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ABSTRACT

In this article, we study the homomorphisms between scalar generalized Verma modules.
We conjecture that any homomorphism between scalar generalized Verma modules is a
composition of elementary homomorphisms. The purpose of this article is to confirm the
conjecture for some parabolic subalgebras under the assumption that the infinitesimal
characters are regular.

Introduction

We study the homomorphisms between generalized Verma modules, which are induced from
one-dimensional representations (such generalized Verma modules are called scalar, cf. [Boe85]).

Classification of the homomorphisms between scalar generalized Verma modules is equivalent
to that of equivariant differential operators between the spaces of sections of homogeneous line
bundles on generalized flag manifolds (cf. [CS90, Dob88, Hua93, Jak85, Kos75]).

n [Ver68], Verma constructed homomorphisms between Verma modules associated with
root reflections. Bernstein, I. M. Gelfand, and S. I. Gelfand proved that all the non-trivial
homomorphisms between Verma modules are compositions of homomorphisms constructed by
Verma [BGGT1].

Later, Lepowsky studied the generalized Verma modules. In particular, Lepowsky [Lep75b]
constructed a class of non-trivial homomorphisms between scalar generalized Verma modules
associated to the parabolic subalgebras which are the complexifications of the minimal parabolic
subalgebras of real reductive Lie algebras.

In [Mat06], elementary homomorphisms between scalar generalized Verma modules are
introduced. They can be regarded as a generalization of homomorphisms introduced by Verma
and Lepowsky.

We propose a conjecture on the classification of the homomorphisms between scalar
generalized Verma modules, which can be regarded as a generalization of the above-mentioned
result of Bernstein et al.

CONJECTURE A. All the non-trivial homomorphisms between scalar generalized Verma modules
are compositions of elementary homomorphisms.

Soergel’s result [Soe90, Theorem 11] implies that Conjecture A is reduced to the integral
infinitesimal character case.

The purpose of this article is to confirm the conjecture for some parabolic subalgebras under
the assumption that the infinitesimal characters are regular. In order to explain our results, we
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introduce some notations. Let g be a complex reductive Lie algebra and fix a Cartan subalgebra
h of g. We denote by A (respectively W) the root system (respectively the Weyl group) with
respect to (g, h). We fix a basis IT of A. For © C II, we put ag = {H € h | Va € Oa(H) = 0} and
Yo ={ale | @ € A} — {0}. We denote by pe the standard parabolic subalgebra corresponding
to © and by lg its Levi subalgebra containing h. We consider the Weyl group for parabolic
subalgebra W(©) = {w €| wO = 6}.

We call © normal if any two parabolic subalgebras with the Levi part lg are conjugate under
an inner automorphism of g. If © is normal, we call pg normal. For example, complexified minimal
parabolic subalgebras of real simple Lie algebras except su(p,q) (p — 1 > g > 0), s0*(4n + 2),
¢6(—14) are normal. Roughly speaking, if © is normal, the reflection o, on ag with respect to
v € Yo can be regarded as an involution of the Weyl group for (g, h). A normal subset O of II is
called strictly normal if o, is a Duflo involution of some Weyl group (see Definition 4.2.1). If © is
strictly normal, there exists an elementary homomorphism with respect to o, for each v € Xg.

Let po be a complexified minimal parabolic subalgebra of a real simple Lie algebra and
assume pg is normal but is not strictly normal. Then, pg is a complexified minimal parabolic
subalgebra of so(2n +1—¢,q) (n > ¢ > 1), or sp(n,n) (n > 1).

The main result of this article is the following theorem.

THEOREM B (Theorem 5.1.3). If © is strictly normal, then each non-trivial homomorphism
between scalar generalized Verma modules induced from pg with regular integral infinitesimal
character is a composition of elementary homomorphisms.

The idea presented here seems not useful for confirming the conjecture in the general case.
However, we may confirm the conjecture for some other parabolic subalgebras. For example, via
case-by-case consideration, we can prove the following result.

THEOREM C. If © is normal and g is an exceptional Lie algebra, then each non-trivial
homomorphism between scalar generalized Verma modules induced from po with a regular
integral infinitesimal character is composed of elementary homomorphisms.

We shall give a proof of Theorem C in a subsequent paper.

This article consists of five sections.

We fix notations and introduce some fundamental material in § 1.

In §2, we explain how to reduce the problem to the integral infinitesimal character case. We
also show that we can associate an element of W (0O) to a homomorphism between generalized
Verma modules with regular infinitesimal characters.

In § 3, we introduce the notion of normal parabolic subalgebras and describe the classification.
We prove that the Bruhat ordering on W (0) coincides with the restriction of that of W to W (©)
for each normal O.

In §4, we introduce the notion of an elementary homomorphism and describe related notions
and results.

In §5, we introduce the notion of strictly normal parabolic subalgebras and describe the
classification. We also prove Theorem B.

1. Notations and preliminaries

1.1 General notations
In this article, we use the following notations and conventions.
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As usual we denote the complex number field, the real number field, the ring of (rational)
integers, and the set of non-negative integers by C, R, Z, and N respectively. The expression
(1/2)N means the set {n/2 | n € N}, and 1/2+N means the set {1/24n | n € N}. We denote by ¢
the empty set. For any (non-commutative) C-algebra R, ‘ideal’ means ‘2-sided ideal’, ‘ R-module’
means ‘left R-module’, and sometimes we denote by 0 (respectively 1) the trivial R-module {0}
(respectively C). Often, we identify a (small) category and the set of its objects. Hereafter ‘dim’
means the dimension as a complex vector space, and ‘®’ (respectively Hom) means the tensor
product over C (respectively the space of C-linear mappings), unless we specify otherwise. For
a complex vector space V', we denote by V* the dual vector space. For a,b € C, ‘a < b’ means
that a,b € R and a < b. We denote by A — B the set theoretical difference. ‘card A’ denotes the
cardinality of a set A.

1.2 Notations for reductive Lie algebras

Let g be a complex reductive Lie algebra, U(g) the universal enveloping algebra of g, and b a
Cartan subalgebra of g. We denote by A the root system with respect to (g,h). We fix some
positive root system A and let IT be the set of simple roots. Let W be the Weyl group of the
pair (g,h) and let (,) be a non-degenerate invariant bilinear form on g. For w € W, we denote
by ¢(w) the length of w as usual. We also denote the inner product on h* which is induced
from the above form by the same symbols (,). For a« € A, we denote by s, the reflection in
W with respect to a. We denote by wg the longest element of W. For o € A, we define the
coroot a¥ by aV = 2a/{a,a), as usual. We denote by AV the dual root system {a" | a« € A}.
We call A € h* is dominant (respectively anti-dominant) if (A, &) is not a negative (respectively
positive) integer, for each o € A™. (Often, ‘dominant’ here is called ‘integrally dominant’.) We
call A € b* regular if (A, a) # 0, for each & € A. We denote by P the integral weight lattice,
namely P = {\ € b* | (\,aV) € Z for all « € A}. If X\ € b* is contained in P, we call A an integral
weight. We define p € P by p = (1/2) > car . Put go = {X € g |VH € h[H,X]| = o(H)X},
U= cat o b =0+ u Then b is a Borel subalgebra of g. We denote by Q the root lattice,
namely Z-linear span of A. We also denote by Q" the linear combination of IT with non-negative
integral coefficients. For A € h*, we denote by W) the integral Weyl group. Namely,

Wy={weW|w\—-XeQ}.
We denote by Ay the set of integral roots:
Ay={acA|(\a")eZ}.

It is well known that W) is the Weyl group for Ay. We put Aj = AT N Ay. This is a positive
system of Ay. We denote by IIy the set of simple roots for A;\r and denote by Sy (respectively
S) the set of reflection corresponding to the elements in II) (respectively II). So, (W, S)) and
(W, S) are Coxeter systems. We denote by Q) the integral root lattice, namely Q) = ZAX, and
put QF = NII,.

Next, we fix notations for a parabolic subalgebra (which contains b). Hereafter, through this
article we fix an arbitrary subset © of II. Let (O) be the set of the elements of A which are
written by linear combinations of elements of © over Z. Put ag = {H € h | Va € © o(H) = 0},
lo=bh+ Zae@) ga, No = Za6A+—<@) ga, Po = lo + ne. Then pg is a parabolic subalgebra of
g which contains b. Conversely, for an arbitrary parabolic subalgebra p O b, there exists some
© C II such that p = pg. We denote by Wg the Weyl group for (lg, h). The Weyl group Wg is
identified with a subgroup of W generated by {s, | « € ©}. We denote by we the longest element
of Wg. Using the invariant non-degenerate bilinear form (, ), we regard ag* as a subspace of h*.
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Put pe = 3(p — wep) and p© = 3(p + wep). Then, p° € ag*.
For © C II, we define ‘the restricted root system’ as follows:
So = {al |0 € A} - {0},
26 ={ale | @€ AT} —{0}.

Unfortunately, in general, ¥g does not satisfy the axioms of the root systems.
Define

PET={Aebh*|VaeO® (Na")e{l,2,...}},
PET={Aebh*|Vae® (A\aY)=1}L

We easily see

P&t ={po+p|pcag).

For pu € h* such that u+ p € PE™, we denote by og(u) the irreducible finite-dimensional lg-
representation whose highest weight is . Let Fg(u) be the representation space of og(u). We
define a left action of ng on Eg(p) by X -v =0 for all X € ng and v € Fg(p). So, we regard
Eo(p) as a U(pg)-module.

For u € Png, we define a generalized Verma module [Lep77a] as follows:

Mo (1) = U(9) @upe) Eolp — p)-

For all A € h*, we write M (X) = My(X); M(A) is called a Verma module. For p € P&, Mo (p)
is a quotient module of M (u). Let L(p) be the unique highest weight U(g)-module with the
highest weight p — p. Namely, L(i) is a unique irreducible quotient of M (u). For p € PJer+, the
canonical projection of M (u) to L(u) is factored by Mg(u).

We have dim Eg(p — p) = 1 if and only if u € °PET. If p € °PgT, we call Mg (p) a scalar
generalized Verma module.

Finally, we fix notations for infinitesimal characters. We denote by Z(g) the center of U(g).
We denote by x) the image of A € h* under the Harish-Chandra isomorphism from W\b* to
Hom(Z(g),C). It is well known that Z(g) acts on M(\) by xa : Z(g) — C for all A € h*. We
denote by Z) the kernel of y) in Z(g). Let M be a U(g)-module and A € h*. We say that M
has an infinitesimal character X if and only if Z(g) acts on M by x,. For example, a generalized
Verma module Mg(p) has an infinitesimal character p.

2. Formulation of the problem
We retain the notation of § 1. In particular, © is a proper subset of II.
2.1 Basic results of Lepowsky

The following result is one of the fundamental results on the existence problem of homomorphisms
between scalar generalized Verma modules.

THEOREM 2.1.1 [Lep76]. Let p,v € °P&™. Then it is true that:
(1) dim Homg(g)(Me(k), Me(v)) < 1;
(2) any non-zero homomorphism of Mg (u) to Meg(v) is injective.

Hence, the classification problem of homomorphisms between generalized Verma modules is
reduced to the following problem.
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Problem 1. Let p,v € °P&. When is Me(n) C Me(v)?

2.2 Reduction to the integral infinitesimal character setting
Since both v € Wy and v — u € Q1 are necessary conditions for Mg(u) € Meg(v), we can
reformulate our problem as follows.

Problem 2. Let A € OPgJF be dominant. Let xz,y € W) be such that z\, y\ € °Pg+. When is
Mo (xzA) C Mo(yM)?

We fix \ € oPng. Then, we can construct a suralgebra g’ of hh such that the corresponding
Coxeter system is (W), ®,). Since © C II, holds, we can construct the corresponding parabolic
subalgebra pg of g’. For p € Png, we denote by M (u) the corresponding generalized Verma
module of g’. We consider the category O in the sense of [BGGT71] corresponding to our particular
choice of positive root system. More precisely, we denote by O (respectively ') ‘the category O’
for g (respectively g’). We denote by Oy (respectively O}) the full subcategory of O (respectively
') consisting of the objects whose irreducible constituents have highest weights in {w | w €
Wy }. Soergel’s celebrated theorem [Soe90, Theorem 11] says that there is a category equivalence
between Oy and O). Under the equivalence a Verma module, M(z\) (z € W)) corresponds
to M'(xz)). We easily see Mg (x)) = M(xzA)/ Y co M(saxzA) and the embedding M (sqx)) C
M (z\) is unique up to scalar multiplication for each a € ©. So, we easily see Mg(xz\) corresponds
to Mg (z\) under Soegel’s category equivalence. Hence we have the following lemma as a corollary
of Soergel’s theorem.

LEMMA 2.2.1. Let A € b* be dominant. Let x,y € W) be such that zA, y\ € °Pg+. Then, the
following two conditions are equivalent:

(1) Me(zA) € Me(yA);

(2) Mb(xh) € Mb(y)).

This lemma tells us that we may reduce Problem 2 to the case that X is integral.

We discuss another application of Soergel’s theorem. We denote by gV the reductive Lie
algebra corresponding to the coroot system AY. We regard a Cartan subalgebra b as a Cartan
subalgebra of g¥. We attach V to the notion with respect to gV corresponding to that of g. Then
we have the canonical isomorphism (W, S) = (WV,SY) of the Coxeter systems. So, we identify
them. For © C II, we put OV = {a" |« € ©} CIIV. We put °Pgi " = {A € b* | (\,a) =1 (a € ©)}.
For A € °P&Y*, we consider a scalar generalized Verma module M, (A) of g¥. The following
result is an immediate consequence of Soergel’s theorem.

THEOREM 2.2.2. Let A\ € P and u € PV be dominant regular. Let x,y € W = WV. We assume
that zA,y\ € °PET and zp, yp € °PELT. Then, Mg (z)\) C Me(y)) if and only if MY, (zp) C
Mg, (yp).-

Hence, we may reduce Problem 1 for simple Lie algebras of the type C,, to that for simple
Lie algebras of the type B,.

2.3 Comparison of T-invariants
We put
W(©)={weW |wO =06}

Then, we easily see the following lemma.
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LEMMA 2.3.1. We have:

(a) W(O)={weW |wa" € OV for all « € B};
(b) W(©) ={w e W |wpe = pe,wd C AT};
(¢) wew = wweg for all w € W(O);
(d)

(€)

W (©) preserves ag;
W(©) C W,

In this section, we prove the following proposition.

PrROPOSITION 2.3.2. Let A € OPng be regular. Let x € W) be such that z € °Pg+. Moreover,
we assume that Mg(xA) C Mg(A). Then, we have x € W(0O).

First, we prove the following lemma.

LEMMA 2.3.3. Let A € °Pg+ be regular and let w € W) be such that wA is dominant. Then, we
have wO C 1II,.

Proof. Assume that there is some o € © such that wa ¢ IIy. Then wa ¢ IIY. Here, we remark
that IIY is a basis of the positive coroot system (A1)Y. So, there exists some 3,7 € A such that
wa" = BY +~V. Since wA is dominant and regular, we have (wA, 3Y) > 1 and (wA,~") > 1. Also,
2 < (wA, BY +7Y) = (wA,wa’) = (A,aV). On the other hand, A € °P&" implies (A, a") = 1.
This is a contradiction. O

Proof of Proposition 2.3.2. From Lemma 2.2.1, we may reduce the proposition to the case that
A is integral. Put ©; = w0 and BO4 = wz~10. From Lemma 2.3.1, we have ©; C II and Oy C II.
Since wowe,O; = —wpO; holds for i = 1,2, we have wowe,O; C II. We put I1 = Annyg) (Me(N))
and Iy = Anng ) (Me(z))).

From [BJ77, Corollary 4.10], we have [} = Anngyg)(M_we,(wowe,wA)) and I =
Anng () (M_w0,(wowe,wA)). Since (wowe,wA,a”) < 0 for all o € A* — wowe,(O;), then
Myywe 6, (Wowe,wA) is irreducible. Hence, I; and I are primitive ideals of the same Gelfand-
Kirillov dimension. The 7-invariant of I 1 (respectively I5) is —woO; (respectively —wpOz2). On the
other hand, Mg (z\) C Mg(\) implies I; C I>. Hence, we have I1 = I5 from [BK76, 3.6.Korollar].
Comparing the 7-invariants, we have —wy©; = —wy©,. Hence, wO = ©1 = Oy = wz~'O. This
implies z € W (0O). O

3. Some results on Bruhat orderings

3.1 Quasi-subsystems
Let (W;,S;) (i = 1,2) be finite Coxeter systems. We denote by ¢;(w) the length of a reduced
expression of w € W; with respect to S;. We also denote by <; the Bruhat ordering for (W;, S;).

DEFINITION 3.1.1. We say that (W3, S2) is a quasi-subsystem of (W7, S1) if the following, (Q1)
and (Q2), hold:

(Q1) Wy is a subgroup of Wi;
(Q2) for any reduced expression w = 1 --- s of w € Wy in (Wa, S2), we have ¢1(w) = ¢1(s1) +
-+ 61(sk).

The following lemma is easy.
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LEMMA 3.1.2. Assume that (W, S2) is a quasi-subsystem of (W7,S1). Then, © <y y implies
x <y y for all x,y € Ws.

We have the following lemma.

LEMMA 3.1.3. Assume that (W3, S3) is a quasi-subsystem of (W7, S1). Moreover, we assume the
following condition (C).

(C) For any x,y € Wy and s € So such that x <1y, {1(sy) < ¢1(y), and ¢1(z) < ¢1(sx), we have
sT <1 Y.

Then, x <1 y implies x <o y for all x,y € Wa.

Proof. Let x,y € Wa be such that x <; y. We show x <5 y by a double induction with respect

to l2(y) and lo(y) — lo(x).
Obviously we may assume ¢2(y) > 0. So, we choose some s € Sy such that lo(sy) < l2(y).
First, we assume that f2(sx) < l2(x). We fix reduced expressions of s, sz, and sy in (Wi, S1)

as follows:
§=S81"" S5k (517"'a5k651)a
sx =11ty (tl,...,th€sl),
sy=r1---rn (r1,...,m € S1).

From (Q2), we easily see that s, «--sgt1 -ty and sy, - - - sgry - - -7y, are reduced expressions for
all 1 < m < k. Applying [Deo77, Theorem 1.1], we have sy, - - - Sgt1 -ty <1 Spy -+ Sgr1 -+ Ty by
the induction on m. So, we have sz <1 sy. Since ¢2(sy) < ¢2(y), the induction hypothesis implies
that sz <9 sy. Again, applying [Deo77, Theorem 1.1], we have = <5 y.

Next, we assume that lo(sz) > l(x). From (Q2), we have ¢1(sz) > ¢1(x). So, we have sz <1 y
from (C). Since la(y) — la(sz) < la(y) — l2(z), we have sz <2 y from the induction hypothesis.
Since x <o sx, we have x <5 y. O

3.2 O-useful roots
In this subsection, we use the notation in § 1.

Following Knapp [Kna75], Howlett [How80], and Lusztig [Lus76], we consider useful roots
for our purpose.

Hereafter, we fix a subset © of II. For o € A, we put

Ala)={feA|TceR Plo = ctlay},

At(a) = Ala) N AT,

Uy =CO + Ca C h*.
Then (Uy, A(), (, )) is a subroot system of (h*, A, (, )). The set of simple roots for AT (a) is
denoted by II(a). alq, = 0 if and only if © = II(a). For a € A*, we denote by We(«) the
Weyl group of (h*, A(«)). Clearly, Wg C Wg(a) C W. We denote by w® the longest element of
We(a). We set

0o = wlwe.

alge = 0 if and only if o, = 1.

DEFINITION 3.2.1. (1) We call & € A ©-useful if the order of o, is two. We denote by “Ag the
set of the useful ©-roots. We also put “Ag =UYAg NAT.
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(2) If afqg # 0, then II(«x) is written as © U {a}. If a € A satisfies aq, # 0 and a = &, then
we call a O-reduced. We put

AL = {a € "Af | o is O-reduced}.

If @ € A is orthogonal to all the elements in ©, then we can easily see « is O-reduced and
Sa = 04 We easily see the following lemma.

LEMMA 3.2.2. Let o € At be O-reduced. We denote by A(a)o be the irreducible component of
A(«) containing a. We put I(a)g = II(a) N A(a)p.

(1) If A(a)o is not of the type ADE, then we have oo € “"A{.

(2) If A(a)o is of the type Doy, (n > 2), Ez, or Eg, then we have a € "TA{.

(3) If A(a)o is of the type Agy, (n > 1), then we have o € “"AJ.

(4) We assume that A(a)g is of the type Agnt1 (n > 0). We number the elements of II(«)g

as follows:
() = {B1,. -, Ban+1}-
We choose the above numbering so that (B, 8, ;) = —1 for 1 <i < 2n. Then o € urAS if and
only if a = (.
(5) We assume that A(«)g is of the type Do, 1 (n > 2). We number the elements of TI(«)g
as follows:

O(a)o = {B1,-..,Bons1}

We choose the above numbering so that (B, 8;,,) = —1 for 1 <i < 2n—1 and (Bap—1, B3),41) =
—1. Then a € “TAg if and only if o & {Baon, Bon+1}-

(6) We assume that A(a) is of the type Eg. We number the elements of II(«)g as follows:

H(Oé)() = {51, e ,,36}.

We choose the above numbering so that (B, 8;,,) = —1 for 1 < i < 4 and (33, 3]) = —1. Then
o€ “’"Ag if and only if o € {B3, Bs}-

For a € "™ Ag, we put

Va={A€ag | (N a) =0},
éé - O[‘ae S aé

We easily see the following lemma.
LEMMA 3.2.3. Let a € ”“Ag. Then, we have that:

(1) oo preserves ag;

(2) aa € W(@) and, in particular, ocope = pe;
(3) ool = —d;

(4) o*a|u* is the reflection with respect to V.

We denote by W(0)' the subgroup of W generated by {0, | o € ™AL of We put “Xg =
{0fae € a5 | @ € “Ag}; “Yo is a (not necessarily reduced) root system. We also put "X =
{aleg € ay | @ € ™AL} and "Sg = TS U —"E{; ™ Xe is a reduced root system and ’"“Eg
is a positive system. We denote by “Ilg the simple system for ’"“Eg; “Ilg is also a basis of

o. For a € , 0o depends only on aly,. So, sometimes we write o, or o,. We pu
“Ye. F AL depends onl o S ti ite o, f We put

S(©) = {0 | v € "Ilo)}.
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THEOREM 3.2.4 (Howlett [How80, Theorem 6], Lusztig [Lus76, §5]).

(1) We have W(0) C W(0O).

(2) For a € "Af, o4(a}y) = afy. Moreover, o,
OapPO = PO-

(3) We define v : W(O)" — GL(ag) by «(z) = x|o;. Then ¢ is an injective group homo-
morphism.

(4) We have that (W (©)') is the reflection group for the root system "™Yg. Hence (W(O),
S(©)) is a Coxeter system.

ay, Is the reflection with respect to alq, and

We denote by <g the Bruhat ordering for (W (©)’, S(0)).

3.3 Normal parabolic subalgebras

DEeFINITION 3.3.1. We call ©® C II normal if II — © C “Ag. We call a standard parabolic
subalgebra pg normal if © is normal. A parabolic subalgebra is called normal if it is conjugate
to a normal standard parabolic subalgebra by an inner automorphism.

We describe the list of the normal parabolic subalgebras of classical Lie algebras.

(1) Let g = gl(n,C) (the case of g = sl(n,C) is similar) and let k£ be a positive integer
dividing n. We consider the following parabolic subalgebras:

p(A,—1%): a parabolic subalgebra of g whose Levi part is isomorphic to

n/k
l(k,C) & - @ gl(k,C).

(2) Let g be a complex simple Lie algebra of the type X,,. Here, X means one of B, C, and D.
Let k and ¢ be positive integers such that k divides n — £. If X = D, then we assume that ¢ # 1.

We consider the following parabolic subalgebras:

p(Xy.k¢): a parabolic subalgebra of g whose Levi part is isomorphic to

(n—0)/k
al(k,C) @ --- @ gl(k,C) ®X,.

Here, X, denotes the complex simple Lie algebra of the type X;. Namely By = so(2¢ + 1,C),
Cp, = sp(¢,C), and D,, = so(2¢,C). Also, Xy means the zero Lie algebra.
From Lemma 3.2.2, we easily see the following proposition.

PROPOSITION 3.3.2. (1) We have that p(A,_1 ) is normal. Conversely any normal parabolic
subalgebra is conjugate to p(A,, ) for some k.

(2) We have that p(X,, 1 ¢) is normal, unless X = D, £ = 0, and k is an odd number greater
than 1. Any normal parabolic subalgebra is conjugate to one of such p(X, ;¢) by an inner
automorphism.

For exceptional simple Lie algebras, we have the following results. If © is the empty set, it
is obviously normal. So, we consider ¢ # © C II.
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We number the simple roots IT = {«;, ...} of exceptional simple Lie algebras Fy, Eg, E7, Eg

as follows:
1 2 — 3 — 4 — 5
1 — 2 « 3 — 4, |
6
1 -2 -3 -4 - 6 - 7
|
5)
1 -2 -3 -4 -5 -7 - 8
|
6
Let X be F or E. We denote by X, ;,..., © =II—{a,,....,qa; }, where IT is the above-mentioned

numbered basis for the exceptional simple Lie algebra g of the type X,.

PROPOSITION 3.3.3.

(1) Assume that g is of type Go. Then any subset of II is normal.

(2) Assume that g is of type Fy. If card © = 3, © C II is normal. The other non-empty normal
subsets of Il are Fy 12, F4 14, and Fy 34.

(3) Assume that g is of type Eg. The non-empty normal subsets of IT are Eg 3, Eg 6, Eg 15.

(4) Assume that g is of type E7 If card® = 6, © C II is normal. The other non-empty normal
subsets of II are E7727, E7767, E77127, and E7,2467.

(5) Assume that g is of type Eg. If card © = 7, © C II is normal. The other non-empty normal
subsets OfH are E8’12, Eg’lg, Eg’gg, and E8,1238-

We put
K©)={weW |wo CII}.

We give some characterizations of normality.

PROPOSITION 3.3.4. For © C II. the following conditions are equivalent:
(1) © C II is normal;

(2) K(©)=W(©);
(3) K(©) =W(©);
(4) “So = Ye.

Proof. First, we assume condition (1). Then, using Propositions 3.3.2 and 3.3.3, we obtain
conditions (2) and (4) via case-by-case analysis. Condition (2) obviously implies condition (3).
Next, we assume condition (3). For a € Il — O, we easily see o2(II) C A*. Hence o, is an

involution. This means that o € “*A. So, we have condition (1). Condition (4) is clearly stronger
than condition (1). O

COROLLARY 3.3.5. If © C II is normal, then W(0) = W(0O).

Since AT N (—wAT) = {a € AT | afoy € T N (—wEd)} for each w € W(O), we easily see
the following lemma.
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LEMMA 3.3.6. We assume that © C II is normal. Then for each w € W(©), we have

AT N (—wAT) = U {a € AT |3e> 004 = v}

yeresn(—wrsd)
Hence, we have the following result.
PROPOSITION 3.3.7. If © C II is normal, then (W(0©)', S(©)) is a quasi-subsystem of (W, S).
As a corollary of Proposition 3.3.4, we easily see the following corollary.

COROLLARY 3.3.8. We have that © C Il is normal if and only if any two parabolic subalgebras
with the Levi part lg are conjugate under an inner automorphism of g.

3.4 Comparison of Bruhat orderings
In this subsection, we use the notation in § 1.

DEFINITION 3.4.1. We call © C II seminormal if there exists some ¥ such that © C ¥ C II and
“lg = {O‘|a@ | € ¥ -0}

So, S(©) ={oa | @€ © -V}

We have that © C I is seminormal if and only if there is a a € IIN"A™ such that afqq =
for each v € “Ilg.

We immediately see the following result from Proposition 3.3.7.

COROLLARY 3.4.2. If © C II is seminormal, then (W (©)’, S(0)) is a quasi-subsystem of (W, S).

We fix a connected complex reductive Lie group G whose Lie algebra is g. For © C II, we
denote by Pg (respectively H) the parabolic subgroup (respectively the Cartan subgroup) of G
corresponding to pe (respectively h). We denote by N¢(H) the normalizer of H in G. Since the
Weyl group W is identified with the quotient group Ng(H)/H, for each w € W we can fix a
representative in Ng(H). We denote the representative by the same letter ‘w’.

For x € W, we put U, = Pox/Po. Namely, U, is a Po-orbit in G/Pg through x/Pg € G/ Ps.
We denote by U, the closure of U, in G/Pg. If w € W(0), then £(ws,) > £(w) for all a € ©.
Hence, we have the following lemma.

LEMMA 3.4.3.

(1) For w € W(©), we have dimU,, = {(w).
(2) Forz,y € W(O), z <y ifand only if U, CU,.

Next we show the following lemma.

LEMMA 3.4.4. Assume that © C II is seminormal. We choose © C W C II as in Definition 3.4.1.
Fix x € W(O)'. Let « € ¥ — © be such that {(cqx) < £(x). Then we have U, = Poua}Us =
P@u{a}Uaaw'

Proof. We may choose a reduced expression & = o4, - --0q, such that a; = a. We consider a
contraction map as follows:

F: P@U{al} X Pg P@U{ag} XPg " XPg P@U{ak}/PG —> G/P@
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We easily see that:

(a) Image(F) is an irreducible Zariski closed set in G/ Peg;
(b) dimU, = {(x) = dim Poyga,} XPe - - X Pe Poufa,}/Pos;
(c) U, C Image(F).

Hence, we have U, = Image(F). So, we have the lemma immediately. O

The following result is the main result of this section.

THEOREM 3.4.5. Let © C II be seminormal. For x,y € W(0)', x < y if and only if x <g y.

Proof. We choose © C ¥ C II as in Definition 3.4.1. From Lemmas 3.1.2, 3.1.3, and
Corollary 3.4.2, we have only to show the condition (C) in the statement of Lemma 3.1.3 holds
for (W(O),S5(0)). So we choose z,y € W(0)" and a € ¥ — 0 such that z < y, £(o,y) < £(y), and
U(oqx) > (x). From z < y, we have U, C Uy, by Lemma 3.4.3(2). Hence Pg1a}Us C Pouja}Uy-
From Lemma 3.4.4, we have U, = Pou{a)Uy and Uy, » = PouiayUs. So, we have Uy, ., C U,.
This means that 0,2 < y. Hence, the condition (C) holds for ©. O

4. Elementary homomorphisms

4.1 Elementary homomorphisms
We fix a subset © of IT and o € T“Ag. We define

gla)=h+ > gz pela)=g(a)Npe.
BEA(a)

Then, g(«) is a reductive Lie subalgebra of g whose root system is A(«) and pg(«) is a maximal
parabolic subalgebra of g(«).

We denote by w, € ag C h* the fundamental weight for o with respect to the basis II(a) =
O U {a}. Namely w, satisfies that (wa,B) = 0 for 8 € ©, (wa,”) = 1, and wapc(g(a)) = O-
Here, ¢(g(«)) is the center of g(a). We see that there is some positive real number a such that
Wa = Qg SiNCE alyc(g(a)) = 0. Hence, we have Vi, = {\ € ag | (A, wa) = 0}.

Put p(a) = %ZBGAJF(Q) B. For v € a§, we denote by C, the one-dimensional U(pe(«))-
module corresponding to v. For v € af we define a generalized Verma module for g(a) as
follows:

ME? (po +v) = U(8(e)) ®u(po (@) Copa)-
Then, we have the following theorem.

THEOREM 4.1.1 [Mat06]. Let v be an arbitrary element in V,, and let ¢ be either 1 or 1.
Assume that Mg("‘) (po — cwa) C M(g(o‘) (po + cwy). Then, we have Mg (pe + v — (¢ + n)wy) C
Mo (pe + v + (¢ + n)w,) for all n € N.

We call the above homomorphism of Mg(pe + v — (¢ + n)w,) into Me(pe + v + (¢ +
n)we) an elementary homomorphism. In [Mat06], homomorphisms between scalar generalized
Verma modules associated with a maximal parabolic subalgebra are classified. So, elementary
homomorphisms are understood.

The following conjecture is proposed in [Mat06] as a working hypothesis.

CONJECTURE 4.1.2. An arbitrary non-trivial homomorphism between scalar generalized Verma
modules is a composition of elementary homomorphisms.
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The conjecture in the case of the Verma modules is nothing but the result of Bernstein et al.
[BGGT1]. We do not know a counterexample for the above working hypothesis, and we obtain
partial affirmative results in this article. A weaker version is given in the following conjecture.

CONJECTURE 4.1.3. Let © C II be normal and let u,v € ag be such that pg + p and pg + v
are regular integral. If Mg(pe + v) € Me(pe + 1), then it is a composition of elementary
homomorphisms.

Later, we confirm the conjecture for strictly normal case (see §5) and exceptional Lie algebras
(see §§5 and 6).

For example, I do not know whether a homomorphism of the form Mg (pe +0oai) C Me(pe +
©) (€ ag) is always elementary. We have a weak result.

PROPOSITION 4.1.4. We fix p € af such that Me(pe + oap) € Me(pe + 1) and pe + p Is
regular and integral. If { € Yo — Ra|qg | (1, 8) > 0} = {8 € Lo — Ralag | (0ap, B) > 0}, then
Mo(poe + oapr) € Me(pe + 1) is an elementary homomorphism.

Proof. Put vy = p — (i, @")w,. Then vy € V,. Since Mg (po + oapt) € Mo(po + 1), we have
p— oot = 2{u,a"Yw, € Qt. Hence, 2(u, a")w, is integral. So, we can write (u,a) = ¢ + ny.
Here, c is either 1 or % and ng is a positive integer. Put k = 2(u + oqu). Since 2pg and peg + 1
are integral, so is k. Moreover, we have k € V,, and (k,3) > 0 for all § € Yg — Raq, such
that (i, 8) > 0. From the translation principle, we have Mg (po + (vo + mk) — (¢ + ng)wa) C
Me(pe + (vo+mk)+ (c+np)wy) for all m € N. Hence {a € C | Mg(pe + (1o +ar) — (c+no)ws) C
Mo (pe + (1o + ak) + (¢ 4+ no)wa) } is Zariski dense in C. So, we can prove Mg (pe + (vp + ar) —
(c—f—no)wa) C Mo(pe + (vo+ak) + (c+ng)wy) for all a € C in the same Way as [Lep75b, Lemma

5.4]. If a € C is generic, then the 1nte(gral root system for pe + ( 03 + ar) — (¢ + np)wy is A(a).

Hence Lemma 2.2.1 implies that M, @) (c+ no)wag C (po + (¢ + ng)wy). Applying
(Mat06, Lemma 2.2.6], we have Mye cwa) c ME (po + cwa). O

4.2 O-excellent roots
We retain the notations in §4.1.

DEFINITION 4.2.1.

(1) We call « € ™A = OF O-excellent if o, is a Duflo involution ([Dix77], cf. [Jos83]) in W ().
(2) We put °Af = {a € ™A | o is O-excellent}.

(3) We put °S§ = {alae € ay | @ € °Af} and °Sg = T U (—°Z)).

(4) We denote by “W (0) the subgroup of W (O)" generated by {04 | a € *A{}.

(5) For o € "™ AL, we put ¢, = 1 (respectively c, = %) if pg is integral (respectively not integral)

with respect to A(a). Then, pe + (cq + n)wy is integral with respect to A(a) for all n € Z.
We have the following proposition.

PROPOSITION 4.2.2. Let oo € °A{ and let p € afy be such that pe + p is integral and (u, ) > 0.
Then, we have an elementary homomorphism Mg (pg + oait) € Me(pe + 1)-

Proof. Put vy = p— (i, @¥)wg. Then vy € V. Since pg + p is integral, we have (pg + u, @) € Z.
From the definition of ¢,, we have (pg,a") € ¢ + Z. Hence, we can write = vy + (cq + n)wa
for some n € N. So, from a € eAg, Theorem 4.1.1 and [Mat93, Proposition 2.1.2], we have the
proposition. O
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For a simple Lie algebra of the type A, every involution is a Duflo involution [Duf77]. Hence,
we have the following corollary.

COROLLARY 4.2.3. Ifg is a simple Lie algebra of the type A, we have T“Ag = eAg for all © C II.

5. Strictly normal case

5.1 Strictly normal subset of 11
DEFINITION 5.1.1. We call © C II strictly normal if © is normal and °Ad = "*AJ. A standard
parabolic subalgebra pg is called strictly normal when © is strictly normal.

Before stating the main result, we prove the following lemma.

LEMMA 5.1.2. Let © C II be normal and let u € ag be such that pg + p is integral. Then, j is
integral with respect to "™Xg.

Proof. Since pg + p is integral, we have w(pe + 1) — pe — mu = wp — p € Q for all w € W(O)'.
Since Q N ag, is contained in the root lattice for ™¥g, we have the result. |

The following result is the main result.

THEOREM 5.1.3. We assume that © C II is strictly normal. Let j1 € ag be such that pe + p is
dominant integral and regular. Let x,y € W(0O)'. Then, we have:

(1) Me(pe +zp) € Me(pe + yp) if and only if y <e x;
(2) ify <e x, then Mg(po+zu) C Mo (po+yu) is a composition of elementary homomorphisms.

Proof. First, we assume that Mg (po + zn) C Me(po + yu). Hence, L(pe + xp) is an irreducible
constituent of M (pe + yu). From [BGGT1], we have M (pg + zp) € M (pe + yp), namely y < x.
Hence from Theorem 3.4.5, we have y <g x.

Next, we assume that y <g z. Since p is regular dominant integral with respect to "“Xg, there

exist aq,...,qf € ’”“Ag such that oq, -+~ 0o,y = @, (Yu, o) > 0, and (oq, ., =+ Tay Y, r) > 0
for 1 < r <k —1. So, from Proposition 4.2.2, we can construct embedding Mg(pe + xu) C
Me(po + yu) as a composition of elementary homomorphisms. O

Remark. The argument in § 2.2 does not imply the conclusion of the theorem for a non-integral
infinitesimal character, since the corresponding parabolic subalgebras of g’ are normal but not
necessary strictly normal.

5.2 Classification of the strictly normal parabolic subalgebras
From [Mat06], we can determine ©-excellent roots, and we can obtain the following result.

PROPOSITION 5.2.1. The following is the list of the strictly normal standard parabolic
subalgebras of a classical Lie algebra:

() p(An-1) (kln);

() p(Bnakm) (k < m);

() p(Bnzkt1,m) (k =m);

(d) p(Chokm) (k< m);

(e) p(Croktim) (k=m);

() p(Dpok—1,m) (k <m,2 < m);
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(g8) »(Dn2km) (B =m,2 < m);
(h) p(Dn,l,O)'

Next, we state the classification of strictly normal parabolic subalgebras for exceptional Lie
algebras. It is obtained by more or less straightforward calculation from [Mat06].

PropoSITION 5.2.2. Let g be an exceptional Lie algebra. We assume © C II is normal and
card(II — ©) > 2. Moreover, we assume that © is not strictly normal. Then © is Fy 14, E7 27, or

Eg 5.

Remark. If card(Il — ©) = 1, then pg is a maximal parabolic subalgebra. In this case, the
homomorphisms between scalar generalized Verma modules are classified in [Mat06]. So, we
neglect them.

REFERENCES

BGS80

BGGT1

Boe85

BC90

BJ77

BK76
BH99

Car85

CS90

Deo77

Dix77
Dob88

Duf77

How80

Hua93

Jak85

Jan77

Jos83

J. Bernstein and S. I. Gelfand, Tensor product of finite and infinite dimensional representations
of semisimple Lie algebras, Compositio Math. 41 (1980), 245-285.

J. Bernstein, I. M. Gelfand and S. 1. Gelfand, Structure of representations generated by vectors
of highest weight, Funct. Anal. Appl. 5 (1971), 1-8.

B. Boe, Homomorphism between generalized Verma modules, Trans. Amer. Math. Soc. 288
(1985), 791-799.

B. Boe and D. H. Collingwood, Multiplicity free categories of highest weight representations. I,
II, Comm. Algebra 18 (1990), 947-1032; 1033-1070.

W. Borho and J. C. Jantzen, Uber primitive Ideale in der Finhiillenden einer halbeinfachen
Lie-algebra, Invent. Math. 39 (1977), 1-53.

W. Borho and H. Kraft, Uber die Gelfand—Krillov-Dimension, Math. Ann. 220 (1976), 1-24.

B. Brink and R. B. Howlett, Normalizers of parabolic subgroups in Cozeter groups, Invent. Math.
136 (1999), 323-351.

R. W. Carter, Finite groups of Lie type: conjugacy classes and complex characters, Pure and
Applied Mathematics (Wiley, 1985).

D. H. Collingwood and B. Shelton, A duality theorem for extensions of induced highest weight
modules, Pacific J. Math. 146 (1990), 227-237.

V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination
of the relative Mébius function, Invent. Math. 39 (1977), 187-198.

J. Dixmier, Enveloping algebras (North-Holland, 1977).

V. K. Dobrev, Canonical construction of intertwining differential operators associated with
representations of real semisimple Lie groups, Rep. Math. Phys. 25 (1988), 159-181.

M. Duflo, Sur la classifications des idéaux primitifs dans l'algébre de Lie semi-simple, Ann. of

Math. (2) 105 (1977), 107-120.

R. B. Howlett, Normalizers of parabolic subgroups of reflection groups, J. Lond. Math. Soc. (2)
21 (1980), 62-80.

J.-S. Huang, Intertwining differential operators and reducibility of generalized Verma modules,
Math. Ann. 297 (1993), 309-324.

H. P. Jakobsen, Basic covariant differential operators on Hermitian symmetric spaces, Ann. Sci.
Ecole Norm. Sup. (4) 18 (1985), 421-436.

J. C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren,
Math. Ann. 226 (1977), 53-65.

A. Joseph, On the classification of primitive ideals in the enveloping algebra of a semisimple Lie
algebra, Lecture Notes in Mathematics, vol. 1024 (Springer, 1983), 30-76.

891

https://doi.org/10.1112/50010437X13007677 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007677

KnaT75

Kna02

Kos75

LepT75a

Lep75b

Lep76

LepT7a

Lep77b

Lus76

Mat93

Mat06

MTO07

Soe90

Ste68
Ver68

H. MAaTUMOTO

A. W. Knapp, Weyl group of a cuspidal parabolic, Ann. Sci. Ecole Norm. Sup. (4) 8 (1975),
275-294.

A. W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, second
edition (Birkh&user, 2002).

B. Kostant, Verma modules and the existence of quasi-invariant differential operators, in Non-
commutative harmonic analysis, Marseille-Luminy, 1974, Lecture Notes in Mathematics, vol.
466 (Springer, 1975), 101-128.

J. Lepowsky, Conical vectors in induced modules, Trans. Amer. Math. Soc. 208 (1975), 219-272.

J. Lepowsky, Existence of conical vectors in induced modules, Ann. of Math. (2) 102 (1975),
17-40.

J. Lepowsky, Uniqueness of embeddings of certain induced modules, Proc. Amer. Math. Soc. 56
(1976), 55-58.

J. Lepowsky, Generalized Verma modules, the Cartan—Helgason theorem, and the Harish-
Chandra homomorphism, J. Algebra 49 (1977), 470-495.

J. Lepowsky, A generalization of the Bernstein—Gelfand—Gelfand resolution, J. Algebra 49
(1977), 496-511.

G. Lusztig, Cozxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), 101-159.

H. Matumoto, On the existence of homomorphisms between scalar generalized Verma modules,
Contemporary Mathematics, vol. 145 (American Mathematical Society, Providence, RI, 1993),
259-274.

H. Matumoto, The homomorphisms between scalar generalized Verma modules associated to
mazimal parabolic subalgebras, Duke Math. J. 131 (2006), 75-118.

H. Matumoto and P. E. Trapa, Derived functor modules arising as large irreducible constituents
of degenerate principal series, Compositio Math. 143 (2007), 222-256.

W. Soergel, Kategorie O, perverse Garben und Moduln iber den Koinvarianten zur Weylgruppe,
J. Amer. Math. Soc. 3 (1990), 421-445.

R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc. 80 (1968).

D. N. Verma, Structure of certain induced representations of complex semisimple Lie algebras,
Bull. Amer. Math. Soc. 74 (1968), 160-166.

Hisayosi Matumoto hisayosi@ms.u-tokyo.ac.jp

Graduate School of Mathematical Sciences, University of Tokyo,
3-8-1 Komaba, Tokyo, 153-8914, Japan

892

https://doi.org/10.1112/50010437X13007677 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007677

	1 Notations and preliminaries
	1.1 General notations
	1.2 Notations for reductive Lie algebras

	2 Formulation of the problem
	2.1 Basic results of Lepowsky
	2.2 Reduction to the integral infinitesimal character setting
	2.3 Comparison of τ-invariants

	3 Some results on Bruhat orderings
	3.1 Quasi-subsystems
	3.2 Θ-useful roots
	3.3 Normal parabolic subalgebras
	3.4 Comparison of Bruhat orderings

	4 Elementary homomorphisms
	4.1 Elementary homomorphisms
	4.2 Θ-excellent roots

	5 Strictly normal case
	5.1 Strictly normal subset of Π
	5.2 Classification of the strictly normal parabolic subalgebras

	References

	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 
	11: 
	12: 
	13: 
	14: 
	15: 
	16: 
	17: 
	18: 
	19: 
	20: 
	21: 
	22: 
	23: 
	24: 
	25: 
	26: 
	27: 
	28: 
	29: 
	30: 
	31: 
	32: 
	33: 
	34: 
	35: 
	36: 

	ikona: 
	1: 
	4: 
	5: 
	6: 
	7: 
	9: 
	12: 
	13: 
	14: 
	15: 

	TooltipField: 


