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EXACT SUBCATEGORIES, SUBFUNCTORS OF EXT, AND SOME
APPLICATIONS

HAILONG DAO , SOUVIK DEY and MONALISA DUTTA

Abstract. Let (A,E) be an exact category. We establish basic results that

allow one to identify sub(bi)functors of ExtE(−,−) using additivity of numerical

functions and restriction to subcategories. We also study a small number of

these new functors over commutative local rings in detail and find a range of

applications from detecting regularity to understanding Ulrich modules.

§1. Introduction

The Yoneda characterization of Ext is familiar to most students of homological algebra.

Let A,B be two objects in an abelian category A. Then ExtA(A,B) is the set of all

equivalence classes of sequences of the form 0 → B → C → A → 0, where two sequences

α,β are equivalent if we have the following commutative diagram:

α : 0 B C A 0

β : 0 B C ′ A 0

f

Now, ExtA(A,B) can be given an abelian group structure by the well-known Baer sum

as described in, for instance, [38, Tag 010I]. This consideration can be carried out more

generally in any exact category (see [14, §1.2]).
The purpose of this note is to study the following rather natural questions: what if we

place additional constraints on the short exact sequences? When do we get a subfunctor of

Ext1? Can one apply such functors to study ring and module theory, similar to the ways

homological algebra has been very successfully applied in the last decades?

Let us elucidate our goals with a concrete example. Let (R,m,k) be a Noetherian local

ring. Let A,B be finitely generated R-modules. We consider exact sequences 0 → B →
C →A→ 0 of R-modules, with the added condition that μ(C) = μ(A)+μ(B), where μ(−)

denotes the minimal number of generators. As we shall see later, the equivalence classes

of such sequences do form a subfunctor of Ext1R, which we denote by Ext1R(−,−)μ. More

surprisingly, the vanishing of a single module Ext1R(−,−)μ can be used to characterize the

regularity of R, a feature that is lacking with the classical Ext1.

Analogous versions of classical homological functors have been studied by various authors,

notably starting with Hochschild [23] who studied relative Ext and Tor groups of modules

over a ring with respect to subrings of the original ring. This work is further developed

by Butler–Horrocks as well as Auslander–Solberg, where the point of view is switched to

allowable exact sequences that give rise to sub(bi)functors of Ext1. The whole circle of
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380 H. DAO, S. DEY, AND M. DUTTA

ideas is now thriving on its own under the name relative homological algebra, with exact

structures playing a fundamental role (see [4], [5], [8], [14], [16]–[18], [28], [33], [40]] for

an incomplete list of literature and [6], [34] for some excellent surveys). In commutative

algebra, as far as we know, this line of inquiry has not been exploited thoroughly; however,

traces of it can be found in [31], [35], and [15, §§1 and 2].

Although the existing literature provides excellent starting points and inspiring ideas for

this present work, it is not always easy to extract the precise results needed for our intended

applications. For instance, while the connections between subfunctors of Ext1 and certain

sub-exact structures on a fixed category are well known [14, §1.2], checking the conditions

of substructures in each case can be time-consuming.

We are able to find criteria that can be applied in broad settings to identify exact

subcategories and subfunctors. Here is a sample result applicable to our motivating example

above, which follows from Theorem 4.8 and Proposition 3.8.

Theorem 1.1. Let (A,E) be an exact category. Let φ :A→ Z be a function such that φ

is constant on isomorphism classes of objects in A, φ is additive on finite biproducts, and

φ is sub-additive on kernel–cokernel pairs in E (i.e., if M N L is in E, then
φ(N)≤ φ(M)+φ(L)). Set Eφ := {kernel–cokernel pairs in E on which φ is additive}. Then
Eφ gives rise, via the Yoneda construction, to a subfunctor of ExtE(−,−).

Our above theorem is partly motivated by, and can be used to recover and extend, recent

interesting work of Puthenpurakal in [31] (see Theorem 4.17).

Another situation we would like to have convenient criteria for subfunctors is when one

restricts to a certain subcategory. A concrete example we have in mind concerns Ulrich

modules and their recent generalizations. These modules form a subcategory of Cohen–

Macaulay modules over a commutative ring and have been receiving increasing attention

over the years due to very interesting and useful algebraic and geometric properties that

their existence or abundance imply. We are able to show that even the generalized notion

of I-Ulrich modules, recently introduced in [11], induces subfunctors of Ext1R(−,−). See

Proposition 4.1 and Corollary 4.7 in this regard.

While this work is mainly concerned with foundational results, we also study the

properties of some chosen new subfunctors, just to see if they are worth our efforts to

show their existence! The early returns seem promising: these functors can be used to

detect a wide range of ring and module-theoretic properties. Below we shall describe the

organization of the paper and describe the most interesting findings in more detail.

Section 2 is devoted to preliminary results on subfunctors of additive functors. While

these results are perhaps not new, we were unable to locate convenient references, hence

their inclusion.

Section 3 establishes various foundational results on exact subcategories, which form the

cornerstone of the theory. As mentioned above, our applications require some extra care in

preparation, and we try to give complete proofs whenever possible.

Section 4 concerns our first main application. We study sub-additive numerical functions

φ on an exact category and show that under mild conditions they induce exact subcategories

and hence subfunctors of Ext1(−,−), which we denote by Ext1(−,−)φ. See Theorem 4.8.

A key consequence, Theorem 4.17, is inspired by, as well as extends, [31, Ths. 3.11 and

3.13]. We also give similar results about subfunctors of Ext1 induced by half-exact functors,

in the spirit of [1] (see Corollaries 4.13 and 4.14).
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In §5, we focus on two special types of subfunctors, which arise from simple applications

of previous sections. Already these cases appear to be interesting and useful. The first one

is Ext1R(−,−)μ, where μ is the minimal number of generators function mentioned above.

We compute the values of this subfunctor on all (pair of) finitely generated modules over a

discrete valuation ring, i.e., DVR (Corollary 5.1.14), as well as for certain pairs of modules

over a Cohen–Macaulay ring of minimal multiplicity (Proposition 5.1.22).

Using this subfunctor, we prove the following characterization of the regularity of local

rings, which is the combination of Theorems 5.1.1 and 5.1.12, Proposition 5.1.14, and

Corollary 5.2.7. Note that the regularity can be detected by the vanishing of a single

Ext1R(−,−)μ-module. In the following statement, we mention that for a finitely generated

module M over the local ring R, Ωi
RM denotes the ith syzygy in a minimal free resolution

of M.

Theorem 1.2. Let (R,m,k) be a local ring of depth t > 0. Then, the following are

equivalent:

(1) R is regular.

(2) Ext1R(k,R/(x1, ...,xt−1)R)μ = 0 for some R-regular sequence x1, ...,xt−1.

(3) Ext1R(k,M)μ = 0 for some finitely generated R-module M of projective dimension t−1.

(4) R is Cohen–Macaulay, and Ext1R(Ω
t−1
R k,N)μ = 0 for some finitely generated nonzero

R-module N of finite injective dimension.

Moreover, if t= 1, then the above are also equivalent to each of the following.

(5) Ext1R(M,N)μ =mExt1R(M,N) for all finitely generated R-modules M and N.

(6) R is Cohen–Macaulay, and there exist Ulrich modules M,N such that N is faithful,

M �= 0, and for every R-module X that fits into a short exact sequence 0→N →X →
M → 0, one has X is also an Ulrich module.

We note here that the usual Ext-modules (without the μ) in (2)–(4) of the above theorem

are always nonzero. Moreover, the statement of part (6) of Theorem 1.2 apparently has

nothing to do with subfunctor of Ext1, but we do not know a proof of (1) ⇐⇒ (6) (which

is contained in Corollary 5.2.7) without resorting to Ext1Ul(R)(−,−) : Ul(R)op ×Ul(R) →
mod R.

It is worth mentioning that one can also use Ext1R(−,−)μ to detect the property of R

being a hypersurface of minimal multiplicity (Corollary 5.1.23) or the weak m-fullness of a

submodule (Proposition 5.1.11).

The second type arises from I -Ulrich modules, where I is any m-primary ideal in a

Noetherian local ring (R,m). See Definition 4.5 and Corollary 4.7 for the definition of

I -Ulrich modules and the fact that they form an exact category. In Theorem 5.2.14, using

a subfunctor of Ext1 corresponding to Ulrich modules over one-dimensional local Cohen–

Macaulay rings, we give some characterizations of modules belonging to addR(B(m)) and

also characterize when B(m) is a Gorenstein ring in terms of annihilator of Ext1R of Ulrich

modules. Here, B(−) denotes the blow-up. We give some applications of Theorem 5.2.14,

one of which relates annihilation of Ext1R(Ul(R),m) with that of Ext1R (Ulω(R),B(ω)) (see

Corollary 5.2.17).

Finally, we should mention that one of the main applications of our results has appeared

in a separate work, where we study the splitting of short exact sequences of Ulrich modules

and connections to other properties of singularities (see [9]).
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§2. Preliminaries on subfunctors of additive functors

Unless otherwise stated, all rings in this paper are assumed to be commutative,

Noetherian, and with unity. For a ring R, Q(R) will denote its total ring of fractions.

For an R-module M, λR(M) will denote its length. For a finitely generated R-module M,

and i ≥ 1, by Ωi
RM we mean Imfi, where we have an exact sequence Fi

fi−→ Fi−1
fi−1−−−→

·· · → F0 →M → 0, with each Fj being a finitely generated projective R-module. When R

is moreover local, we choose this so that Im(fj)⊆mFj−1 for each j (see [3, Prop. 1.3.1]).

For definitions, and basic properties of additive categories, additive functors, R-linear

categories, and R-linear functors, we refer the reader to [38, Tags 09SE, 010M, and 09MI].

We now recall the definition of subfunctors as in [29].

Definition 2.1. Let A,B be two categories. Let F : A → B be a covariant (resp.

contravariant) functor. A covariant (resp. contravariant) functor G : A → B is called a

subfunctor of F if for every M ∈ A, there exists a monomorphism jM : G(M) → F (M),

and moreover, for every M,N ∈ A, and f ∈ MorA(M,N), the following diagrams are

commutative, where the left one stands for the covariant case and the right one for the

contravariant case:

F (M) F (N) F (N) F (M)

G(M) G(N) G(N) G(M)

F (f) F (f)

G(f)

jM jN

G(f)

jN jM

2.2. For our purposes, we will always take B to be either the category of abelian groups

Ab, Mod R or mod R (hence monomorphisms are just injective morphisms) for some

commutative ring R, and jM will usually be just the inclusion map.

The following lemma is probably well known, but we could not find an appropriate

reference; hence, we include a proof. This will be used throughout the remainder of the

article, possibly without further reference.

Lemma 2.3.

(1) Subfunctor of an additive functor, between two additive categories, is additive.

(2) Subfunctor of an R-linear functor, between two R-linear categories, is R-linear.

Proof. We will only prove the covariant case of both, since the contravariant case is

similar.

(1) Let A,B be two additive categories, and let F :A→B be an additive functor. Also,

let G :A→B be a subfunctor of F. Then we have to show that the map G : MorA(X,Y )→
MorB(G(X),G(Y )) is a homomorphism of abelian groups for all X,Y ∈A. Fix two objects

X,Y ∈ A. Then we need to prove that G(f + g) = G(f)+G(g) for all f,g ∈MorA(X,Y ).

Since G is a subfunctor of F, we have the following commutative diagrams:

F (X) F (Y )

G(X) G(Y )

F (f+g)

G(f+g)

jX jY

F (X) F (Y )

G(X) G(Y )

F (f)

G(f)

jX jY

F (X) F (Y )

G(X) G(Y )

F (g)

G(g)

jX jY
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Then we get

jY ◦G(f +g) = F (f +g)◦ jX
= (F (f)+F (g))◦ jX [Since F is additive]

= F (f)◦ jX +F (g)◦ jX
= jY ◦G(f)+ jY ◦G(g)

= jY ◦ (G(f)+G(g)),

where the third and fifth equalities follow from the fact that B is an additive category. Now,

since jY is a monomorphism, so jY ◦G(f +g) = jY ◦ (G(f)+G(g)) implies that G(f +g) =

G(f)+G(g). Hence, G is additive.

(2) Let A,B be two R-linear categories, and let F :A→B be an R-linear functor. Also,

let G :A→B be a subfunctor of F. Then we have to show that the map G : MorA(X,Y )→
MorB(G(X),G(Y )) is an R-linear map for all X,Y ∈A. Fix two objects X,Y ∈A. Then, by

part (1), we already have the additivity of G, so we only need to prove that G(rf) = rG(f)

for all f ∈MorA(X,Y ) and for all r ∈R. Since G is a subfunctor of F, we have the following

commutative diagrams:

F (X) F (Y )

G(X) G(Y )

F (rf)

G(rf)

jX jY

F (X) F (Y )

G(X) G(Y )

F (f)

G(f)

jX jY

Then we get

jY ◦G(rf) = F (rf)◦ jX
= (rF (f))◦ jX [Since F is R-linear]

= r(F (f)◦ jX)

= r(jY ◦G(f))

= jY ◦ (rG(f)),

where the third and fifth equalities follow from the fact that B is an R-linear category.

Now, since jY is a monomorphism, so jY ◦G(rf) = jY ◦(rG(f)) implies that G(rf) = rG(f).

Hence, G is R-linear.

We finish this section with a submodule inclusion result relating subfunctors of R-linear

functors which will be applied in §5.

Lemma 2.4. Let A be an additive R-linear category, and let G : A → mod R be

a subfunctor of an R-linear functor F : A → Mod R, and for every object A ∈ A, let

jA : G(A)→ F (A) be the monomorphism as in the definition of a subfunctor. Let I be an

ideal of R. Let {Ai}ni=1 be objects in A such that jAi (G(Ai))⊆ IF (Ai) (resp. jAi (G(Ai))⊇
IF (Ai)) for all i= 1, ...,n. Let X :=⊕n

i=1Ai. Then, it holds that jX (G(X))⊆ IF (X) (resp.

jX (G(X))⊇ IF (X)).
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Proof. We will only do the covariant case, the contravariant case being similar. For every

i, we have πi :X →Ai, which gives rise to the following commutative diagram:

G(X) G(Ai)

F (X) F (Ai)

G(πi)

jX jAi

F (πi)

Consequently, we get the following commutative diagram:

G(X) ⊕n
i=1G(Ai)

F (X) ⊕n
i=1F (Ai)

(G(πi))
n
i=1

jX ⊕n
i=1jAi

(F (πi))
n
i=1

where the horizontal arrows are isomorphisms, since F and consequently G are additive

functors (see Lemma 2.3). Call the top horizontal map θ, and the bottom one α, so that

α◦ jX = (⊕n
i=1jAi)◦θ; hence, jX ◦θ−1 = α−1 ◦ (⊕n

i=1jAi). So, now, we get

jX(G(X)) = (jX ◦θ−1)(θ(G(X))) = (jX ◦θ−1)(⊕n
i=1G(Ai)) = (α−1 ◦ (⊕n

i=1jAi))(⊕n
i=1G(Ai))

= α−1(⊕n
i=1jAi(G(Ai))).

So, if jAi (G(Ai))⊆ IF (Ai) (resp. jAi (G(Ai))⊇ IF (Ai)) for all i= 1, ...,n, then

jX(G(X))⊆ α−1(⊕n
i=1IF (Ai)) = α−1(I (⊕n

i=1F (Ai))) = Iα−1(⊕n
i=1F (Ai)) = IF (X)

(resp. jX(G(X)) ⊇ α−1(⊕n
i=1IF (Ai)) = α−1(I (⊕n

i=1F (Ai))) = Iα−1(⊕n
i=1F (Ai)) =

IF (X)),

where we have used α−1(IM) = Iα−1(M), since α is an R-linear map.

§3. Some generalities about exact subcategories

In this section, we record some generalities about exact subcategories of an exact category

that we will later use for subcategories of mod R when R is a commutative Noetherian ring.

All our subcategories are strict (closed under isomorphism classes) and full, and we often

abbreviate this as strictly full. We will follow the definition of an exact category described

in [6, Def. 2.1]. We try to provide complete proofs whenever possible.

Given an exact category (A,E), we call a monomorphism X
i−→ Y to be an E-inflation

(also, called an admissible monic) if it is the part of a kernel–cokernel pair X
i−→ Y −→ Z,

which lies in E . Dually, we call an epimorphism Y
p−→ Z to be an E-deflation (also, called

an admissible epic) if it is the part of a kernel–cokernel pair X −→ Y
p−→ Z, which lies in

E . We will often denote an admissible monic (resp. an admissible epic) by (resp.

).

We begin by stating a lemma on morphisms and kernel–cokernel pairs, which we will

use frequently while proving that certain structures are closed under isomorphism classes

of kernel–cokernel pairs. This should be standard and well known, but we could not find

an appropriate reference; hence, we include a proof.
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Lemma 3.1. Let A be an additive category. Let M,N,L ∈ A be such that M
i−→N

d−→ L

is a kernel–cokernel pair in A. Also, let M ′,N ′,L′ ∈ A. Consider morphisms M ′ i′−→ N ′,

N ′ d′
−→ L′. If we have the following diagram with commutative squares:

M N L

M ′ N ′ L′

i

φ1

d

φ2 φ3

i′ d′

where the vertical arrows φ1,φ2,φ3 are isomorphisms, then M ′ i′−→ N ′ d′
−→ L′ is a kernel–

cokernel pair in A.

Proof. We will only prove that ker(d′) = i′, since the proof of Coker(i′) = d′ can be given

by a dual argument. From the above commutative diagram, we have

φ2 ◦ i= i′ ◦φ1, φ3 ◦d= d′ ◦φ2. (3.1)

Since M
i−→N

d−→ L is a kernel–cokernel pair in A, we get d◦ i= 0. Then, by Equation (3.1),

we have d′◦i′ = (φ3◦d◦φ−1
2 )◦(φ2◦i◦φ−1

1 ) = φ3◦d◦i◦φ−1
1 = φ3◦0◦φ−1

1 =0. Now, let K ∈A
and consider a morphism f ′ :K → N ′ such that d′ ◦ f ′ = 0. Define f := φ−1

2 ◦ f ′ :K → N .

Then, by Equation (3.1), we get that d◦f = d◦ (φ−1
2 ◦f ′) = (d◦φ−1

2 )◦f ′ = (φ−1
3 ◦d′)◦f ′ =

φ−1
3 ◦ (d′ ◦f ′) = φ−1

3 ◦0 = 0. Now, since ker(d) = i, by the universal property of a kernel of a

map, there exists a morphism u :K →M such that i◦u= f . Now, define u′ := φ1 ◦u :K →
M ′. Then, by Equation (3.1), we get that i′ ◦u′ = i′ ◦ (φ1 ◦u) = (i′ ◦φ1) ◦u = (φ2 ◦ i) ◦u =

φ2 ◦f = φ2 ◦ (φ−1
2 ◦f ′) = f ′. This implies that ker(d′) = i′.

We now record a lemma on the intersection of exact subcategories. Note that this is

slightly different (and in view of [33, Cor. 2], more general) than [4, Lem. 5.2].

Lemma 3.2. Let (A,E) be an exact category. Also, let (Aλ,Eλ) be an arbitrary family

of exact subcategories of (A,E). Then (∩λAλ,∩λEλ) is exact subcategory of (A,E).

Proof. Clearly, (∩λAλ,∩λEλ) is a strictly full additive subcategory of (A,E). By [6, Def.

2.1] and [6, Rem. 2.4], it is enough to show that ∩λEλ is closed under isomorphisms of kernel–

cokernel pairs and (∩λAλ,∩λEλ) satisfies the axioms [E0], [E0op], [E1op], [E2], and [E2op] of

[6, Def. 2.1]. First, we will show that ∩λEλ is closed under isomorphisms of kernel–cokernel

pairs. Let M N L be a kernel–cokernel pair in ∩λEλ, so M,N,L ∈ Aλ and

M N L is a kernel–cokernel pair in Aλ for all λ. Also, let M ′ → N ′ → L′

be a kernel–cokernel pair in ∩λAλ such that it is isomorphic to M N L .

So, M ′,N ′,L′ ∈ Aλ and M ′ → N ′, N ′ → L′ are two morphisms in Aλ for all λ. Hence,

by Lemma 3.1, we get that M ′ → N ′ → L′ is a kernel–cokernel pair in Aλ for all λ.

Since (Aλ,Eλ) is an exact category and M N L is in Eλ for all λ, we have

M ′ N ′ L′ is in Eλ for all λ. So, M ′ N ′ L′ is in ∩λEλ. Thus,
∩λEλ is closed under isomorphisms. Next, we will show that (∩λAλ,∩λEλ) satisfies the

axiom [E0]. Let A∈∩λAλ. Since (Aλ,Eλ) is an exact category for all λ, by [6, Lem. 2.7], we

get that A A⊕0∼=A 0
1A 0 is in Eλ for all λ. As Aλ is an additive subcategory of
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A for all λ, so 0A = 0Aλ
for all λ. Hence, by definition, A A⊕0∼=A 0

1A 0 is in

∩λEλ, which implies that 1A is an admissible monic in ∩λEλ. So, (∩λAλ,∩λEλ) satisfies

the axiom [E0]. Next, we will show that (∩λAλ,∩λEλ) satisfies the axiom [E0op]. Let

A ∈ ∩λAλ. Since (Aλ,Eλ) is an exact category for all λ, by [6, Lem. 2.7], we get that

0 0⊕A∼=A A0 1A is in Eλ for all λ. As Aλ is an additive subcategory of A for

all λ, so 0A = 0Aλ
for all λ. Hence, by definition 0 A⊕0∼=A A0 1A is in ∩λEλ,

which implies that 1A is an admissible epic in ∩λEλ. So, (∩λAλ,∩λEλ) satisfies the axiom

[E0op]. Next, we will show that (∩λAλ,∩λEλ) satisfies the axiom [E1op]. Let B′ Be

and B C
p

be two admissible epics in ∩λEλ. Then we will show that B′ C
p◦e

is an admissible epic in ∩λEλ. Now, B′ Be and B C
p

are admissible epics

in Eλ for all λ. Since (Aλ,Eλ) is an exact category for all λ, we get B′ C
p◦e

is an

admissible epic in Eλ for all λ. Hence, there exist objects Dλ ∈ Aλ and kernel–cokernel

pairs σλ : Dλ B′ C
iλ p◦e

in Eλ for all λ. So, Dλ B′ C
iλ p◦e

is in E for

all λ. Hence, σλ is a kernel–cokernel pair in A for all λ, so by the universal property of

kernels, we get that the kernel–cokernel pairs σλ’s are all isomorphic to each other. Hence,

all the Dλ’s are isomorphic to each other. Now, fix a λ, say λ0. Then Dλ0
∼=Dλ for all λ.

Since Aλ is a strict subcategory of A for all λ, we have Dλ0 ∈ ∩λAλ. Now, Aλ is a strictly

full subcategory of A for all λ, so Dλ0 ∈ Aλ implies that σλ0 is a kernel–cokernel pair in

Aλ for all λ. Since Eλ is closed under isomorphisms of kernel–cokernel pairs in Aλ and

σλ’s are all isomorphic to each other, we get σλ0 ∈ Eλ for all λ. So, σλ0 ∈ ∩λEλ. Hence,
Dλ0 B′ C

iλ0 p◦e
is in ∩λEλ, so B′ C

p◦e
is an admissible epic in ∩λEλ. Thus,

(∩λAλ,∩λEλ) satisfies the axiom [E1op]. Now, we will show that (∩λAλ,∩λEλ) satisfies

the axiom [E2]. Let A Bi be an admissible monic in ∩λEλ, and let A
f−→ A′ be an

arbitrary morphism in ∩λAλ. Now, A Bi is an admissible monic in Eλ for all λ.

Since (Aλ,Eλ) is an exact category for all λ, by [6, Prop. 2.12(iv)], we have the following

pushout commutative diagram with rows being kernel–cokernel pairs in Eλ:

A B C

βλ : A′ B′
λ C

i

f

p

f ′
λPO

i′λ p′
λ

(Note that C ∈ ∩λAλ.)

Since (Aλ,Eλ) is an exact subcategory of (A,E), by [6, Prop. 5.2], we get that the square

A B

A′ B′
λ

i

f f ′
λ

i′λ

is a pushout square in E for all λ. Then, by the universal property of

pushout, we get that the kernel–cokernel pairs βλ’s are all isomorphic to each other, so

all the B′
λ’s are isomorphic to each other. Now, fix a λ, say λ0. Then B′

λ0

∼= B′
λ for all λ.

Since Aλ is a strict subcategory of A for all λ, we have B′
λ0

∈ ∩λAλ. Now, Aλ is a strictly

full subcategory of A for all λ, so B′
λ0

∈ Aλ implies that βλ0 is a kernel–cokernel pair in

Aλ for all λ. Since Eλ is closed under isomorphisms of kernel–cokernel pairs in Aλ and

βλ’s are all isomorphic to each other, we have βλ0 ∈ Eλ for all λ. So, βλ0 ∈ ∩λEλ. Hence,

A′ B′
λ0

C
i′λ0

p′
λ0 is in ∩λEλ, so A′ B′

λ0

i′λ0 is an admissible monic in ∩λEλ.
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Thus, (∩λAλ,∩λEλ) satisfies the axiom [E2]. A dual argument will show that (∩λAλ,∩λEλ)
satisfies the axiom [E2op]. Hence, (∩λAλ,∩λEλ) is an exact subcategory of (A,E).

Next, we record a useful lemma for proving the exactness of certain structures on additive

subcategories of a given exact category.

Lemma 3.3. Let (A,E) be an exact category. Let A′ be a strictly full additive subcategory

of A. Define E|A′ := {M N L is in E :M,N,L ∈ A′}. If the pullback (resp.

pushout) in A of every E-deflation (resp. inflation) of sequences in E|A′ along every

morphism in A′ is again in A′, then (A′,E|A′) is an exact subcategory of (A,E).

The proof of Lemma 3.3 depends on Lemma 3.1 and the following proposition.

Proposition 3.4. Let (A,E) be an exact category. Suppose that we have the following

diagram:

A′ B′

A B C

i′

e′ ePB
i p

where the square commutative diagram is a pullback diagram and e,p are admissible epics

and i is a kernel of p. Then i′ is an admissible monic with a cokernel given by B′ C
p◦e

.

Proof. The proof follows from the construction in the proof of [6, Prop. 2.15]. The

only missing point in the proof of [6, Prop. 2.15], toward showing i′ is a kernel of p ◦ e, is
the following: it was not shown that (p ◦ e) ◦ i′ = 0. This can be easily checked as follows:

(p◦e)◦ i′ = p◦ (e◦ i′) = p◦ (i◦e′) = (p◦ i)◦e′ = 0◦e′ = 0, since i is a kernel of p.

Proof of Lemma 3.3. Clearly, each kernel–cokernel pair in E|A′ is a kernel–cokernel pair

in A, hence also a kernel–cokernel pair in A′. Thus, E|A′ consists of kernel–cokernel pairs

in A′. Now, we will show that (A′,E|A′) satisfies the axiom [E2]. Let A,B,A′ ∈ A′, let

A Bi be an admissible monic in E|A′ , and let A
f−→A′ be an arbitrary morphism in

A′. Now, A Bi is an admissible monic in E . Since (A,E) is an exact category, by

[6, Prop. 2.12(iv)], we have the following pushout commutative diagram with rows being

kernel–cokernel pairs in E :

A B C

β : A′ B′ C

i

f

p

f ′PO
i′ p′

Now, by the assumption, we have B′ ∈ A′. Since A Bi is an admissible monic

in E|A′ , we have C ∈ A′. Thus, β ∈ E|A′ . Since A′ is a strictly full subcategory of A,

the above diagram is a pushout diagram in A′ as well. Thus, (A′,E|A′) satisfies the

axiom [E2]. Similarly, (A′,E|A′) satisfies the axiom [E2op]. Now, by [6, Def. 2.1] and [6,

Rem. 2.4], it is enough to show that E|A′ is closed under isomorphisms and (A′,E|A′)

satisfies the axioms [E0], [E0op], and [E1op]. First, we will show that E|A′ is closed under

isomorphisms. Let M N L be a kernel–cokernel pair in E|A′ , so M,N,L∈A′

and M N L is a kernel–cokernel pair in A. Also, let M ′ → N ′ → L′ be a
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kernel–cokernel pair in A′ such that it is isomorphic to M N L . Hence,

by Lemma 3.1, we get that M ′ → N ′ → L′ is a kernel–cokernel pair in A. Since (A,E)
is an exact category, we have M ′ N ′ L′ is in E . Hence, by definition,

M ′ N ′ L′ is in E|A′ . Thus, E|A′ is closed under isomorphisms. Next, we will

show that (A′,E|A′) satisfies the axiom [E0]. Let A ∈ A′. Since (A,E) is an exact category,

by [6, Lem. 2.7], we get that A A⊕0∼=A 0
1A 0 is in E . As A′ is an additive

subcategory ofA, so 0A =0A′ . Hence, by definition, A A⊕0∼=A 0
1A 0 is in E|A′ ,

which implies that 1A is an admissible monic in E|A′ . So, (A′,E|A′) satisfies the axiom [E0].

Next, we will show that (A′,E|A′) satisfies the axiom [E0op]. Let A ∈A′. Since (A,E) is an
exact category, by [6, Lem. 2.7], we get that 0 0⊕A∼=A A0 1A is in E . AsA′ is an

additive subcategory of A, so 0A = 0A′ . Hence, by definition, 0 A⊕0∼=A A0 1A

is in E|A′ , which implies that 1A is an admissible epic in E|A′ . So, (A′,E|A′) satisfies the

axiom [E0op]. Next, we will show that (A′,E|A′) satisfies the axiom [E1op]. Let B′ Be

and B C
p

be two admissible epics in E such that they are in E|A′ , which means that

there exist two kernel–cokernel pairs A B Ci p
and D B′ Be in

E such that A,B,C,D,B′ ∈A′. Then we will show that B′ C
p◦e

is an admissible epic

in E|A′ . From Proposition 3.4, we get that A′ B′ Ci′ p◦e
is a kernel–cokernel pair

in E . By the hypothesis of Lemma 3.3 and the diagram of Proposition 3.4, we get that

A′ ∈ A′. Hence, B′ C
p◦e

is an admissible epic in E|A′ . Thus, (A′,E|A′) satisfies the

axiom [E1op]. So, (A′,E|A′) is an exact subcategory of (A,E).
From now on, given a subcategory A′ of an exact category (A,E), the notation E|A′

will stand for as defined in Lemma 3.3. Using Lemma 3.3, we now record two quick

consequences, which give a sufficient condition on a subcategory A′ such that (A′,E|A′)

is an exact subcategory of (A,E). The first of which we state below now is well known (see,

e.g., [6, Lem. 10.20]). However, due to the absence of a proof in [6, Lem. 10.20], we give a

proof using our Lemma 3.3.

Proposition 3.5. (cf. [6, Lem. 10.20]) Let (A,E) be an exact category. Let A′ be a

strictly full additive subcategory of A. Assume that for every X → Y →Z in E, if X,Z ∈A′,

then Y ∈ A′ (i.e., A′ is closed under extensions). Then (A′,E|A′) is an exact subcategory

of (A,E).
Proof. By Lemma 3.3, it is enough to show that the pullback (resp. pushout) in A of

every E-deflation (resp. inflation) of sequences in E|A′ along every morphism in A′ is again

in A′. Let A Bi′ be an inflation in E|A′ , and let f : A→ A′ be a morphism in A′.

Then, by [6, Prop. 2.12(iv)], we get the following pushout commutative diagram:

A B C

A′ B′ C

i

f

p

f ′PO
i′ p′

Since A′,C ∈A′, by assumption and the bottom row of the above diagram, we get that B′ ∈
A′. The pullback case follows by a dual argument. Hence, (A′,E|A′) is an exact subcategory

of (A,E).
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Theorem 3.6. Let (A,E) be an exact category. Let A′ be a strictly full additive

subcategory of A. Assume that A′ is closed under kernels and co-kernels of admissible epics

and monics in E, respectively. Then, (A′,E|A′) is an exact subcategory of (A,E).

Proof. By Lemma 3.3, it is enough to show that the pullback (resp. pushout) in A of

every E-deflation (resp. inflation) of sequences in E|A′ along every morphism in A′ is again

in A′. Let A Bi′ be an inflation in E|A′ , and let f : A→ A′ be a morphism in A′.

Now, we have the following pushout commutative diagram in (A,E):

A B

A′ B′

i

f f ′PO
i′

Then, by [6, Prop. 2.12(ii)], we have the following kernel–cokernel pair in E :
A B⊕A′ B′ . As B,A′ ∈ A′ and A′ is additive, so B ⊕A′ ∈ A′. Since

A B⊕A′ is an admissible monic in E , we get the cokernel B′ ∈ A′. The pullback

case follows by a dual argument. Hence, (A′,E|A′) is an exact subcategory of (A,E).

Given any exact category (A,E) and C,A ∈ A, one can define the Yoneda Ext group

ExtE(C,A), which has an abelian group structure by Baer sum (see the beginning of [14,

§1.2] for a description of ExtE(−,−)). When (A,E) is moreover an R-linear category, then

ExtE(C,A) can be given an R-linear structure via either of the following constructions, both

of which yield equivalent triples in ExtE(C,A):

Given a kernel–cokernel pair σ :A B C in ExtE(C,A), the multiplication

r ·σ is either given by the following pullback diagram:

rσ : A B′ C

σ : A B C

r·idCPB

or by the following pushout diagram:

σ : A B C

rσ : A B′ C

r·idA PO

That both of these yield equivalent triplet in ExtE(−,−) follows from [6, Prop. 3.1].

Moreover, this makes ExtE(−,−) into an R-linear functor in each component.

Now, we show that if (A′,E ′) is a strictly full exact subcategory of an exact category

(A,E), then ExtE′(−,−) :A′op×A′ →Ab is naturally a subfunctor of ExtE(−,−)|A′op×A′ :

A′op×A′ →Ab. For this, we first record a remark.

Remark 3.7. Let (A′,E ′) be a strictly full exact subcategory of (A,E). Then, for

σ ∈ E ′(⊆ E), it is actually true that [σ]E′ = [σ]E ; hence, the map ExtE′(−,−)
[σ]E′ �→[σ]E−−−−−−−→

ExtE(−,−) is the natural inclusion map. Indeed, to see [σ]E′ = [σ]E : let σ be a kernel–

cokernel pair A B C in E ′, so A,B,C ∈ A′. Let β ∈ [σ]E be the kernel–

cokernel pair A B′ C in E , so B′ ∈ A. Hence, there exists f ∈MorA(B,B′)
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such that we have the following commutative diagram in A:

σ : A B C

β : A B′ C

f

By [6, Cor. 3.2], we get that f is an isomorphism. Since B ∈ A′, B′ ∈ A, and A′ is a

strict subcategory of A, B ∼= B′ implies that B′ ∈ A′. Since A′ is full, f ∈ MorA′(B,B′).

Hence, the above commutative diagram is in A′. Since (A′,E ′) is an exact category, E ′ is

closed under isomorphisms. Hence, β ∈ E ′ and β ∈ [σ]E′ . Thus, [σ]E ⊆ [σ]E′ . Now, (A′,E ′) is

a subcategory of (A,E), so [σ]E′ ⊆ [σ]E as well. Hence, [σ]E′ = [σ]E .

Proposition 3.8. Let (A,E) be an exact category. Let (A′,E ′) be a strictly full

exact subcategory of (A,E). Then ExtE′(−,−) : A′op × A′ → Ab is a subfunctor of

ExtE(−,−)|A′op×A′ : A′op ×A′ → Ab, where for every C,A ∈ A′, the natural inclusion

map ExtE′(C,A) → ExtE(C,A) is given by [σ]E′ �→ [σ]E . If A is moreover R-linear, then

the natural inclusion map is also R-linear; hence, ExtE′(−,−) : A′op ×A′ → mod R is a

subfunctor of ExtE(−,−)|A′op×A′ :A′op×A′ →mod R.

Proof. Let C,A∈A′. Define φC,A : ExtE′(C,A)→ExtE(C,A) by φC,A([σ]E′)= [σ]E . From

now on, we will call this map φ. The well-definedness and injectivity of φ follow from Remark

3.7. Next, we will show that φ is a group homomorphism. Let [σ]E′ , [β]E′ ∈ ExtE′(C,A),

where σ : A B C and β : A B′ C for some B,B′ ∈ A′. Then

[σ]E′ +[β]E′ = [α]E′ is given by the following commutative diagram in (A′,E ′):

σ⊕β : A⊕A B⊕B′ C⊕C

γ : A E C⊕C

α : A B+B′ C

Σ

Δ

We know that γ is the pushout of σ⊕β in E ′ by the sum map A⊕A
Σ−→A. Since (A′,E ′) is

an exact subcategory of (A,E), by [6, Prop. 5.2], we get that γ is also the pushout of σ⊕β

in E by the sum map A⊕A
Σ−→ A. Next, α is the pullback of γ in E ′ by the diagonal map

C
Δ−→C⊕C, so by [6, Prop. 5.2] we get that α is also the pullback of γ in E by the diagonal

map C
Δ−→C⊕C. This implies that α is a representative of [σ]E+[β]E in ExtE(C,A), that is,

[α]E = [σ]E+[β]E . Since φ([σ]E′+[β]E′) = φ([α]E′) = [α]E and φ([σ]E′)+φ([β]E′) = [σ]E+[β]E ,

we get φ is a group homomorphism.

Let A,B,C ∈ A′, and let f ∈ MorA′(A,B). First, we will show that ExtE′(C,−) is a

subfunctor of ExtE(C,−), so we need to prove that the following diagram commutes:

ExtE(C,A) ExtE(C,B)

ExtE′(C,A) ExtE′(C,B)

f∗

f̃

φC,A φC,B
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where for every [σ]E ∈ ExtE(C,A), a representative of f∗([σ]E) is the pushout of σ by f in

E and for every [β]E′ ∈ ExtE′(C,A), a representative of f̃([β]E′) is the pushout of β by f

in E ′. Let [σ]E′ ∈ ExtE′(C,A). Now, φC,A([σ]E′) = [σ]E and f∗([σ]E) = [γ]E , where γ is the

pushout of σ by f in E . Next, we have f̃([σ]E′) = [α]E′ , where α is the pushout of σ by f

in E ′. Hence, by [6, Prop. 5.2], we get that α is also the pushout of σ by f in E . Hence,
[α]E = [γ]E , so φC,B(f̃([σ]E′)) = φC,B([α]E′) = [α]E = [γ]E = f∗([σ]E) = f∗(φC,A([σ]E′)), and

therefore the above diagram commutes. Hence, ExtE′(C,−) is a subfunctor of ExtE(C,−)

for any C ∈ A′. Similarly, ExtE′(−,C) is a subfunctor of ExtE(−,C) for any C ∈ A′. Thus,

ExtE′(−,−) :A′op×A′ →Ab is a subfunctor of ExtE(−,−)|A′op×A′ :A′op×A′ →Ab. Now,

let A be R-linear; hence, so is A′ because it is a full subcategory of A. Let C,A ∈ A′,

and let [σ]E′ ∈ ExtE′(C,A). Let [γ]E′ = r · [σ]E′ , so γ is obtained from σ by pullback in E ′

along the map C
r·idC−−−→ C. Now, (A′,E ′) is an exact subcategory of (A,E); hence, this is

also the pullback in E along the map C
r·idC−−−→ C (see [6, Prop. 5.2]). So, [γ]E = r · [σ]E =

rφ([σ]E′). Also, [γ]E = φ([γ]E′) = φ(r · [σ]E′). This shows that the natural inclusion map φ is

R-linear.

In the following corollary, we denote HomA(−,−) just by Hom(−,−) (we completely

ignore the subcategory, since all our subcategories are full). In view of Definition 4.10, and

the discussion following 4.11, the following corollary is crucial for recovering [35, Props.

1.37 and 1.38].

Corollary 3.9. Let (A,E) be an exact category. Let (A′,E ′) be a strictly full exact

subcategory of (A,E). Let σ : M N Li p
be a kernel–cokernel pair in E ′. Then,

for every A ∈ A′, we have the following commutative diagrams of long exact sequences:

0 Hom(A,M) Hom(A,N) Hom(A,L) ExtE(A,M) ExtE(A,N) ExtE(A,L)

0 Hom(A,M) Hom(A,N) Hom(A,L) ExtE′ (A,M) ExtE′ (A,N) ExtE′ (A,L)

and

0 Hom(L,A) Hom(N,A) Hom(M,A) ExtE(L,A) ExtE(N,A) ExtE(M,A)

0 Hom(L,A) Hom(N,A) Hom(M,A) ExtE′ (L,A) ExtE′ (N,A) ExtE′ (M,A)

Proof. We will only prove the covariant version (the first diagram above), since the proof

of the contravariant version is given by the dual argument. In the first diagram above, the

commutativity of the first two squares is obvious. Also, the commutativity of the last two

squares follows directly from the proof of Proposition 3.8 (i.e., ExtE′(−,−) is a subfunctor

of ExtE(−,−)). So, it is enough to prove that the following square is commutative:

Hom(A,L) ExtE(A,M)

Hom(A,L) ExtE′ (A,M)

f

f∗
φA,M

Now, f(g) = [γ]E , where γ is the pullback of σ by g in E and f∗(g) = [α]E′ , where α is the

pullback of σ by g in E ′. Since (A′,E ′) is an exact subcategory of (A,E), by [6, Prop. 5.2],
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we get that [γ]E = [α]E . Also, by definition, φA,M ([α]E′) = [α]E . Thus, f(g) = φA,M (f∗(g)),

so the above square commutes.

Let (A,E) be an exact category. Let A′ be a strictly full subcategory of A. If

A1 B A2
i p

and A1 C A2
i p

are two kernel–cokernel pairs in E
belonging to the same class in ExtE(A2,A1), then B ∼= C (by short five lemma); hence,

B ∈A′ if and only if C ∈A′. Hence, for every M,N ∈A′, the collection {[σ]E ∈ExtE(M,N) :

the middle object of σ is in A′} is well defined.

Proposition 3.10. Let (A,E) be an exact category. Let A′ be a strictly full addi-

tive subcategory of A. For every M,N ∈ A′, define F (M,N) := {[σ]E ∈ ExtE(M,N) :

the middle object of σ is in A′}. If F (−,−) is a subfunctor of ExtE(−,−)|A′op×A′ :A′op×
A′ →Ab via the natural inclusion maps, then (A′,E|A′) is an exact subcategory of (A,E).

Proof. By Lemma 3.3, it is enough to show that the pullback (resp. pushout) in A of

every E-deflation (resp. inflation) of sequences in E|A′ along every morphism in A′ is again

in A′. We will only prove the pullback case, since the proof of the pushout case can be given

by a similar argument. Let B C be an admissible epic in E such that it is in E|A′ ,

which means that there exist a kernel–cokernel pair γ :A B C in E such that

A,B,C ∈A′. Also, let B′ f−→C be a morphism in A′. Then we have a map f∗ : ExtE(C,A)→
ExtE(B

′,A) defined as follows: for every [σ]E ∈ ExtE(C,A), a representative of f∗([σ]E) is

the pullback of σ by f in (A,E). Now, by definition of F (−,−), it is clear that F (M,N)⊆
ExtE(M,N) for anyM,N ∈A′. Since F (−,−) is a subfunctor of ExtE(−,−)|A′op×A′ :A′op×
A′ →Ab, we have the following commutative square:

ExtE(C,A) ExtE(B
′,A)

F (C,A) F (B′,A)

f∗

f̃

where the columns are natural inclusion maps. So, for every [β]E ∈F (C,A), a representative

of f̃([β]E) is the pullback of β by f in (A,E). Now, consider the pullback of γ by f in (A,E)
as follows:

A A′ B′

γ :A B C

fPB

Now, [γ]E ∈ F (C,A), so f̃([γ]E) ∈ F (B′,A) implies that A′ ∈ A′. Hence, the pullback in A
of every E-deflation of sequences in E|A′ along every morphism in A′ is again in A′. Hence,

by Lemma 3.3, we get that (A′,E|A′) is an exact subcategory of (A,E).

§4. Subcategories and subfunctors of Ext1 from numerical functions and

applications to module categories

In this section, we present tools to identify exact subcategories of an exact category

coming from certain numerical functions. Consequently, due to Proposition 3.8, we are also

able to identify subfunctors of Ext1 associated with certain numerical functions. Our first

result in this direction is an application of Theorem 3.6.
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Proposition 4.1. Let (A,E) be an exact category. Let φ :A→ Z≤0 be a function such

that φ is constant on isomorphism classes of objects in A, φ is additive on finite biproducts,

and φ is sub-additive on kernel–cokernel pairs in E (i.e., if M N L is in E,
then φ(N) ≤ φ(M)+φ(L)). Let A′ be the strictly full subcategory of A, whose objects are

given by {M ∈ A : φ(M) = 0}. Then (A′,E|A′) is an exact subcategory of (A,E).

Proof. Note that A′ is a strict subcategory of A since φ is constant on isomorphism

classes of objects in A. Since φ is additive on finite biproduct, φ(0A) = φ(0A⊕0A) = φ(0A)+

φ(0A), and hence φ(0A) = 0. Hence, 0A ∈ A′. Since A is an additive category and φ is

additive on finite biproducts, by definition of A′, we get that for every X,Y ∈ A′, the

biproduct of X and Y in A also belongs to A′. Hence, A′ is an additive subcategory of

A. Let B ∈ A′ and A1 B A2
i p

be a kernel–cokernel pair in E . We will show

that A1,A2 ∈ A′. Since φ is subadditive on kernel–cokernel pairs in E and B ∈ A′, we

get 0 = φ(B) ≤ φ(A1) + φ(A2) ≤ 0. Hence, φ(A1) + φ(A2) = 0. Since we know φ always

takes non-positive values, we get φ(A1) = φ(A2) = 0; hence, A1,A2 ∈A′. Thus, A′ is closed

under kernels and co-kernels of admissible epics and monics in E , respectively. Then, by
Theorem 3.6, we get that (A′,E|A′) is an exact subcategory of (A,E).

We now proceed to give our main example of Proposition 4.1. First, we recall some

terminologies and prove some preliminary lemmas. For any unexpected concepts and

notations, we refer the reader to [3] and [27].

Let R be a commutative ring, and let SR be the collection of all short exact sequences of

R-modules, which gives the standard exact structure on mod R. When the ring in question

is clear, we drop the suffix R and write only S. Note that since mod R is extension closed

in mod R, the collection of all short exact sequences in mod R gives an exact subcategory

of mod R, and we take this as the standard exact structure of mod R. Note that if (X ,E) is
an exact subcategory of mod R and X ⊆mod R, then (X ,E) is also an exact subcategory

of mod R.

Now, for a Noetherian local ring (R,m) of dimension d and for an integer s ≥ 0, let

CMs(R) denote the full subcategory of mod R consisting of the zero-module, and all Cohen–

Macaulay R-modules [3, Def. 2.1.1] of dimension s. Note that when s= d, CMd(R) is just

the category of all maximal Cohen–Macaulay modules, which we will also denote by CM(R).

4.2. We quickly note that for each s ≥ 0, CMs(R) is closed under finite direct

sums, direct summands, and closed under extensions in mod R. Indeed, let 0 → L →
M → N → 0 be a short exact sequence with L,N ∈ CMs(R). If L or N is zero,

then there is nothing to prove. So, assume L,N are nonzero. Now, M ∈ mod R,

and we also have the following calculation for dimM : dimM = dimSupp(M) =

dim(Supp(L)∪Supp(N)) = max{dimSupp(L),dimSupp(N)} = max{dimL,dimN} = s.

Consequently, s = inf{depthRL,depthRN} ≤ depthRM ≤ dimM = s, which shows

M ∈ CMs(R). Thus, CMs(R) is closed under extensions in mod R. To also show CMs(R)

is closed under direct summands, let M,N be nonzero modules with M ⊕N ∈ CMs(R).

Then, M,N ∈mod R, and s= depthR(M ⊕N) = inf{depthRM,depthRN} ≤ depthRM ≤
dimM ≤ dim(M ⊕N) = s, and thus M ∈ CMs(R).

Hence, if S is the standard exact structure on mod R, then (CMs(R),S|CMs(R)) is an

exact subcategory of mod R by Proposition 3.5. Now, let I be an m-primary ideal and

let φI : CM
s(R) → Z be the function defined by φI(M) := λR(M/IM)− eR(I,M), where
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eR(I,M) is the multiplicity of M with respect to I (see [3, Def. 4.6.1]). We first show that

φI satisfy all the hypothesis of Proposition 4.1. To prove this, we will need to pass to the

faithfully flat extension S = R[X]m[X] whose unique maximal ideal is mS. That we can

harmlessly pass to this extension, is discussed in the following.

4.3. Let (R,m) be a local ring, and consider S = R[X]m[X], which is a faithfully flat

extension of R and the unique maximal ideal of S is mS, whose residue field S/mS is infinite

(see [24, §8.4]). Let M ∈mod(R). By [3, Th. 2.1.7] (and the sentences following it), we have

M ∈CMs(R) if and only ifM⊗RS ∈CMs(S). Let I be anm-primary ideal of R. AsmS is the

maximal ideal of S, so IS = I⊗R S is also primary to the maximal ideal of S. Now, S⊗R

M

IM
∼= S⊗RM

S⊗R (IM)
=

S⊗RM

(IS)(S⊗RM)
by Lemma 5.2.5(1). Hence, λS

(
S⊗RM

(IS)(S⊗RM)

)
=

λS

(
S⊗R

M

IM

)
= λR

(
M

IM

)
, where the last equality is by [38, Tag 02M1] remembering

that S/mS is the residue field of S. Also, eR(I,M) := limn→∞
(dimM)!

ndimM
λR

(
M

In+1M

)
, and

dimS(M ⊗R S) = dimR(M) [3, Th. A.11(b)], so a similar argument as the previous one

shows eR(I,M) = eS(IS,S⊗RM). Thus, φI(M) = φIS(S⊗RM).

Lemma 4.4. The function φI : CMs(R) → Z satisfies φI(M) ≤ 0, is constant on

isomorphism classes of modules in CMs(R), additive on finite biproducts, and subadditive

on short exact sequences of modules in CMs(R).

Proof. It is obvious that φI is constant on isomorphism classes of modules in CMs(R),

and additive on finite biproducts (direct sums). Now, eR(I,−) is additive on short exact

sequences of modules in CMs(R) by [3, Cor. 4.7.7]. Since λR((−)⊗R R/I) is always

subadditive on short exact sequences, this proves φI is also subadditive on short exact

sequences of modules in CMs(R). Now, we finally prove that φI(M)≤ 0 for allM ∈CMs(R).

If dimM = 0, then eR(I,M) = λR(M) ≥ λR(M/IM), so φI(M) ≤ 0. Now, assume that

s = dimM > 0. We may assume that R has infinite residue field due to 4.3. By [3, Cor.

4.6.10], we have eR(I,M) = eR((x),M) for some system of parameters x= x1, ...,xs on M,

which is a reduction of I with respect to M. Then, x is an M -regular sequence, since M is

Cohen–Macaulay (see [3, Th. 2.1.2(d)]). Let J =(x). Since x is anM -regular sequence, by [3,

Th. 1.1.8], we have JnM/Jn+1M ∼= (M/JM)
⊕
(s+n−1)!

n!(s−1)! . Hence, eR(I,M) = eR(J,M) =

(s−1)! limn→∞
λR(J

nM/Jn+1M)

ns−1
= λR(M/JM)≥ λR(M/IM) (the last inequality follows

by noticing that J ⊆ I). Hence, φI(M)≤ 0.

Definition 4.5. Let (R,m) be a Noetherian local ring, and let I be an m-primary

ideal. Let s ≥ 0 be an integer. We denote by UlsI(R) the full subcategory of all modules

M ∈ CMs(R) such that φI(M) = 0, that is, λR(M/IM) = eR(I,M). When s = dimR, we

will denote this subcategory simply by UlI(R). When I = m, Ulsm(R) will be denoted by

Uls(R). We will also denote UldimR
m (R) simply by Ul(R). Note that when s=dimR= 1 and

R is Cohen–Macaulay, UlI(R) is exactly the collection of all I -Ulrich modules as defined in

[11, Def. 4.1].

Remark 4.6. In terms of [21, Def. 2.1], a nonzero R-module M is Ulrich if M ∈Uls(R)

for some s≥ 0 in our notation. When R is Cohen–Macaulay, then the modules in Ul(R) are

simply the maximally generated modules as studied in [2].
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Corollary 4.7. For each integer s ≥ 0 and m-primary ideal I, (UlsI(R),S|UlsI(R)) is

an exact subcategory of mod R (hence of mod R). Hence, Ext1UlsI(R)(−,−) : UlsI(R)op ×
UlsI(R)→mod R is a subfunctor of Ext1R(−,−) : UlsI(R)op×UlsI(R)→mod R.

Proof. Since it has been noticed that (CMs(R),S|CMs(R)) is an exact subcategory of

mod R, by Lemma 4.4 and Proposition 4.1, it follows that (UlsI(R),S|UlsI(R)) is an exact

subcategory of (CMs(R),S|CMs(R)), and hence of mod R. The subfunctor part now follows

from Proposition 3.8.

Next, we record a proposition for constructing a special kind of exact substructure of an

exact structure E on a category A, without shrinking the category, that also comes from

certain kinds of numerical functions. This is used in the next section to recover and improve

some results on module categories.

Theorem 4.8. Let (A,E) be an exact category. Let φ : A→ Z be a function such that

φ is constant on isomorphism classes of objects in A, φ is additive on finite biproducts,

and φ is subadditive on kernel–cokernel pairs in E (i.e., if M N L is in E,
then φ(N)≤ φ(M)+φ(L)). Set Eφ := {kernel–cokernel pairs in E on which φ is additive}.
Then, (A,Eφ) is an exact subcategory of (A,E).

Proof. By [6, Def. 2.1] and [6, Rem. 2.4], it is enough to show that Eφ is closed under

isomorphisms and (A,Eφ) satisfies the axioms [E0], [E0op], [E1op], [E2], and [E2op]. First, we

will show that Eφ is closed under isomorphisms. Let M N L be a kernel–

cokernel pair in Eφ. Also, let M ′ → N ′ → L′ be a kernel–cokernel pair in A such that

it is isomorphic to M N L , which implies that M ′ N ′ L′

is in E and M ∼= M ′, N ∼= N ′, L ∼= L′. Since φ(N) = φ(M)+φ(L) and φ is constant on

isomorphism classes of objects in A, we have φ(N ′) = φ(N) = φ(M)+φ(L) = φ(M ′)+φ(L′).

So, M ′ N ′ L′ is in Eφ. Hence, Eφ is closed under isomorphisms. Next, we

will show that (A,Eφ) satisfies the axiom [E0]. Let A ∈A. Since (A,E) is an exact category,

by [6, Lem. 2.7], we get that A A⊕0∼=A 0
1A 0 is in E . Since φ is additive on

finite biproducts, φ is additive on the kernel–cokernel pair A A⊕0∼=A 0
1A 0 .

Hence, by definition, A A⊕0∼=A 0
1A 0 is in Eφ, which implies that 1A is an

admissible monic in Eφ. So, (A,Eφ) satisfies the axiom [E0]. Next, we will show that (A,Eφ)

satisfies the axiom [E0op]. Let A ∈A. Since (A,E) is an exact category, by [6, Lem. 2.7], we

get that 0 A⊕0∼=A A0 1A is in E . Since φ is additive on finite biproducts, φ

is additive on the kernel–cokernel pair 0 A⊕0∼=A A0 1A . Hence, by definition,

0 A⊕0∼=A A0 1A is in Eφ, which implies that 1A is an admissible epic in Eφ.

So, (A,Eφ) satisfies the axiom [E0op]. Next, we will show that (A,Eφ) satisfies the axiom

[E1op]. Let B′ Be and B C
p

be two admissible epics in Eφ. Then we will

show that B′ C
p◦e

is an admissible epic in Eφ. Let A B Ci p
be the

complete kernel–cokernel pair of p, and consider a pullback square as in Proposition 3.4.

From Proposition 3.4, we get that A′ B′ Ci′ p◦e
is a kernel–cokernel pair in E ,

so φ(B′)≤ φ(C)+φ(A′).
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Now, consider the pullback square of Proposition 3.4

A′ A

B′ B

e′

i′ iPB
e

By the dual (pullback version) of [6, Prop. 2.12(i) ⇒ (iv)] we get a commutative diagram

in E as follows:

D A′ A

D B′ B

e′

i′ iPB
e

The top row gives φ(A′)≤ φ(A)+φ(D). Thus, φ(C)+φ(A′)≤ φ(A)+φ(C)+φ(D). Since

B C
p

is an admissible epic in Eφ and A B Ci p
is in E and φ(−) is

constant on isomorphism classes of objects, we have φ(A)+φ(C) = φ(B). Thus, φ(C)+

φ(A′)≤ φ(A)+φ(C)+φ(D) implies φ(C)+φ(A′)≤ φ(B)+φ(D). Since B′ Be is an

admissible epic in Eφ, the bottom row of the above diagram gives φ(B′) = φ(B)+φ(D).

Hence, φ(C)+φ(A′) ≤ φ(B′). Thus, A′ B′ Ci′ p◦e
in E is actually in Eφ. This

shows (A,Eφ) satisfies the axiom [E1op].

Now, we will show that (A,Eφ) satisfies the axiom [E2]. Let A Bi be an admissible

monic in Eφ, and let A
f−→ A′ be an arbitrary morphism in A. Then we have the following

pushout commutative square in E :

A B

A′ B′

i

f f ′PO
i′

Then, by [6, Prop. 2.12(ii)], we have the following kernel–cokernel pair in E :
A B⊕A′ B′ , so φ(B)+φ(A′) = φ(B⊕A′)≤ φ(A)+φ(B′). Also, by [6, Prop.

2.12(iv)], we have the following commutative diagram with rows being kernel–cokernel pairs

in E :

A B C

A′ B′ C

i

f f ′

p

PO
i′ p′

Since A Bi is an admissible monic in Eφ, we have φ(B) = φ(A)+φ(C). This implies

φ(A)+φ(C)+φ(A′)≤ φ(A)+φ(B′), so φ(C)+φ(A′)≤ φ(B′). Also, A′ B′ Ci′ p′

is a kernel–cokernel pair in E , so φ(B′)≤ φ(C)+φ(A′). Thus, φ(C)+φ(A′) = φ(B′). Hence,

A′ B′ Ci′ p′

is a kernel–cokernel pair in Eφ, so A′ B′i′ is an admissible

monic in Eφ. Thus, (A,Eφ) satisfies the axiom [E2]. A dual argument will show that (A,Eφ)

satisfies the axiom [E2op]. Hence, (A,Eφ) is an exact subcategory of (A,E).

Moving forward, we record some applications of Theorem 4.8.
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4.9. Let X be a subcategory of Mod(R) such that (X ,S|X ) is an exact subcategory of

mod R. In this case, for M,N ∈ X , by Ext1X (M,N), we will mean ExtS|X (M,N), that is,

Ext1X (M,N) = {[σ] : the middle object of σ is in X}. (Note that it does not matter whether

the equivalence class is taken in S|X or S by Remark 3.7.) Note that Ext1X (−,−) :X op×X →
mod R is a subfunctor of Ext1R(−,−) : X op×X →mod R by Proposition 3.8. For example,

we can apply this discussion to X =UlsI(R) due to Corollary 4.7.

Note that if X is closed under taking extensions in mod R, then (X ,S|X ) is exact

subcategory of mod R by Proposition 3.5. In this case, Ext1X (M,N) = Ext1R(M,N) for

all M,N ∈ X .

Definition 4.10. Let X be a subcategory of mod R such that (X ,S|X ) is an exact

subcategory of mod R, and let φ :X →Z be a function satisfying the hypothesis of Theorem

4.8, that is, φ is constant on isomorphism classes of modules in X , φ is additive on finite

direct sums, and subadditive on short exact sequences of modules in X . Then, in the

notation of Theorem 4.8, (X ,S|Xφ) is an exact subcategory of (X ,S|X ), hence an exact

subcategory of mod R. For M,N ∈ X , define Ext1X (M,N)φ := ExtS|Xφ
(M,N) = {[α] ∈

Ext1X (M,N) : φ is additive on α}. Again, we notice that if X ⊆ mod R is closed under

taking extensions, then Ext1X (M,N)φ = {[α] ∈ Ext1R(M,N) : φ is additive on α}, and in

this case, we denote it just by Ext1R(M,N)φ.

4.11. Note that Ext1X (−,−)φ : X op ×X → mod R is a subfunctor of Ext1X (−,−) :

X op ×X → mod R, which in turn is a subfunctor of Ext1R(−,−) : X op ×X → mod R

(Proposition 3.8) and we have corresponding commutative diagram of long exact sequences

by Corollary 3.9.

With the extension-closed subcategory X =mod R, where (R,m,k) is a Noetherian local

ring, and the subadditive function φ(−) =μ(−) : mod R→Z being the number of generators

function in Definition 4.10, we see that Ext1R(M,N)μ = 〈M,N〉 in the notation of [35, Def.

1.35]. So, by our discussion, Theorem 4.8, Proposition 3.8, and Corollary 3.9 recover [35,

Cor. 1.36 and Props. 1.37 and 1.38].

Before we apply our discussion to more certain special cases, we record one preliminary

lemma.

Lemma 4.12. Let (X ,E) be an exact subcategory of mod R. Let G : X → fl(R) be an

additive half-exact functor, where fl(R) denotes the full subcategory of mod R consisting of

finite length modules. Then, φ(−) := λR(G(−)) :X → Z satisfies the hypothesis of Theorem

4.8. Moreover, given a short exact sequence σ with objects in X , G(σ) is a short exact

sequence of modules if and only if φ is additive on σ.

Proof. We will only prove the statement when G is a covariant functor, since the proof

for a contravariant functor is similar. Since G is a functor and λR is constant on isomorphism

classes of objects in mod R, φ is constant on isomorphism classes of objects in X . Let

A,B ∈ X . Then φ(A⊕B) = λR(G(A⊕B)) = λR(G(A)⊕G(B)) = λR(G(A))+λR(G(B)) =

φ(A)+φ(B), so φ is additive on finite biproducts. Next, let σ : 0→M
f−→N

g−→ L→ 0 be a

short exact sequence with objects in X . Then G(σ) is the exact sequence G(σ) : 0→K →
G(M)

G(f)−−−→G(N)
G(g)−−−→G(L)→ P → 0, where K =Ker(G(f)) and P =Coker(G(g)). Then

we have φ(M)+φ(L)−φ(N) = λR(G(M))+λR(G(L))−λR(G(N)) = λR(K)+λR(P )≥ 0,

so φ(M)+φ(L)≥ φ(N). Hence, φ is subadditive on a short exact sequence with objects in
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X . Thus, φ satisfies the hypothesis of Proposition 4.8. Next, let σ : 0→M
f−→N

g−→ L→ 0

be a short exact sequence with objects in X . Then G(σ) is short exact if and only if

K =Ker(G(f)) = 0 and P =Coker(G(g)) = 0 if and only if λR(K) = λR(P ) = 0 if and only

if φ(M)+φ(L)−φ(N) = λR(G(M))+λR(G(L))−λR(G(N)) = λR(K)+λR(P ) = 0 if and

only if φ(M)+φ(L) = φ(N) if and only if φ is additive on σ.

Corollary 4.13. Let (X ,E) be an exact subcategory of mod R. Let G :X → fl(R) be an

additive half-exact functor, where fl(R) denotes the full subcategory of mod R consisting of

finite length modules. Set EG := {σ ∈ E :G(σ) is a short exact sequence of modules}. Then,
(X ,EG) is an exact subcategory of mod R.

Proof. From Lemma 4.12, it follows that EG = Eφ, where φ(−) := λR(G(−)) : X → Z.
Hence, the claim now follows from Theorem 4.8.

Now again, let X =mod R, where R is Noetherian. Basic examples of additive half-exact

functors G :X → fl(R) are G(−) := ExtiR(−,X),ExtiR(X,−),TorRi (X,−), where X is a fixed

R-module of finite length and i≥ 0 is an integer.

Given a collection C ⊆mod R, in [1], the authors considered the following:

FC(C,A) := {σ : 0→A→B → C → 0 | HomR(X,σ) is short exact for all X ∈ C},
F C(C,A) := {σ : 0→A→B → C → 0 | HomR(σ,X) is short exact for all X ∈ C}

and showed in [1, Prop. 1.7] that these define subfunctors of Ext1R(−,−) : mod Rop ×
mod R→Ab. Using Corollary 4.13, we recover this result when C ⊆ fl(R) as follows.

Corollary 4.14. Let R be a commutative Noetherian ring. Let C ⊆ fl(R). Then,

FC(−,−) and F C(−,−) are subfunctors of Ext1R(−,−) : mod Rop×mod R→mod R.

Proof. We only prove the case of FC(−,−), since the proof of F C(−,−) is similar.

Let SC be the collection of all short exact sequences σ of finitely generated R-modules

such that HomR(X,σ) is short exact for all X ∈ C. We first prove that (mod R,SC) is

an exact subcategory of mod R. Since SC = ∩C∈CSC , it is enough to prove that for each

C ∈ C, SC gives an exact substructure on mod R (intersection of exact substructures is

again an exact substructure by Lemma 3.2). Now, note that SC = {σ :G(σ) is short exact},
where G : mod R → fl(R) is given by G(−) := HomR(C,−), so by Corollary 4.13 we get

that (mod R,SC) is an exact subcategory of mod R. Since ExtSC(−,−) = FC(−,−), by

Proposition 3.8 we are done.

Next, we recover and improve upon [31, Ths. 3.11 and 3.13].

For a Noetherian local ring (R,m), let MD(R) denote the full subcategory of mod R

consisting of all modules M such that either M = 0 or dimM = dimR. We recall that if I

is an m-primary ideal, then eR(I,−) is additive on MD(R). We also recall that a finitely

generated module M satisfies Serre’s condition (Sn) if depth Mp ≥ inf{n,dimRp} for all

p ∈ SpecR. The full subcategory of mod R consisting of all modules satisfying (Sn) is

denoted by Sn(R). Note that Sn(R) is closed under extensions in mod R.

Lemma 4.15. Let R be an equidimensional local ring. Let S1(R) be the collection of all

modules in mod R satisfying Serre’s condition (S1). Then, S1(R)⊆MD(R).

Proof. The hypothesis on R implies that dim(R/p) = dimR for all p ∈ Min(R). So, if

0 �=M satisfy (S1), then there exists p ∈Ass(M)⊆Min(R). Hence, dim(M)≥ dim(R/p) =

dimR, and we are done.
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Now, inspecting the proof of [30, Prop. 17], the only place, where R is Cohen–Macaulay

and M is maximal Cohen–Macaulay are required, is to ensure that eR(I,−) is additive

on 0 → ΩRM → F → M → 0 and that M,ΩRM ∈ MD(R). But if we assume R is

equidimensional and satisfy (S1), and M ∈ S1(R) ⊆ MD(R), then since ΩRM ∈ S1(R) ⊆
MD(R) (Lemma 4.15) and eR(I,−) is additive on short exact sequence of modules of the

same dimension [3, Cor. 4.7.7]; hence, we get the following lemma by following the same

proof as in [30, Prop. 17].

Lemma 4.16. Let (R,m) be an equidimensional local ring satisfying (S1). Let M ∈
S1(R). Let d = dimR ≥ 1, and let I be an m-primary ideal. Then, the function n �→
λ(TorR1 (M,R/In+1)) is given by a polynomial of degree ≤ d−1 for n� 0. So, in particular,

the limit limn→∞
λ(TorR1 (M,R/In+1))

nd−1
exists.

If R and M are as in Lemma 4.16, then let us denote eTI (M) := (d −

1)! limn→∞
λ(TorR1 (M,R/In+1))

nd−1
. (What [31] denotes by eTR(M) is exactly the same as

eTm(M) in our notation.)

The following theorem generalizes [31, Ths. 3.11 and 3.13] owing to the fact that a local

Cohen–Macaulay ring R is equidimensional, satisfies (S1) and CM(R)⊆ S1(R).

Theorem 4.17. Let (R,m) be an equidimensional local ring satisfying (S1). Let X =

S1(R) be the subcategory of mod R consisting of all modules satisfying (S1). Let I be

an m-primary ideal. Then, Ext1R(−,−)e
T
I : S1(R)op ×S1(R) → mod R is a subfunctor of

Ext1R(−,−) : S1(R)op×S1(R)→mod R.

Proof. Since S1(R) is an extension closed subcategory of mod R, we have

(S1(R),S|S1(R)) is an exact subcategory of mod R. Since for each n, the function mod R→Z
given by M �→ λ(TorR1 (M,R/In+1)) is subadditive on short exact sequences of mod R,

we have eTI : S1(R) → Z is also subadditive on short exact sequences of S1(R). Thus,

(S1(R),S|e
T
I

S1(R)) is an exact subcategory of (S1(R),S|S1(R)) by Theorem 4.8. Hence, we are

done by Proposition 3.8.

§5. Special subfunctors of Ext1 and applications

Throughout this section, R will denote a Noetherian local ring with unique maximal ideal

m and residue field k. We will denote by μR(−) the minimal number of generators function

for finitely generated modules, that is, μR(M) = λR(M ⊗RR/m) for all M ∈ mod R. We

drop the subscript R when the ring in question is clear. We shall study properties and

applications of a number of subfunctors of Ext1, whose existence follow from results in

previous sections.

5.1 Some computations and applications of the subfunctor Ext1R(−,−)μ

We start this subsection with a characterization of regularity among Cohen–Macaulay

rings of positive dimension d in terms of vanishing of certain Ext1R(−,−)μ (see Definition

4.10 and the discussion after 4.11 for notation).

Theorem 5.1.1. Let R be a local Cohen–Macaulay ring of dimension d ≥ 1. Then, R

is regular if and only if Ext1R(Ω
d−1
R k,N)μ = 0 for some finitely generated nonzero R-module

N of finite injective dimension.
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When R is regular, we show Ext1R(Ω
d−1
R k,R)μ =0, which shows one direction of Theorem

5.1.1. For this, we first need two preliminary lemmas.

Lemma 5.1.2. Let Y be a submodule of an R-module X such that mX ⊆ Y . If X is cyclic

and Y �=X, then Y =mX.

Proof. We prove that if Y �= mX, then Y = X. If Y �= mX, then pick y ∈ Y \mX ⊆
X \mX. Then, y is part of a minimal system of generators of X, but X is cyclic, so X =Ry.

Also, Ry ⊆ Y ⊆X. Hence, Y =X.

Lemma 5.1.3. Let M be a finitely generated R-module with the first Betti number 1.

Then, Ext1R(M,ΩRM)μ =mExt1R(M,ΩRM).

Proof. Ext1R(M,ΩRM)μ is a submodule of Ext1R(M,ΩRM) such thatmExt1R(M,ΩRM)⊆
Ext1R(M,ΩRM)μ by Lemma 5.2.1. By hypothesis, we have ΩRM ∼= R/I for some ideal

I �= R, and we have an exact sequence 0 → R/I → F → M → 0, for some free R-module

F. So, in particular, μ(F ) = μ(M) �= μ(R/I) + μ(M). Hence, this exact sequence is not

μ-additive. So, Ext1R(M,ΩRM)μ �= Ext1R(M,ΩRM). Also, applying HomR(−,R/I) to the

exact sequence 0→ R/I → F →M → 0, we get an exact sequence 0→ HomR(M,R/I)→
HomR(F,R/I)→HomR(R/I,R/I)∼=R/I → Ext1R(M,R/I)∼= Ext1R(M,ΩRM)→ 0. Hence,

Ext1R(M,ΩRM) is a cyclic module. Now, applying Lemma 5.1.2 to Y = Ext1R(M,ΩRM)μ

and X = Ext1R(M,ΩRM), we get Ext1R(M,ΩRM)μ =mExt1R(M,ΩRM).

Now, one direction of Theorem 5.1.1 is the following.

Corollary 5.1.4. Let (R,m,k) be a regular local ring of dimension d ≥ 1. Then,

Ext1R(Ω
d−1
R k,R)μ = 0.

Proof. We know ΩRΩ
d−1
R k ∼= R by looking at the Koszul complex of R/m, so the first

Betti number of Ωd−1
R k is 1. Hence, by Lemma 5.1.3, we get that Ext1R(Ω

d−1
R k,R)μ =

mExt1R(Ω
d−1
R k,R)∼=mExtdR(k,R)∼=m ·k = 0.

The other direction of Theorem 5.1.1 requires more work. First, we begin with the

following setup.

5.1.5. Let (R,m,k) be a local Cohen–Macaulay ring of dimension d ≥ 1 admitting a

canonical module ωR. Then, Ext1R(Ω
d−1
R k,ωR) ∼= k. Hence, for any two non-split exact

sequences α,β ∈ Ext1R(Ω
d−1
R k,ωR), we have [β] = r[α] ∈ Ext1R(Ω

d−1
R k,ωR) for some unit

r ∈R. So, we have the following pushout diagram:

α : 0 ωR Xα Ωd−1
R k 0

β : 0 ωR Xβ Ωd−1
R k 0

·r

Since r ∈R is a unit, we have ωR
·r−→ ωR is an isomorphism. Hence, by five lemma, Xα

∼=Xβ.

So, there exists a unique module (up to isomorphism), call it ER, such that the middle term

of every non-split exact sequence 0 → ωR → X → Ωd−1k → 0 is isomorphic to ER. Since

Ωd−1
R k has co-depth 1, by [27, Prop. 11.21], we get that 0→ ωR →ER → Ωd−1

R k → 0 is the

minimal maximal Cohen–Macaulay (MCM) approximation of Ωd−1
R k.

Moving forward, we denote HomR(−,ωR) by (−)†.

We need to collect some properties of ER to prove the other direction of Theorem 5.1.1.
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Lemma 5.1.6. Let (R,m,k) be a local Cohen–Macaulay ring of dimension 1 admitting

a canonical module ωR. Then, E
R ∼=m†.

Proof. Dualizing 0→m→R→ k→ 0 by ωR, we get 0→ ωR →m† →Ext1R(k,ωR)∼= k→
0. So, we have the exact sequence 0→ ωR → m† → k → 0, which is clearly non-split, since

m† has positive depth. But k⊕ωR has depth 0. Thus, ER ∼=m†.

We record the following lemma, which will be used to deduce further properties of the

module ER.

Lemma 5.1.7. Let (R,m,k) be a local ring, and let I be an ideal of R, which is not

principal. Then, for every x ∈ I \mI, we have (xm :m I) = (xm :R I) = ((x) :R I).

Proof. Since trivially (xm :m I) ⊆ (xm :R I) ⊆ ((x) :R I) always holds, it is enough to

prove the inclusion ((x) :R I) ⊆ (xm :m I). So, let y ∈ ((x) :R I), which means yI ⊆ (x). If

y were a unit, then we would have I ⊆ y−1(x) = (x) ⊆ I, implying I = (x), contradicting

our assumption that I is not principal. Thus, we must have y ∈m. Now, pick an arbitrary

element r ∈ I. Then yr ∈ yI ⊆ (x), so yr= xs for some s∈R. If s /∈m, then x= s−1yr ∈mI,

which is a contradiction. Hence, s ∈m. So, yr = xs ∈ xm. Since r ∈ I was arbitrary, we get

yI ⊆ xm. Hence, y ∈ (xm :m I).

In the following, r(−) will denote the type of a module, that is, r(M) =

dimkExt
depthRM
R (k,M).

Lemma 5.1.8. Let (R,m,k) be a non-regular complete local Cohen–Macaulay ring of

dimension d≥ 1, with canonical module ωR. Then, we have μ(ER) = r(R)+μ(Ωd−1
R k).

Proof. We prove this by induction on d. First, let d= 1. By Lemma 5.1.6, we have ER ∼=
m†. Pick x ∈ m\m2 to be R-regular. Then μR(E

R) = μR/xR(E
R/xER). Now, ER/xER ∼=

m†/xm† ∼= HomR/xR(m/xm,ωR/xωR) ∼= (m/xm)† (where the last two isomorphisms

follow from [3, Prop. 3.3.3(a) and Th. 3.3.5(a)]). Now, HomR/xR((m/xm)†,k) ∼=
HomR/xR(k

†,m/xm) ∼= HomR/xR(k,m/xm) ∼= (xm :m m)/xm = ((x) :R m)/xm (where

the first isomorphism holds because R/xR is Artinian, so one can invoke [10, Lem.

3.14 and Rem. 3.15], and the last equality follows from Lemma 5.1.7 since R is not

regular). Hence, μR(E
R) = μR/xR(E

R/xER) = dimkHomR/xR((m/xm)†,k) = dimk((x) :R
m)/xm = dimk ((xR :R m)/xR) + dimk(xR/xm) = dimk Soc(R/xR) + dimk(xR/xm) =

r(R) + dimk(xR/xm) (since xR/xm is annihilated by m, hence it is a k -vector space).

Since xR/xm is generated by x and it is a k -vector space, we have xR/xm ∼= k. Hence,

dimk(xR/xm) = 1, so μ(ER) = r(R)+1 = r(R)+μ(k). This concludes the d= 1 case.

Now, let dimR = d > 1 and suppose the claim has been proved for all non-regular

local Cohen–Macaulay rings of dimension 1, ...,d− 1 admitting a canonical module. Since

Ωd−1
R k has co-depth 1, by [27, Prop. 11.21] (see 5.1.5), we get that 0 → ωR → ER →

Ωd−1
R k→ 0 is the minimal MCM approximation of Ωd−1

R k. Now, pick an R-regular element

x ∈ m \m2 (which is also Ωd−1
R k-regular, since d− 1 > 0). By [39, Cor. 2.5], we have

0 → ωR/xR → ER/xER → Ωd−1
R k/x(Ωd−1

R k) → 0 is the minimal MCM approximation

of Ωd−1
R k/x(Ωd−1

R k) ∼= Ωd−1
R/xRk⊕Ωd−2

R/xRk over R/xR (the isomorphism follows from [37,

Cor. 5.3]). Since 0 → 0 → Ωd−1
R/xRk → Ωd−1

R/xRk → 0 is the minimal MCM approximation

of Ωd−1
R/xRk over R/xR and 0 → ωR/xR → ER/xR → Ωd−2

R/xRk → 0 is the minimal MCM

approximation of Ωd−2
R/xRk over R/xR (by 5.1.5 and [27, Prop. 11.21]), their direct sum 0→
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ωR/xR → ER/xR⊕Ωd−1
R/xRk → Ωd−2

R/xRk⊕Ωd−1
R/xRk → 0 is the minimal MCM approximation

of Ωd−2
R/xRk⊕Ωd−1

R/xRk
∼= Ωd−1

R k/x(Ωd−1
R k) over R/xR (direct sum preserves minimal MCM

approximation by [39, Th. 1.4]). By uniqueness of minimal MCM approximation, we

have ER/xER ∼= ER/xR ⊕ Ωd−1
R/xRk. So, μR(E

R) = μR/xR(E
R/xER) = μR/xR(E

R/xR) +

μR/xR(Ω
d−1
R/xRk). Since R is not regular, R/xR is not regular. Hence, by induction hypoth-

esis, we have μR/xR(E
R/xR) = r(R/xR) + μR/xR(Ω

d−2
R/xRk) = r(R) + μR/xR(Ω

d−2
R/xRk). So,

μR(E
R) = r(R)+μR/xR(Ω

d−2
R/xRk)+μR/xR(Ω

d−1
R/xRk) = r(R)+μR/xR(Ω

d−2
R/xRk⊕Ωd−1

R/xRk) =

r(R)+μR/xR

(
Ωd−1

R k/x(Ωd−1
R k)

)
= r(R)+μR(Ω

d−1
R k). This finishes the inductive step, and

hence the proof.

Since μ(ωR) = r(R), Lemma 5.1.8 says that the sequence 0→ ωR → ER → Ωd−1
R k → 0 is

μ-additive. As a consequence of this, we get the following.

Proposition 5.1.9. Let (R,m,k) be a non-regular local Cohen–Macaulay ring of

dimension d ≥ 1, and let N be a finitely generated nonzero R-module with finite injective

dimension. Then Ext1R(Ω
d−1
R k,N)μ = Ext1R(Ω

d−1
R k,N) �= 0.

Proof. That Ext1R(Ω
d−1
R k,N) ∼= ExtdR(k,N) �= 0 follows from [3, Exer. 3.1.24]. So, it is

enough to prove that Ext1R(Ω
d−1
R k,N)μ = Ext1R(Ω

d−1
R k,N).

We first consider the case where R is complete, hence admitting a canonical module ωR.

Consider the μ-additive (by Lemma 5.1.8) exact sequence σ : 0→ ωR → ER → Ωd−1
R k → 0.

Since σ ∈S|μmod R, by applying HomR(−,N) to σ, we get the following part of a commutative

diagram of exact sequences by Corollary 3.9:

HomR(ωR,N) Ext1R(Ωd−1
R k,N) Ext1R(ER,N)

HomR(ωR,N) Ext1R(Ωd−1
R k,N)μ Ext1R(ER,N)μ

Since ER is maximal Cohen–Macaulay, we have Ext1R(E
R,N) = 0 by [3, Exer. 3.1.24]. So,

Ext1R(E
R,N)μ = 0 as well. Hence, we get the following commutative diagram:

HomR(ωR,N) Ext1R(Ωd−1
R k,N) 0

HomR(ωR,N) Ext1R(Ωd−1
R k,N)μ 0

f

g

h

Thus, h◦g = f is surjective, so h is surjective. Since h is the natural inclusion map, we have

Ext1R(Ω
d−1
R k,N)μ = Ext1R(Ω

d−1
R k,N).

Now, we consider the general case. Since Ext1R(Ω
d−1
R k,N)μ ⊆ Ext1R(Ω

d−1
R k,N), it is

enough to prove the other inclusion. So, let σ : 0→N →X → Ωd−1
R k → 0 be a short exact

sequence. We need to show that σ is μ-additive. Now, consider the completion σ̂ : 0→ N̂ →
X̂ → Ω̂d−1

R k ∼=Ωd−1
̂R

k → 0. Since R̂ is non-regular, Cohen–Macaulay of dimension d admits

a canonical module, and N̂ ∈modR̂ has finite injective dimension over R̂, by the first part

of the proof, we get Ext1
̂R
(Ωd−1

̂R
k,N̂) = Ext1

̂R
(Ωd−1

̂R
k,N̂)μ. Thus, [σ̂] ∈ Ext1

̂R
(Ωd−1

̂R
k,N̂) =

Ext1
̂R
(Ωd−1

̂R
k,N̂)μ. Hence, σ̂ is μ-additive. So, μ

̂R(N̂) + μ
̂R(Ω

d−1
̂R

k) = μ
̂R(X̂). Since the

number of generators does not change under completion, we get μR(N) + μR(Ω
d−1
R k) =

μR(X). Thus, σ is μ-additive, which is what we wanted to prove.
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Proof of Theorem 5.1.1. Follows by combining Corollary 5.1.4 and Proposition 5.1.9.

For an arbitrary local ring of positive depth, we give a characterization of the ring being

regular in terms of vanishing of Ext1R(k,M)μ for some M ∈ mod R of finite projective

dimension. For this, we first recall the definitions of weakly m-full and Burch submodules

of a module from [12, Defs. 3.1 and 4.1] and subsequently, we relate that property to the

vanishing of certain Ext1R(k,−)μ.

Definition 5.1.10. Let (R,m,k) be a local ring, and let N be an R-submodule of

a finitely generated R-module M. Then N is called a weakly m-full submodule of M if

(mN :M m) =N . Also, N is called a Burch submodule of M if m(N :M m) �=mN .

Proposition 5.1.11. Let (R,m,k) be a local ring, and let N be an R-submodule of a

finitely generated R-module M such that Ext1R(k,N)μ = 0. Then (mN :M m) =N+Soc(M),

that is, N +Soc(M) is a weakly m-full submodule of M. So, in particular, if we moreover

have depth(M)> 0, then N is a weakly m-full submodule of M.

Proof. Clearly, N ⊆ (mN :M m) and Soc(M) = (0 :M m)⊆ (mN :M m), so N+Soc(M)⊆
(mN :M m). Now, choose an element f ∈ (mN :M m), and we aim to show f ∈N +Soc(M).

If f ∈N , then we are done. Otherwise, say f /∈N . As f ∈ (mN :M m), so mf ⊆mN ⊆N , and

hence m(N +Rf) =mN . Thus,
Rf +N

N
is a nonzero (as f �∈N) k -vector space (as m(N +

Rf) ⊆ N). Moreover,
Rf +N

N
is cyclically generated by the image of f in M/N . Hence,

Rf +N

N
∼= k, so we have a short exact sequence σ : 0→N →Rf+N → k→ 0. This sequence

is μ-additive, since μ(N+Rf) = λ
(

N+Rf
m(N+Rf)

)
= λ

(
N+Rf
mN

)
= λ

(
N+Rf

N

)
+λ

(
N
mN

)
= λ(k)+

μ(N) = μ(k)+μ(N). So, σ ∈ Ext1R(k,N)μ = 0. Hence, σ splits. Thus, N +Rf =N ⊕ g(k),

where g : k → N +Rf is the splitting map, so k ∼= g(k). Now, f ∈ N +Rf = N ⊕ g(k), so

f = x+y for some x ∈N and y ∈ g(k)⊆M . Since k ∼= g(k), we have mg(k) = 0. Now, my ∈
mg(k) = 0, so y ∈ (0 :M m) = Soc(M). Hence, f = x+y ∈N+Soc(M). This finally shows that

(mN :M m)⊆N +Soc(M), so (mN :M m) =N +Soc(M). Since m(N +Soc(M)) =mN , we

get (m(N+Soc(M)) :M m) =N+Soc(M), which implies that N+Soc(M) is a weakly m-full

submodule M. Now note that if depth(M)> 0, then Soc(M) = 0. Hence, N +Soc(M) =N

is a weakly m-full submodule of M.

Now, we give another characterization of regular local rings in terms of vanishing of

certain Ext1R(k,−)μ.

Theorem 5.1.12. Let (R,m,k) be a local ring of depth t > 0. Then, the following are

equivalent:

(1) R is regular.

(2) Ext1R(k,R/(x1, ...,xt−1)R)μ = 0 for some R-regular sequence x1, ...,xt−1.

(3) Ext1R(k,M)μ = 0 for some finitely generated R-module M of projective dimension t−1.

Proof. (1) =⇒ (2) Since R is regular, we have t = dimR. Since R is regular,

we get that m is generated by a regular sequence x1, ...,xt. Now, R/(x1, ...,xt−1)R

has projective dimension t − 1 over R and the (t − 1)th Betti number of this

module is 1 (by looking at the Koszul complex). Hence, Ext1R(k,R/(x1, ...,xt−1)R) ∼=
TorRt−1(k,R/(x1, ...,xt−1)R) ∼= k by [3, Exer. 3.3.26]. Now, we have an exact sequence
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0→R/(x1, ...,xt−1)R
·xt−−→R/(x1, ...,xt−1)R→R/(x1, ...,xt−1,xt)R∼= k→ 0, which is clearly

not μ-additive. Hence, Ext1R(k,R/(x1, ...,xt−1)R) �= Ext1R(k,R/(x1, ...,xt−1)R)μ. Since

Ext1R(k,R/(x1, ...,xt−1)R) ∼= k is cyclic, by Lemma 5.1.2, we get that Ext1R(k,R/(x1, ...,

xt−1)R)μ =mExt1R(k,R/(x1, ...,xt−1)R) = 0.

(2) =⇒ (3) Obvious.

(3) =⇒ (1) By the Auslander–Buchsbaum formula, depth M = 1, so Soc(M) = 0. Hence,

by prime avoidance, we can choose x ∈m, which is both R and M -regular. Then xM ∼=M ,

so Ext1R(k,xM)μ ∼=Ext1R(k,M)μ = 0. By Proposition 5.1.11, we get that xM is a weakly m-

full submodule of M. Since depth(M/xM) = 0, xM is a Burch submodule of M by [12, Lem.

4.3]. Moreover, pdR/xR(M/xM) = pdRM <∞, and pdRR/xR <∞, so pdRM/xM <∞.

Hence, TorR�0(k,M/xM) = 0. Thus, pdR k <∞ by [12, Th. 1.2], so R is regular.

Next, we try to relate Ext1R(M,N)μ to Ext1R(M,N) for all M,N ∈mod R, when (R,m) is

a regular local ring of dimension 1 (i.e., a local PID). For this, we first record a preliminary

lemma.

Lemma 5.1.13. Let (R,m) be a local ring, and let x ∈ m be a nonzero divisor. Then,

Ext1R(R/xR,R/I)μ =mExt1R(R/xR,R/I)∼= m

I+xR
for every proper ideal I of R.

Proof. Calculating Ext1R(R/xR,R/I) from the minimal free-resolution 0→ R
·x−→ R →

R/xR → 0 of R/xR, we see that Ext1R(R/xR,R/I) ∼= R/(xR+ I) is a cyclic R-module.

By Lemma 5.2.1, we have mExt1R(R/xR,R/I) ⊆ Ext1R(R/xR,R/I)μ. We finally claim

that Ext1R(R/xR,R/I)μ �= Ext1R(R/xR,R/I). Indeed, we have an exact sequence σ : 0 →
xR/xI → R/xI → R/xR → 0. Now, we have a natural surjection R

r �→rx+xI−−−−−−→ xR/xI,

whose kernel is {r ∈ R : rx ∈ xI}. Since x is a nonzero divisor, rx ∈ xI if and only

if r ∈ I. Hence, the kernel is I. Hence, R/I ∼= xR/xI. So, we get the exact sequence

σ : 0 → R/I → R/xI → R/xR → 0. Moreover, σ is not μ-additive, since μ(R/xI) = 1 �=
1 + 1 = μ(R/I) + μ(R/xR). Thus, [σ] ∈ Ext1R(R/xR,R/I) \ Ext1R(R/xR,R/I)μ. Hence,

Ext1R(R/xR,R/I)μ =mExt1R(R/xR,R/I) by Lemma 5.1.2.

Now, using this lemma, we can compare the structure of Ext1R(M,N)μ to Ext1R(M,N)

for every pair of finitely generated modules M,N over a DVR.

Proposition 5.1.14. Let (R,m) be a regular local ring of dimension 1. Then,

Ext1R(M,N)μ = mExt1R(M,N) for all finitely generated R-modules M and N. So, in

particular, Ext1R(k,N)μ = 0 for all finitely generated R-modules N.

Proof. Let m= xR. Then, for every finitely generated R-module X, we have X ∼=R⊕a⊕
(⊕n

i=1R/xaiR) for some nonnegative integers (depending on X ) a,ai. Now, fix arbitrary

N ∈mod R. Applying Lemma 2.4 to the subfunctor Ext1R(−,N)μ of Ext1R(−,N) and taking

I = m, it is enough to prove that Ext1R(R,N)μ = mExt1R(R,N) and Ext1R(R/xlR,N)μ =

mExt1R(R/xlR,N) for every integer l ≥ 1. Now, Ext1R(R,N)μ = mExt1R(R,N) is obvi-

ous, as both sides are zero. Now, to prove Ext1R(R/xlR,N)μ = mExt1R(R/xlR,N) for

every integer l ≥ 1, first fix an l ≥ 1, and look at the subfunctor Ext1R(R/xlR,−)μ of

Ext1R(R/xlR,−). Again, by the structure of finitely generated R-modules and Lemma 2.4, it

is enough to prove that Ext1R(R/xlR,R)μ =mExt1R(R/xlR,R) and Ext1R(R/xlR,R/xbR)μ =

mExt1R(R/xlR,R/xbR) for every integer b ≥ 1. Now, these equalities follow from Lemma

5.1.13, since x is a nonzero divisor.
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When restricting to short exact sequences in Ext1, on which certain subadditive function,

other than μ(−), is additive, one obtains vanishing of the corresponding submodule of

Ext1R(M,F ) for any free R-module F. We make this precise in Proposition 5.1.16, whose

proof uses the following lemma.

Lemma 5.1.15. Let (R,m) be a local Cohen–Macaulay ring of dimension 1. Let x ∈ m

be R-regular. Let σ : 0→ F1 → F2⊕ R
xaR → R

xbR
→ 0 be a short exact sequence, where a,b are

nonnegative integers and F1,F2 are free R-modules. Let c be an integer such that c≥ b and

σ⊗ R
xcR is short exact. Then a = b and rank(F2) = rank(F1). So, in particular, σ is split

exact.

Proof. Since x ∈ R is a nonzero divisor, so R
xaR , R

xbR
are torsion modules, that is, have

constant rank 0. Hence, calculating rank along σ, we get rank(F2) = rank(F1). Next, we

will show that a≤ b. Dualizing σ by R, we get the following part of a long exact sequence:

Ext1R
(

R
xbR

,R
)
→ Ext1R

(
R

xaR ,R
)
→ 0. Now, since xa ∈ R is a nonzero divisor, by taking

the resolution 0 → R
·xa

−−→ R → R
xaR → 0 of R

xaR , and dualizing by R, and calculating the

cohomology, we get that Ext1R
(

R
xaR ,R

) ∼= R
xaR . Similarly, Ext1R

(
R

xbR
,R

) ∼= R
xbR

. Hence, we

have the exact sequence R
xbR

→ R
xaR → 0. Since xb annihilates R

xbR
, we have xb annihilates

R
xaR as well, which implies xbR⊆ xaR. Since x ∈m is R-regular, so xbR⊆ xaR implies that

a≤ b. Since σ⊗ R
xcR is short exact, we have the following short exact sequence:

σ⊗ R

xcR
: 0→

(
R

xcR

)⊕l1

→
(

R

xcR

)⊕l2

⊕ R

xaR
→ R

xbR
→ 0,

where we have used that R
xcR ⊗ R

xaR
∼= R

xcR+xaR
∼= R

xaR and R
xcR ⊗ R

xbR
∼= R

xcR+xbR
∼= R

xbR
, as

a≤ b≤ c. Since R is local Cohen–Macaulay of dimension 1 and x ∈m is R-regular, we have

xaR,xbR,xcR are m-primary ideals. Hence, by calculating the length along the short exact

sequence σ⊗ R
xcR , we get that λ

(
R

xbR

)
−λ

(
R

xaR

)
= (l2− l1)λ

(
R

xcR

)
= 0. Since xbR ⊆ xaR,

so λ
(

R
xbR

)
= λ

(
R

xaR

)
now implies xaR = xbR by calculating length along the short exact

sequence 0→ xaR
xbR

→ R
xbR

→ R
xaR → 0. Since x ∈m is R-regular, we have a= b. Finally, since

F1
∼= F2 and a= b, we get σ is split exact.

In the following, H0
m(−) denotes the zeroth local cohomology module. For a finite length

R-module M, ��(M) will stand for the smallest integer n≥ 0 such that mnM = 0.

Proposition 5.1.16. Let (R,m) be a regular local ring of dimension 1. Let L∈mod(R).

Let c be an integer such that c ≥ ��(H0
m(L)). Consider the function φL(−) := λ( R

mc ⊗−) :

mod(R)→ N∪{0}. Then, for any free R-module F, we have Ext1R(L,F )φL = 0.

Proof. Note that R is not a field, since dimR=1. Since R is a regular local ring, we have

L ∼= G⊕L′, where G is a finite free R-module and L′ is an R-module of finite length. We

have H0
m(L)

∼= L′. Since Ext1R(L,F )φL ∼= Ext1R(G,F )φL ⊕Ext1R(L
′,F )φL ∼= Ext1R(L

′,F )φL ,

we may replace L by L′, and assume without loss of generality that L has finite length, and

c≥ ��(L). For simplicity, we denote φL = φ. Now, it is enough to show that Ext1R(L,R)φ =0.

Since (R,m) is a regular local ring of dimension 1, R is a PID. Hence, m = xR for some

x �= 0. Since L is a finite length module, by the structure theorem of modules over a PID,

we have L∼=⊕n
i=1

R
xbiR

, where bi > 0. So, ��(L) = max1≤i≤n bi. Hence, it is enough to show

that Ext1R
(

R
xbiR

,R
)φ

= 0 for all i = 1, . . . ,n. Fix an i ∈ {1, . . . ,n} and consider a short

exact sequence σ : 0 → R → X → R
xbiR

→ 0 in Ext1R
(

R
xbiR

,R
)φ
. By the structure theorem
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of modules over a PID, we also have X ∼= R⊕s ⊕
(
⊕t

j=1
R

xajR

)
, where aj > 0. As R is an

integral domain and R
xbiR

and R
xajR

are all torsion R-modules, so calculating rank along

the short exact sequence σ, we obtain s = 1. Moreover, 1+ t = s+ t = μ(X) ≤ 2, since μ

is subadditive. Thus, t ≤ 1. If t = 0, then we obtain σ : 0 → R → R⊕ R
x0R → R

xbiR
→ 0.

Since σ is φ-additive, by using Lemma 4.12 with the functor λR

(
R
mc ⊗R−

)
, we obtain that

σ⊗ R
mc = σ⊗ R

xcR is short exact. As c ≥ bi > 0, we obtain a contradiction from Lemma

5.1.15. Thus, t= 1. So, we get X ∼=R⊕ R
xaR for some a= aj . Thus, we have the short exact

sequence σ : 0→R→R⊕ R
xaR → R

xbiR
→ 0.

Since c ≥ ��(L) = max1≤i≤n bi, we have c ≥ bi for all i = 1, . . . ,n. Hence, by applying

Lemma 5.1.15 on σ, we get that σ is split exact. Since σ is an arbitrary element

of Ext1R
(

R
xbiR

,R
)φ
, we get Ext1R

(
R

xbiR
,R

)φ
= 0 for all i = 1, . . . ,n. This implies that

Ext1R (L,R)
φ
= 0, so Ext1R (L,F )

φ
= 0.

Taking L= k and c= 1 = ��(k), we see that φL(−) = μ(−) in Proposition 5.1.16. So, we

also get another proof of Corollary 5.1.4 in dimension 1.

Next, we compare Ext1R(M,R)μ with Ext1R(M,R). In arbitrary dimension, we only

consider this for local Cohen–Macaulay rings of minimal multiplicity. We first record some

general preliminary lemmas.

Lemma 5.1.17. Let (R,m,k) be a local ring such that m2 = 0 and m �= 0. Let e := μ(m).

Then μ(ωR) = e, μ(ΩRωR) = e2−1, and ΩRωR
∼= k⊕(e2−1).

Proof. Since m2 = 0 and m �= 0, we have m⊆ (0 :R m)�R. Hence, m= (0 :R m). Then we

have μ(ωR) = r(R) = dimk(0 :R m) = dimkm=dimk

(
m

m2

)
= μ(m) = e. Also, note that λ(R) =

λ
(

R
m2

)
= λ

(
R
m

)
+λ

(
m

m2

)
= 1+μ(m). Next, consider the short exact sequence 0→ ΩRωR →

R⊕μ(ωR) →ωR → 0, so ΩRωR ⊆mR⊕μ(ωR). Hence,mΩRωR =0. This implies that μ(ΩRωR)=

λ
(

ΩRωR

mΩRωR

)
= λ(ΩRωR) = λ(R⊕μ(ωR))− λ(ωR) = μ(ωR)λ(R)− λ(R) = λ(R)(μ(ωR)− 1) =

λ(R)(μ(m)− 1) = (1+μ(m))(μ(m)− 1) = e2− 1, where λ(ωR) = λ(R) follows from Matlis

duality.

Lemma 5.1.18. Let (R,m,k) be a local ring, and let M be a finitely generated R-module.

If x is M-regular, then ΩRM
xΩRM

∼=ΩR/xR

(
M
xM

)
.

Proof. Since x is M -regular, we have TorR1 (M, R
xR) = 0. Hence, tensoring the short

exact sequence 0 → ΩRM → R⊕μR(M) → M → 0 with R/xR, we get the exact sequence

0 → ΩRM
xΩRM → ( R

xR)⊕μR(M) → M
xM → 0. Since μR(M) = μ R

xR
( M
xM ), we have ΩRM

xΩRM
∼=

ΩR/xR

(
M
xM

)
.

5.1.19. Since μR(−) = λR

(
(−)

m(−)

)
, it follows by 4.3 that μR((−)) = μS(S ⊗R (−)),

where S = R[X]m[X]. Since tensoring with S preserves exactness, so tensoring a minimal

free resolution (F•,∂•) of an R-module M with S and remembering S⊗∂ now have entries

in mS, the maximal ideal of S, we see that S⊗RΩRM ∼= ΩS(S⊗S M). Also, if ωR exists,

then owing to the fact that S/mS is a field, we see that ωS also exists and ωS
∼= S⊗RωR by

[3, Th. 3.3.14(a)]. Hence, S⊗RHomR(−,ωR)∼=HomS (S⊗R (−),ωS). Finally, we also have

r(R) = r(S) by [3, Prop. 1.2.16(b)].

Proposition 5.1.20. Let (R,m,k) be a local Cohen–Macaulay ring of minimal multi-

plicity admitting a canonical module ωR, and let m �= 0. Then μ((ΩRωR)
†) = r(R)2−1.
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Proof. Due to 5.1.19, we may pass to the faithfully flat extension S := R[X]m[X] and

assume that the residue field is infinite.

We will prove the claim by induction on dimR= d. First, let d= 0. Since R has minimal

multiplicity, we have m2 = 0. Hence, by Lemma 5.1.17, we get that ΩRωR
∼= k⊕(r(R)2−1).

This implies (ΩRωR)
† ∼= k⊕(r(R)2−1), so μ((ΩRωR)

†) = r(R)2− 1. Now, let dimR = d ≥ 1,

and let the claim be true for rings with dimension d− 1. Let x ∈ m be such that m2 =

(x,x1, ...,xd−1)m (see [3, Exer. 4.6.14(c)]). So, R
xR has minimal multiplicity. Now, we have

(ΩRωR)
†

x(ΩRωR)†
∼=
(

ΩRωR

xΩRωR

)†
∼=
(
Ω R

xR

(
ωR

xωR

))†
∼=
(
Ω R

xR
ω R

xR

)†
,

where the first isomorphism follows from [3, Prop. 3.3.3(a)], and the second isomorphism

is by Lemma 5.1.18. So,

μR((ΩRωR)
†) = μ R

xR

(
(ΩRωR)

†

x(ΩRωR)†

)
= μ R

xR

((
Ω R

xR
ω R

xR

)†)

= r

(
R

xR

)2

−1 [By induction hypothesis]

= r(R)2−1.

Proposition 5.1.21. Let (R,m,k) be a local Cohen–Macaulay ring of minimal mul-

tiplicity admitting a canonical module ωR. Then the exact sequence 0 → R → ω
⊕μ(ωR)
R →

(ΩRωR)
† → 0 is μ-additive.

Proof. Consider the exact sequence 0 → ΩRωR → R⊕μ(ωR) → ωR → 0. Since

Ext1R(ωR,ωR) = 0, we have the exact sequence 0 → R → ω
⊕μ(ωR)
R → (ΩRωR)

† → 0. From

Proposition 5.1.20, we have μ((ΩRωR)
†) = r(R)2−1 = μ(ωR)

2−μ(R) = μ(ω
⊕μ(ωR)
R )−μ(R).

Hence, 0→R→ ω
⊕μ(ωR)
R → (ΩRωR)

† → 0 is μ-additive.

Proposition 5.1.22. Let (R,m,k) be a local Cohen–Macaulay ring of minimal multi-

plicity. Then Ext1R(M,F ) = Ext1R(M,F )μ for any maximal Cohen–Macaulay R-module M

and any finitely generated free R-module F.

Proof. By Lemma 2.4, it is enough to prove the claim for F =R.

We first consider the case when R has a canonical module ωR. Consider the μ-additive

(by Proposition 5.1.21) exact sequence σ : 0 → R → ω
⊕μ(ωR)
R → (ΩRωR)

† → 0. Applying

HomR(M,−) to σ, we get the following part of a commutative diagram of exact sequences

by Corollary 3.9:

HomR(M,(ΩRωR)†) Ext1R(M,R) Ext1R(M,ω
⊕μ(ωR)
R )

HomR(M,(ΩRωR)†) Ext1R(M,R)μ Ext1R(M,ω
⊕μ(ωR)
R )μ

Since ωR has finite injective dimension, we have Ext1R(M,ω
⊕μ(ωR)
R ) = 0 by [3, Exer. 3.1.24].

So, Ext1R(M,ω
⊕μ(ωR)
R )μ = 0 as well. Hence, we get the following commutative diagram:
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HomR(M,(ΩRωR)†) Ext1R(M,R) 0

HomR(M,(ΩRωR)†) Ext1R(M,R)μ 0

f

g

h

Thus, h◦g = f is surjective, so h is surjective. Since h is the natural inclusion map, we have

Ext1R(M,R) = Ext1R(M,R)μ.

Now, we consider the general case. Since Ext1R(M,R)μ ⊆ Ext1R(M,R), it is enough to

prove the other inclusion. So, let σ : 0→R→X →M → 0 be an exact sequence. We need

to show σ is μ-additive. Now, consider the completion σ̂ : 0→ R̂ → X̂ → M̂ → 0. Since R̂

is Cohen–Macaulay, having minimal multiplicity, admitting a canonical module, and M̂

is maximal Cohen–Macaulay over R̂, by the first part of the proof, we get Ext1
̂R
(M̂,R̂) =

Ext1
̂R
(M̂,R̂)μ. Thus, [σ̂] ∈ Ext1

̂R
(M̂,R̂) = Ext1

̂R
(M̂,R̂)μ. Hence, σ̂ is μ-additive. Since the

number of generators does not change under completion, we get σ is μ-additive, which is

what we wanted to prove.

Corollary 5.1.23. Let (R,m,k) be a local Cohen–Macaulay ring of dimension d and

minimal multiplicity. If Ext1R(Ω
i+d
R k,R)μ = 0 for some i≥ 0, then R is a hypersurface.

Proof. By Proposition 5.1.22, we have Extd+i+1
R (k,R)∼=Ext1R(Ω

d+i
R k,R) = Ext1R(Ω

d+i
R k,

R)μ = 0. Hence, R has finite injective dimension by [32, II, Th. 2], so R is Gorenstein. Since

R has minimal multiplicity, R is a hypersurface.

One can also detect when a local ring has depth 0 by comparing Ext1R(M,R) to

Ext1R(M,R)μ as shown in the following proposition. In the following, Tr(−) stands for

Auslander transpose (see [27, Def. 12.3]).

Proposition 5.1.24. Let I be an ideal of a local ring (R,m,k). Then, Ext1R(Tr(R/I),R/

annR(I))
μ =mExt1R(Tr(R/I),R/annR(I)). Moreover, the following are equivalent:

(1) depthR= 0.

(2) Ext1R(M,F )μ = Ext1R(M,F ) for all finitely generated R-modules M and F, where F is

free.

(3) Ext1R(Trk,R)μ = Ext1R(Trk,R).

Proof. Since everywhere in this proposition the Auslander transpose is in the first

component of Ext1, our claim does not depend on the choice of Tr. First, we prove

Ext1R(Tr(R/I),R/annR(I))
μ = mExt1R(Tr(R/I),R/annR(I)). We may assume Tr(R/I)

is non-free. Dualizing the exact sequence R⊕μ(I) → R
π−→ R/I → 0 by R, we get

0 → HomR(R/I,R)
π∗
−→ R → R⊕μ(I) → Tr(R/I) → 0. Under the natural identification

HomR(R/I,R) ∼= annR(I), the map HomR(R/I,R)
π∗
−→ R can be identified with the

inclusion map annR(I)→R, giving us 0→ annR(I)→R→R⊕μ(I) →Tr(R/I)→ 0. Hence,

we get an exact sequence 0→R/annR(I)→R⊕μ(I) →Tr(R/I)→ 0. Since Tr(R/I) is non-

free, this sequence gives us ΩRTr(R/I)∼=R/annR(I) and the first Betti number of Tr(R/I)

is 1. Hence, Ext1R(Tr(R/I),R/annR(I))
μ =mExt1R(Tr(R/I),R/annR(I)) by Lemma 5.1.3.

Now, we prove the equivalence of the three conditions as follows:

(1) =⇒ (2): Let σ : 0 → F → X → M → 0 be an exact sequence, where F is a finitely

generated free R-module. Since depthR = 0, we get that k embeds inside R, that is, k is

torsionless. Hence, Ext1R(Trk,R) = 0 by [27, Prop. 12.5]. Hence, Ext1R(Trk,F ) = 0. So, we
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get an exact sequence 0→ HomR(Trk,F )→ HomR(Trk,X)→ HomR(Trk,M)→ 0. Then,

by [27, Exer. 13.36], we get that the sequence 0→ F ⊗R k →X⊗R k →M ⊗R k → 0 is also

exact, which means σ is μ-additive. Thus, Ext1R(M,F )μ = Ext1R(M,F ).

(2) =⇒ (3) Obvious.

(3) =⇒ (1): Assume Ext1R(Trk,R)μ = Ext1R(Trk,R). Now, if possible let depthR > 0.

Then m contains a nonzero divisor, so annR(m) = 0. Then, by the first part of this propo-

sition, we get Ext1R(Trk,R)μ = mExt1R(Trk,R). Hence, Ext1R(Trk,R) = mExt1R(Trk,R).

Then, by Nakayama’s lemma, Ext1R(Trk,R) = 0. Hence, by [27, Prop. 12.5], we have an

embedding k → k∗∗. Consequently, k∗ �= 0, that is, depthR= 0.

For general local Cohen–Macaulay rings of dimension 1, we now show that if

Ext1R(M,R)μ = 0 for some I -Ulrich module [11, Def. 4.1] M ⊆Q(R) containing a nonzero

divisor of R, then I is principal. For this, we first need the following lemma. For the

remainder of this section, given R-submodules M,N of Q(R), by (M : N), we will mean

{x ∈Q(R) : xN ⊆M}.

Lemma 5.1.25. Let (R,m) be a local Cohen–Macaulay ring of dimension 1. Let I be an

m-primary ideal of R admitting a principal reduction a∈ I. Assume (I : I) =R. If M ⊆Q(R)

is an I-Ulrich module, and contains a nonzero divisor of R, then the natural inclusion map

HomR (M,(a))→HomR(M,I), induced by the inclusion (a)→ I, is an isomorphism.

Proof. The natural inclusion 0→ (a)
i−→ I induces the following commutative diagram:

0 HomR(M,(a)) HomR(M,I)

0 ((a) :M) (I :M)

α→{x �→αx} α→{x �→αx}

where the rows are natural inclusion maps, and the vertical arrows are isomorphisms due to

[26, Prop. 2.4(1)]. So, it is enough to show that (I :M)⊆ ((a) :M). Indeed, if x ∈ (I :M),

then xM ⊆ I. Since M is I -Ulrich, M is a B(I) = R

[
I

a

]
-module (see [11, Rem. 4.4 and

Th. 4.6]). Hence,
I

a
M ⊆ M , so

I

a
xM ⊆ xM ⊆ I. Thus,

1

a
xM ⊆ (I : I) = R, so xM ⊆ (a).

Therefore, x ∈ ((a) :M).

Proposition 5.1.26. Let (R,m) be a local Cohen–Macaulay ring of dimension 1. Let

I be an m-primary ideal of R admitting a principal reduction a ∈ I. Assume (I : I) = R.

If there exists an I-Ulrich module M ⊆Q(R), containing a nonzero divisor of R such that

Ext1R(M,R)μ = 0, then I ∼=R.

Proof. Consider the short exact sequence 0→ (a)
i−→ I → I/(a)→ 0. Since In+1 = aIn for

all n� 0 and I contains a nonzero divisor, we have that a is a nonzero divisor. So, (a)∼=R.

If a ∈mI, then In+1 ⊆mIIn =mIn+1, which implies that In+1 = 0 by Nakayama’s lemma.

This contradicts the fact that I is m-primary. So, a /∈ mI, and hence μ(I/(a)) = μ(I)− 1.

Thus, the above short exact sequence is μ-additive. So, by Corollary 3.9, we get the following

induced exact sequence:

0→HomR(M,(a))→HomR(M,I)→HomR(M,I/(a))→ Ext1R(M,(a))μ ∼= Ext1R(M,R)μ = 0,
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where the induced map HomR(M,(a))→HomR(M,I) is an isomorphism by Lemma 5.1.25.

Hence, we get HomR(M,I/(a)) = 0. Now, I/(a) has finite length. So, if I/(a) �= 0, then

Ass(I/(a)) = {m}. Hence, Ass(HomR(M,I/(a))) = Supp(M) ∩Ass(I/(a)) = Supp(M) ∩
{m} = {m}, contradicting HomR(M,I/(a)) = 0. Thus, we must have I/(a) = 0, that is,

I = (a)∼=R.

5.2 Some applications of the subfunctor Ext1UlI(R)(−,−)

Let I be an m-primary ideal. In this subsection, we give various applications of the

subfunctor Ext1UlsI(R)(−,−) : UlsI(R)op×UlsI(R)→mod R (see 4.9 for notation), where we

recall from Corollary 4.7 that UlsI(R) along with its all short exact sequences form an exact

subcategory of mod R. Hence, Ext1UlsI(R)(−,−) : UlsI(R)op×UlsI(R)→mod R is a subfunctor

of Ext1R(−,−) : UlsI(R)op×UlsI(R)→mod R by Proposition 3.8.

We begin by observing a general connection between Ext1R(M,N) and Ext1R(M,N)νI ,

where M,N ∈mod R and νI(−) := λ((−)⊗RR/I) : mod R→ Z and (see Definition 4.10 for

notation of Ext1R(−,−)φ).

Lemma 5.2.1. Let (R,m) be a Noetherian local ring, and let I be an m-primary ideal.

Then, I Ext1R(M,N)⊆ Ext1R(M,N)νI for all M,N ∈mod R.

Proof. Let σ : 0→N →X →M → 0 be a short exact sequence in I Ext1R(M,N). Then

σ⊗RR/I splits by [36, Th. 1.1], so M/IM ⊕N/IN ∼=X/IX. Hence, taking length, we get

λ(M/IM)+λ(N/IN) = λ(X/IX), so σ is νI-additive.

This allows us to prove a general connection between Ext1UlsI(R)(M,N) and Ext1R(M,N)νI ,

when M,N ∈UlsI(R) (recall the definition of UlsI(R) from Definition 4.5).

Lemma 5.2.2. Let (R,m) be a local ring, let s ≥ 0 be an integer, and let I be an

m-primary ideal. Then, Ext1R(M,N)νI = Ext1UlsI(R)(M,N) for all M,N ∈ UlsI(R). So, in

particular, IExt1R(M,N)⊆ Ext1UlsI(R)(M,N) for all M,N ∈UlsI(R).

Proof. Let M,N ∈UlsI(R), and let σ : 0→N →X →M → 0 be a short exact sequence of

R-modules. ThenX ∈CMs(R) (see 4.2), and λ(M/IM)+λ(N/IN)= eR(I,M)+eR(I,N)=

eR(I,X). Now, σ ∈ Ext1R(M,N)νI , if and only if λ(X/IX) = λ(M/IM)+λ(N/IN), if and

only if λ(X/IX) = eR(I,X), if and only if X ∈ UlsI(R) if and only if σ ∈ Ext1UlsI(R)(M,N).

This proves the desired equality Ext1R(M,N)νI =Ext1UlsI(R)(M,N). The last inclusion in the

statement now follows from this and Lemma 5.2.1.

When R is Cohen–Macaulay of dimension 1 and M,N ∈ UlI(R), then one can improve

the inclusion IExt1R(M,N)⊆Ext1UlI(R)(M,N) of Lemma 5.2.2 quite a bit. For this, we first

record a general lemma about trace ideals. In the following, we say that
a

b
∈ Q(R) is a

nonzero divisor if a is a nonzero divisor in R. Note that this does not depend on the choice

of representative, since a
b =

a′

b′ in Q(R) implies ab′ = a′b, and since b,b′ are nonzero divisors

in R, so a is a nonzero divisor in R if and only if a′ is a nonzero divisor in R.

Lemma 5.2.3. Let I be an ideal of R containing a nonzero divisor. Then the following

holds:

(1) There exist nonzero divisors x1, ...,xn ∈R such that I = (x1, ...,xn).

(2) There exist nonzero divisors y1, ...,yn ∈ (R : I) such that trR(I) =
∑n

i=1 yiI.

https://doi.org/10.1017/nmj.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.29


EXACT SUBCATEGORIES, SUBFUNCTORS OF EXT, AND SOME APPLICATIONS 411

Proof. (1) Let S be the collection of all nonzero divisors of R that are in I. Let 〈S〉 be the
ideal of R generated by S. Then I ⊆ (∪p∈Ass(R)p)∪〈S〉. By prime avoidance, either I ⊆ p for

some p∈Ass(R), or I ⊆ 〈S〉. But I contains a nonzero divisor, so I � p for every p∈Ass(R).

Hence, I ⊆ 〈S〉. Since S is a subset of I, we conclude I = 〈S〉. Since R is Noetherian, there

exist finitely many elements x1, ...,xn ∈ S such that I = (x1, ...,xn).

(2) We know that trR(I) = (R : I)I in Q(R) (see [26, Prop. 2.4(2)]). Pick a nonzero divisor

a ∈ I, so J = a(R : I)⊆R is an ideal of R. Then trR(I) = J( 1aI). Now, J contains a nonzero

divisor, so by part (1), we have J = (x1, ...,xn) for some nonzero divisors x1, ...,xn. Then

trR(I) =
∑n

i=1
1
axiI. Denoting yi :=

1
axi, we see that each yi ∈ Q(R) is a nonzero divisor,

and yi ∈ (R : I) as xi ∈ a(R : I). Hence the claim.

In the proof of the next result, for an m-primary ideal I, B(I) denotes blow-up of I in

the sense of [11, Def. 4.3 and Rem. 4.4], namely B(I) := ∪n>0(I
n :Q(R) I

n).

Proposition 5.2.4. Let (R,m) be a local Cohen–Macaulay ring of dimension 1, and let

I be an m-primary ideal of R. Then trR(I)Ext
1
R(M,N) ⊆ Ext1UlI(R)(M,N) for all M,N ∈

UlI(R).

Proof. Let M,N ∈ UlI(R), and let a ∈ (R : I) be a nonzero divisor. Then aI is an

m-primary ideal of R and B(I) = B(aI). So, UlI(R) = UlaI(R) by [11, Prop. 4.24].

Hence, for every nonzero divisor a ∈ (R : I), we have aIExt1R(M,N)⊆ Ext1UlI(R)(M,N) by

Lemma 5.2.2. Now, by Lemma 5.2.3, there exist nonzero divisors y1, ...,yn ∈ (R : I) such that

trR(I) =
∑n

i=1 yiI. Thus, trR(I)Ext
1
R(M,N) =

∑n
i=1 yiIExt

1
R(M,N)⊆ Ext1UlI(R)(M,N).

When s = 1, depthR > 0, and I = m (so νI(−) = μ(−)), the inclusion IExt1R(M,N) ⊆
Ext1UlsI(R)(M,N) of Lemma 5.2.2 is actually an equality as we prove next. For this, we first

record an easy lemma about flat extensions.

Lemma 5.2.5. Let R→ S be a flat extension of rings. Let M be an R-module, and let I

an ideal of R. Then, the following holds:

(1) S⊗R (IM) = (IS)(S⊗RM) when identified as submodules of S⊗RM .

(2) If N ⊆M is an R-submodule, S is a faithfully flat extension of R, and S⊗RM =S⊗RN ,

then M =N .

Proof. (1) Consider the exact sequence 0 → IM → M → M/IM → 0, which after

tensoring with S gives 0→ S⊗R (IM)→ S⊗RM → S⊗RM/IM → 0. Now, S⊗RM/IM ∼=
S ⊗R (M ⊗R R/I) ∼= (S ⊗R M)⊗R R/I ∼= (S ⊗R M)/I(S ⊗R M). Now, by the natural S -

module structure on S ⊗R M , we see that I(S ⊗R M) = (IS)(S ⊗R M). Thus, we get

the exact sequence 0 → S ⊗R (IM) → S ⊗R M → (S ⊗R M)/(IS)(S ⊗R M) → 0, and by

naturality of the isomorphisms, we see that the map S⊗RM → (S⊗RM)/(IS)(S⊗RM)

in the exact sequence has kernel (IS)(S⊗RM). Hence, S⊗R (IM) = (IS)(S⊗RM).

(2) Tensoring the exact sequence 0→N →M →M/N → 0 with S and using S⊗RM =

S ⊗R N , we get (M/N)⊗R S = 0. Since S is faithfully flat, we have M/N = 0. Hence,

M =N .

Now, we prove the desired equality between mExt1R(M,N) and Ext1Ul1(R)(M,N), when

R has positive depth.
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Proposition 5.2.6. Let (R,m,k) be a local ring of positive depth. Let M,N ∈ Ul1(R).

Then, the following holds:

(1) We always have mExt1R(M,N) = Ext1Ul1(R)(M,N).

(2) If R is moreover Cohen–Macaulay of dimension 1 (so Ul1(R) = Ul(R)) and if x ∈m is

a minimal reduction of m, then xExt1R(M,N) = Ext1Ul(R)(M,N).

Proof. (1) Due to Lemma 5.2.2, we only need to prove Ext1Ul1(R)(M,N)⊆mExt1R(M,N).

We may assume M,N �= 0.

First, we assume that the residue field is infinite. Let σ : 0 → N → X → M → 0 be a

short exact sequence such that X ∈Ul1(R). Choose x ∈m to be R⊕M ⊕N ⊕X-superficial

(which exists by [24, Prop. 8.5.7], since we are assuming R has infinite residue field). Now,

depthR(R⊕M⊕N⊕X)= inf{depthR,depthRM,depthRN,depthRX}> 0, so x isR⊕M⊕
N ⊕X-regular by [24, Lem. 8.5.4]. Hence, x ∈m is regular on R,M , and N, and superficial

on M,N , and X. Thus, M/xM,N/xN,X/xX are zero-dimensional Ulrich modules by [21,

Prop. 2.2(4)], so these are k -vector spaces by [21, Prop. 2.2(1)]. Hence, σ⊗RR/xR, being

a short exact sequence of k -vector spaces, is split exact. Since x is R,M,N -regular, by [36,

Prop. 2.8], we have σ ∈ xExt1R(M,N)⊆mExt1R(M,N).

Now, we prove the general case. This part will use extensively that Ext1Ul1(R)(M,N) is a

submodule of Ext1R(M,N), where M,N ∈ Ul1(R). Consider the faithfully flat extension

of R as follows: S := R[X]m[X], with maximal ideal mS, and infinite residue field.

Since we already know, mExt1R(M,N) ⊆ Ext1Ul1(R)(M,N) by Lemma 5.2.2 and since

S is faithfully flat, it is enough to prove S ⊗R mExt1R(M,N) = S ⊗R Ext1Ul1(R)(M,N)

(by Lemma 5.2.5(2)). Now, mExt1R(M,N) ⊆ Ext1Ul1(R)(M,N), with flatness of S, already

implies S ⊗R mExt1R(M,N) ⊆ S ⊗R Ext1Ul1(R)(M,N). So, to prove equality, it is enough

to prove that S⊗R Ext1Ul1(R)(M,N) ⊆ S⊗RmExt1R(M,N). Now, due to Lemma 5.2.5(1),

it is enough to prove S ⊗R Ext1Ul1(R)(M,N) ⊆ (mS)(S ⊗R Ext1R(M,N)), and the latter

object here is naturally identified with (mS)Ext1S(S⊗R M,S⊗R N). Since the S -module

S⊗RExt1Ul1(R)(M,N) is generated by 1⊗Rσ as σ runs over all elements of Ext1Ul1(R)(M,N),

we need to prove that 1⊗R σ ∈ (mS)Ext1S(S⊗R M,S⊗R N) for all σ ∈ Ext1Ul1(R)(M,N).

So, let σ : 0→ N →X →M → 0 be a short exact sequence such that X ∈ Ul1(R). Then,

1⊗R σ ∈ S⊗R Ext1Ul1(R)(M,N) ⊆ S⊗R Ext1R(M,N) ∼= Ext1S(S⊗RM,S⊗RN) is naturally

identified with the exact sequence S ⊗R σ : 0 → S ⊗R N → S ⊗R X → S ⊗R M → 0 in

Ext1S(S⊗R M,S⊗R N). Now, S⊗R σ is a short exact sequence of modules in Ul1(S) by

[21, Prop. 2.2(3)]. Hence, 1⊗R σ ∈ Ext1Ul1(S)(S⊗R M,S⊗R N). Since S also has positive

depth and infinite residue field, by the proof of the infinite residue field case, we get

1⊗Rσ ∈Ext1Ul1(S)(S⊗RM,S⊗RN)⊆ (mS)Ext1S(S⊗RM,S⊗RN), which is what we wanted

to prove.

(2) Due to Lemma 5.2.2, we only need to prove Ext1Ul(R)(M,N) ⊆ xExt1R(M,N). So,

let σ : 0 → N → X → M → 0 be a short exact sequence such that X ∈ Ul(R). Since xR

is a reduction of m, we have xR is m-primary. Hence, x is R-regular, so x is M,N,X-

regular. Also, mM = xM,mN = xN,mX = xX. So, σ⊗R R/xR : 0 → N/xN → X/xX →
M/xM → 0 is an exact sequence of k -vector spaces. Hence, σ⊗R R/xR is split exact.

Since x is R,M,N,X-regular, by [36, Prop. 2.8], we have σ ∈ xExt1R(M,N). Thus, we get

Ext1Ul(R)(M,N)⊆ xExt1R(M,N).
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Following is an interesting consequence of Proposition 5.2.6. Here, for R-modules X,Y ,

we denote by X ∗Y the collection of all R-modules Z that fit into a short exact sequence

0→X → Z → Y → 0.

Corollary 5.2.7. Let (R,m) be a local one-dimensional Cohen–Macaulay ring. Then,

the following are equivalent:

(1) R is regular.

(2) Ul(R) is closed under taking extensions.

(3) There exists M,N ∈Ul(R) such that N is faithful, M �= 0, and N ∗M ⊆Ul(R).

Proof. (1) =⇒ (2): If R is regular, then Ul(R) = CM(R), which is closed under taking

extensions.

(2) =⇒ (3): One can take M =N =mn for some n� 0.

(3) =⇒ (1): By hypothesis, we get Ext1R(M,N)=Ext1Ul(R)(M,N). Then from Proposition

5.2.6 (remembering Ul1(R) = Ul(R) in our case), we get Ext1R(M,N) =mExt1R(M,N). So,

by Nakayama’s lemma, we get Ext1R(M,N) = 0. By [11, Th. 4.6] (see also [12, Lem. 5.2]), we

get M ∼= mM and N ∼=mN . So, Ext1R(mM,mN) = 0. Hence, pdR(mM)<∞ by [12, Prop.

2.6]. Thus, TorR�0(m,mM) = 0. Since 0 �=M , we have mM ∼=M �= 0. Thus, pdR(m)<∞ by

[12, Cor. 3.17]. Hence, R is regular.

We mention in passing that when R is local Cohen–Macaulay of minimal multiplicity,

(2) =⇒ (1) of Corollary 5.2.7 also follows from [13, Prop. 3.2(5)].

Before proceeding further with applications to UlI(R), we outline an alternative proof

that UlI(R) is an exact subcategory of mod R when R is a local one-dimensional Cohen–

Macaulay ring, via birational extensions. For this, we first record some preliminary results.

The following is easy to see from the definition of an exact category.

Lemma 5.2.8. Let R,S be two commutative rings such that R→ S is a ring extension.

Let (X ,E) be a strictly full exact subcategory of Mod S. Assume that X is closed under

R-linear isomorphism of R-modules. Also, assume that every R-linear map between any two

modules in X is S-linear, that is, HomR(M,N) = HomS(M,N) for all M,N ∈ X . Then,

(X ,E) is a strictly full exact subcategory of Mod R.

For the consequences of Lemma 5.2.8, we need the following lemma, which is essentially

[27, Prop. 4.14(i)]. Before proceeding, we note that for a birational extension R⊆ S ⊆Q(R)

and an S -module N, being torsion-free as an S -module and as an R-module are the same.

Lemma 5.2.9. Let R be a commutative Noetherian ring, and let R⊆ S ⊆Q(R) be a ring

extension. Then, HomR(M,N) = HomS(M,N) for all M,N ∈Mod(S) where N is torsion-

free S-module.

Proof. HomS(M,N) ⊆ HomR(M,N) is clear. Hence, it is enough to show that

HomR(M,N) ⊆ HomS(M,N). Let
a

b
∈ S ⊆ Q(R), where a,b ∈ R, so b ∈ R is a nonzero

divisor. Let m ∈ M and f ∈ HomR(M,N). Then b
(
f
(a
b
m
)
− a

b
f(m)

)
= bf

(a
b
m
)
−

af(m) = f
(
b
a

b
m
)
−af(m) = f(am)−af(m) = 0. Since N is torsion-free and b is a nonzero
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divisor on R, it is a nonzero divisor on N. So, f
(a
b
m
)
=

a

b
f(m). As

a

b
∈ S,m ∈ M , and

f ∈HomR(M,N) were arbitrary, we conclude HomR(M,N)⊆HomS(M,N).

Now, as a consequence, we can deduce the following.

Proposition 5.2.10. Let R ⊆ S be a birational extension (S ⊆Q(R)) of commutative

rings. Let SR be the standard exact structure on mod R. Let X be the strictly full subcategory

of ModS consisting of all torsion-free S-modules. Then it holds that SR|X = SS |X , and

(X ,SR|X ) is a strictly full exact subcategory of mod R, and (X ∩mod R,SR|X∩mod R) is

an exact subcategory of Mod R (hence, also of mod R).

Proof. By definition, SR|mod R∩X = SR|mod R ∩SR|X . Since (mod R,SR|mod R) is an

exact subcategory of Mod R, the second part of the statement would readily follow from

the first part of the statement and Lemma 3.2. First, we show that X is strictly full in modR.

If M,N are two R-modules and f :M →N is an R-linear isomorphism and N is moreover a

torsion-free S -module extending its R-module structure, thenM has an S -module structure,

extending its R-module structure, given by s ·m := f−1(sf(m)) for all s ∈ S,m ∈M . Note

that, with this structure, M is moreover a torsion-free S -module. Indeed, let s ∈ S be a

nonzero divisor such that s ·m=0. Then sf(m) = f(s ·m) = 0, so f(m) = 0 as N is S -torsion-

free. Thus, m = 0 as f is an isomorphism. Moreover, HomR(M,N) = HomS(M,N) for all

torsion-free S -modules M,N by Lemma 5.2.9. Consequently, we notice that SR|X = SS |X .

So, to show that (X ,SR|X ) is an exact subcategory of Mod R, it is enough to show that

(X ,SS |X ) is an exact subcategory of Mod S (by Lemma 5.2.8). Now, it is well known that

for any ring S, the subcategory of all S -torsion-free modules is closed under extensions in

Mod S. Hence, (X ,SS |X ) is an exact subcategory of Mod S by Proposition 3.5.

Corollary 5.2.11. Let R be a local Cohen–Macaulay ring of dimension 1. Let R⊆ S

be a finite birational extension. Then, (CM(S),SR|CM(S)) is a strictly full exact subcategory

of mod R.

Proof. We note that modS =Mod S ∩mod R. Since S is also one-dimensional Cohen–

Macaulay, we have CM(S) = collection of all finitely generated torsion-free S -modules

= collection of all torsion-free S -modules ∩mod R. Hence, the conclusion follows from

Proposition 5.2.10.

When (R,m) is a local Cohen–Macaulay ring of dimension 1 and I an m-primary ideal,

then considering the finite birational extension R⊆B(I), where B(I) denotes blow-up of I

[11, Def. 4.3 and Rem. 4.4], it is shown in [11, Th. 4.6] that CM(B(I)) = UlI(R). Thus, in

this particular case, we get another proof of the fact that UlI(R) is an exact subcategory

of mod R, which is very different from Corollary 4.7.

For further applications, we first record a lemma connecting Ext1UlI(R)(−,−) to

Ext1B(I)(−,−). Here, we will keep in mind that when dimR= 1, we write Ul1I(R) = UlI(R)

in our notation (see Definition 4.5).

Lemma 5.2.12. Let (R,m) be a local Cohen–Macaulay ring of dimension 1. Let I be

an m-primary ideal of R. Then, for all I-Ulrich modules M,N , we have a natural map

Ext1UlI(R)(M,N)
[σ]R→[σ]B(I)−−−−−−−−→ Ext1B(I)(M,N), which is an isomorphism of R-modules.

Proof. We recall that Ext1UlI(R)(M,N) is the equivalence class of all short exact

sequences 0→ N →X →M → 0 of I -Ulrich modules and R-linear maps. Since UlI(R) =
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CM(B(I)) [11, Th. 4.6], any R-linear map between two Ulrich modules is B(I)-linear

(see [27, Prop. 4.14(i)]). Hence, any short exact sequence 0 → N → X → M → 0 of

I -Ulrich modules and R-linear maps is a short exact sequence of maximal Cohen–Macaulay

B(I)-modules and B(I)-linear maps, and any R-linear morphism between two short exact

sequences of I -Ulrich R-modules is actually a B(I)-morphism. This proves the well-

definedness of the map. Injectivity is similarly obvious. To prove surjectivity, we note that

if Y is a B(I)-module, and 0→N → Y →M → 0 is a short exact sequence in Mod(B(I)),

then M,N ∈ CM(B(I)) implies Y ∈ CM(B(I)). Hence, Y ∈ UlI(R). Since B(I)-linear

maps are R-linear, this gives a pre-image in Ext1UlI(R)(M,N). Finally, to show the map is

R-linear, we recall that the Baer-sum structure and multiplication by R on Ext1 are given

by certain pullback and pushout diagrams. So, it is enough to prove that given an exact

sequence σ : 0→ N →X →M → 0 in UlI(R) and R-linear maps f : N → N ′,g :M ′ →M

with M ′,N ′ ∈ UlI(R), the pushout and pullback of σ by f and g in mod R, respectively,

are actually pushout and pullback in mod(B(I)). Let us look at the pushout case, as the

pullback case is similar. If we have the following pushout diagram:

σ : 0 N X M 0

0 N ′ Y M 0

f

then in the bottom row, we again have Y ∈ UlI(R), since UlI(R) along with all its short

exact sequences is an exact subcategory of mod R by Corollary 4.7. Hence, in the above

diagram, all the modules are in UlI(R) = CM(B(I)), so all the R-linear maps are moreover

B(I)-linear. Since CM(B(I)) is an extension closed subcategory of mod(B(I)), it is an

exact subcategory of mod(B(I)) by Proposition 3.5. Thus, this is a pushout diagram in

mod(B(I)) as well by [6, Prop. 2.12]. This is what we wanted to show.

Corollary 5.2.13. Let (R,m) be a local Cohen–Macaulay ring of dimension 1, and

let I be an m-primary ideal of R. If M,N ∈ UlI(R) are such that Ext1B(I)(M,N) = 0, then

trR(I)Ext
1
R(M,N) = 0.

Proof. This follows from Lemma 5.2.12 and Proposition 5.2.4.

In the following, for a module X over a ring R, by addR(X), we denote the collection of

all R-modules Y such that there exist an R-module Z and an isomorphism of R-modules

Y ⊕Z ∼=X⊕n for some integer n≥ 0.

Theorem 5.2.14. Let (R,m) be a local Cohen–Macaulay ring of dimension 1. Let I be

an m-primary ideal of R. Then the following hold:

(1) If M ∈ addR(B(I)), then trR(I)Ext
1
R(M,UlI(R)) = 0.

(2) Let M ∈Ul(R). Then M ∈ addR(B(m)) if and only if mExt1R(M,Ul(R)) = 0.

(3) If B(I) is a Gorenstein ring, then trR(I)Ext
1
R(UlI(R),B(I)) = 0. The converse holds

when I =m.

Proof. (1) Denote S :=B(I). If M ∈ addR(S)(⊆UlI(R)), then there exist X ∈mod(R)

and an isomorphism of R-modules M ⊕X ∼= B(I)⊕n for some n ≥ 0. Then M,X are

I -Ulrich, so M,X ∈ CM(S). Hence, the isomorphism is also S -linear by [27, Prop. 4.14(i)],

so M is a projective S -module. Thus, Ext1S(M,N) = 0 for all N ∈ CM(S) = UlI(R). Now,

the conclusion follows from Corollary 5.2.13.
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(2) If M ∈ addR(B(m)), then the conclusion follows by (1) as m ⊆ trR(m). So, assume

M ∈ Ul(R) and mExt1R(M,N) = 0 for all N ∈ Ul(R). By Proposition 5.2.6, we then have

Ext1Ul(R)(M,N) = 0 for all N ∈Ul(R). Now, denote S =B(m). Then, by Lemma 5.2.12, we

have Ext1S(M,N) = 0 for all N ∈Ul(R) = CM(S). We know that, for any Cohen–Macaulay

ring S, and M ∈CM(S), we have Ext1S(M,CM(S)) = 0 if and only if M ∈ addS(S). Indeed,

one direction is clear since M ∈ addS(S) implies M is projective. For the converse, we notice

that as M is finitely generated over S, so we have a short exact sequence σ : 0 → M ′ →
S⊕n → M → 0 for some n > 0 and S -module M ′. Moreover, S being Cohen–Macaulay

implies M ′ ∈ CM(S), and now the vanishing of Ext1S(M,M ′) gives that the sequence σ

splits. Hence, M ∈ addS(S). Now, applying this observation to our scenario with S =B(m),

we get M ∈ addS(B(m)) = addR(B(m)), where this last equality follows from the fact that

direct summand of B(m) is in CM(B(m)) and consequently, R-linear maps are S -linear (see

[27, Prop. 4.14(i)]).

(3) Nothing to prove if R is regular, so we assume R is singular. If B(I) is a Gorenstein

ring, then Ext1B(I)(M,B(I)) = 0 for all M ∈ CM(B(I)) = UlI(R). Since B(I) is I -Ulrich,

by Lemma 5.2.12, we get Ext1UlI(R)(M,B(I)) = 0 for all M ∈ UlI(R). Then, by Corollary

5.2.13, we get trR(I)Ext
1
R(M,B(I)) = 0 for all M ∈ UlI(R). For the converse part,

assume I = m and mExt1R(M,B(m)) = 0 for all M ∈ Ul(R). Then, by Proposition 5.2.6,

we have Ext1Ul(R)(M,B(m)) = 0 for all M ∈ Ul(R). Hence, by Lemma 5.2.12, we have

Ext1B(m)(M,B(m)) = 0 for all M ∈ Ul(R) = CM(B(m)). Now, we note that for a finite-

dimensional Cohen–Macaulay ring S, Ext1S(M,S) = 0 for all M ∈ CM(S) if and only if

S is Gorenstein. Indeed, if S is Gorenstein, then the vanishing is clear by [3, Def. 3.1.18

and Props. 3.1.9 and 3.1.24]. Conversely, let d = dimS. Then, for every p ∈ Spec(S), we

have Ωd
S(S/p) ∈ CM(S) (by localizing and applying depth lemma). So, now the vanishing

of Extd+1
S (S/p,S)∼= Ext1S(Ω

d
S(S/p),S) for every p ∈ Spec(S) implies injdimS S <∞. Thus,

S is Gorenstein by [3, Def. 3.1.18 and Prop. 3.1.9]. Now, applying this observation to our

scenario with S =B(m), we get that B(m) is Gorenstein.

Since for one-dimensional local Cohen–Macaulay rings (R,m) of minimal multiplicity it

holds that B(m) = (m : m) ∼= m, the following corollary is an immediate consequence of

Theorem 5.2.14(3) and [20, Th. 5.1].

Corollary 5.2.15. Let (R,m) be a local Cohen–Macaulay ring of dimension 1 and

minimal multiplicity. Then, R is almost Gorenstein if and only if mExt1R(Ul(R),m) = 0.

Finally, we give one more application of Theorem 5.2.14(3), for which we first record an

easy observation.

Lemma 5.2.16. Let (R,m) be a local Cohen–Macaulay ring of dimension 1. Let I be an

m-primary ideal of R admitting a principal reduction x ∈ I. Then, m is I-Ulrich if and only

if m⊆ ((x) : I).

Proof. If I is principal, then all MCM modules are I -Ulrich. So, it is enough to assume

I is not principal. If m is I -Ulrich, then Im = xm (see [11, Prop. 4.5]). So, m ⊆ ((x) : I).

Conversely, let m ⊆ ((x) : I). Then, m ⊆ ((x) :R I). We claim that x /∈ mI. Since x ∈ I is

a principal reduction of I, we have In+1 = xIn for some n ≥ 1. Hence, if x ∈ mI, then

In+1 ⊆ mIn+1. So, In+1 = mIn+1. Hence, by Nakayama’s lemma, In+1 = 0, contradicting

I is m-primary. Thus, x ∈ I \mI. Since m ⊆ ((x) :R I) and I is not principal, we have

m⊆ (xm :R I) by Lemma 5.1.7. So, mI ⊆ xm. Hence, mI = xm, so m is I -Ulrich.
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Corollary 5.2.17. Let (R,m) be a local Cohen–Macaulay ring of dimension 1,

with infinite residue field, and minimal multiplicity, admitting a canonical module. If

mExt1R(Ul(R),m) = 0, then R admits a canonical ideal ω and B(ω) is Gorenstein.

Consequently, mExt1R(Ulω(R),B(ω)) = 0.

Proof. Let ω be a canonical module of R. We show that ω can be identified with an

ideal of R, m ⊆ trR(ω), and B(ω) is Gorenstein. Since R has minimal multiplicity and

mExt1R(Ul(R),m) = 0, R is almost Gorenstein by Corollary 5.2.15. Hence, m⊆ trR(ω) from

[22, Def. 2.2 and Prop. 6.1], so R is generically Gorenstein (see [22, Lem. 2.1]). Hence, ω can

be identified with an ideal of R by [3, Prop. 3.3.18]. Since R is almost Gorenstein, we have

m⊆ ((x) : ω) for some principal reduction x of ω (see [20, Setting 3.4 and Th. 3.11]). Thus,

m is ω-Ulrich by Lemma 5.2.16. So, m ∈ CM(B(ω)) by [11, Th. 4.6]. Hence, m⊆ trR(m)⊆
(R :Q(R) B(ω)) by [11, Th. 2.9]. Thus, the conductor cR(B(ω)) := (R :Q(R) B(ω)) of B(ω) is

either m or R. As R has minimal multiplicity, by using [3, Exercise 4.6.14(c)], we see that

cR(B(ω)) satisfies the condition (2) of [20, Cor. 3.8]. Thus, B(ω) is Gorenstein by [20, Cor.

3.8]. Now, the claim follows from Theorem 5.2.14(3).
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