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On the homomorphisms between scalar
generalized Verma modules

Hisayosi Matumoto

Abstract

In this article, we study the homomorphisms between scalar generalized Verma modules.
We conjecture that any homomorphism between scalar generalized Verma modules is a
composition of elementary homomorphisms. The purpose of this article is to confirm the
conjecture for some parabolic subalgebras under the assumption that the infinitesimal
characters are regular.

Introduction

We study the homomorphisms between generalized Verma modules, which are induced from
one-dimensional representations (such generalized Verma modules are called scalar, cf. [Boe85]).

Classification of the homomorphisms between scalar generalized Verma modules is equivalent
to that of equivariant differential operators between the spaces of sections of homogeneous line
bundles on generalized flag manifolds (cf. [CS90, Dob88, Hua93, Jak85, Kos75]).

In [Ver68], Verma constructed homomorphisms between Verma modules associated with
root reflections. Bernstein, I. M. Gelfand, and S. I. Gelfand proved that all the non-trivial
homomorphisms between Verma modules are compositions of homomorphisms constructed by
Verma [BGG71].

Later, Lepowsky studied the generalized Verma modules. In particular, Lepowsky [Lep75b]
constructed a class of non-trivial homomorphisms between scalar generalized Verma modules
associated to the parabolic subalgebras which are the complexifications of the minimal parabolic
subalgebras of real reductive Lie algebras.

In [Mat06], elementary homomorphisms between scalar generalized Verma modules are
introduced. They can be regarded as a generalization of homomorphisms introduced by Verma
and Lepowsky.

We propose a conjecture on the classification of the homomorphisms between scalar
generalized Verma modules, which can be regarded as a generalization of the above-mentioned
result of Bernstein et al.

Conjecture A. All the non-trivial homomorphisms between scalar generalized Verma modules
are compositions of elementary homomorphisms.

Soergel’s result [Soe90, Theorem 11] implies that Conjecture A is reduced to the integral
infinitesimal character case.

The purpose of this article is to confirm the conjecture for some parabolic subalgebras under
the assumption that the infinitesimal characters are regular. In order to explain our results, we
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introduce some notations. Let g be a complex reductive Lie algebra and fix a Cartan subalgebra

h of g. We denote by ∆ (respectively W ) the root system (respectively the Weyl group) with

respect to (g, h). We fix a basis Π of ∆. For Θ ( Π, we put aΘ = {H ∈ h | ∀α ∈ Θα(H) = 0} and

ΣΘ = {α|aΘ | α ∈ ∆} − {0}. We denote by pΘ the standard parabolic subalgebra corresponding

to Θ and by lΘ its Levi subalgebra containing h. We consider the Weyl group for parabolic

subalgebra W (Θ) = {w ∈| wΘ = Θ}.
We call Θ normal if any two parabolic subalgebras with the Levi part lΘ are conjugate under

an inner automorphism of g. If Θ is normal, we call pΘ normal. For example, complexified minimal

parabolic subalgebras of real simple Lie algebras except su(p, q) (p − 1 > q > 0), so∗(4n + 2),

e6(−14) are normal. Roughly speaking, if Θ is normal, the reflection σγ on aΘ with respect to

γ ∈ ΣΘ can be regarded as an involution of the Weyl group for (g, h). A normal subset Θ of Π is

called strictly normal if σγ is a Duflo involution of some Weyl group (see Definition 4.2.1). If Θ is

strictly normal, there exists an elementary homomorphism with respect to σγ for each γ ∈ ΣΘ.

Let pΘ be a complexified minimal parabolic subalgebra of a real simple Lie algebra and

assume pΘ is normal but is not strictly normal. Then, pΘ is a complexified minimal parabolic

subalgebra of so(2n+ 1− q, q) (n > q > 1), or sp(n, n) (n > 1).

The main result of this article is the following theorem.

Theorem B (Theorem 5.1.3). If Θ is strictly normal, then each non-trivial homomorphism

between scalar generalized Verma modules induced from pΘ with regular integral infinitesimal

character is a composition of elementary homomorphisms.

The idea presented here seems not useful for confirming the conjecture in the general case.

However, we may confirm the conjecture for some other parabolic subalgebras. For example, via

case-by-case consideration, we can prove the following result.

Theorem C. If Θ is normal and g is an exceptional Lie algebra, then each non-trivial

homomorphism between scalar generalized Verma modules induced from pΘ with a regular

integral infinitesimal character is composed of elementary homomorphisms.

We shall give a proof of Theorem C in a subsequent paper.

This article consists of five sections.

We fix notations and introduce some fundamental material in § 1.

In § 2, we explain how to reduce the problem to the integral infinitesimal character case. We

also show that we can associate an element of W (Θ) to a homomorphism between generalized

Verma modules with regular infinitesimal characters.

In § 3, we introduce the notion of normal parabolic subalgebras and describe the classification.

We prove that the Bruhat ordering on W (Θ) coincides with the restriction of that of W to W (Θ)

for each normal Θ.

In § 4, we introduce the notion of an elementary homomorphism and describe related notions

and results.

In § 5, we introduce the notion of strictly normal parabolic subalgebras and describe the

classification. We also prove Theorem B.

1. Notations and preliminaries

1.1 General notations

In this article, we use the following notations and conventions.
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On the homomorphisms between scalar generalized Verma modules

As usual we denote the complex number field, the real number field, the ring of (rational)
integers, and the set of non-negative integers by C, R, Z, and N respectively. The expression
(1/2)N means the set {n/2 | n ∈ N}, and 1/2+N means the set {1/2+n | n ∈ N}. We denote by ∅

the empty set. For any (non-commutative) C-algebra R, ‘ideal’ means ‘2-sided ideal’, ‘R-module’
means ‘left R-module’, and sometimes we denote by 0 (respectively 1) the trivial R-module {0}
(respectively C). Often, we identify a (small) category and the set of its objects. Hereafter ‘dim’
means the dimension as a complex vector space, and ‘⊗’ (respectively Hom) means the tensor
product over C (respectively the space of C-linear mappings), unless we specify otherwise. For
a complex vector space V , we denote by V ∗ the dual vector space. For a, b ∈ C, ‘a 6 b’ means
that a, b ∈ R and a 6 b. We denote by A−B the set theoretical difference. ‘cardA’ denotes the
cardinality of a set A.

1.2 Notations for reductive Lie algebras
Let g be a complex reductive Lie algebra, U(g) the universal enveloping algebra of g, and h a
Cartan subalgebra of g. We denote by ∆ the root system with respect to (g, h). We fix some
positive root system ∆+ and let Π be the set of simple roots. Let W be the Weyl group of the
pair (g, h) and let 〈 , 〉 be a non-degenerate invariant bilinear form on g. For w ∈ W , we denote
by `(w) the length of w as usual. We also denote the inner product on h∗ which is induced
from the above form by the same symbols 〈 , 〉. For α ∈ ∆, we denote by sα the reflection in
W with respect to α. We denote by w0 the longest element of W . For α ∈ ∆, we define the
coroot α∨ by α∨ = 2α/〈α, α〉, as usual. We denote by ∆∨ the dual root system {α∨ | α ∈ ∆}.
We call λ ∈ h∗ is dominant (respectively anti-dominant) if 〈λ, α∨〉 is not a negative (respectively
positive) integer, for each α ∈ ∆+. (Often, ‘dominant’ here is called ‘integrally dominant’.) We
call λ ∈ h∗ regular if 〈λ, α〉 6= 0, for each α ∈ ∆. We denote by P the integral weight lattice,
namely P = {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z for all α ∈ ∆}. If λ ∈ h∗ is contained in P, we call λ an integral
weight. We define ρ ∈ P by ρ = (1/2)

∑
α∈∆+ α. Put gα = {X ∈ g | ∀H ∈ h [H,X] = α(H)X},

u =
∑

α∈∆+ gα, b = h + u. Then b is a Borel subalgebra of g. We denote by Q the root lattice,
namely Z-linear span of ∆. We also denote by Q+ the linear combination of Π with non-negative
integral coefficients. For λ ∈ h∗, we denote by Wλ the integral Weyl group. Namely,

Wλ = {w ∈W | wλ− λ ∈ Q}.

We denote by ∆λ the set of integral roots:

∆λ = {α ∈ ∆ | 〈λ, α∨〉 ∈ Z}.

It is well known that Wλ is the Weyl group for ∆λ. We put ∆+
λ = ∆+ ∩∆λ. This is a positive

system of ∆λ. We denote by Πλ the set of simple roots for ∆+
λ and denote by Sλ (respectively

S) the set of reflection corresponding to the elements in Πλ (respectively Π). So, (Wλ, Sλ) and
(W,S) are Coxeter systems. We denote by Qλ the integral root lattice, namely Qλ = Z∆+

λ , and
put Q+

λ = NΠλ.
Next, we fix notations for a parabolic subalgebra (which contains b). Hereafter, through this

article we fix an arbitrary subset Θ of Π. Let 〈Θ〉 be the set of the elements of ∆ which are
written by linear combinations of elements of Θ over Z. Put aΘ = {H ∈ h | ∀α ∈ Θα(H) = 0},
lΘ = h +

∑
α∈〈Θ〉 gα, nΘ =

∑
α∈∆+−〈Θ〉 gα, pΘ = lΘ + nΘ. Then pΘ is a parabolic subalgebra of

g which contains b. Conversely, for an arbitrary parabolic subalgebra p ⊇ b, there exists some
Θ ⊆ Π such that p = pΘ. We denote by WΘ the Weyl group for (lΘ, h). The Weyl group WΘ is
identified with a subgroup of W generated by {sα | α ∈ Θ}. We denote by wΘ the longest element
of WΘ. Using the invariant non-degenerate bilinear form 〈 , 〉, we regard aΘ

∗ as a subspace of h∗.
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Put ρΘ = 1
2(ρ− wΘρ) and ρΘ = 1

2(ρ+ wΘρ). Then, ρΘ ∈ aΘ
∗.

For Θ ( Π, we define ‘the restricted root system’ as follows:

ΣΘ = {α|aΘ | α ∈ ∆} − {0},
Σ+

Θ = {α|aΘ | α ∈ ∆+} − {0}.

Unfortunately, in general, ΣΘ does not satisfy the axioms of the root systems.
Define

P++
Θ ={λ ∈ h∗ | ∀α ∈ Θ 〈λ, α∨〉 ∈ {1, 2, . . .}},

◦P++
Θ ={λ ∈ h∗ | ∀α ∈ Θ 〈λ, α∨〉 = 1}.

We easily see

◦P++
Θ = {ρΘ + µ | µ ∈ a∗Θ}.

For µ ∈ h∗ such that µ + ρ ∈ P++
Θ , we denote by σΘ(µ) the irreducible finite-dimensional lΘ-

representation whose highest weight is µ. Let EΘ(µ) be the representation space of σΘ(µ). We
define a left action of nΘ on EΘ(µ) by X · v = 0 for all X ∈ nΘ and v ∈ EΘ(µ). So, we regard
EΘ(µ) as a U(pΘ)-module.

For µ ∈ P++
Θ , we define a generalized Verma module [Lep77a] as follows:

MΘ(µ) = U(g)⊗U(pΘ) EΘ(µ− ρ).

For all λ ∈ h∗, we write M(λ) = M∅(λ); M(λ) is called a Verma module. For µ ∈ P++
Θ , MΘ(µ)

is a quotient module of M(µ). Let L(µ) be the unique highest weight U(g)-module with the
highest weight µ− ρ. Namely, L(µ) is a unique irreducible quotient of M(µ). For µ ∈ P++

Θ , the
canonical projection of M(µ) to L(µ) is factored by MΘ(µ).

We have dimEΘ(µ − ρ) = 1 if and only if µ ∈ ◦P++
Θ . If µ ∈ ◦P++

Θ , we call MΘ(µ) a scalar
generalized Verma module.

Finally, we fix notations for infinitesimal characters. We denote by Z(g) the center of U(g).
We denote by χλ the image of λ ∈ h∗ under the Harish-Chandra isomorphism from W\h∗ to
Hom(Z(g),C). It is well known that Z(g) acts on M(λ) by χλ : Z(g) → C for all λ ∈ h∗. We
denote by Zλ the kernel of χλ in Z(g). Let M be a U(g)-module and λ ∈ h∗. We say that M
has an infinitesimal character λ if and only if Z(g) acts on M by χλ. For example, a generalized
Verma module MΘ(µ) has an infinitesimal character µ.

2. Formulation of the problem

We retain the notation of § 1. In particular, Θ is a proper subset of Π.

2.1 Basic results of Lepowsky
The following result is one of the fundamental results on the existence problem of homomorphisms
between scalar generalized Verma modules.

Theorem 2.1.1 [Lep76]. Let µ, ν ∈ ◦P++
Θ . Then it is true that:

(1) dim HomU(g)(MΘ(µ),MΘ(ν)) 6 1;

(2) any non-zero homomorphism of MΘ(µ) to MΘ(ν) is injective.

Hence, the classification problem of homomorphisms between generalized Verma modules is
reduced to the following problem.
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Problem 1. Let µ, ν ∈ ◦P++
Θ . When is MΘ(µ) ⊆MΘ(ν)?

2.2 Reduction to the integral infinitesimal character setting

Since both ν ∈ Wµ and ν − µ ∈ Q+ are necessary conditions for MΘ(µ) ⊆ MΘ(ν), we can

reformulate our problem as follows.

Problem 2. Let λ ∈ ◦P++
Θ be dominant. Let x, y ∈ Wλ be such that xλ, yλ ∈ ◦P++

Θ . When is

MΘ(xλ) ⊆MΘ(yλ)?

We fix λ ∈ ◦P++
Θ . Then, we can construct a suralgebra g′ of h such that the corresponding

Coxeter system is (Wλ,Φλ). Since Θ ( Πλ holds, we can construct the corresponding parabolic

subalgebra p′Θ of g′. For µ ∈ P++
Θ , we denote by M ′Θ(µ) the corresponding generalized Verma

module of g′. We consider the category O in the sense of [BGG71] corresponding to our particular

choice of positive root system. More precisely, we denote by O (respectively O′) ‘the category O’

for g (respectively g′). We denote by Oλ (respectively O′λ) the full subcategory of O (respectively

O′) consisting of the objects whose irreducible constituents have highest weights in {wλ | w ∈
Wλ}. Soergel’s celebrated theorem [Soe90, Theorem 11] says that there is a category equivalence

between Oλ and O′λ. Under the equivalence a Verma module, M(xλ) (x ∈ Wλ) corresponds

to M ′(xλ). We easily see MΘ(xλ) ∼= M(xλ)/
∑

α∈ΘM(sαxλ) and the embedding M(sαxλ) ⊆
M(xλ) is unique up to scalar multiplication for each α ∈ Θ. So, we easily see MΘ(xλ) corresponds

to M ′Θ(xλ) under Soegel’s category equivalence. Hence we have the following lemma as a corollary

of Soergel’s theorem.

Lemma 2.2.1. Let λ ∈ h∗ be dominant. Let x, y ∈ Wλ be such that xλ, yλ ∈ ◦P++
Θ . Then, the

following two conditions are equivalent:

(1) MΘ(xλ) ⊆MΘ(yλ);

(2) M ′Θ(xλ) ⊆M ′Θ(yλ).

This lemma tells us that we may reduce Problem 2 to the case that λ is integral.

We discuss another application of Soergel’s theorem. We denote by g∨ the reductive Lie

algebra corresponding to the coroot system ∆∨. We regard a Cartan subalgebra h as a Cartan

subalgebra of g∨. We attach ∨ to the notion with respect to g∨ corresponding to that of g. Then

we have the canonical isomorphism (W,S) ∼= (W∨, S∨) of the Coxeter systems. So, we identify

them. For Θ ( Π, we put Θ∨ = {α∨ | α ∈Θ}( Π∨. We put ◦P∨++
Θ∨ = {λ ∈ h∗ | 〈λ, α〉= 1 (α ∈Θ)}.

For λ ∈ ◦P∨++
Θ∨ , we consider a scalar generalized Verma module M∨Θ∨(λ) of g∨. The following

result is an immediate consequence of Soergel’s theorem.

Theorem 2.2.2. Let λ ∈ P and µ ∈ P∨ be dominant regular. Let x, y ∈ W = W∨. We assume

that xλ, yλ ∈ ◦P++
Θ and xµ, yµ ∈ ◦P∨++

Θ∨ . Then, MΘ(xλ) ⊆ MΘ(yλ) if and only if M∨Θ∨(xµ) ⊆
M∨Θ∨(yµ).

Hence, we may reduce Problem 1 for simple Lie algebras of the type Cn to that for simple

Lie algebras of the type Bn.

2.3 Comparison of τ-invariants

We put

W (Θ) = {w ∈W | wΘ = Θ}.

Then, we easily see the following lemma.
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Lemma 2.3.1. We have:

(a) W (Θ) = {w ∈W | wα∨ ∈ Θ∨ for all α ∈ Θ};
(b) W (Θ) = {w ∈W | wρΘ = ρΘ, wΘ ⊆ ∆+};
(c) wΘw = wwΘ for all w ∈W (Θ);

(d) W (Θ) preserves a∗Θ;

(e) W (Θ) ⊆WρΘ .

In this section, we prove the following proposition.

Proposition 2.3.2. Let λ ∈ ◦P++
Θ be regular. Let x ∈ Wλ be such that xλ ∈ ◦P++

Θ . Moreover,

we assume that MΘ(xλ) ⊆MΘ(λ). Then, we have x ∈W (Θ).

First, we prove the following lemma.

Lemma 2.3.3. Let λ ∈ ◦P++
Θ be regular and let w ∈Wλ be such that wλ is dominant. Then, we

have wΘ ( Πλ.

Proof. Assume that there is some α ∈ Θ such that wα 6∈ Πλ. Then wα∨ 6∈ Π∨λ . Here, we remark

that Π∨λ is a basis of the positive coroot system (∆+)∨. So, there exists some β, γ ∈∆+ such that

wα∨ = β∨+γ∨. Since wλ is dominant and regular, we have 〈wλ, β∨〉 > 1 and 〈wλ, γ∨〉 > 1. Also,

2 6 〈wλ, β∨ + γ∨〉 = 〈wλ,wα∨〉 = 〈λ, α∨〉. On the other hand, λ ∈ ◦P++
Θ implies 〈λ, α∨〉 = 1.

This is a contradiction. 2

Proof of Proposition 2.3.2. From Lemma 2.2.1, we may reduce the proposition to the case that

λ is integral. Put Θ1 = wΘ and Θ2 = wx−1Θ. From Lemma 2.3.1, we have Θ1 ⊆ Π and Θ2 ⊆ Π.

Since w0wΘiΘi = −w0Θi holds for i = 1, 2, we have w0wΘiΘi ⊆ Π. We put I1 = AnnU(g)(MΘ(λ))

and I2 = AnnU(g)(MΘ(xλ)).

From [BJ77, Corollary 4.10], we have I1 = AnnU(g)(M−w0Θ1(w0wΘ1wλ)) and I2 =

AnnU(g)(M−w0Θ2(w0wΘ2wλ)). Since 〈w0wΘiwλ, α
∨〉 < 0 for all α ∈ ∆+ − w0wΘi〈Θi〉, then

Mw0wΘi
Θi(w0wΘiwλ) is irreducible. Hence, I1 and I2 are primitive ideals of the same Gelfand–

Kirillov dimension. The τ -invariant of I1 (respectively I2) is−w0Θ1 (respectively−w0Θ2). On the

other hand, MΘ(xλ) ⊆MΘ(λ) implies I1 ⊆ I2. Hence, we have I1 = I2 from [BK76, 3.6.Korollar].

Comparing the τ -invariants, we have −w0Θ1 = −w0Θ2. Hence, wΘ = Θ1 = Θ2 = wx−1Θ. This

implies x ∈W (Θ). 2

3. Some results on Bruhat orderings

3.1 Quasi-subsystems

Let (Wi, Si) (i = 1, 2) be finite Coxeter systems. We denote by `i(w) the length of a reduced

expression of w ∈Wi with respect to Si. We also denote by 6i the Bruhat ordering for (Wi, Si).

Definition 3.1.1. We say that (W2, S2) is a quasi-subsystem of (W1, S1) if the following, (Q1)

and (Q2), hold:

(Q1) W2 is a subgroup of W1;

(Q2) for any reduced expression w = s1 · · · sk of w ∈W2 in (W2, S2), we have `1(w) = `1(s1) +

· · ·+ `1(sk).

The following lemma is easy.
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Lemma 3.1.2. Assume that (W2, S2) is a quasi-subsystem of (W1, S1). Then, x 62 y implies
x 61 y for all x, y ∈W2.

We have the following lemma.

Lemma 3.1.3. Assume that (W2, S2) is a quasi-subsystem of (W1, S1). Moreover, we assume the
following condition (C).

(C) For any x, y ∈W2 and s ∈ S2 such that x 61 y, `1(sy) < `1(y), and `1(x) < `1(sx), we have
sx 61 y.

Then, x 61 y implies x 62 y for all x, y ∈W2.

Proof. Let x, y ∈ W2 be such that x 61 y. We show x 62 y by a double induction with respect
to `2(y) and `2(y)− `2(x).

Obviously we may assume `2(y) > 0. So, we choose some s ∈ S2 such that `2(sy) < `2(y).
First, we assume that `2(sx) < `2(x). We fix reduced expressions of s, sx, and sy in (W1, S1)

as follows:

s= s1 · · · sk (s1, . . . , sk ∈ S1),

sx= t1 · · · th (t1, . . . , th ∈ S1),

sy = r1 · · · rn (r1, . . . , rn ∈ S1).

From (Q2), we easily see that sm · · · skt1 · · · th and sm · · · skr1 · · · rn are reduced expressions for
all 1 6 m 6 k. Applying [Deo77, Theorem 1.1], we have sm · · · skt1 · · · th 61 sm · · · skr1 · · · rn by
the induction on m. So, we have sx 61 sy. Since `2(sy) < `2(y), the induction hypothesis implies
that sx 62 sy. Again, applying [Deo77, Theorem 1.1], we have x 62 y.

Next, we assume that `2(sx) > `2(x). From (Q2), we have `1(sx) > `1(x). So, we have sx 61 y
from (C). Since `2(y)− `2(sx) < `2(y)− `2(x), we have sx 62 y from the induction hypothesis.
Since x 62 sx, we have x 62 y. 2

3.2 Θ-useful roots
In this subsection, we use the notation in § 1.

Following Knapp [Kna75], Howlett [How80], and Lusztig [Lus76], we consider useful roots
for our purpose.

Hereafter, we fix a subset Θ of Π. For α ∈ ∆, we put

∆(α) = {β ∈ ∆ | ∃c ∈ R β|aΘ = cα|aΘ},
∆+(α) = ∆(α) ∩∆+,

Uα = CΘ + Cα ⊆ h∗.

Then (Uα,∆(α), 〈 , 〉) is a subroot system of (h∗,∆, 〈 , 〉). The set of simple roots for ∆+(α) is
denoted by Π(α). α|aΘ = 0 if and only if Θ = Π(α). For α ∈ ∆+, we denote by WΘ(α) the
Weyl group of (h∗,∆(α)). Clearly, WΘ ⊆WΘ(α) ⊆W . We denote by wα the longest element of
WΘ(α). We set

σα = wαwΘ.

α|aΘ = 0 if and only if σα = 1.

Definition 3.2.1. (1) We call α ∈ ∆ Θ-useful if the order of σα is two. We denote by u∆Θ the
set of the useful Θ-roots. We also put u∆+

Θ = u∆Θ ∩∆+.
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(2) If α|aΘ 6= 0, then Π(α) is written as Θ∪ {α̃}. If α ∈ ∆ satisfies α|aΘ 6= 0 and α = α̃, then
we call α Θ-reduced. We put

ru∆+
Θ = {α ∈ u∆+

Θ | α is Θ-reduced}.

If α ∈ ∆ is orthogonal to all the elements in Θ, then we can easily see α is Θ-reduced and
sα = σα. We easily see the following lemma.

Lemma 3.2.2. Let α ∈ ∆+ be Θ-reduced. We denote by ∆(α)0 be the irreducible component of
∆(α) containing α. We put Π(α)0 = Π(α) ∩∆(α)0.

(1) If ∆(α)0 is not of the type ADE, then we have α ∈ ur∆+
Θ.

(2) If ∆(α)0 is of the type D2n (n > 2), E7, or E8, then we have α ∈ ur∆+
Θ.

(3) If ∆(α)0 is of the type A2n (n > 1), then we have α 6∈ ur∆+
Θ.

(4) We assume that ∆(α)0 is of the type A2n+1 (n > 0). We number the elements of Π(α)0

as follows:
Π(α)0 = {β1, . . . , β2n+1}.

We choose the above numbering so that 〈βi, β∨i+1〉 = −1 for 1 6 i 6 2n. Then α ∈ ur∆+
Θ if and

only if α = βn.

(5) We assume that ∆(α)0 is of the type D2n+1 (n > 2). We number the elements of Π(α)0

as follows:
Π(α)0 = {β1, . . . , β2n+1}.

We choose the above numbering so that 〈βi, β∨i+1〉 = −1 for 1 6 i 6 2n− 1 and 〈β2n−1, β
∨
2n+1〉 =

−1. Then α ∈ ur∆+
Θ if and only if α 6∈ {β2n, β2n+1}.

(6) We assume that ∆(α)0 is of the type E6. We number the elements of Π(α)0 as follows:

Π(α)0 = {β1, . . . , β6}.

We choose the above numbering so that 〈βi, β∨i+1〉 = −1 for 1 6 i 6 4 and 〈β3, β
∨
6 〉 = −1. Then

α ∈ ur∆+
Θ if and only if α ∈ {β3, β6}.

For α ∈ ru∆Θ, we put

Vα = {λ ∈ a∗Θ | 〈λ, α〉 = 0},
α̂ = α|aΘ ∈ a∗Θ.

We easily see the following lemma.

Lemma 3.2.3. Let α ∈ ru∆+
Θ. Then, we have that:

(1) σα preserves a∗Θ;

(2) σα ∈W (Θ), and, in particular, σαρΘ = ρΘ;

(3) σαα̂ = −α̂;

(4) σα|a∗Θ is the reflection with respect to Vα.

We denote by W (Θ)′ the subgroup of W generated by {σα | α ∈ ru∆+
Θ}. We put uΣΘ =

{α|aΘ ∈ a∗Θ | α ∈ u∆Θ}; uΣΘ is a (not necessarily reduced) root system. We also put ruΣ+
Θ =

{α|aΘ ∈ a∗Θ | α ∈ ru∆+
Θ} and ruΣΘ = ruΣ+

Θ ∪ −ruΣ+
Θ; ruΣΘ is a reduced root system and ruΣ+

Θ

is a positive system. We denote by uΠΘ the simple system for ruΣ+
Θ; uΠΘ is also a basis of

uΣΘ. For α ∈ ru∆+
Θ, σα depends only on α|aΘ . So, sometimes we write σα|aΘ

for σα. We put
S(Θ) = {σγ | γ ∈ uΠΘ}.
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Theorem 3.2.4 (Howlett [How80, Theorem 6], Lusztig [Lus76, § 5]).

(1) We have W (Θ)′ ⊆W (Θ).

(2) For α ∈ u∆+
Θ, σα(a∗Θ) = a∗Θ. Moreover, σα|a∗Θ is the reflection with respect to α|aΘ and

σαρΘ = ρΘ.

(3) We define ι : W (Θ)′ → GL(a∗Θ) by ι(x) = x|a∗Θ . Then ι is an injective group homo-

morphism.

(4) We have that ι(W (Θ)′) is the reflection group for the root system ruΣΘ. Hence (W (Θ)′,

S(Θ)) is a Coxeter system.

We denote by 6Θ the Bruhat ordering for (W (Θ)′, S(Θ)).

3.3 Normal parabolic subalgebras

Definition 3.3.1. We call Θ ( Π normal if Π − Θ ⊆ u∆+
Θ. We call a standard parabolic

subalgebra pΘ normal if Θ is normal. A parabolic subalgebra is called normal if it is conjugate

to a normal standard parabolic subalgebra by an inner automorphism.

We describe the list of the normal parabolic subalgebras of classical Lie algebras.

(1) Let g = gl(n,C) (the case of g = sl(n,C) is similar) and let k be a positive integer

dividing n. We consider the following parabolic subalgebras:

p(An−1,k): a parabolic subalgebra of g whose Levi part is isomorphic to

n/k︷ ︸︸ ︷
gl(k,C)⊕ · · · ⊕ gl(k,C) .

(2) Let g be a complex simple Lie algebra of the type Xn. Here, X means one of B, C, and D.

Let k and ` be positive integers such that k divides n− `. If X = D, then we assume that ` 6= 1.

We consider the following parabolic subalgebras:

p(Xn,k,`): a parabolic subalgebra of g whose Levi part is isomorphic to

(n−`)/k︷ ︸︸ ︷
gl(k,C)⊕ · · · ⊕ gl(k,C)⊕X`.

Here, X` denotes the complex simple Lie algebra of the type X`. Namely B` = so(2`+ 1,C),

Cn = sp(`,C), and Dn = so(2`,C). Also, X0 means the zero Lie algebra.

From Lemma 3.2.2, we easily see the following proposition.

Proposition 3.3.2. (1) We have that p(An−1,k) is normal. Conversely any normal parabolic

subalgebra is conjugate to p(An,k) for some k.

(2) We have that p(Xn,k,`) is normal, unless X = D, ` = 0, and k is an odd number greater

than 1. Any normal parabolic subalgebra is conjugate to one of such p(Xn,k,`) by an inner

automorphism.

For exceptional simple Lie algebras, we have the following results. If Θ is the empty set, it

is obviously normal. So, we consider ∅ 6= Θ ( Π.
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We number the simple roots Π = {α1, . . .} of exceptional simple Lie algebras F4, E6, E7, E8

as follows:

1 − 2 ⇐ 3 − 4 ,

1 − 2 − 3 − 4 − 5

|
6

1 − 2 − 3 − 4 − 6 − 7

|
5

1 − 2 − 3 − 4 − 5 − 7 − 8.

|
6

Let X be F or E. We denote by Xr,i1···ik Θ = Π−{αi1 , . . . . , αik}, where Π is the above-mentioned

numbered basis for the exceptional simple Lie algebra g of the type Xr.

Proposition 3.3.3.

(1) Assume that g is of type G2. Then any subset of Π is normal.

(2) Assume that g is of type F4. If card Θ = 3, Θ ( Π is normal. The other non-empty normal

subsets of Π are F4,12, F4,14, and F4,34.

(3) Assume that g is of type E6. The non-empty normal subsets of Π are E6,3, E6,6, E6,15.

(4) Assume that g is of type E7 If card Θ = 6, Θ ( Π is normal. The other non-empty normal

subsets of Π are E7,27, E7,67, E7,127, and E7,2467.

(5) Assume that g is of type E8. If card Θ = 7, Θ ( Π is normal. The other non-empty normal

subsets of Π are E8,12, E8,18, E8,38, and E8,1238.

We put

K(Θ) = {w ∈W | wΘ ⊆ Π}.

We give some characterizations of normality.

Proposition 3.3.4. For Θ ( Π. the following conditions are equivalent:

(1) Θ ( Π is normal;

(2) K(Θ) = W (Θ)′;

(3) K(Θ) = W (Θ);

(4) uΣΘ = ΣΘ.

Proof. First, we assume condition (1). Then, using Propositions 3.3.2 and 3.3.3, we obtain

conditions (2) and (4) via case-by-case analysis. Condition (2) obviously implies condition (3).

Next, we assume condition (3). For α ∈ Π − Θ, we easily see σ2
α(Π) ⊆ ∆+. Hence σα is an

involution. This means that α ∈ u∆+
Θ. So, we have condition (1). Condition (4) is clearly stronger

than condition (1). 2

Corollary 3.3.5. If Θ ( Π is normal, then W (Θ)′ = W (Θ).

Since ∆+ ∩ (−w∆+) = {α ∈ ∆+ | α|aΘ ∈ Σ+
Θ ∩ (−wΣ+

Θ)} for each w ∈ W (Θ), we easily see

the following lemma.
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Lemma 3.3.6. We assume that Θ ( Π is normal. Then for each w ∈W (Θ), we have

∆+ ∩ (−w∆+) =
⋃

γ∈ruΣ+
Θ∩(−wruΣ+

Θ)

{α ∈ ∆+ | ∃c > 0α|aΘ = cγ}.

Hence, we have the following result.

Proposition 3.3.7. If Θ ( Π is normal, then (W (Θ)′, S(Θ)) is a quasi-subsystem of (W,S).

As a corollary of Proposition 3.3.4, we easily see the following corollary.

Corollary 3.3.8. We have that Θ ( Π is normal if and only if any two parabolic subalgebras

with the Levi part lΘ are conjugate under an inner automorphism of g.

3.4 Comparison of Bruhat orderings

In this subsection, we use the notation in § 1.

Definition 3.4.1. We call Θ ( Π seminormal if there exists some Ψ such that Θ ⊆ Ψ ⊆ Π and
uΠΘ = {α|aΘ | α ∈ Ψ−Θ}.

So, S(Θ) = {σα | α ∈ Θ−Ψ}.
We have that Θ ( Π is seminormal if and only if there is a α ∈ Π∩ ru∆+ such that α|aΘ = γ

for each γ ∈ uΠΘ.

We immediately see the following result from Proposition 3.3.7.

Corollary 3.4.2. If Θ ( Π is seminormal, then (W (Θ)′, S(Θ)) is a quasi-subsystem of (W,S).

We fix a connected complex reductive Lie group G whose Lie algebra is g. For Θ ( Π, we

denote by PΘ (respectively H) the parabolic subgroup (respectively the Cartan subgroup) of G

corresponding to pΘ (respectively h). We denote by NG(H) the normalizer of H in G. Since the

Weyl group W is identified with the quotient group NG(H)/H, for each w ∈ W we can fix a

representative in NG(H). We denote the representative by the same letter ‘w’.

For x ∈W , we put Ux = PΘx/PΘ. Namely, Ux is a PΘ-orbit in G/PΘ through x/PΘ ∈ G/PΘ.

We denote by Ux the closure of Ux in G/PΘ. If w ∈ W (Θ), then `(wsα) > `(w) for all α ∈ Θ.

Hence, we have the following lemma.

Lemma 3.4.3.

(1) For w ∈W (Θ), we have dimUw = `(w).

(2) For x, y ∈W (Θ), x 6 y if and only if Ux ⊆ Uy.

Next we show the following lemma.

Lemma 3.4.4. Assume that Θ ( Π is seminormal. We choose Θ ⊆ Ψ ⊆ Π as in Definition 3.4.1.

Fix x ∈ W (Θ)′. Let α ∈ Ψ − Θ be such that `(σαx) < `(x). Then we have Ux = PΘ∪{α}Ux =

PΘ∪{α}Uσαx.

Proof. We may choose a reduced expression x = σα1 · · ·σαk such that α1 = α. We consider a

contraction map as follows:

F : PΘ∪{α1} ×PΘ
PΘ∪{α2} ×PΘ

· · · ×PΘ
PΘ∪{αk}/PΘ → G/PΘ.
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We easily see that:

(a) Image(F ) is an irreducible Zariski closed set in G/PΘ;

(b) dimUx = `(x) = dimPΘ∪{α1} ×PΘ
· · · ×PΘ

PΘ∪{αk}/PΘ;

(c) Ux ⊆ Image(F ).

Hence, we have Ux = Image(F ). So, we have the lemma immediately. 2

The following result is the main result of this section.

Theorem 3.4.5. Let Θ ( Π be seminormal. For x, y ∈W (Θ)′, x 6 y if and only if x 6Θ y.

Proof. We choose Θ ⊆ Ψ ⊆ Π as in Definition 3.4.1. From Lemmas 3.1.2, 3.1.3, and
Corollary 3.4.2, we have only to show the condition (C) in the statement of Lemma 3.1.3 holds
for (W (Θ)′, S(Θ)). So we choose x, y ∈W (Θ)′ and α ∈ Ψ−Θ such that x 6 y, `(σαy) < `(y), and
`(σαx) > `(x). From x 6 y, we have Ux ⊆ Uy by Lemma 3.4.3(2). Hence PΘ∪{α}Ux ⊆ PΘ∪{α}Uy.
From Lemma 3.4.4, we have Uy = PΘ∪{α}Uy and Uσαx = PΘ∪{α}Ux. So, we have Uσαx ⊆ Uy.
This means that σαx 6 y. Hence, the condition (C) holds for Θ. 2

4. Elementary homomorphisms

4.1 Elementary homomorphisms
We fix a subset Θ of Π and α ∈ ru∆+

Θ. We define

g(α) = h +
∑

β∈∆(α)

gβ, pΘ(α) = g(α) ∩ pΘ.

Then, g(α) is a reductive Lie subalgebra of g whose root system is ∆(α) and pΘ(α) is a maximal
parabolic subalgebra of g(α).

We denote by ωα ∈ a∗Θ ⊆ h∗ the fundamental weight for α with respect to the basis Π(α) =
Θ ∪ {α}. Namely ωα satisfies that 〈ωα, β〉 = 0 for β ∈ Θ, 〈ωα, α∨〉 = 1, and ωα|h∩c(g(α)) = 0.
Here, c(g(α)) is the center of g(α). We see that there is some positive real number a such that
ωα = aα|aΘ , since α|h∩c(g(α)) = 0. Hence, we have Vα = {λ ∈ a∗Θ | 〈λ, ωα〉 = 0}.

Put ρ(α) = 1
2

∑
β∈∆+(α) β. For ν ∈ a∗Θ, we denote by Cν the one-dimensional U(pΘ(α))-

module corresponding to ν. For ν ∈ a∗Θ we define a generalized Verma module for g(α) as
follows:

M
g(α)
Θ (ρΘ + ν) = U(g(α))⊗U(pΘ(α)) Cν−ρ(α).

Then, we have the following theorem.

Theorem 4.1.1 [Mat06]. Let ν be an arbitrary element in Vα, and let c be either 1 or 1
2 .

Assume that M
g(α)
Θ (ρΘ − cωα) ⊆ M

g(α)
Θ (ρΘ + cωα). Then, we have MΘ(ρΘ + ν − (c + n)ωα) ⊆

MΘ(ρΘ + ν + (c+ n)ωα) for all n ∈ N.

We call the above homomorphism of MΘ(ρΘ + ν − (c + n)ωα) into MΘ(ρΘ + ν + (c +
n)ωα) an elementary homomorphism. In [Mat06], homomorphisms between scalar generalized
Verma modules associated with a maximal parabolic subalgebra are classified. So, elementary
homomorphisms are understood.

The following conjecture is proposed in [Mat06] as a working hypothesis.

Conjecture 4.1.2. An arbitrary non-trivial homomorphism between scalar generalized Verma
modules is a composition of elementary homomorphisms.
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The conjecture in the case of the Verma modules is nothing but the result of Bernstein et al.
[BGG71]. We do not know a counterexample for the above working hypothesis, and we obtain
partial affirmative results in this article. A weaker version is given in the following conjecture.

Conjecture 4.1.3. Let Θ ⊆ Π be normal and let µ, ν ∈ a∗Θ be such that ρΘ + µ and ρΘ + ν
are regular integral. If MΘ(ρΘ + ν) ⊆ MΘ(ρΘ + µ), then it is a composition of elementary
homomorphisms.

Later, we confirm the conjecture for strictly normal case (see § 5) and exceptional Lie algebras
(see §§ 5 and 6).

For example, I do not know whether a homomorphism of the form MΘ(ρΘ +σαµ) ⊆MΘ(ρΘ +
µ) (µ ∈ a∗Θ) is always elementary. We have a weak result.

Proposition 4.1.4. We fix µ ∈ a∗Θ such that MΘ(ρΘ + σαµ) ⊆ MΘ(ρΘ + µ) and ρΘ + µ is
regular and integral. If {β ∈ ΣΘ − Rα|aΘ | 〈µ, β〉 > 0} = {β ∈ ΣΘ − Rα|aΘ | 〈σαµ, β〉 > 0}, then
MΘ(ρΘ + σαµ) ⊆MΘ(ρΘ + µ) is an elementary homomorphism.

Proof. Put ν0 = µ − 〈µ, α∨〉ωα. Then ν0 ∈ Vα. Since MΘ(ρΘ + σαµ) ⊆ MΘ(ρΘ + µ), we have
µ − σαµ = 2〈µ, α∨〉ωα ∈ Q+. Hence, 2〈µ, α∨〉ωα is integral. So, we can write 〈µ, α∨〉 = c + n0.
Here, c is either 1 or 1

2 and n0 is a positive integer. Put κ = 2(µ+ σαµ). Since 2ρΘ and ρΘ + µ
are integral, so is κ. Moreover, we have κ ∈ Vα and 〈κ, β〉 > 0 for all β ∈ ΣΘ − Rα|aΘ such
that 〈µ, β〉 > 0. From the translation principle, we have MΘ(ρΘ + (ν0 + mκ) − (c + n0)ωα) ⊆
MΘ(ρΘ +(ν0 +mκ)+(c+n0)ωα) for all m ∈ N. Hence {a ∈ C |MΘ(ρΘ +(ν0 +aκ)−(c+n0)ωα) ⊆
MΘ(ρΘ + (ν0 + aκ) + (c+ n0)ωα)} is Zariski dense in C. So, we can prove MΘ(ρΘ + (ν0 + aκ)−
(c+n0)ωα) ⊆MΘ(ρΘ + (ν0 +aκ) + (c+n0)ωα) for all a ∈ C in the same way as [Lep75b, Lemma
5.4]. If a ∈ C is generic, then the integral root system for ρΘ + (ν0 + aκ)− (c+ n0)ωα is ∆(α).
Hence, Lemma 2.2.1 implies that M

g(α)
Θ (ρΘ − (c + n0)ωα) ⊆ M

g(α)
Θ (ρΘ + (c + n0)ωα). Applying

[Mat06, Lemma 2.2.6], we have M
g(α)
Θ (ρΘ − cωα) ⊆Mg(α)

Θ (ρΘ + cωα). 2

4.2 Θ-excellent roots
We retain the notations in § 4.1.

Definition 4.2.1.

(1) We call α ∈ ru∆ = Θ+ Θ-excellent if σα is a Duflo involution ([Dix77], cf. [Jos83]) in W (α).

(2) We put e∆+
Θ = {α ∈ ru∆+

Θ | α is Θ-excellent}.
(3) We put eΣ+

Θ = {α|aΘ ∈ a∗Θ | α ∈ e∆+
Θ} and eΣΘ = eΣ+

Θ ∪ (−eΣ+
Θ).

(4) We denote by eW (Θ) the subgroup of W (Θ)′ generated by {σα | α ∈ e∆+
Θ}.

(5) For α ∈ ru∆+
Θ, we put cα = 1 (respectively cα = 1

2) if ρΘ is integral (respectively not integral)
with respect to ∆(α). Then, ρΘ + (cα + n)ωα is integral with respect to ∆(α) for all n ∈ Z.

We have the following proposition.

Proposition 4.2.2. Let α ∈ e∆+
Θ and let µ ∈ a∗Θ be such that ρΘ +µ is integral and 〈µ, α〉 > 0.

Then, we have an elementary homomorphism MΘ(ρΘ + σαµ) ⊆MΘ(ρΘ + µ).

Proof. Put ν0 = µ−〈µ, α∨〉ωα. Then ν0 ∈ Vα. Since ρΘ +µ is integral, we have 〈ρΘ +µ, α∨〉 ∈ Z.
From the definition of cα, we have 〈ρΘ, α

∨〉 ∈ cα + Z. Hence, we can write µ = ν0 + (cα + n)ωα
for some n ∈ N. So, from α ∈ e∆+

Θ, Theorem 4.1.1 and [Mat93, Proposition 2.1.2], we have the
proposition. 2
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For a simple Lie algebra of the type A, every involution is a Duflo involution [Duf77]. Hence,
we have the following corollary.

Corollary 4.2.3. If g is a simple Lie algebra of the type A, we have ru∆+
Θ = e∆+

Θ for all Θ ( Π.

5. Strictly normal case

5.1 Strictly normal subset of Π
Definition 5.1.1. We call Θ ( Π strictly normal if Θ is normal and e∆+

Θ = ru∆+
Θ. A standard

parabolic subalgebra pΘ is called strictly normal when Θ is strictly normal.

Before stating the main result, we prove the following lemma.

Lemma 5.1.2. Let Θ ( Π be normal and let µ ∈ a∗Θ be such that ρΘ + µ is integral. Then, µ is
integral with respect to ruΣΘ.

Proof. Since ρΘ + µ is integral, we have w(ρΘ + µ)− ρΘ −mu = wµ− µ ∈ Q for all w ∈W (Θ)′.
Since Q ∩ a∗Θ is contained in the root lattice for ruΣΘ, we have the result. 2

The following result is the main result.

Theorem 5.1.3. We assume that Θ ( Π is strictly normal. Let µ ∈ a∗Θ be such that ρΘ + µ is
dominant integral and regular. Let x, y ∈W (Θ)′. Then, we have:

(1) MΘ(ρΘ + xµ) ⊆MΘ(ρΘ + yµ) if and only if y 6Θ x;

(2) if y 6Θ x, thenMΘ(ρΘ+xµ)⊆MΘ(ρΘ+yµ) is a composition of elementary homomorphisms.

Proof. First, we assume that MΘ(ρΘ +xµ) ⊆MΘ(ρΘ + yµ). Hence, L(ρΘ +xµ) is an irreducible
constituent of M(ρΘ + yµ). From [BGG71], we have M(ρΘ + xµ) ⊆M(ρΘ + yµ), namely y 6 x.
Hence from Theorem 3.4.5, we have y 6Θ x.

Next, we assume that y 6Θ x. Since µ is regular dominant integral with respect to ruΣΘ, there
exist α1, . . . , αk ∈ ru∆+

Θ such that σα1 · · ·σαky = x, 〈yµ, αk〉 > 0, and 〈σαr+1 · · ·σαkyµ, αr〉 > 0
for 1 6 r 6 k − 1. So, from Proposition 4.2.2, we can construct embedding MΘ(ρΘ + xµ) ⊆
MΘ(ρΘ + yµ) as a composition of elementary homomorphisms. 2

Remark. The argument in § 2.2 does not imply the conclusion of the theorem for a non-integral
infinitesimal character, since the corresponding parabolic subalgebras of g′ are normal but not
necessary strictly normal.

5.2 Classification of the strictly normal parabolic subalgebras
From [Mat06], we can determine Θ-excellent roots, and we can obtain the following result.

Proposition 5.2.1. The following is the list of the strictly normal standard parabolic
subalgebras of a classical Lie algebra:

(a) p(An−1,k) (k|n);

(b) p(Bn,2k,m) (k 6 m);

(c) p(Bn,2k+1,m) (k > m);

(d) p(Cn,2k,m) (k 6 m);

(e) p(Cn,2k+1,m) (k > m);

(f) p(Dn,2k−1,m) (k 6 m, 2 6 m);
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(g) p(Dn,2k,m) (k > m, 2 6 m);

(h) p(Dn,1,0).

Next, we state the classification of strictly normal parabolic subalgebras for exceptional Lie
algebras. It is obtained by more or less straightforward calculation from [Mat06].

Proposition 5.2.2. Let g be an exceptional Lie algebra. We assume Θ ( Π is normal and
card(Π−Θ) > 2. Moreover, we assume that Θ is not strictly normal. Then Θ is F4,14, E7,27, or
E8,18.

Remark. If card(Π − Θ) = 1, then pΘ is a maximal parabolic subalgebra. In this case, the
homomorphisms between scalar generalized Verma modules are classified in [Mat06]. So, we
neglect them.
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