
BULL. AUSTRAL. MATH. SOC. 54H25, 47H10

VOL. 36 (1987) 73-88

COMMON FIXED POINT THEOREMS IN COMPLETE

METRIC AND PROBABILISTIC METRIC SPACES

Mi LA STOJAKOVIC

In this paper several common fixed point theorems for four

continuous mappings in Menger and metric spaces are proved.

These mappings are assumed to satisfy some generalizations

of the contraction condition.

2. Introduction.

A Menger space is a space in which the concept of distance is

considered to be probabilistic, rather then deterministic. For a detailed

discussion of Menger spaces and their applications we refer to Schweizer

and Sklar [9]. The theory of Menger spaces is of fundamental importance

in probabilistic functional analysis. Recently, some fixed point theorems

for mappings in Menger spaces have been proved by several authors:

G. Bocsan, A.F. Bharucha-Raid, S.S. Chang, Gh. Constantin, O. Hadzic and

others (see [6]).

Since every metric space is a Menger space, all results in Menger

space, with some modifications, can be used in metric spaces.

3. Preliminaries.

Let J? denote the reals and J? = {x e. B: x * 0} . A mapping
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F :JR -*• J? is called a distribution function if i t is non-decreasing, left

continuous with inf F = 0 and sup F = 1 . We will denote by A the

set of a l l distribution functions. A commutative, associative and non-

decreasing mapping t : [0,1~\ x L0,l] •*• L0,ll is a T-norm if and only if

t(a,l) = a for a l l a e 10,11 and t(0,0) = 0 .

DEFINITION 1. A Menger space is a triple (X,¥ ,t) where X is a

set, F is a mapping from X x X into A and t is a T-norm. We

shall denote the distribution function V(x.y) by F and F (z)
" a x,y x,y

will represent the value of F at e e JR . The function F ,

x,y ^,y

x,y e X , are assumed to satisfy the following conditions:

1. F (z) = 1 for e > 0 if and only if x = y .
x>y

2. F (0) = 0 , for all x,y e X .
3. F = F , for all x,y e X .

x,y y,x 3il

4. F (e+S) > t(F (e), F (6)), for all x,y3z e X .
x,y x,s z,y

Throughout this paper H will denote the specific distribution function

defined by

0 z < 0H(z) =
e > 0

The concept of neighbourhoods in Menger space was introduced by Schweizer

and Sklar [9], if x e X, e > 0 and X e (0,1) , then an (z,\)-

neighbourhood of x , called U (z,\) , is defined by

U (e,\) = {y e X : F (e) > l-\) .x x,y

If t is continuous, then (X,¥,t) is a Hausdorff space in the topology

induced by the family {U (z,\): x e X, e > 0, X £ (0,1)} of neighbour-

hoods.

DEFINITION 2. A set M c_X is called probabilistically bounded if

and only if

sup inf F (z) = 1 .
e>0 x,yeM J"
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4. Fixed point Theorem in Menger space,

THEOREM 1. Let (X,¥,t) be a complete Menger space with a

continuous T-norm t and let h: X -*• X, k: X •*• X, f: X -»• h(X) and

g: X •*• k(X) be continuous mappings such that f commutes with k and

commutes with h . Further, suppose that for all x,y e X and for all

e > 0 the following inequality holds

where <)>; J? •* S is an increasing function such that Vim <f> (t)=<*> for

all t > 0 . If there exists x~ e X such that the sequence {y } „
formed by

y2n-l = gx2n-l = kx2n '

= fx2n = ^Zn+l > n

is probabilistically bounded, then there exists a unique common fixed
point for the mappings f3g,h and k .

Proof. Since / ; X •+ h(X) and g: X •* k(X) we can form the
sequence {y } „ as was noted above. Firs t , we shall show that

i s a C a u c hy sequence.

In order to prove that , we shall show that

lim F (e) = H(z) , for every e e TR.

If m = 2i and p = 2j-l (let j > i) then we have

F (z) = Fj. (e) > F, , (t>(z))
^ ^ f X 9 X ^ ^

= Ffx ax (*(t)) 2 Fkx hx
TX2j-2'gX2i-l kx23-2>hX2i-l

= Ffx ax (*2(e)) ~ Ffx ax
tx2i-2>9X2j-3 'X0 3gX2j-l-2i

> sup inf F (t) = D, ,» (^

Since {y } „ is probabilistically bounded, letting i-*•<» and j-*•<*> ,

we get
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lim D, ,» «?%U)) = H(e) .
£->-« yn n=l

Repeating this procedure we can prove a similar result for m = 2i-l and

p = 2j .

If m and p are both even or both odd, we proceed as follows.

F (z) > t(F (e/2), F (z/2)) ->-
y2i'y2j y2i'y2i+l y2i+l'y2j

->- t(E(z) , H(e)) = H(e) ,

F (z) > t(F (z/2),F (z/2)) •+
y2i-ry2g-l y2i-l'y2i y 2i>y 2j-l

•*• t(H(z), H(z)) •* H(z)

i f i -»• oo and j -*• <» , f o r a l l e > 0 .

Thus we have proved that {y } is a Cauchy sequence in X which

means that there exists y* e X such that lim y = y* .

To es tab l i sh tha t fy*=gy*-hy*=ky*3 we proceed as follows.

yv* = f li in ^ 2 n = lim fkx
2n =

= k lim f x ^ = te/*

= h lim ̂ ^ ^ = hy* .

Since

fy*,gy* ky*,hy*
 T fy*,gy

... > F, ̂  t($n(z)) + H(z) for all e > 0 .

we have proved that fy* = gy*=ky*=hy* .

The point fy* is a fixed point for the mappings f, g3 h, k . We

shall show this for the mapping / : the proof for the mappings g, h, k

is analogous.
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f o r " " °° '

for all e > 0 , which means that fy* is a common fixed point for the

mappings f, g, h, and k .

If we suppose that there exists another common fixed point z e X

we get

for n -*•<*> for a l l e > 0 , which means that fy* i s a unique common

fixed point for the mappings / , g, h and k .

This completes the proof of Theorem 1.

THEOREM 2. If in Theorem 1 the T-norm t satisfies t(a,b) 5
t (a,b) = max{a+b-l,0} , for all a,b e 10,11 , then the condition that

f,g,h and k are continuous can be replaced by the condition that at
least one of the mappings f,g,h and k is continuous.

Proof. The continuity of the mappings f,g,h and k was necessary
only to prove that fy* = gy* = hy* = ky* .

Now, we assume tha t at leas t one of the mappings, say k , i s

continuous. By the coimnutativity of / and k we have

lim k2x = lim fkx = ky*

Then

Pfkx ax (Z) ~ Fk2x hx <*<*))> f o r a 1 1 e > 0 .tKx2n>gX2n+l K xZn'hx2n+l

Letting n -*•<*> , we get (only if t > t , see [9])
m

Fky*,y*(z) *Fky*,y*(*U)) > f o r

and so ky* = y* .
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Further

Ffu* ax (e) ~ Fku* hx (*U)) = Fu* hx

for a l l e > 0 . When n •*• <*> we have: F» * Jz) £ F .. f̂dife^J = H(z)
fy*,y* y*,y*

for all e > 0 , that is fy* = y* .

From the condition that f(X) c h(X) , it follows that there exists

z* e. X such that hz* = y* . Then

= F *

for a l l e > 0 , which means that gz* = y* . Since g and h commute,

the equality ghz* = gy* = hgz* implies that gy* = hy* .

Thus

y*>gy* fy*,gy* ky*,hy* Y y*,gy*

for a l l e > 0 , that is y* = gy* .

So, we have proved that y* is a fixed point for f,g,h and

k y* = fy* = gy* = fey* = hy* .

If we suppose that f,g or 7i is continuous, the proof is similar,

so i t is omitted.

The other parts of the proof of this Theorem are the same as for

Theorem 1.

5. Common f ixed point in metric spaces.

If (M}d) is a metric space, then the metric d induces a mapping

F; M x M -*• A , where ^(xsy), x,y e M , is defined by T(x,y)(z) =

F (z) = H(z - d(x,y)) , z e I& . Further if t: 10,11 * 10,11 •* 10,11

is defined by t(a,b) = min{a.,fc} , then (M,¥,t) is a Menger space. I t is

complete if i t is complete with respect to the metric d . The space

(M,F,min) so obtained will be called the induced Menger space. Using

some results stated in the preceding section and the next two lemmas we

whall study the existence and uniqueness of common fixed points in metric

spaces.
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Throughout this section let (M,d) be a complete metric space,

h: M •*• M, k: M -*• M, f:M+ h(M) a n d g: M -*• k(M) c o n t i n u o u s m a p p i n g s ,

such that / commutes with k and g commutes with h . Further let

the following inequality hold

(**) d(fx, gy) < 4>(d(kx, hy) )

for a l l x3y e M , where i> is a function, ifi: J? ->-J? ,

Let us introduce the following conditions on the mapping ty

(i) <l> i s increasing and ty is right upper semicontinuous,

< t for al l t e t&

lim (t - \f>(t)) = » .

(ii) i/i is increasing, right continuous, for any real number

q e [0,°°J there exists a real number t(q) e L03°>) such that

t(q) is an upper bound of the set {t e [03<»): t - \j>2(t) < q},

and lim \\>n(t(q)) = 0 .

Since f: M -»• h(M) and g: M •*• k(M) , i t i s obvious tha t for every

i j £ ( / we can form the sequence {y } „ , by

( 1 ) y2n = fx2n = ^Zn+l > * 2n+l

Now we prove the following lemma.

LEMMA 1. If if) satisfies condition (i), then the sequence {y }

defined above is bounded

Proof. We sha l l show tha t

sup sup d(y ,y ) < »
UN l<mv<,l m y

which means tha t {y } i s a bounded s e t . If m = 2i and

p = 2j-l we have

d(y2^20-1*
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that is

(2) sup d(y .,yp. J $ y sup d(y .,y . )

sup d(y .,y . )
rl<i3<n 2v 2 j " J

We know tha t

Putting r = 2 in (2) we get

sup d(y .,y . J ^ t sup d(y .,y . ) <
2<iJ<n Z% 23~1 l<ii 2% 2° 2

< ty s u p d(y .,y .

Using the last inequality and (3) we have

sup d(y .,y . 7 ; < d(yvy ) + * sup d(y2-,y2. )

If we suppose that

sup d(y .,y . ) = » for n -• =° ,
l<i3<n 2V ^ ' 2

then from condition (i) and the last inequality we get

oo = sup d(y . jW o . n) — ty sup
lsij<n 2% 2°-J lsitj*n "" ""^

which is a contradiction. So, we have proved that

sup sup d(y2^}y2._1) < °> .
neN l<i}j<n

Since

sup sup d(y .,y .) < sup sup d(y .,y9/.^) +
neN isi,,j<n ^ 6° neN -'-'-

and

+ sup sup d(y . ,y9.) < = » + » = » ,
neN i%+1 ^

sup sup d(y . ,y . ) < sup sup d(y . ,y .) +
neN l<i,3<n ^~2 ** J neN l<i<n iv J ^

+ sup sup d(y . y . J
neN l<ij<n i%> ^~J
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we have proved that {y } „ is bounded.

LEMMA 2. Let (M,d) be a metric space and (M,T,minl be an
induced probabilistic metric space. If the inequality (**) holds in
(M,d) , then the inequality (*) holds in (M,V,min) (ty is increasing

and <f> = if>~ J .

Proof. The mapping ty is increasing and this implies the existence

of the increasing mapping ty = <j> . To establish that condition (**)

implies condition (*) we prove the next implication:

d(fx,gy) - tyd(hx,ky) => F» I

Now, we proceed as follows:

d(fx,gy) < <pd(hx,ky)

=> e - d(fx,gy) > e -

=> H(e - d(fx,gy)) > H(c - ^d(hx,ky))

=> H(z - d(fx,gy)) > Hdfl(z) - d(hx,ky))

=> Fj, (e) S F. , (ty~1(e)) .fx,gy hx,ky

This completes the proof of Lemma 3.

We shall use Theorem 1 and the last two lemmas for the proof of the

next Theorem in which we consider the existence and uniqueness of common

fixed points for the selfmappings of the metric space (M3d).

THEOREM 3. Let (M,d) be a complete metric space h:M*M , k:M+M ,
f:M+h(M) and g:M+k(M) , where one of these mappings is continuous, f
commutes with k and g commutes with h. If inequality (**) holds,

where ty : H •*• U is a function for which condition (i) holds, then there
exists a unique common fixed point for the mappings f, g, h and k .

Proof. If <|> = <i> then the mapping (j> sat isf ies the condition

of Theorem 1, [2] , Lemma 1 and Lemma 2 provide the other conditions of

Theorem 1, so this theorem i s proved.

THEOREM 4. If the mapping ty: 10,°°) •* 10,<*>) satisfies condition
(ii), then the conclusion of the last Theorem still holds.
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Proof. The proof has four steps. We shall prove that

1. {y } is a Cauchy sequence and lim y = y* ,

2. fy* = gy* = hy* = ky* = u ,

3. u is a common fixed point for f} g, h and k ,

4. u is a unique common fixed point.

1. We shall show that

lim d(y ,y ) = 0 .

If m = 2i and p = 2j-l we have

(4) d(y2i>y2j-i
) s *d(y2i-i>V2o-2)

 2;-2;y-

That is

(5) sup d(y?.,y . J <, * 2 sup d(y .,y . )
±io<n Zv 2;'-1 rl<ij<nl 2v 2° 2

sup d(y .,y . )

From (5) and (3) (letting r = 2) we get

sup d(y .,y . ) <, d(y ,y )
<ij<n 2v 2 j 2 l 2

sup d(y .,y . ) .
ig<n 2v 2° 2

Letting the real number q = d(y ,y ) and using condition (ii) it

follows, from the last inequality, that there exists a real number

t(q) 6 10,°°) such that

sup d(y .,y . J <; t(q) .
ij 2V 2d 2

Taking r = 2 in (4) again, and considering the inequality we have

sup d(y .,y . ) < ij2
2% V-1

Repeating this procedure, for any positive integers r, n we obtain

(6) sup d(y .,y . ) < 1>2r~2(t(q)) ,
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Letting v •*• °° (hence n •*• °° ) in (6) , from condition (i i) we get

2v— 2
0 < lim sup d(y .,y . ) < lim <|i (t(q)) = 0 .

r*» v<,i,j<n 3~ r-*»

If m and p are both even or both are odd, we proceed as follows

lim sup d(y y ) < lim sup d(y y )

sup
1*-*-°° i j

and

lim sup d(y . ,y . ) < lim sup d(y . ty .)

lim sup d(y .,y . ) = 0 + 0 = 0 .

This shows that {y } ff is a Cauchy sequence in the complete metric

space (M,d) and so there exists y* e X such that lim y= y* .

2. From the continuity of the mapping f, g, h and k , in

the same way as in Theorem 1, we get that fy* = ky* and gy* = hy* .

To prove that fy* = gy* we proceed as follows:

d(fy*,gy*) * 1>d(hy*,ky*) = *d(fy*,gy*)

< i>2d(hy*,ky*) = $2d(fy*,ky*) .

From (ii) if q = 0 there exists t(q) e. lO,™) such that

d(fy*,gy*) * t(0) => *nd(fy*,gy*) s f(t(0)) .

Since

d(fy*,gy*) * ̂ d(fy*3gy*) £ ̂
n(t(0)) -+ 0 for n ->• °°

we have that fy* = gy*, that is fy* = gy* = hy* = ky* = u.

3. We shall prove that fu=u (similarly, we can prove the

same for the mappings g,h and k) .

d(fu,u) = d(fu,gy*)

< ty2d(fu,u) <...

Putting q = 0 from (ii) there exists t(0) e L0,<°) such that
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d(fu,u) s t(0) =>

=> dCfu,u) z$nd(fu,u) * tyn(t(0)) ̂ 0 => fu = u.

4. If we suppose that the point V e X is also a common

fixed point for the mappings f} g, h and k we get

d(u,v) = d(fu,gv) <

so that if q = 0 , then there exists if0J such that d(u,v) < t(0) =>

0 => w = v .

6. Application and examples.

First, we shall give an application of Theorem 1 in a well known

Menger space -E -space.

An ordered pair (E3T) is called an ff-space over (M3d) if E

is the collection of all random variables from a complete probability

measure space (il}A3P) into a separable complete metric space (M,d)

such that for every £ (m), T\(U>) e. E and every t e R

{u e Q: d(Z(u),r)(i»)) < t) e A

and F is a mapping from E x E into A (the set of all distribution

functions) defined by F (Z,, r\) = F , where

FF (t) = P{w e fl : dfeCio^n^;; < t}

for every t e R . As usual, the random variables in E which differ at

most on a set of P-measure zero are identified.

As Sherwood [10] pointed out, (E,T) is an ff-space over (Msd) and

(E,¥,t ) is a Menger space, where the T-norm t (a,b) = maxia+b-1,0],

a,b e LOjll . If (M3d) is a complete metric space, then (E,¥,t ) is

complete.

A mapping f : Q * M -*• M is a random operator, if for any

x e M, y(u>) = f(w,x) is a random variable. A random operator / is

continuous if for each oo e il} f(u>} •) is continuous in the topology

induced by the metric d .
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A random variable £(m) e E is a random fixed point of the random

operator f(u,') if K(u) = f(u,Z,(u)) for all u e Q .

If /" is a continuous random operator, then E,(m) e E implied

f(uttZ(u)) e E .

It is obvious that all mappings which satisfy the conditions of

Theorem 2, have a unique common fixed point.

Let us consider the next simple example.

EXAMPLE 1. Let (E,T,t ) be a Menger space, where E is the

collection of random variables fromffy, AjP) into R .

Let

and

Since f}g,h and k are l inear mappings, they are continuous and

sur jec t ive . Further we have that f = h and g = k , hence f

commutes with h and g commutes with k . If we chose a mapping

4) : i?+ -»• i?+ such tha t t < $(t) < 4t($(t) = 2t , for instance) then the

next inequa l i t i es hold for a l l ? (oi), n (u) e £• and a l l e e

P{(o e n : IcCu; - nCuj;| < 2e}

P{u e fl : IjCCCu; + j ; - j(n(m) + 1)\ < e} •

> P{oi e fl ;

P{o3 e (2 : IfCeCa);; - g(r\(m)J <

Now, we can form the sequence {y (m)} as in Theorem 1. Let

x.(os) e E be a random variable such tha t for some A e R

P{o) e (I : | x j (W| < A] = 1 . One can define the sequence {y (u>)} in the

https://doi.org/10.1017/S0004972700026319 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026319


Mila S to jakovic

following way (as in Theorem 1).

1 2n~2

To prove that {y (u) } „ is probabilistically bounded we shall showy (u) } „

that

sup inf F . , , ,(z) = 1 .
z>0 n,keN i ^ ' V " J

Without loss of generality, we can suppose that in the next relation

n < k .

sup inf F , • / |(z) =
z>0n3kc» VnU)>ykM

= sup inf P{(o e Q : \y (in) - y,(u)\ < e}
e>0 n,keN n K

n,

2k-1 ,

i=2n-l 2

> sup inf P{OJ € n : Ix^^fm) + l\ < e]
e>0 n,keN

S P{o) e fl : \xY(^) + l\ < A + 1} = 1 .

Since all the conditions of Theorem 2 are satisfied, f has a

unique fixed point y*(ut) = lim y (W , and it is easy to find it. If

n-*-00 the distribution function of random variable y*(u) is

•{
0 e < 1

1 e > 1 .

In Examples 2,3 and 4 we shall show that we can not omit any of

the conditions of Theorem 3 (or Theorem 2) .

EXAMPLE 2. Let M = 10,°°), f(x) = g(x) = h(x) = 0 , k(x) = \l-x\ ,

ty(t) = ln(t+l) . All the conditions of Theorem 3 are satisfied except

for the cammutativity of f and k , and / , g, h and k have no
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common fixed point.
r l/4,x = 0

EXAMPLE 3. i f M= 10,11, f(x) = { , g(x) = §•,
t x/4,x f 0 4

x (l, x = 0 1

h(x) = -j, h(x) = x, k(x) = \ , i>(t) = -?t , then all the conditions of

U x * 0 2

Theorem 3 are satisfied except g(M) c k(M) (g(M) = 10,^1, k(M) = (0,1V,

and f,g,h and k have no common fixed point.

1/2 , x = 0
EXAMPLE 4. if M = 10,H , f(x) = g(x) = \ k(x) =

* 0

j 1/2 ,x =

\ x/4 ,x ±

1 , x = 0

x/2 , x k 0
h(x) = < , ty(t) = —t , then all the conditions of Theorem 3

are satisfied except that f,g,h and k are all discontinuous, and

f,g,h and k have no fixed point.
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