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COMMON FIXED POINT THEOREMS IN COMPLETE

METRIC AND PROBABILISTIC METRIC SPACES

MiLA STouakovic

In this paper several common fixed point theorems for four
continuous mappings in Menger and metric spaces are proved.
These mappings are assumed to satisfy some generalizations

of the contraction condition.
2. Introduction.

A Menger space is a space in which the concept of distance is
considered to be probabilistic, rather then deterministic. For a detailed
discussion of Menger spaces and their applications we refer to Schweizer
and sklar [9]. The theory of Menger spaces is of fundamental importance
in probabilistic functional analysis. Recently, some fixed point theorems
for mappings in Menger spaces have been proved by several authors:

G. Bocsan, A.F. Bharucha-Raid, $.S. Chang, Gh. Constantin, O. Hadzié and
others (see [6]).
Since every metric space is a Menger space, all results in Menger

space, with some modifications, can be used in metric spaces.
3. Preliminaries.

Let R denote the reals and K = {xr e R: x 20} . A mapping
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F:R +]R+ is called a distribution function if it is non-decreasing, left
continuous with inf F= (0 and sup F =1 . We will denote by A the
set of all distribution functions. A commutative, associative and non-
decreasing mapping ¢ :[0,1] x [0,1] - [0,1] is a T-norm if and only if
t(a,1) = a for all a € [0,1] and t(0,0) = 0 .

DEFINITION 1. A Menger space is a triple (X,F,t) where X is a
set, F is a mapping from X x X into A and t is a T-norm. We
ghall denote the distribution function F(x,y) by F, y and F. y( e)

3

will represent the value of F at € € R. The function F 5
x,y LY

x,y € X , are assumed to satisfy the following conditions:
1. ny(a) =1 for € >0 if and only if x =y .

>

2. F y(0)=0’ for all =x,y ¢ X .

x
3. Fac,y = Fy,x s for all =,y € X .
4. Fx,y(s+6) b t(Fx,z(E)’ Fz,y(é)), for all xz,y,z € X .

Throughout this paper H will denote the specific distribution function
defined by

0 e <0

H(e) = {

1 e >0 .
The concept of neighbourhoods in Menger space was introduced by Schweizer
and sklar [9]. 1If xe X, e >0 and A e (0,1) , then an (g,A)-
neighbourhood of x , called Ux(s,)\) , is defined by

Ux(e,x) ={y e X:Fx,y(E) > I-A} .

If t is continuous, then (X,F,t) is a Hausdorff space in the topology
induced by the family {Um(e,k): xeX, e>0, A € (0,1)} of neighbour-

hoods.
DEFINITION 2. 4 set M < X <s called probabilistically bounded if
and only if

sup inf F_ (e) =1,
e>0 x,yeM sy
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4, Fixed point Theorem in Menger space.

THEOREM 1. Let (X,F,t) be a complete Menger space with a
continuous T-norm t and let h: X >~ X, k: X > X, f: X > w(X) and
g: X > k(X) be continuous mappings such that f commutes with k and ¢
camutes with h . Further, suppose that for all =z,y ¢ X and for all
e > 0 the following inequality holds

(*) Ff‘x,gy(E) 2 sz,hy(¢(€)) >
where ¢: B -7 is an increasing function such that 1lim ¢n(t)=°° for
Y (el
all t > 0 . If there exists x, e X such that the sequence {yn}neN
formed by
Yppo1 = Fonog = Mgy o
Yom = fx2n = hx2n+1 > new

18 probabilistically bounded, then there exists a unique common fixed

point for the mappings f,g,h and k .

Proof. sSince f: X + h(X) and g: X » k(X) we can form the

sequence {yn}neN as was noted above. First, we shall show that

{yn}nel\l is a Cauchy sequence.

In oxrder to prove that, we shall show that

lim F, (e) = H(e) , for every te¢ IR.
>0 Jm’yp

p—)‘”
If m= 27 and p = 2j-1 (let J > i) then we have

(e) (e) 2 F (6(c))

=F
Fo9429% 951 ko shys g
($2(c))

27-1

F
Y9i2Y2j5-1

=F (¢(e)) 2 F

F29i-929% 91 kx hz

25-2°

=F ($2(e)) 2 (¢2i(e))

F
Fooi 9295 3 foy 29%ps 1_24

sup inf F (t) =D o (6%%(e)) .
p<sZi(e) Mokl Yo Yk n'n=1

[\

Since {yn}nsN is probabilistically bounded, letting %+« and j-+=

we get
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lim D, 4 6% (e)) = Hle) .
i+ Inn=1
g

Repeating this procedure we can prove a similar result for m = 27-1 and

p=27.
If m and p are both even or both odd, we proceed as follows.
F (e) 2 t(F (e/2), F (e/2))
Yoi2Y25 Yoi2Y0i41 Y9i+1°Y 25

>~ ¢t(H(e) , H(e)) = H(e) ,

F (e) 2 t(F (e/2),F (e/2)) ~
Yoi-12Y25-1 Yoi-1Y 24 Yoi2Y95-1

+~ t(H(e), H(e)) > H(e)

if 4 > and J »> o , for all € >0 .

Thus we have proved that {yn} is a Cauchy seguence in X which

nelN

means that there exists y* € X such that 1lim Y, = y* .
N

To establish that fy* = gy* = hy* = ky* , we proceed as follows.

fy* = f lim kmgn = lim kaZn = lim kben =

k lim szn = ky*

N

* = i = 1 = 1
g7 =g Mn 2 it 1 Lim I g a1 o P,

h lim gx, . =hy* .
N>

Since

F RO

Futogyr) = Frya mys (0060 = Py g

ve 2 F}y*’gy*(¢n(e)) > H(e) for all e > 0 .

we have proved that fy* = gy* = ky* = hy* .
The point fy* is a fixed point for the mappings f, g, h, k . We
shall show this for the mapping f : the proof for the mappings g, h, k

is analogous.
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F}Ty*,fy*(s) = F}Ty*,gy*(E) 2E%fy*,hy*(¢(e)) =

HLo(e)) = HLo(e)) 2 ..

Fky*,hy “ffy*igy

vee 2 Fffy*,gy*(gbn(e)) > H(e) for n>w ,

for all € > 0 , which means that fy* is a common fixed point for the
mappings f, g, h, and k.

If we suppose that there exists another common fixed point 3 € X

we get
ny*’z(s) = Fffy,f’gz(s) z kay*,hz(¢(8)) =
n
= Fepa gp(00e)) 2 on 2 Fpy (47(e)) > Hle)

for n > for all € > 0 , which means that fy* is a unique common
fixed point for the mappings f, g, h and k .
This completes the proof of Theorem 1.

THEOREM 2. If in Theorem 1 the T-norm t satisfies t(a,b) 2
tm(a,b) = max{a+b-1,0} , for all a,b ¢ [0,1] , then the condition that

fsgsh and k are continuous can be replaced by the condition that at

least one of the mappings f,g,h ad k 1is continuous.

Proof. The continuity of the mappings f,g,# and k was necessary
only to prove that fy* = gy* = hy* = ky* .
Now, we assume that at least one of the mappings, say k , is
continuous. By the commutativity of f and k& we have
i K2z, = in g, = ky*

Then

(e) 2 Frogy e (¢(e)), for all e > 0 .
2

F
kaZn’gx2n+1 m® " ont+l

Letting n > « , we get (only if ¢ 2 tm , see [9])

F

Ty * y*(s) 2 Fky* y*(¢(€)) , for all e >0 ,

and so ky* = y*,
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Further

(e) (p(e)) ,

(¢(e)) = F
¥ n+1

Fos 2 Fpox 4
T9%59% 9,01 ky*sheg, . g shz

for all € >0 . When n >« we have: ny*,y*(E) 2 Fy*,y*((b(E)) = H(e)

for all € > 0 , that is fy* = y* .
From the condition that f(X) c h(X) , it follows that there exists
2% € X such that hz* = y* . Then

Fy*,gz*(E) = ny*,gz*(E) 2 Fky*,hz*(¢(s)) =
= Fy*’y*(qb(e)) = H(e)
for all € > 0 , which means that gz* = y* . Since g and h commute,

the equality ghz* = gy* = hgs* implies that gy* = hy* .
Thus

F J{e) =F

> - F
y*gy fy*,gy*(E) Fky*,hy*(¢(€)) y*,gy*(q)(e” R

for all e > 0 , that is y* = gy* .

So, we have proved that y* is a fixed point for f,g,h and
k y* = fy* = gy* = ky* = hy*

If we suppose that f,g or h is continuous, the proof is similar,
so it is omitted.

The other parts of the proof of this Theorem are the same as for

Theorem 1.
5. Common fixed point in metric spaces.

If (M,d) is a metric space, then the metric d induces a mapping
F: Mx M~ 4, where F(x,y), 2,y ¢ M , is defined by F(z,y)(e) =
F_ y(e) = H(e - d(x,y)) , ¢ ¢ Rt . Further if ¢: [0,1]1 x [0,1] » [0,1]

>
is defined by t(a,b) = min{a,b} , then (M,F,t) 1is a Menger space. It is
complete if it is complete with respect to the metric d . The space
(M,F,min) so obtained will be called the induced Menger space. Using
some results stated in the preceding section and the next two lemmas we
whall study the existence and uniqueness of common fixed points in metric

spaces.

https://doi.org/10.1017/50004972700026319 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700026319

79
Common fixed point Theorems

Throughout this section let (M,d) be a complete metric space,
h: M> M, k: M>M, f: M> h(M) and g: M > k(M) continuous mappings,
such that f commutes with k and g commutes with % ., Further let

the following inequality hold
(**) d(fz, gy) < v(d(kx, hy))

for all x,y e M , where ¢ is a function, ¢: ]#'-*1§+ .

Let us introduce the following conditions on the mapping

(i) Y is increasing and w—l is right upper semicontinuous,
$(t) <t for all t e R*
lim (t - y(t)) = = |

tro
(ii) Y is increasing, right continuous, for any real number

q € [0,») there exists a real number t(g) ¢ [0,2) such that
t(q) is an upper bound of the set {t e [0,=): t - y2(t) < q},

and 1im ¢ (t(q)) = 0 .

Y asd
Since f: M > h(M) and g: M > k(M) , it is obvious that for every
x, € M we can form the sequence {yn}neN , by

kx2n+2 :

(b Yon = fBon = Poopi1 5 Yones = F¥guer =
Now we prove the following lemma.
LEMMA 1. If ¢ satisfies condition (1), then the sequence {yn}neN
defined above is bownded

Proof. we shall show that

sup sup d(ym,y ) <=
geN 1<m,pss p

which means that {yn}neN is a bounded set, If m =27 and

p = 2j-1 we have

Ay gp5Y 952 S Vg 10Y55.0) <

2
S Vedlyy; 9sYgs 5) < VY 9sYgs 5
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that is
. pef B Vairbagr) 5V, [ WeYegT
Sy o s
We know that
(3) lszfgsnd(y%,yzj_l) < d(yl,yz) +2$i11§£nd(y2i,y2j_l) .

Putting » = 2 in (2) we get

sup d(yY,.,Y,. ,) SV sup Ay sy o:_ 1/
9<i,isn 2t 23-1 158,51 2L 201

<9 suwp dly,.,Y,. ) .
18,55 2041

Using the last inequality and (3) we have

swp d(Y,.sYgs 1) S Ay y,) + ¥ sup dlyg..y,. ) -
1<i,5<n 21°v25-1 1°72 1<i, 5 21°925-1

If we suppose that

sup d(y,:sY,: ) == for n->=,
1<i,5<n  2v 4971

then from condition (i) and the last inequality we get

® = sup dY,.sYp: 1) = ¥ sup dly,.,y,. ,) s dly, ,y,)
1si,3<n 2179 25-1 1<i, j<n 21°925-1 1°92

which is a contradiction. So, we have proved that

sup  sup dly,.sY,: ,) <@
nell 1<i,jsn  ov 291

Since
sup sup dy,.,Yy,.) < sup sup dly,.,y,., ) +
nell 1si,jsn 2L 20 pew 1zisn 2 2P
+sup  sup d(y,.,,,Yps) < @+ @ =®,
nel 1si,j<n 201772
and

sup sup d(y,. .Y . .) < sup sup dly . 25y )+
nel Isi,jsn 2017721 T Ly 1gien 21T H

+ sup sup d(y.y._)<oo+oo_oo
nell 1<i,jsn 2t 2071
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we have proved that {yn}neN is bounded.

LEMMA 2. Let (M,d) be a metric space and (M,F,min) be an
induced probabilistic metric space. If the inequality (**) holds in
(M,d) , then the inequality (%) holds in (M,F,min) (¢ is increasing
ad ¢ = w_l) .

Proof. The mapping ¢ is increasing and this implies the existence
of the increasing mapping w—l = ¢ . To establish that condition (*%)
implies condition (*) we prove the next implication:

-1
d(fx,gy) < vd(hz,ky) => fo,gy(s) 2 th,ky(w (e)) .
Now, we proceed as follows:
d(fz,qy) < d(hx,ky)
=> ¢ - d(fx,gy) 2 € - yd(hx,ky)
=> H(e - d(fx,gy)) 2 H(e - yd(hx,ky))
=> H(e - d(fx,gy)) = H(Y () - d(hx,ky))

_ -1
=> fo,gy(E) 2 th_,ky(w (e)) .

This completes the proof of Lemma 3.

We shall use Theorem 1 and the last two lemmas for the proof of the
next Theorem in which we consider the existence and uniqueness of common

fixed points for the selfmappings of the metric space (M,d).

THEOREM 3. Let (M,d) be a conplete metric space h:M+M , k:MM ,
f:M>h(M) and g:M>k(M) , where one of these mappings is continuous, f
commutes with k and g commutes with h. If inequality (**) holds,

where ¢ : B +F disa function for which condition (i) holds, then there

exists a unique common fixed point for the mappings f, g, h and k .
Proof. 1f ¢ = w-l then the mapping ¢ satisfies the condition

of Theorem 1, [2]. Lemma 1 and Lemma 2 provide the other conditions of

Theorem 1, so this theorem is proved.

THEOREM 4. If the mapping V: [0,») » [0,») satisfies condition
(i1), then the conclusion of the last Theorem still holds.
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Proof. The proof has four steps. We shall prove that

1. {y.} is a Cauchy sequence and 1limy = y*,

2. fy*=gy*=hy*=ky*=u,
3. u is a common fixed point for f, g, h and k ,

4. u is a unique common fixed point.

1. We shall show that

lim d(y ,y. ) = 0 .
mir: YnYp
p—)oo

If m=27 and p = 2j~-1 we have

2
(4) Ay g0Yg5.9) S WA gy 15Yg5 o) < V°dlYgy ps¥ps g
That is
(5) sup d(yY,-sYo: o) S V2 sup Aly,-syo: 4/
rei,jen o0 2971 r-1si,jen-1 20 291

<92 sup Ay, Yo 4) -
p-1<i,j<n 2 2971

From (5) and (3) (letting r = 2) we get

sup d(y,..Y,. ) s dly.,y,)
18, 5<n 21°785-1 1°Y2

+ 92 sup dly,..y . .) .
158, 5sn  2v 491

Letting the real number q = d(yl,yz) and using condition (ii) it

follows, from the last inequality, that there exists a real number
t(q) € [0,») such that

sup  d(y,.,y,. ,) S tl(q) .
156,55 2t A1

Taking r = 2 in (4) again, and considering the inequality we have

sup d(y,.,Y.. o) < V2(t(q)) .
2<i,5<n 21°925-1

Repeating this procedure, for any positive integers »r, n we obtain

(6) sup  dlyyy,. ) S VT
r<i,j<n
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letting r» + ® (hence n + @ ) in (6), from condition (ii) we get
. . 2r-2
0 < 1lim sup d(yzi,yz ._1) < lim ¢ (tlq)) =0 .
o <, Jn J o
If m and p are both even or both are odd, we proceed as follows

lim  sup dly,.,Y,:) < lim sup d(y,..,Y,., ./
pow psi,g<n O 2T pem pei jen 20 2VH

+ lim sup d(y )=0+0=0,

S 7
oo 1<t j<n 2i+1°Y 2§

and

lim sup d(y

e 2i-1Ypj-7) S Um  sup dlyy 5.y,,)

o P, F<n

+ lim sup d(y )=0+0=20.

Y oi
o psi,gen 2L 2971
This shows that {yn}neN is a Cauchy sequence in the complete metric

space (M,d) and so there exists y* € X such that Llim Y, = y*.
7o

2. From the continuity of the mapping f, g, A and k , in
the same way as in Theorem 1, we get that fy* = ky* and gy* = hy* .

To prove that fy* = gy* we proceed as follows:
d(fy*,gy*) < bd(hy*,ky*) = Yd(fy*,gy*)
< Y2 (hy*,ky*) = Y2d(fy*,ky*) .

From (ii) if g = 0 there exists t(q) ¢ [0,») such that

dlfy*,gy*) s t(0) => 'dlfy*,gy®) < V' ((0)) .

Since
d(fy*,gy*) < W'd(fy*,gy*) < V' (£(0)) » 0 for n +w
we have that fy* = gy#*, that is fy* = gy* = hy* = ky* = u .

3. We shall prove that fu = u (similarly, we can prove the

same for the mappings g,h and k) .
difu,u) = d(fu,gy*) < yd(hu,ky*) = yd(fu,gy*)
< p2d(fu,u) < ... < wnd(fu,u) .

pPutting q = 0 from (ii) there exists t(0) € [0,») such that
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dlfu,u) < t(0) => 'd(fu,u) < ¥ (£(0))
=> d(fu,u) S\pnd(fu,u) < wn(t(O)) _n:_yg 0=> fu=u.

4. If we suppose that the point v € X is also a common
fixed point for the mappings f, g, # and k we get

d(u,v) = d(fu,gv) < V(hu,kv) = Y(fu,gv) < ...
ee. S wnd(u,v)
so that if ¢ = 0 , then there exists £(0) such that d(u,v) < t(0) =>

dlu,v) < Vldlu,v) s v(E0)) B2 0= u=1.

6. Application and examples.

First, we shall give an application of Theorem 1 in a well known
Menger space - E -space.

an ordered pair (E,F) is called an E-space over (M,d) if E
is the collection of all random variables from a complete probability
measure space (2,A,P) into a separable complete metric space (M,d)

such that for every E(w),n(w) ¢ E and every t € R
{we Q: d(E(w,nlw)) <t} eA

and F is a mapping from E x E into A (the set of all distribution

functions) defined by F(g,n) = F » where

g,n

FE n(t) =Plwe @ : d(E(w),n(w)) < ¢t}

for every t € R . As usual, the random variables in E which differ at
most on a set of P-measure zero are identified.

As Sherwood [10 1 pointed out, (E,F) is an FE-space over (M,d) and
(E, F,tm) is a Menger space, where the T-norm tm(a,b) = max{a+b-1,0},

a,b ¢ [0,1] . 1f (M,d) is a complete metric space, then (E, F,tm) is
camplete.

A mapping f : @ X M+ M is a random operator, if for any
x € M, y(w) = flw,z) is a random variable. A random operator f is
continuous if for each w ¢ 9, f(w,*) 4is continuous in the topology

induced by the metric d .
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A random variable &(w) ¢ E is a random fixed point of the random
operator f(w,+) if &(w) = f(w,E(w)) for all we Q .

If f 1is a continuous random operator, then &(w) ¢ E implied
flw,E(w)) € E .

It is obvious that all mappings which satisfy the conditions of
Theorem 2, have a unique common fixed point.

Let us consider the next simple example.
EXAMPLE 1. ©Let (E,F,tm) be a Menger space, where E is the

collection of random variables from(Q,A,P) into R .

Let

FEw)) = glE(w) = H(E(w) + 1)
and

R(E(w)) = k(E(w)) = 2E(w) - 1.

Since f,g,h and k are linear mappings, they are continuous and

surjective. Further we have that frl = h and g—1 =k , hence f

commutes with % and g commnutes with k . If we chose a mapping

o = J such that t < ¢(¢) < 4¢(¢(t) = 2t , for instance) then the
next inequalities hold for all £(w),n(w) ¢ E and all € ¢ R*.

Plo e 9 : |E(w) - n(w)]| < 2¢}

2Plwe@: |g(w - nlw] < Qlf)} s

Ploe @ : |55 + 1) - 2n(w) + 1| < ¢}
>Plwe @ : |26(w) - 1 - (2n(w)-1)| < ¢(e)},
Plo e 2 : |fE(w) - g(n(w)) < €}

> plw e @ : [k(E(w)) - hin(w))| < ¢(e) ,

(e) 2 Fk (6(e)) .

Fete(w)),gtntw)) (ECw)) hn(w)
Now, we can form the sequence {yn(w)} as in Theorem 1, Let

xl(m) € E be a random variable such that for some 4 € R+

Plu e Q : lxl(w)| < A} =1 . One can define the sequence {yn(m)} in the
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following way (as in Theorem 1}.

1
yn(w) = gézzj'xl(w) + .Z .

To prove that {yn(m)}neN is probabilistically bounded we shall show
that

sup inf F (e) =1,

e>0 n,kelN yn(w),yk(m)

Without loss of generality, we can suppose that in the next relation
n<k.

sup inf F (e) =

e>0 n,kelN yn(w),yk(m)

= sup inf Plw e Q : lyn(m) - yk(w)l < e}
>0 n,kelN

=sup inf Plwe Q : |(

1 1
- —— Jx (w)
e>0 n, kel 1 42k-17""1

22n-

2 sup inf Plw e Q : |x1(w) + 1] < €}
e>0 n,kelN .

2 Plw e Q ¢ |xl(w) +1 <A+1Y=1,

Since all the conditions of Theorem 2 are satisfied, f has a

unique fixed point y*(w) = lim yn(w) , and it is easy to find it. 1If
o

n—+= the distribution function of random variable y*(w) is

. 1 nel
Fy*(E) = ii: Plu e Q : (;EE:E-xl(w) + i£1 ;zd< e}
0 ex<1
B { 1 e>1.

In Examples 2, 3 and 4 we shall show that we can not omit any of
the conditions of Theorem 3 (or Theorem 2).

EXAMPLE 2. 1et M= [0,»), f(x) = g(x) = h(z) = 0 , k(x) = |1-z| ,
Y(t) = In(t+1) . BAll the conditions of Theorem 3 are satisfied except
for the commutativity of f and k, and f , g, h and k have no
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common fixed point.

1/4,2 = 0
EXAMPLE 3. 1f M = [0,1], f(z) ={ , glz) =5,
x/d,z & 0 ¢
x I, x =0 1
hix) = P hix) = x, klz) = , Wt) = 3t , then all the conditions of
x, x £ 0

Ly, ke = (0,17),

Theorem 3 are satisfied except g(M) c k(M) (g(M) = [0,2

and f,g,% and k have no common fixed point.

/2,2 =0
EXAMPLE 4. 1f M =[0,1] , f(x) = g(z) = { k(x) =
x/d,x* 0
I1,x=20 1
hix) = { , W(t) = Ei:, then all the conditions of Theorem 3
x/2,x ¥ 0

are satisfied except that f,g,2 and k are all discontinuous, and

fsgsh and k have no fixed point.
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