Ω
| f g| dµ < ∞

and ∣∣∣∣
∫
Ω

f g dµ

∣∣∣∣ ≤ ‖ f ‖Lρ(Ω,µ)‖g‖Lρ ′ (Ω,µ).(11)

Further, ρ ′′ = ρ. If

ρ( f ) = inf

{
λ > 0 :

∫
Ω

Φ

(
| f (x)|

λ

)
dµ(x) ≤ 1

}
,(12)

where Φ(t) =
∫ t

0 φ(u) du is a Young’s function, then ρ ′ is equivalent to the function
norm

ρ∗(g) = inf

{
λ > 0 :

∫
Ω

Ψ

(
| f (x)|

λ

)
dµ(x) ≤ 1

}
,

whereΨ(t) =
∫ t

0 φ
−1(u) du is the Young’s function complementary to Φ; in fact,

ρ∗(g) ≤ ρ ′(g) ≤ 2ρ∗(g).

Let ρ be a function norm on M+(Ω, µ) and suppose σ is a function norm on
M+(Ω, µ) for which (8) holds. The fundamental function, τρ, of Lρ(Ω, µ) is

τρ(t) = ‖χ(0,t)‖σ 0 < t < µ(Ω).

For t > 0, set

hρ(t) = sup
s>0

τρ(
s
t )

τρ(s)
when µ(Ω) =∞

and

hρ(t) = lim sup
s→0+

τρ(
s
t )

τρ(s)
when µ(Ω) <∞.

Then h(st) ≤ h(s)h(t) for all s, t > 0. The fundamental indices of Lρ(Ω, µ) are

i(ρ) = i(ρ, µ) = lim
t→0+

− log t

log hρ(t)
= inf

0<t<1

− log t

log hρ(t)

and

I(ρ) = I(ρ, µ) = lim
t→∞

− log t

log hρ(t)
= sup

t>1

− log t

log hρ(t)
;

they satisfy 1 ≤ i(ρ) ≤ I(ρ) ≤ ∞ and i(ρ ′) = I(ρ)
I(ρ)−1 , I(ρ ′) = i(ρ)

i(ρ)−1 . Also,

hρ(t) ≥ t−
1
p if t > 0, p <∞, i(ρ) ≤ p ≤ I(ρ).(13)

Using the methods of [3, Lemmas 1 and 2], it can be shown that these indices are the
reciprocals of the fundamental indices (as defined in [1, p. 127]). Finally, in the case
in which ρ is defined by (12), and so gives rise to an Orlicz space, the fundamental
indices coincide with those of Orlicz-Matuszewska-Maligranda; see [7] and [8].
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3 The Extrapolation Theorem

Let ε > 0. We begin by observing that S(Ω, εµ) = S(Ω, µ) and M(Ω, εµ) = M(Ω, µ).
Again, if ρ is a function norm on M+(Ω, µ), then it is also one on M+(Ω, εµ); more-
over, as sets, Lρ(Ω, εµ) = Lρ(Ω, µ). Suppose T is a sublinear operator mapping
S(Ω, µ) into M(Ω, µ). With Theorem 1 in mind, we say T satisfies a modular in-
equality with respect to the r.i. space Lρ(Ω, µ) if there exists a C > 0 such that

‖T f ‖ρ,εµ ≤ C‖ f ‖ρ,εµ,(14)

for all f ∈ S(Ω, µ) and 0 < ε < E(Ω), where

E(Ω) =

{
1 if µ(Ω) <∞

∞ if µ(Ω) =∞.

The following simple result concerning ‖ · ‖ρ,εµ will be important.

Lemma 2 Fix ε, 0 < ε < E(Ω). Suppose ρ is a function norm on M+(Ω, µ), and

hence on M+(Ω, εµ). Let σ be a function norm on M+
((

0, µ(Ω)
)
,m
)

satisfying (8).

Given g ∈ M+
((

0, µ(Ω)
)
,m
)

and 0 < t < µ(Ω), define

Dεg(t) =

{
g( t
ε
) if 0 < t < εµ(Ω)

0 otherwise.

Then, for all f ∈ Lρ(Ω, µ),

‖ f ‖ρ,εµ = σ(Dε f ∗).(15)

The proof is straightforward, and follows easily from the observation that

f ∗ε(t) = Dε f ∗(t) 0 < t < µ(Ω).

We leave the details to the reader.
We are now in a position to state and prove our main result.

Theorem 3 Let (Ω, µ) and T be as in Theorem 1. Suppose T satisfies the modular
inequality (14) with respect to the r.i. space Lρ(Ω, µ). Then there also holds, for each
p <∞, i(ρ) ≤ p ≤ I(ρ), the restricted weak-type inequality

λpµ(Eλ) ≤ C pµ(E),(16)

in which Eλ = [x ∈ Ω : |TχE(x)| > λ] and the positive constant C, the same as in
(14), is independent of the measurable set E ⊂ Ω and λ > 0. In particular, we then
have the Lebesgue inequality (1) if i(ρ) < p < I(ρ).
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Proof Since (14) holds, we have, for 0 < ε < E(Ω), and for µ(E) <∞,

λ‖χEλ‖ρ,εµ ≤ ‖TχE‖ρ,εµ

≤ C‖χE‖ρ,εµ.
(17)

In view of (15), if 0 < ε < E(Ω) and if µ(F) <∞,

‖χF‖ρ,εµ =
∥∥∥χ(0,µ(F))

( t

ε

)∥∥∥
σ

= ‖χ(0,εµ(F))(t)‖σ

= τρ
(
εµ(F)

)
,

and so (17) says that µ(Eλ) <∞ with

λ
τρ
(
εµ(Eλ)

)
τρ
(
εµ(E)

) ≤ C.

Now, given 0 < u < µ(E)µ(Ω), take ε = u
µ(E) to get

λ
τρ
(

u · µ(Eλ)/µ(E)
)

τρ(u)
≤ C,

and, therefore,

λhρ

(
µ(Eλ)

µ(E)

)
≤ C.

Hence, if p <∞, i(ρ) ≤ p ≤ I(ρ),

λ

[
µ(Fλ)

µ(E)

] 1
p

≤ C,

or

λpµ(Eλ) ≤ C pµ(E).

Finally, having (16), the interpolation theorem of Stein-Weiss [12] ensures (1), if
i(ρ) < p < I(ρ).

An r.i. norm inequality—that is (14) for a fixed ε—is typically obtained by inter-
polation from weak-type conditions such as (16); [1, Chapters 5 and 8]. It is interest-
ing that the stronger inequality (14) (and so, in the Orlicz case (3)), also holds, given
the same hypotheses. Theorem 3 is a partial converse to this modular interpolation
theorem.

Now, it is, in fact, not the fundamental indices, but the Boyd indices p(ρ) and
q(ρ), that figure in interpolation theory [6, Vol. II, Chapter 26]. The latter satisfy
only 1 ≤ p(ρ) ≤ i(ρ) ≤ I(ρ) ≤ q(ρ) ≤ ∞, though p(ρ) = i(ρ) and q(ρ) = I(ρ)
when Lρ(Ω, µ) is an Orlicz space or a Lorentz space. A natural question is whether
Theorem 3 can be strengthened by replacing i(ρ) and I(ρ) by p(ρ) and q(ρ), respec-
tively. The following example answers this question in the negative.
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Example 4 In [11], Shimogaki constructed an r.i. space Lρ
(

(0, 1),m
)

for which
τρ(t) = τρ ′(t) =

√
t , 0 < t < 1 (so that i(ρ) = I(ρ) = i(ρ ′) = I(ρ ′) = 2), yet

p(ρ) = 1 and q(ρ) =∞. Since the Lorentz space L21 = L21
(

(0, 1),m
)

is the smallest
r.i. space on (0, 1) with fundamental function

√
t [1, p. 79], we have the continuous

embedding

max[‖ f ‖ρ,m, ‖ f ‖ρ ′,m] ≤ C‖ f ‖21.(18)

Now suppose g is nonincreasing on (0, 1) with g ∈ L21 −
⋃

p>2 Lp. Define the linear
operator T by

T f (x) = g(x)

∫ 1

0
f (y)g(y) dy, 0 < x < 1.

We claim the modular inequality (14) holds for T, though clearly T is unbounded on
Lp for all p �= 2. In view of Lemma 2, with σ = ρ, the claim amounts to showing

‖Dε(T f )∗‖ρ,m ≤ C‖Dε f ∗‖ρ,m,

where C is independent of f ∈ Lρ
(

(0, 1),m
)

and ε, 0 < ε < 1. A simple change of
variables gives

Dε(T f )∗(x) = ε−
1
2 g
( x

ε

)[
ε−

1
2

∫ ε
0

f
( y

ε

)
g
( y

ε

)
dy

]

≤ ε−
1
2 g
( x

ε

)[
ε−

1
2

∫ 1

0
Dε f ∗(s)Dεg(s) ds

]

for 0 < x < ε. Finally, the generalized Hölder inequality (11), together with (18),
yields

‖Dε(T f )∗‖ρ,m ≤ [ε−
1
2 ‖Dεg‖ρ,m][ε−

1
2 ‖Dεg‖ρ ′,m]‖Dε f ∗‖ρ,m

≤ Cε−1‖Dεg‖
2
21 ‖Dε f ∗‖ρ,m

≤ C‖g‖2
21 ‖Dε f ∗‖ρ,m.

4 Lebesgue Inequalities at the Indices

We begin by observing that the general modular inequality (14) with respect to an r.i.
space Lρ(Ω, µ) need not imply (1) for p = i(ρ), I(ρ). Thus, consider

Example 5 Take Ω = R+, µ = m, and fix p and q, 1 < p < q < ∞. Given

Λ(t) = min{t
1
p , t

1
q }, define the function norm ρ by

ρ( f ) =

∫ ∞
0

f ∗(t) dΛ(t), f ∈ M+(R+,m).
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The r.i. space Lρ(R+,m) is a generalized Lorentz space (see [1, p. 72]) having i(ρ) = p,
I(ρ) = q. We claim the operator T, given at f ∈ S(R+,m) by

T f (t) =

(∫ ∞
0

f (s)
Λ(s)

s
ds

)
χ(0,1)(t),

satisfies (14), but not (1) for p or q. Since Λ(s)
s /∈ L

p
p−1 + L

q
q−1 , T cannot be bounded

on Lp or Lq. Yet, T satisfies (14). Indeed, we have, for f ∈ S(R+,m) and all ε > 0,

‖T f ‖ρ,εm =

∫ ∞
0

(T f )∗
( t

ε

)
dΛ(t)

=

∣∣∣∣
∫ ∞

0
f (s)
Λ(s)

s
ds

∣∣∣∣
∫ ∞

0
χ(0,1)

( t

ε

)
dΛ(t)

= Λ(ε)

∣∣∣∣
∫ ∞

0
f (s)
Λ(s)

s
ds

∣∣∣∣
≤ Λ(ε)

∫ ∞
0

f ∗(s)
Λ(s)

s
ds

= Λ(ε)

∫ ∞
0

f ∗
( t

ε

)
Λ
( t

ε

) dt

t
.

But, Λ(ε)Λ( t
ε
) ≤ Λ(t), so

‖T f ‖ρ,εm ≤

∫ ∞
0

f ∗
( t

ε

)
Λ(t)

dt

t
≤ q‖ f ‖ρ,εm.

In spite of this example, extrapolation always extends to the (finite) indices for
Orlicz spaces. The proof is due to Nigel Kalton, who has kindly allowed us to give it
here.

We require an alternate definition of the indices for ρ, given by (12), which is
equivalent to the one in Section 2. Let

k(t) = sup
u>0

Φ(tu)

Φ(u)
when µ(Ω) =∞

and

k(t) = lim sup
u→∞

Φ(tu)

Φ(u)
when µ(Ω) <∞.

Then, in view of the remark on p. 322 of [3], the lower and upper fundamental indices
of the Orlicz space LΦ, denoted by i(Φ) and I(Φ), respectively, can be defined as

i(Φ) = i(Φ, µ) = sup
0<t<1

log k(t)

log t
= lim

t→0+

log k(t)

log t
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and

I(Φ) = I(Φ, µ) = inf
t>1

log k(t)

log t
= lim

t→∞

log k(t)

log t
.

The following deep result is implicit in [6, Vol. I, Theorems 4.a.8 and 4.a.9].

Lemma 6 Let (Ω, µ) be as in Theorem 1. Suppose Φ is a Young’s function with
associated lower and upper indices i(Φ) and I(Φ), respectively. Then, if p < ∞,
i(Φ) ≤ p ≤ I(Φ), there exists a sequence of probability measures {µn} on the Borel
subsets of R such that

lim
n→∞

∫
R

Φ(t|x|)

Φ(|x|)
dµn(x) = t p,

uniformly in t on compact subsets of R+.

Theorem 7 Let (Ω, µ), Φ and T be as in Theorem 1. If p < ∞, i(Φ) ≤ p ≤ I(Φ),
then the modular inequality (3) implies the Lebesgue inequality (1).

Proof Fix p < ∞ with i(Φ) ≤ p ≤ I(Φ). Let f ∈ S(Ω, µ). From (3) we have, for
each t ∈ R, t �= 0,

∫
Ω

Φ
(
|t| |T f (x)|

)
Φ(|t|)

dµ(x) ≤

∫
Ω

Φ
(
|t| |C f (x)|

)
Φ(|t|)

dµ(x).(19)

Integrating both sides of (19) over R, with respect to µn, yields

∫
R

dµn(t)

∫
Ω

Φ
(
|t| |T f (x)|

)
Φ(|t|)

dµ(x) ≤

∫
R

dµn(t)

∫
Ω

Φ
(
|t| |C f (x)|

)
Φ(|t|)

dµ(x),

and so, applying Fubini’s theorem,

∫
Ω

∫
R

Φ
(
|t| |T f (x)|

)
Φ(|t|)

dµn(t) dµ(x) ≤

∫
Ω

∫
R

Φ
(
|t| |C f (x)|

)
Φ(|t|)

dµn(t) dµ(x).

By Lemma 6,

∫
R

Φ
(
|t| |C f (x)|

)
Φ(|t|)

dµn(t)→ |C f (x)|p

uniformly on Ω, while, for m = 1, 2, . . . ,

∫
R

Φ
(
|t| |T f (x)|

)
Φ(|t|)

dµn(t)→ |T f (x)|p
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uniformly on

Ωm =
[

x ∈ Ω :
1

m
≤ |T f (x)| ≤ m

]
.

Thus, ∫
Ωm

|T f (x)|p dµ(x) ≤

∫
Ω

|C f (x)|p dµ(x), m = 1, 2, . . . ,

whence (1) follows on letting m→∞.

We conclude by remarking that if the operator T in Theorem 7 is linear and
I(Φ) =∞, then one obtains the Lebesgue inequality

ess sup
x∈Ω
|T f (x)| ≤ ess sup

x∈Ω
|C f (x)|

for f ∈ S(Ω, µ), by standard duality arguments.
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References
[1] C. Bennett and R. Sharpley, Interpolation of Operators. Academic Press, Orlando, 1988.
[2] S. Bloom and R. Kerman, Weighted LΦ integral inequalities for operators of Hardy type. Studia Math.

110(1994), 35–52.
[3] D. W. Boyd, Indices for the Orlicz spaces. Pacific J. Math. 38(1971), 315–323.
[4] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific,

1991.
[5] M. A. Krasnosel’skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces (translation).

P. Noordhoff Ltd., Groningen, 1961.
[6] J. Lindenstrauss and L. Tzafiri, Classical Banach Spaces I and II. Springer-Verlag,

Berlin-Heidelberg-New York, 1977 and 1979.
[7] L. Maligranda, Indices and interpolation. Dissert. Math. 234(1985), 1–49.
[8] W. Matuszewska and W. Orlicz, On certain properties of φ-functions. Bull. Acad. Polon. Sci., Ser. Sci.

Math. Astr. et Phys. 8(1960), 439–443.
[9] J. Musielak, Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034,

Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.
[10] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces. Marcel Dekker, Inc., New York, 1991.
[11] T. Shimogaki, A note on norms of compression operators on function spaces. Proc. Japan Acad.

46(1970), 239–242.
[12] E. M. Stein and G. W. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications.

J. Math. Mech. 8(1959), 263–284.

Siena College
Loudonville, NY 12211
USA

Brock University
St. Catharines, Ontario
L2S 3A1

https://doi.org/10.4153/CMB-2002-003-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-003-x

