
8
Reggeon exchange

We have discussed analytic properties of the partial-wave amplitude
f±
� (t). Further, having realized that moving singularities � = α(t) in the

complex angular momentum plane can be investigated also as singulari-
ties in the energy plane, t = t(�), we discussed how they appear from the
unphysical sheets, connected with the right (unitary) cuts of the ampli-
tude. We found that on the first unphysical sheet partial waves can have
only poles, i.e. the situation here turned out to be the same as for integer
angular momenta, � = n.

Recall that the picture we had for integer n was dominated by poles.
We put in particles (poles on the physical sheet), and they generated
singularities on other sheets linked to production thresholds of two or
more particles (or resonances).

It is clear that first the pole singularities must be studied. In non-
relativistic quantum mechanics, by increasing the interaction strength, I
can turn a resonance (a virtual state) into a real particle (a bound state).
In the theory of complex angular momenta the same phenomenon takes
place with the decrease of �: a resonance pole moves from the unphys-
ical sheet, through the tip of the unitary cut, onto the physical sheet,
see Fig. 7.4 above. In this sense � is akin to an interaction constant of
the non-relativistic theory. So, in this lecture we are going to discuss the
properties of Regge poles and the picture of the strong interactions in the
pole approximation.

As we shall see later, Regge poles generate branch cuts in the � plane, in
a manner similar to the generation of threshold branchings via unitarity
conditions by poles (particles) in the case of integer angular momenta.
The existence of these new branching singularities will seriously affect
some of the results of the present lecture.
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174 Reggeon exchange

8.1 Properties of the Regge poles. Factorization

In the previous lecture we have introduced two analytic functions f±
� (t).

What sort of amplitude corresponds to a single pole in the partial wave
of definite signature? Substituting the pole expression

f±
� (t) =

r±(t)
�− α±(t)

into the Sommerfeld–Watson integral (7.22) results in the following con-
tribution to the scattering amplitude in the s channel:

A±(s, t) = −π

2
r
2α + 1
sinπα

[Pα(−z) ± Pα(z)] , z = 1 +
2s

t− 4μ2
, (8.1)

where we have suppressed the signature label ± for the residue, r = r±(t)
and the trajectory, α = α±(t).

Let us look at the singularities of A+(s, t). The amplitude with a posi-
tive signature has poles at those t values for which α+(t) = 2n is an even
number. Assume, e.g. that α(t) = 0 at t = m2

0. This means that if t → m2
0,

the physical partial wave f0(t) tends to infinity. Indeed, near the pole we
have

f+
� (t) � r(t)

�− α(m2
0) − α′(m2

0)(t−m2
0)
,

and, since α(m2
0) = 0,

f0(t) �
r(m2

0)
α′(m2

0) · (m2
0 − t)

.

Then the pole term of A+(s, t),

A+
0 (s, t) =

r

α′
1

m2
0 − t

=
g

g

t

s σ = 0

coincides with the exchange diagram for a spin σ=0 particle (with residue
g2 = r/α′).

The next singularity of A+ appears at some t = m2
2 where α(m2

2) = 2:

A+
2 (s, t) =

r(m2
2)

α′(m2
2)

2α(m2
2) + 1

m2
2 − t

P2(z).
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8.1 Properties of the Regge poles. Factorization 175

This is, however, just the contribution of the diagram for a spin σ=2
particle exchange:

g

g
s σ = 2

t

= Γμ1μ2

dμ1μ2,μ3μ4

m2
2 − t

Γμ3μ4 = g2P2(cos Θt)
m2

2 − t
.

Hence, in the physical points of its proper signature, α+ = 2n, the tra-
jectory � = α+(t) reproduces the particle (resonance) exchange with even
spin values for the amplitude (8.1). Similarly, the contribution of the
Regge pole of negative signature A−(s, t) contains the exchange of odd
spin particles.

Let us note that a trivial generalization of a Feynman diagram

σ = g2 Pσ(z)
m2

σ − t
(8.2)

to the case of non-integer spin σ, based on the assumption that the mass
is a continuous function of the spin, m2

σ → m2(�), does not give a reggeon
amplitude (8.1). Indeed, the amplitude (8.2) has a pole for any � value,
whereas in the expression (8.1) the poles emerge in integer points only.
In addition, the Regge amplitude (8.1) bears a non-trivial complexity
due to the factor [Pα(−z) ± Pα(z)], which cannot be obtained by the
generalization (8.2) either.

The expression (8.1) can be considered as the contribution to the scat-
tering amplitude coming from the exchange of a ‘particle’ of variable spin –
a reggeon – with a propagator

[Pα(t)(−z) ± Pα(t)(z)]
sinπα(t)

instead of the usual
Pσ(z)
m2

σ − t
.

The analogy between the reggeon and the particles (resonances) will be
complete, if we find that the reggeon residue is factorizable. In this case
we will be able to speak not only about ‘propagation’ of the Regge pole
but also about the vertices of its ‘emission’ and ‘absorption’.

As in the case of resonances, the factorization is, essentially, a con-
sequence of unitarity. We presented a formal proof of factorization for
resonances by diagonalizing the S-matrix in Lecture 3. Let us show in
a more transparent way how factorization appears. Consider, e.g. three
different reactions

ππ → ππ, πK → πK, KK → KK. (8.3a)
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176 Reggeon exchange

For each amplitude (8.3a) its own partial waves can be introduced in the
t-channel:

ϕ�(ππ → ππ), g�(ππ → KK̄), h�(KK̄ → KK̄). (8.3b)

In the region 4μ2 < t < 16μ2 < 4m2
K there exists only one intermediate

state and the unitarity condition takes the simple form

Im

π

π

π

π π

ππ

= 1
2

π

t

π

π
, Imϕ�(t) = C� ϕ�(t)ϕ∗

� (t); (8.4a)

Im
π

π

K

t π

K

π π

KK

= 1
2

π
, Im g�(t) = C� ϕ�(t)g∗� (t); (8.4b)

Im

K

K K

t
= 1

2

π

π

K

K

K K

K

, Imh�(t) = C� g�(t)g∗� (t). (8.4c)

Here C� = τ(t− 4μ2)� with τ = ωc/16πkc the invariant phase-space vol-
ume (3.7) of the ππ state, and the factor (t− 4μ2)� appears owing to
the definition of the partial waves ϕ�, g�, h�, see (7.30). We have seen al-
ready that the unitarity conditions (8.4) can be continued onto arbitrary
complex � values by rewriting them in terms of discontinuities on the
cuts:

1
2i

[ϕ�(+) − ϕ�(−) ] = C�ϕ�(−)ϕ�(+), (8.5a)

1
2i

[ g�(+) − g�(−) ] = C�ϕ�(−)g�(+), (8.5b)

1
2i

[h�(+) − h�(−) ] = C�g�(−)g�(+), (8.5c)
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8.1 Properties of the Regge poles. Factorization 177

where (+) = t + iε, (−) = t− iε. Equations (8.5) allow us to move to
the first unphysical sheet and check there the singularities of the partial
amplitudes (see Lecture 7):

ϕ�(+) =
ϕ�(−)

1 − 2iC� ϕ�(−)
, (8.6a)

g�(+) =
g�(−)

1 − 2iC� ϕ�(−)
, (8.6b)

h�(+) = h�(−) +
2iC� g

2
� (−)

1 − 2iC� ϕ�(−)
. (8.6c)

For a certain t = t(�) (or equivalently � = α(t)) where the ππ partial wave
ϕ(−) on the unphysical sheet equals ϕ�(−) = 1/2iC�, every partial am-
plitude (8.6) acquires the same pole:

ϕ�(t) �
rππ(t)
�− α(t)

; g�(t) �
rπK(t)
�− α(t)

; h�(t) �
rKK(t)
�− α(t)

.

It easily follows from equations (8.6) that the residues of the amplitudes
in this pole satisfy the relation

rππ · rKK = r2
πK . (8.7a)

It is just this last expression (8.7a) which verifies the factorization of the
reggeon residue:

rππ = g̃2
π, rπK = g̃π g̃K , rKK = g̃2

K , (8.7b)

with g̃π and g̃K the coupling constants of the reggeon with particles.
Hence, the contribution of the Regge pole to our amplitudes is

A±
ππ(s, t) = −π

2
(2α + 1)[g̃π(t)]2 · [Pα(−zππ) ± Pα(zππ)]

sin(πα)

A±
πK(s, t) = −π

2
(2α + 1)g̃π(t)g̃K(t) · [Pα(−zπK) ± Pα(zπK)]

sin(πα)

A±
KK(s, t) = −π

2
(2α + 1)[g̃K(t)]2 · [Pα(−zKK) ± Pα(zKK)]

sin(πα)
.

Here zππ, zπK , and zKK are cosines of the t-channel scattering angles
of the corresponding reactions. Taking into account that at large s the
cosines also factorize,

zππ � s

2|p(t)
π |2

, zπK � s

2|p(t)
π ||p(t)

K |
, zKK � s

2|p(t)
K |2

,
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178 Reggeon exchange

where ∣∣∣p(t)
π

∣∣∣ = 1
2

√
t− 4μ2,

∣∣∣p(t)
K

∣∣∣ = 1
2

√
t− 4m2

K ,

and that

Pα(zab) ∝ zαab ∼
sα∣∣∣p(t)

a

∣∣∣α ·
∣∣∣p(t)

b

∣∣∣α ,
we come to the main conclusion: Regge pole exchange can be described
by the diagram

s

t

ga

gb

a

b

= A±
ab(s, t)

s→∞= ga(t)gb(t)D±(s, t). (8.8a)

Here

D±(s, t) = −(−s)α
±(t) ± sα

±(t)

sinπα±(t)
= sα

±(t) · ξ±α (8.8b)

is the reggeon propagator,

ξ±α = −e−iπα±(t) ± 1
sinπα±(t)

(8.8c)

is called the signature factor, and ga(t) and gb(t) are the vertices of the
reggeon ‘emission’ and ‘absorption’.

For t values close to the mass squared of a real particle, the amplitude
(8.8) transforms into the corresponding Feynman diagram. Essentially,
we learned how to write the exchange for a particle whose spin depends
continuously on its ‘virtual mass’.

A characteristic feature of the reggeon propagator is its complexity.
The vertex functions g(t) and the trajectory α(t) are real for t < 4μ2.
The signature factor ξα(t) is, however, always complex:

ξ+
α(t) = i− cot

πα(t)
2

, ξ−α(t) = i + tan
πα(t)

2
. (8.9)

Near those integer � values where ξα has poles (α+ = 2n, α− = 2n + 1) it
is almost real (as it should be for a particle exchange). For integer � values
where ξα has no poles (α+ = 2n + 1, α− = 2n), i.e. in physical points of
an ‘alien’ signature, ξα = i and the amplitude is purely imaginary (as, for
example, in classical diffraction off a black target).
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8.2 Reggeon quantum numbers. The Pomeranchuk pole 179

Hence, although the reggeon has properties of the usual particles, it
differs from those essentially. Drawing a reggeon exchange, we have to
understand that it corresponds to some real states in the s-channel. This
means that it is not an elementary object but a complex one (an ensemble
of diagrams).

What these diagrams look like, what is an s-channel image of a reggeon
exchange, we will investigate in Lecture 9 in detail.

8.2 Quantum numbers of reggeons. The Pomeranchuk pole

In the previous section we began to draw an analogy between a reggeon
and a particle, the spin of which depends on its mass continuously. How-
ever, usual particles possess also other characteristics namely, internal
quantum numbers such as parity P , charge conjugation C, isotopic spin
and its projection, I and I3, strangeness S, baryon number B, etc. Do
these exist for reggeons?

The answer is simple, and it is contained in the very origin of the
Regge poles. We have come to Regge poles by analytically continuing the
t-channel unitarity condition. This conditions is, however, diagonal not
only in the total angular momentum j but also with respect to arbitrary
conserved quantum numbers (that commute with j). This means that,
without noticing it, in fact we have obtained a Regge trajectory from
an amplitude with definite baryon charge, isospin, strangeness etc. in
the t-channel. Since the unitarity conditions for amplitudes with different
quantum numbers are continued independently, it is natural to expect
that the corresponding trajectories α(t) will also be different.

Consequently, definite quantum numbers can be assigned to every
Regge trajectory. That is, unless there is a special degeneracy, either ac-
cidental or following from some symmetry. (The isotopic invariance of
strong interactions may serve as an example of such a symmetry, which
leads to degenerate trajectories with different electric charges but be-
longing to one isotopic multiplet.) For t > 0 on each trajectory there are
only resonances with the same quantum numbers, differing only by their
spins.

Let us note that a particle situated on a Regge trajectory can be consid-
ered as a composite one, formed of two particles in the t-channel reaction.
One may ask whether all particles are placed on trajectories or if there are
also non-reggeized, elementary ones. We postpone the theoretical investi-
gation of this question to Lecture 11. Here we just sketch the experimental
situation.

Virtually all the well established resonances, both bosonic and fermionic
ones (fermionic Regge poles will be considered in Section 8.7), fit the
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ρ

 

Λ

t (Gev2)  
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N

3
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2

1

51

3

Fig. 8.1 Chew–Frautschi plots. Dot-dashed lines sample baryon trajectories
NI=1/2 and ΛI=0, the latter demonstrating degeneracy in signature.

Regge trajectories as demonstrated by Fig. 8.1. With a good accuracy,
the trajectories turn out to be linear, having approximately equal slopes
(these are the so-called Chew–Frautschi diagrams).

Extrapolating the trajectory to t = 0 on Fig. 8.1, we obtain a prediction
for the asymptotics of the scattering amplitude in the crossing channel.
Hence, an interesting possibility appears to verify directly the theory of
complex angular momenta.

π−

p pn n

π0 π0

s

tπ− As an example, let us consider the
pion–nucleon charge exchange reac-
tion π−p → π0n. At high energies s
the forward amplitude (t = 0) shows
a power growth:

A(s, 0) ∝ sα(0) = s0.57±0.02. (8.10)

In a system of two pions with isospin I = 1 the vector and tensor reso-
nances ρσ=1(770) and ρσ=3(1690) are well established. A straight line go-
ing through these points in Fig. 8.1 crosses the t=0 axis at j=α(0) � 0.5,
in a good agreement with (8.10).
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Fig. 8.2 Examples of meson Regge trajectories.

Some meson trajectories are displayed in Fig. 8.2. Series of ρ and a
mesons show signature degeneracy. The masses of isoscalars ω, f practi-
cally coincide with the masses of their respective isovector partners, ρ and
a, and obviously lie on the same line. Strange I = 1

2 mesons K∗ with spins
from 1 to 5 seem to be approximately degenerate in signature too. The
situation with mass spectra of unnatural parity mesons, like pseudoscalars
π and η, axial vector resonances, etc. is less clear.

The theory of complex angular momenta finds a striking confirmation
in the so-called ‘exotic’ reactions, when the quantum numbers of the t-
channel reaction are such that neither of the resonances can contribute.
For example, the reaction

p

_
K0

Ξ0

K +

A ∼ s−1.5 (8.11)

requires strangeness exchange S=2. Mesons with strangeness 2 were not
observed. (Note that their existence would contradict the quark model.)
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182 Reggeon exchange

Correspondingly, in the experiment the amplitude (8.11) falls rapidly with
energy. Even if a Regge trajectory with such quantum numbers exists, on
the Chew–Frautschi diagram Fig. 8.2 it must lie much lower than the
usual trajectories. This means that the corresponding resonances, if any,
would have much larger masses.

Thus, we came to the conclusion that a reggeon has all quantum num-
bers of usual particles (except spin), and, in addition, possesses a new
characteristic – the signature Pj = (−1)j .

8.2.1 ‘Naturality’

We will discuss in Section 8.5 how to determine reggeon quantum numbers
by considering the πN and NN scattering amplitudes. Here we will make
only the following remark. For even-spin particles (� = α+ trajectory) the
positive parity is natural: JP = 0+, 2+, 4+, i.e. scalars and tensors. The
states JP = 0−, 2−, 4−, i.e. pseudoscalars and pseudotensors, are of un-
natural parity. For odd-spin particles (� = α− trajectory) we observe the
opposite situation: the states JP = 1−, 3−, 5−, . . . (vectors, tensors) have
natural parities while JP = 1+, 3+, 5+, . . . (pseudovectors, pseudotensors)
unnatural ones.

To make the notion of ‘naturality’ independent of the signature, it is
convenient to introduce, instead of the usual spatial parity P , a new
quantum number Pr

Pr ≡ P · Pj = P (−1)j (8.12a)

which characterizes the ‘pseudity’ of particles lying on a given Regge
trajectory:

Pr = +1
‘natural parity’

{
α+ : 0+, 2+, 4+, . . .
α− : 1−, 3−, 5−, . . .

Pr = −1
‘unnatural parity’

{
α+ : 0−, 2−, 4−, . . .
α− : 1+, 3+, 5+, . . .

The same procedure is carried out for the charge (C) parity. Let me
remind you that the C-parity can be introduced only if the charge con-
jugation of the system of particles leads to the same system (we are in-
terested in t-channel states). For example, for the π+π−-pair we have
C = (−1)�, with � the orbital moment. To characterize the charge parity
independently of the signature, we introduce the quantum number Cr:

Cr ≡ C(−1)j , (8.12b)
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which in our case (j = �) gives Pr = (−1)�+j = +1. If so, on trajectories
with ‘normal’ charge and space parities, Pr = Cr = +1, lie mesons with

JPC : 0++, 1−−, 2++, 3−−, . . . .

A t-channel state with a non-zero isospin, I �= 0, does not have a definite
C-parity since the charge conjugation does not commute with isospin.
Then one introduces instead the G-parity which is determined via C-
parity of the neutral component of the multiplet,

G = C(−1)I , Gr ≡ Cr(−1)I , (8.12c)

and analogously to (8.12b) we have a signature-independent quantum
number Gr.

8.2.2 High energy symmetry

One of the most important consequences of
the reggeized exchange is the appearance of
a new symmetry (absent at low energies)
in the high energy asymptotics of a two-
particle amplitude. Let us demonstrate this
by considering pion–nucleon scattering.

t π π

NN

s 

Since Iπ =1 and IN = 1
2 , for this process two t-channel states are possi-

ble, with isospins I = 0, 1:

A(s, t) = C0A
(t)
0 + C1A

(t)
1 , (8.13a)

while in the s-channel there can be states with isospins I = 1
2 and 3

2 :

A(s, t) = C 1
2
A

(s)
1
2

+ C 3
2
A

(s)
3
2
. (8.13b)

The amplitudes A0, A1, A 1
2

and A 3
2

are not independent; A 1
2

and A 3
2

can
be expressed in terms of A0, A1 and vice versa.

Asymptotically A(s, t) can be determined by the contribution of the
leading Regge pole. Consider, e.g. the case α0(t) > α1(t). Then the
reggeon exchange with an isospin I = 0 dominates and

A(s, t)
s→∞� C0A0. (8.14)

The equality (8.14) leads to a definite relation between the s-channel
amplitudes A 1

2
and A 3

2
: both contributions are expressed in terms of A0

and have the same energy dependence. Note that there is nothing of this
kind in the low-energy region. For example, in the amplitude A 3

2
there

is a magnificent resonance Δ(1236). Having isospin I = 3
2 , it is obviously
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absent in A 1
2
; as a result, the energy profiles of A 1

2
and A 3

2
are essentially

different.
Moreover, let us examine contributions of Regge poles with opposite

signatures to, e.g. the π+N → π+N amplitude,

Aπ+N (s, t) = A+
π+N (s, t) + A−

π+N (s, t). (8.15a)

If A− is negligible in the s → ∞ limit (which is the case as we shall see
shortly), the full amplitude (8.15a) becomes s ↔ u symmetric and we
obtain

Aπ+N (s, t) � Aπ−N (s, t). (8.15b)

It is important to stress that this statement is stronger than that of the
Pomeranchuk theorem about the equality of total particle and antiparticle
cross sections, since (8.15b) holds for amplitudes, at arbitrary t.

So, the very existence of quantum numbers for Regge poles introduces
an additional symmetry that manifests itself at high energies when among
all possible t-channel quantum numbers only those survive that ensure the
maximal energy exponent – the leading Regge trajectory.

8.2.3 Vacuum pole

Continuing the discussion of reggeon quantum numbers, let us ask
whether we could say which of the poles is the rightmost? The answer is:

in the interval 0 ≤ t ≤ 4μ2 (of which t = 0 is the point of the most interest to
us) the rightmost pole in the j-plane has to have positive signature, Pj = +1,
and all the quantum numbers of the vacuum.

First we look at the signature and show that the leading pole is not allowed
to have Pj = −1. Indeed, owing to the optical theorem

σab ∝ ImAab(s, t) = gagbs
α · Im ξα > 0.

s

s channel

u channel

If the signature were negative, that
is the amplitude was odd with re-
spect to s → −s, this would result
in a negative cross section for the
crossing u-channel reaction, σāb ∝
ImAāb � ImAab(−s) < 0, violating
the s-channel unitarity.

Physically, t-channel unitarity taught us only that the trajectories α+(t)
and α−(t) were different. To acquire a more subtle information, namely
α+(t) > α−(t), we need to turn to the s-channel unitarity (which, as you
remember, is a substitute for ‘potential’ for the t-channel).
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Further, it is clear that the leading pole cannot have non-zero
strangeness, baryon charge and alike, since in such a case the partial
cross section of the corresponding non-diagonal transition would have
been asymptotically larger than the total one, σab→a′b′ > σtot

ab .
A bit more tricky is the situation with quantum numbers like isospin

when a diagonal transition ab → ab can still correspond to a I �=0 state
in the t-channel. We shall clarify the logic of the proof by an example for
which we take ππ scattering. The pion being an isovector (Iπ = 1), three
two-pion states are possible, with t-channel isospin values I = 0, 1, 2.

γ

α

δ

β These states are described, correspondingly, by
the scalar product of two isovectors (I=0), their
vector product (I=1) and the symmetric irre-
ducible (zero trace) tensor:

A
(0)
αβγδ = δαβδγδ ·A0,

A
(1)
αβγδ =

∑
σ

εαβσεγδσ ·A1,

A
(2)
αβγδ =

∑
ρ1,ρ2

Mρ1ρ2

αβ Mρ1ρ2

γδ ·A2; Mρ1ρ2

αβ = δρ1
α δρ2

β + δρ2
α δρ1

β − 2
3
δαβδ

ρ1ρ2 .

Now we have to prove that the rightmost pole must be contained by A0.
Obviously, it cannot belong to A1, since ππ is a symmetric (Bose) system
and therefore the isospin-asymmetric states, like I=1, correspond to odd
signature.

So only A2 remains under suspicion. Let us consider a diagonal tran-
sition – an elastic zero-angle scattering process: α = β, γ = δ. Fix the
charge (I3) of one of the π-mesons, say, γ = δ = 2 and examine one by
one the total cross sections of the three isotopic states of the other one:
α = β = 1, 2, 3. If the leading pole is part of A2, one of the cross sections
turns out to be negative, since, due to the irreducibility of the tensor
I = 2,

σ12→12 + σ22→22 + σ32→32 ∝ TrM =
3∑

α=1

Mρ1ρ2
αα = 0.

This example shows what happens with any symmetry. The idea is es-
sentially as follows. If there is some internal symmetry, the two-particle–
reggeon vertex has the structure of an irreducible tensor. However, elastic
amplitudes, and thus total cross sections, are given by diagonal elements
which sum up to zero due to the irreducibility condition, and, whichever
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the detailed situation, one can always find a state whose cross section will
turn out to be negative.

We conclude: if there is no degeneracy, then the rightmost pole has
quantum numbers of the vacuum and signature Pj = +1. This pole was
named by Gell-Mann the ‘Pomeranchuk pole’ (the name later drifted to
‘pomeron’), since it satisfies the Pomeranchuk theorem automatically. To
be more precise, the ‘Pomeranchuk pole’ is called the vacuum pole with
an additional condition imposed, namely, that its ‘intercept’ is

αP(0) = 1, (8.16)

the condition that, due to the optical theorem, guarantees asymptotic
constancy of the total interaction cross sections.

Strictly speaking, the hypothesis (8.16) does not follow from the theory.
You may ask, why would we need this hypothesis in the first place? What
is so attractive about asymptotically constant cross sections?

First of all, our interaction is strong and we see no reason why cross
sections should fall with the increase of energy. But if σtot does not fall,
then the constancy remains the only option, since any positive power
would violate the Froissart theorem.

A more serious argument is the experimental situation. With the in-
crease of the incident energy plab = s/2m by hundred times, from 1010 to
1012 eV where the measurements were carried out, the total proton–proton
and pion–proton cross sections change only by ten percent.∗ Consequently,
it is natural to assume that the cross sections are basically constant, while
the observed relatively small deviations are driven by correction effects
that are slower than a power of s (e.g. logarithmic).

8.3 Properties of the Pomeranchuk pole

Thus, the asymptotic behaviour of the elastic amplitude at s → ∞ can
be described by the vacuum pole (pomeron P) exchange as

Aab(s, t) = ga(t)gb(t)ξαsα(t), ξα = i− cot
πα(t)

2
, (8.17)

where for small values of t we can approximate the pomeron trajectory
as α(t) � αP(0) + α′

P · t = 1 + α′
P · t.

Let us discuss the characteristic features of the vacuum pole exchange.

∗ Thirty years and three orders of magnitude in energy later, the cross sections σpp � σpp̄

have grown by about 50%, see below Fig. 14.3, page 378. (ed.)
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8.3.1 Pomeranchuk theorem

The Pomeranchuk theorem,

σtot
ab = σtot

āb , (8.18)

is a consequence of the fact that the signature of the αP(t) trajectory
is positive. In addition, ReA(s, 0) = 0, since j = αP(0) = 1 is a point of
‘alien’ signature and the signature factor in (8.17) is purely imaginary.
This means that the pomeron exchange is analogous, in the NQM lan-
guage, to diffraction off absorbing target.

8.3.2 Factorization of total cross sections

Factorization relation for total cross sections,(
σtot
ab

)2 = σtot
aa · σtot

bb , (8.19)

follows from the factorisation of the reggeon exchange (8.8). The knowl-
edge of the πN and NN cross sections enables us to predict

σππ =
(σπN )2

σNN
� (25 mb)2

40 mb
� 16 mb.

Unfortunately, so far there is no experimental verification for the total
cross sections. For inelastic cross sections such expectations have been
verified and they agree reasonably well.

8.3.3 Factorization of differential cross sections

Consider reactions of excitation of a target hadron (b → c) by different
projectiles (a). For example, proton (nucleon) excitation, N → N∗, by
pion and kaon beams. Relations like

σ(πN → πN∗)
σ(KN → KN∗)

=
σ(πN → πN)
σ(KN → KN)

were checked many times. As it turns out, the factorization of differential
cross sections at high energies generally holds within 10–20%.

8.3.4 Falloff of charge-exchange reactions

Another consequence of the pomeron picture is the disappearance of all
sorts of ‘charge-exchange’ 2 → 2 reactions in the high-energy limit. In-
deed, any such process corresponds to a non-diagonal transition (e.g.
π−p → π0n) with non-vacuum quantum numbers in the t-channel. Being
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devoid of the vacuum-pole exchange, its amplitude must therefore be sup-
pressed as a power of s relative to the elastic amplitude.

8.3.5 Growing radius and shrinkage of diffractive cone

Substituting the elastic scattering amplitude

Aab = s · gagb e(αP(t)−1) ln s

(
i− cot

παP(t)
2

)
(8.20)

in the expression for the differential cross section, at small t � −q2
⊥ we

obtain

dσ

dq2
=

1
16π

∣∣∣∣As
∣∣∣∣2 � g2

ag
2
b

16π
e−2α′

P ln s·q2
⊥ . (8.21a)

Hence, the diffractive cone shrinks logarithmically with the increase of s:

q2
char �

1
2α′

P ln s
, (8.21b)

which corresponds to the growth of the radius of interaction

ρ0 ∼
√

α′
P ln s. (8.21c)

8.3.6 Impact parameter diffusion

What is the picture in the impact parameter plane corresponding to the
pomeron exchange? Let us invert the Fourier representation (5.43) for the
impact parameter function f(ρ, s),

f(ρ, s) =
π

k2
c

∫
d2q⊥
(2π)2

e−i(q⊥·ρ)A(s,−q2
⊥).

Substituting for A the pomeron amplitude (8.20) we obtain

f(ρ, s) � 4πiga(0)gb(0)
∫

d2q⊥
(2π)2

e−i(q⊥·ρ)−α′
Pq

2
⊥ ln s

=
igagb
α′

P ln s
exp

(
− ρ2

4α′
P ln s

)
. (8.22)

We see that the partial amplitude is not saturated ; on the contrary, its
magnitude is small at large values of ln s: the target is not at all ‘black’
but rather ‘grey’ and gets increasingly transparent with the growth of
the energy. At the same time the interaction radius also grows since the
exponential falloff of f(ρ) starts at larger and larger impact parameters
as shown in Fig. 8.3.
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0 

1 
α ln s 

Im f 

ρ0 ∼ √α ln s
ρ

 

Fig. 8.3 Impact parameter profile of the partial wave corresponding to pomeron
exchange.

The total cross section remains constant,∫
d2ρ Im f(ρ, s) = gagb = σtot = const,

but this is achieved in a rather peculiar way.
By the way, as we have already seen in Section 5.6, the growth of

the radius ρ0(s) ∝
√

ln s corresponds to a ‘random walk’ of a point in
which the interaction of the projectile with the target takes place in the
impact parameter plane. This fact can be also seen directly from (8.22)
for f(ρ, s) which very expression is nothing but the Green function of the
two-dimensional diffusion process,

∂

∂ξ
f(ρ, ξ) − α′∇2

ρ f(ρ, ξ) = δ(ρ)δ(ξ), (8.23)

with ξ = ln s in the rôle of the diffusion time.

8.3.7 Properties of the pomeron trajectory

Let us discuss the properties of αP(t). In the interval 0 ≤ t ≤ 4μ2 we can
make two statements, namely, that:

(1) the pomeron trajectory αP(t) is real and

(2) monotonically increasing, α′
P(t) > 0.

Indeed, the imaginary part of the amplitude

ImA(s, t) = r(t)sα(t), r(t) ≡ ga(t)gb(t), (8.24)
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remains real up to the first singularity at t = 4μ2 where the partial wave
expansion

ImA(s, t) =
∑
�

(2� + 1) Im f�(s)P�(zs), zs = 1 +
2 t

s− 4μ2
, (8.25)

diverges. Furthermore, we have Im f� ≥ 0, and P�(zs) > 0, together with
all its derivatives. Therefore, differentiating (8.25) over t we have

d

dt
ImA(s, t) > 0. (8.26)

Substituting the pomeron amplitude (8.24),

d

dt

(
r(t)sα(t)

)
= r′(t)sα(t) + rα′(t) ln s · sα(t) > 0. (8.27)

Since s → ∞, the main contribution comes from the last term in (8.27), re-
sulting in α′

P(t) > 0. (If by any chance α′
P(t) = 0, then the second deriva-

tive will be positive at this point, etc.)
Is there a complexity in α(t) for t < 0?
Let us demonstrate that in spite of the partial wave ϕ�(t) having the left

cut, the trajectory remains regular at t ≤ 0. Indeed, if α(t) were complex,
then ϕ�(t) would have acquired at t = 0 additional singularities in �:

Δϕ�(t) =
Δr(t)
�− α(t)

+
r(t)

(�− α(t))2
Δα(t).

We know, however, that moving singularities in � of ϕ�(t) can come only
from under the right cut† at t ≥ 4μ2, see Lecture 3. Thus, Δr = Δα ≡ 0.
As a consequence, αP(t) remains real also when t < 0.

For t > 4μ2 the pomeron trajectory becomes complex. By explicitly
solving the two-particle unitarity condition for the partial wave near the
threshold, t � 4μ2, it is straightforward to show that the trajectory moves
onto the upper plane, ImαP(t) > 0. Whether it stays there for arbitrary
large t remains an open question. This is true in NQM but cannot be
rigorously proved in the relativistic theory, although it appears the most
natural hypothesis. If this is the case and if we could write the dispersion
relation

αP(t) = 1 +
t

π

∫ ∞

4μ2

ImαP(t′)
t′(t′ − t)

dt′, (8.28)

† As we shall see below in Section 8.6, a branch-point singularity in the trajectory may appear
at t=0 if two trajectories collide in this point.
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then differentiating (8.28) over t an arbitrary number of times we would
have all derivatives of αP to be positive in the interval 0 ≤ t ≤ 4μ2. Once
again, this property holds in the NQM where the monotonic increase
of α(t) can be directly linked to the natural movement of the energy
level (decrease of the binding) with the increase of the centrifugal barrier
(angular momentum �).

In the relativistic theory the representation (8.28) was not proved and so
we cannot make a strong statement of the positivity of all derivatives. Nev-
ertheless, using the t-channel unitarity condition we have demonstrated
that at least its first derivative is positive. This is a remarkable example of
how the cross-channel unitarity allows one to partially recover the NQM
results, in particular the natural behaviour of the characteristic t-channel
angular momentum.

8.3.8 Mesons on the pomeron trajectory?

Let us note, finally, that the Pomeranchuk pole with αP(0) = 1 differs
essentially from the non-vacuum ones.

All other Regge trajectories (both the trajectories with non-vacuum
quantum numbers and the subleading vacuum pole, the so-called P′ with
αP′ � 0.5) appear to have the same slope, α′ � 1 GeV−2 ∼ 1/m2

N , while
the slope of the pomeron trajectory turns out to be about four times
smaller,

α′
P � 0.27 GeV−2 ∼ 1/4m2

N . (8.29)

Moreover, so far it is not clear whether any resonances lie on the pomeron
trajectory. Given the slope (8.29), we should expect a resonance with spin
2 and m2

2 ∼ 4 GeV2 belonging to the pomeron trajectory. The experimen-
tal situation remains uncertain: there seem to be two to three candidates
for such a tensor meson.

In the linear approximation for αP(t), the trajectory would cross the
line α(t) = 0 at some negative t = m2

0 < 0 thus giving rise to a scalar
meson with an imaginary mass! M. Gell-Mann advanced arguments in
favour of vanishing of the pomeron residue at this point, gα(m2

0)
= g0 = 0.

Nowadays this problem is no longer considered acute, since as we will see
later, at negative t the dominant rôle is played by �-plane singularities
other than poles (Regge cuts).

8.4 Structure of the reggeon residue

8.4.1 Scattering of particles with spins

Up to now we have investigated the scattering of spinless particles (like
pions) or, more precisely, the processes in which spins of participating
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p1
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gbp2

p1

p2

σ

p′1

p2
p2

gr
a

gr
b

p1

Fig. 8.4 Particle-exchange diagram (a) and the Regge-pole exchange (b).

particles were inessential. Scattering of particles with spin is an interest-
ing problem on its own. We saw that in the spinless case a Regge ampli-
tude differs from the amplitude of a virtual particle exchange only by the
modification of the propagator (sinπα(t) in the denominator) and by the
redefinition of the vertex ga (Fig. 8.4). It is clear that the case of parti-
cles with spin will not differ in this respect. We could formally solve the
problem by introducing particle states with definite helicity (projection of
spin on the direction of three-momentum), play with spherical functions
and continue the corresponding amplitudes in j. The same goal can be
achieved, however, by following, essentially, the perturbation theory. We
shall choose the latter path which is more rewarding.

The main problem here is how to write the vertices. This is easy to
resolve for the case of particle exchange (Feynman graphs); a generaliza-
tion to reggeons will be carried out simply by substituting the reggeon
propagator for that of the exchanged particle.

The first question we have to ask is, where the factorization did come
from? Even in the case of spinless scattering particles, the amplitude of
an exchange of a particle with spin σ (Fig. 8.4(a)) does not factorize into
a product but is given by a sum of products,

A(s, t) = Γ{μ1,..., μσ}(p1, p
′
1)D

[σ]
{μ}{ν}(q)Γ{ν1,..., νσ}(p2, p

′
2) ·

1
m2 − q2

,

D
[σ]
{μ}{ν}(q) =

2σ+1∑
m=1

em{μ}(q)e
m
{ν}(q),

(8.30)

which sum runs over all polarization states. The answer is simple: of the
whole sum only one polarization survives at high energies, the one that
gives the contribution with the highest power s.

Each function Γ{} in (8.30) depends only on the momenta of particles
entering the corresponding vertex and knows nothing about the large s.
The momenta p1 and p2 get connected when we sum over the polarization
of the exchange particle. To see how this happens, let us consider the
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example of a vector particle exchange:

D[1]
μν(q) = −

3∑
m=1

emμ emν

(
D[1]

μμ = 3
)
, (8.31)

where {em} are three vectors determining a space, orthogonal to the mo-
mentum q:

(emq) = 0, m = 1, 2, 3. (8.32)

Since q is space-like, we can find two independent light-like vectors e±

among (8.32):

e+2 = e−2 = 0, (e+e−) = 1; (e±q) = 0.

These light-like polarization vectors can be constructed using linear com-
binations of the initial particle momenta, p1 and p2. To ensure the or-
thogonality condition (8.32), we would have to have

pμ1qμ � pμ2qμ � 0. (8.33)

Being an important characteristic feature of high-energy processes, let us
check this fact in detail.

Sudakov kinematics of high-energy 2 → 2 processes. Before going into cal-
culations, a simple observation first. When two particles scatter elasti-
cally, in their cms the energy is not transferred, q0 = 0, and −t = q2 =
2p2

c(1 − cos Θs) � p2
c · Θ2

s. So, for large collision energies, s � 4p2
c 
 |t|,

the scattering angle is small, Θs ∼
√

−t/s � 1. This makes the longitu-
dinal component of the momentum transfer, q|| ∼ 1

2pcΘ
2
s, much smaller

that the transverse one, q⊥ ∝ pcΘs; in other words, q is approximately or-
thogonal to the common direction of the colliding particles, z. In Lorentz
invariant terms, this statement is equivalent to (8.33) that we are about
to verify formally.

Let us consider the kinematics of the 2 → 2 scattering process in the
most general case, p1, p2 → p′1p

′
2, using the Sudakov decomposition.

p1 = p+ + γ1p
−, p2 = p− + γ2p

+; (8.34a)

γ1,2 =
m1,2

s
(8.34b)

(where we have approximated 2p+p− � s). In the linear approximation in
γi = O(1/s), the inverse relations read

p+ � p1 − γ1p2, p− � p2 − γ2p1;
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actually, for our purposes it often suffices to equate

p+ � p1, p− � p2,

which approximation holds, component by component, when both p+
0 and

p−0 are large (which is true for virtually all reference frames but the lab-
oratory frame where one of the incoming particles is at rest).

We write the transferred four-momentum as

qμ = αp+
μ + βqp

−
μ + q⊥μ; −(q⊥μ)2 = q2

⊥ ≥ 0, (8.35a)

q2 = αqβqs− q2
⊥, (8.35b)

where qμ⊥ lies in the (x,y) plane.
Making use of (8.34) and (8.35) we evaluate square momenta of the

outgoing particles,

(p′1)
2 = (p1 + q)2 = (1 + αq)(γ1 + βq)s− q2

⊥ = m′
1
2
,

(p′2)
2 = (p2 + q)2 = (γ2 − αq)(1 − βq)s− q2

⊥ = m′
2
2
,

to obtain

−αqs− βqm
2
2 = m′

2
2 −m2

2 − q2, (8.36a)

βqs + αqm
2
1 = m′

1
2 −m2

1 − q2. (8.36b)

In the high energy limit,
∣∣q2

∣∣ ∼ m2 � s, we have −αq ∼ βq ∼ m2/s � 1
and (8.36) simplifies

−αqs � m′
2
2 −m2

2 − q2; (8.37a)

βqs � m′
1
2 −m2

1 − q2. (8.37b)

We conclude that the ‘longitudinal’ contribution to the invariant t be-
comes negligible,

q2 = q2
|| − q2

⊥, q2
|| ≡ −αqβqs ∼

q4

s
�

∣∣q2
∣∣ ,

so that the momentum transfer becomes essentially transversal,

q2 = −q2
⊥ ·

(
1 + O

(
m2

s

))
. (8.38)

This statement can be enforced and applied to all components of the
four-vector,

qμ = αqs ·
p+
μ

s
+ βqs ·

p−μ
s

+ q⊥μ � q⊥μ,
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once again, in any but the laboratory frame of reference (where one of
the normalized momentum vectors p±/s is of the order of unity).

Polarization vectors. We return to the construction of the polarization
vectors. Now that we have verified the condition (8.33) of the approxi-
mate orthogonality of the momentum transfer q to the (p1, p2) plane, we
can treat qμ as having, say, only a y component: qμ = (q0; qx, qy, qz) �
(0; 0,

√
−q2, 0).

In the cms of the t-channel where qμ = (
√
q2;0), the polarization vec-

tors are all space-like:⎛
⎜⎜⎝

t
x
y
z

⎞
⎟⎟⎠ : e1

(t) =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, e2

(t) =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠, e3

(t) =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ . (8.39)

The complex Lorentz boost that takes us to the s-channel, transforms the
momentum transfer as follows

qμ(t) =

⎛
⎜⎜⎝

−i
√

−q2

0
0
0

⎞
⎟⎟⎠ =⇒ qμ =

⎛
⎜⎜⎝

0
0√
−q2

0

⎞
⎟⎟⎠ ;

it swaps the time- and y-components of a four-vector, t → iy, y → it, while
leaving the x and z components unchanged. Under this transformation,
the complex linear combinations of the first two polarizations in (8.39),
in the s-channel turn into two light-like vectors:

e+ =
e1 − ie2

√
2

=
1√
2

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠, e− = −e1 + ie2

√
2

=
1√
2

⎛
⎜⎜⎝

1
0
0

−1

⎞
⎟⎟⎠ . (8.40)

From the t-channel point of view, the combinations e1 ± ie2 correspond
to circular polarizations describing states with a spin projection ±1 onto
the x-axis, i.e. in our case, onto the normal to the scattering plane. The
light-like vectors (8.40) are nothing but the Sudakov vectors we have
introduced above to represent the (t, z) interaction plane:

e± ≡
√

2
s
p±; e+ �

√
2
s
p1, e− �

√
2
s
p2. (8.41a)
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In terms of these vectors the sum over polarizations (8.31) takes the form

−
3∑

m=1

emμ emν = e+
μ e

−
ν + e−μ e

+
ν − e⊥μ e

⊥
ν , (8.41b)

where e⊥ = e3 = e3
(t) of (8.39) is a space-like unit vector normal to the

scattering plane (x).
We have thus introduced convenient basis vectors. Let us see the con-

tributions of various polarizations to the scattering amplitude:

p1p1

p2 p2

Γa
μ

Γb
ν

q
= Γa

μ(1) ·D[1]
μν · Γb

ν(2) × 1
m2 − q2

∝ (Γae+)(e−Γb) + (Γae−)(e+Γb) − (Γae⊥)(e⊥Γb).

(8.42)

Which polarization leads to the leading contribution sσ = s in (8.42)?
The general form of the vertex for a scalar particle is

Γa
μ(1) = Γa

μ(p1, q) = a(q2)p1μ + b(q2)qμ. (8.43)

The term qμ can be dropped, see (8.32); the transverse polarization does
not contribute, e⊥p1 = e⊥p2 = 0. We have

e+
μ p

μ
1 =

m2
1√
2s

, e−μ p
μ
2 =

m2
2√
2s

;

e−μ p
μ
1 =

√
s

2
, e+

μ p
μ
2 =

√
s

2
.

Consequently, at s → ∞ of the whole sum (8.42) only one term survives,(
Γa
μ(1)e−μ

)(
Γb
μ(2)e+

μ

)
∼ (

√
s)2 = s,

in which each vertex is multiplied by the polarization vector directed
along the momentum pi of the opposite vertex. Hence, we can factorize
the asymptotic amplitude as follows:

A(s, t) =

(
Γa
μ(1)

e−μ√
s

)(
Γb
ν(2)

e+
ν√
s

)
· s ·D(q2). (8.44)
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The analogue of the reggeon residue,(
Γa
μ(1)

e−μ√
s

)
∼

(
Γa
μ(1)

p2μ

s

)
≡ gra(1),

is an invariant; in the case of spinless particles it can depend only on q2

via a(q2), see (8.43). If the colliding particles have non-zero spins, the
vertex function Γa

μ changes: it will depend also on the polarizations of the
incoming and outgoing particles (1), (1′):

Γa
μ(1) = Γa

μ

(
p1, q; ελi , ε

ρ
f

)
.

However, the general structure of the Regge residue remains unchanged;
a large contribution will still be coming only from multiplication of the
vertex (1) by the polarization e− ∝ p2. The residue gra though will now
depend not only on q2, but also on the spin projections of the initial and
final particles in the upper vertex (1) on the momentum direction of the
particle (2). Thus for σ = 1 we have obtained

gra(1) ≡
(
Γa
μ(1)

p2μ

s

)
, grb (2) ≡

(
Γb
μ(2)

p1μ

s

)
. (8.45)

Let us see now, what the residue for a σ=2 particle exchange looks like.
A spin σ=2 wave function can be constructed as a symmetric product of
two vector states,

eλμ1μ2
= eλ1

μ1
eλ2
μ2

+ eλ1
μ2
eλ2
μ1
. (8.46)

Now each vertex bears two vector indices and the amplitude has the
structure

A(s, t) ∝ Γa
μ1μ2

(1)D[2]
μ1μ2,ν1ν2

Γb
ν1ν2

(2) × 1
m2 − q2

Dμ1μ2,ν1ν2 =
∑
λ

eλμ1μ2
eλν1ν2

. (8.47)

Strictly speaking, we have to subtract from (8.46) an admixture of a σ=0
state to make our symmetric tensor traceless. We, however, can ignore this
fact since the corresponding subtraction term contains gμ1μ2 which, acting
on one vertex, yields no large s-dependent contribution.

Expressing (8.46) in terms of the polarizations e±, the propagator
Dμ1μ2,ν1ν2 in (8.47) will contain various products

e+
μ1
e+
μ2
e−ν1

e−ν2
, e+

μ1
e−μ2

e−ν1
e+
ν2
, . . .

It is easy to see that similarly to the case of σ=1, only the term
e−μ1

e−μ2
e+
ν1
e+
ν2

produces a contribution ∼s2. (By the way, this term is, on
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its own, a symmetric irreducible tensor since (e−)2 = 0.) So, the upper
vertex produces (

Γa
μ1μ2

(1) ·
e−μ1

s

e−μ2

s

)
,

and the analogue of the Regge residue for a spin-2 particle exchange ac-
quires the form

gra(1) ≡
(
Γa
μ1μ2

(1)
p2μ1p2μ2

s2

)
, grb (2) ≡

(
Γb
ν1ν2

(2)
p1ν1p1ν2

s2

)
. (8.48)

How do (8.45) and (8.48) generalize to the case of non-integer angular
momentum exchange? For particle exchange with an integer spin σ the
residues gra(1) turned out to be polynomials of p2/s of the order σ. In the
general case (which corresponds to a sum of various t-channel exchanges)
the s-dependence of the amplitude becomes more complicated:

A(s, t) = Γa

(
p1, q; ελ1

i , ερ1

f ;
p2

s

)
Γb

(
p2, q; ελ2

i , ερ2

f ;
p1

s

)
· sα · ξα. (8.49)

However, the structure of the residues resembles that of simple particle
exchange: each vertex depends on its internal variables (momenta and
polarizations) and on the direction of the momentum in the opposite
vertex.

In other words, the Regge factorization remembers the reaction plane
(p1, p2) via the polarization vectors e± which ensure the maximal contri-
bution to the scattering amplitude.

8.4.2 Quasi-elastic processes

Up to now we have been discussing 2 → 2 scattering processes. Do Regge
poles contribute to multi-particle production? It is easy to imagine a high-
energy collision in which, say, one of the incident particles becomes excited
and subsequently decays giving rise to a three-particle final state. A ques-
tion can be raised, for example, for which lifetimes of the intermediate
state in Fig. 8.5(a) our previous analysis will remain valid. It is possi-
ble to rigorously deduce contribution of Regge poles to such processes
from the corresponding unitarity conditions for multi-particle amplitudes
of the type shown in Fig. 8.5(b). I will not do that but suggest you guess
the answer by looking at the diagrams describing the t-channel exchange
of a particle with spin instead.

Recall the result of our analysis of reggeon amplitudes for the scattering
of particles with spin: the reggeon vertex Γ acquired an additional depen-
dence on the polarizations of participating particles. Similarly, here the
vertex describing the 1 → 2 particle conversion of Fig. 8.5(b) will depend
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k

kq

(a) (b)

1 1

2

p

Fig. 8.5 Production of an unstable particle (a) and new reggeon vertex (b).

not only on the total momentum transfer, q = k1 + k2 − p1, but also on
the relative momentum k1 − k2; in other words, on the two final particle
momenta separately,

Γ(1) = Γ
(
p1, k1, k2;

p2

s

)
. (8.50)

It is clear that some condition must be imposed on the final state momenta
in order to preserve the dominance of one polarization as before: if ‘wrong’
polarizations multiplying momenta k1, k2 produced large contributions,
the factorization would be lost. First of all, we have to have, as always, the
momentum transfer q2 to be finite; otherwise the very reggeon approach
would fail. But this is not enough. We need not only the total momentum
k1 + k2 (which determines q2) but also each ki to be ‘almost parallel’ to
the incoming p1. The final particles must fly together, in a dense ‘bunch’.

To give a precise meaning to ‘flying together’ let us consider a more gen-
eral case of a quasi-elastic process when both incident particles produce
bunches of particles which move close to the directions of the incoming
hadrons as shown in Fig. 8.6. A process of this kind is called diffractive
dissociation. If the relative energies of the particles in such a bunch are

2
p

1p

Fig. 8.6 Quasi-elastic process of (double) diffractive dissociation.
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1k

mk

m+1k

nk

1p

2
p

q

Γa

Γb

P1 =
∑m

i=1 ki, M2
1 = P 2

1 ;

P2 =
∑n

i=m+1ki, M2 = P 2
2 .

Fig. 8.7 Kinematics of high-energy diffractive dissociation.

small, it may be treated as a composite particle, and at large s the process
can be effectively described as a two-particle scattering.

Let us express all momenta in terms of the Sudakov variables:

ki = αip
+ + βip

− + ki⊥, q = αqp
+ + βqp

− + q⊥; (8.51)

p1 = p+ + γ1p
−, p2 = p− + γ2p

+.

Recall that p± are zero-norm vectors (p±2 = 0, 2p+p− = s), and γ1,2 �
m2

1,2/s. In a frame where both scattering particles are fast (e.g. the cms
of s-channel), p+ almost coincides with p1, as p− does with p2. Then,
in (8.51), −αq is the fraction of the momentum p1, transferred by the
reggeon to the lower vertex Γb, while βq is the fraction of p2 transferred
up to Γa, see Fig. 8.7. How large are the longitudinal Sudakov components
of the momentum transfer q? We have calculated them above in (8.37):

−αq =
ΔM2

2 + q2
⊥

s
, βq =

ΔM2
1 + q2

⊥
s

, (8.52)

where ΔM2
1 = (

∑m
i=1 ki)

2 −m2
1 and ΔM2

2 =
(∑n

i=m+1 ki
)2 −m2

2 are the
‘excitation energies’ of the upper and lower bunches of particles.
If we keep invariant masses of the bunches finite in the high-energy limit,

M2
1 , M

2
2 = O

(
m2

)
, s → ∞, (8.53)

our previous logic remains intact and we arrive at a reggeon exchange
amplitude describing the diagram of Fig. 8.7,

Aα(s, q2; sij , t1i, t2i) (8.54)

= Γa

(
p1, ε1; {ki, εi}m1 ;

p2

s

)
Γb

(
p2, ε2; {ki, εi}nm+1;

p1

s

)
sαξα,

where sij = (ki + kj)2, t1i = (p1 − ki)2, t2i = (p2 − ki)2. This is just the
answer that one derives as a result of a rather cumbersome procedure of
analytic continuation of partial waves for multi-particle amplitudes.
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The expression (8.54) is, essentially, the same as we have written for
non-zero spin particle scattering. It differs from (8.49) only by the struc-
ture of the vertex functions: now Γ includes also the variables {ki, εi}
(momenta and polarizations of the offspring) describing ‘internal move-
ment’ of the particles in each ‘bunch’.

Under the condition (8.53), the longitudinal momentum transfer is van-
ishingly small at large s (in any reference frame where colliding particles
are fast). For example, in the s-channel cms, p± = 1

2

√
s(1; 0, 0,±1),

q|| ≡ αqp
+ + βqp

− =
√
s

2
(αq + βq, 0, 0, αq − βq)

=
1√
s

(
ΔM2

1 − ΔM2
2

2
; 0, 0,−ΔM2

1 + ΔM2
2

2
− q2

⊥

)
. (8.55a)

As for its contribution to the squared momentum transfer, q2 = q2
|| − q2

⊥,

∣∣∣q2
||

∣∣∣ = −αqβqs �
ΔM2

1 · ΔM2
2

s
� q2

⊥ � −q2. (8.55b)

Finally, let us address the question of the applicability of the reggeon
inelastic diffraction amplitude (8.54), which we have vaguely formulated
above as ‘to fly together’ for particles in the two bunches.

Momentum conservation in the upper and lower blocks gives us

−αq = 1 −
m∑
i=1

αi, βq =
m∑
i=1

βi − γ1; (8.56a)

−αq =
n∑

i=m+1

αi − γ2, βq = 1 −
n∑

i=m+1

βi; (8.56b)

in addition to

q⊥ =
m∑
i=1

ki⊥ = −
n∑

i=m+1

ki⊥.

To reconcile (8.56) with the condition −αq ∼ βq = O
(
s−1

)
following from

(8.52) and (8.53), particles in the upper bunch must have αi = O(1) and
small βi components, and those in the lower bunch, on the contrary, βj =
O(1) and αj = O

(
s−1

)
. Making use of the on-mass-shell relations for the

produced particles,

k2
i = αiβis− k2

i⊥ = m2
i (αi > 0, βi > 0),
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the requirements on particle momenta in the two beams read

αi ∼ 1, βi =
m2

i + k2
i⊥

αis
� 1, i = 1 ÷ m; (8.57a)

βi ∼ 1, αi =
m2

i + k2
i⊥

βis
� 1, i = (m + 1) ÷ n. (8.57b)

The conditions (8.57) are just expressions of the fact that the particles
fly in ‘bunches’ in both beams. For particles belonging to one beam, e.g.
the upper one, we have

saaij = (αi + αj)(βi + βj)s− (ki⊥ + kj⊥)2

∼
(
αa
i β

a
j + βa

i α
a
j

)
s ∼

(
1 · m

2

s
+

m2

s
· 1

)
s = O

(
m2

)
, (8.58a)

while for particles from different beams,

sabij ∼
(
αa
i β

b
j + βa

i α
b
j

)
s ∼

(
1 · 1 +

m2

s
· m

2

s

)
s = O(s) . (8.58b)

In the kinematical configuration described by (8.57), the first term in
(8.58b) for the invariant energy between the two particles from opposite
beams is much larger than the second one. In fact, this is the necessary
condition for the validity of the reggeon expression (8.54) we are looking
for. It becomes clear if we rewrite the r.h.s. of (8.58b) in the following
terms,

αa
i β

b
js = 2(kai · e−)(e+ · kbj); βa

i α
b
js = 2(kai · e+)(e− · kbj).

We immediately see that the strong inequality

αa
i β

b
j 
 βa

i α
b
j =⇒

(
αi

βi

)
bunch a



(
αj

βj

)
bunch b

=⇒ (αi)a
(αj)b


 1

guarantees the dominance of that one polarization that gives rise to the
factorized reggeon amplitude.

At the same time, for two particles from the same bunch the ratio of the
Sudakov variables is not too large. Indeed, if we take two particles having
relatively small energy in their cms, p1 + p2 = 0; p10, p20 = O(m),

s12 = (p1 + p2)2 ∼ 4m2.

Then in the reference frame where both particles have large velocity along
the z-axis we have

p10 � p1z +
m2 + p2

1⊥
2p10

, p20 � p2z +
m2 + p2

2⊥
2p20

,
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and the invariant energy reads

s12 � 2(p10p20 − p1zp2z) � (m2 + p2
1⊥)

p20

p10
+ (m2 + p2

2⊥)
p10

p20

∼ m2
⊥

(
p20

p10
+

p10

p20

)
.

Comparing the two expressions for s12 we conclude that to ‘fly together’
means for fast particles that the ratio of their energies is neither too small
nor too large:

p20

p10
∼ p10

p20
∼ 1.

Meantime the difference of energies may be very large.

8.5 Elastic scatterings of π and N off the nucleon

Now we will illustrate the results of the previous section by studying the
pion–nucleon and nucleon–nucleon reactions, πN → πN and NN → NN .
To understand what Regge poles can contribute to the asymptotics of
these processes at all, we have to consider first in detail the ππ and NN
vertices in Fig. 8.8(a).

8.5.1 The pion vertex

Of all invariants that one can construct from the three four-vectors en-
tering the pion vertex, Γπ(p1, q; p2/s), only one variable, q2, survives at
s → ∞, so we have

gπ = Γπ

(
p1, q;

p2

s

)
= gπ(q2).

Let us clarify which reggeon quantum numbers can be emitted in the ππ
vertex. To do that we have to look at the system of two pions from the

(b)(a)

NN

Nπ

qq

gN

gN

gN

gπ p1

p
2

p
2

p1
p

1
p

1

p2 p
2

Fig. 8.8 Reggeon exchange amplitudes for πN (a) and NN scattering (b).
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Table 8.1 Reggeons coupled to pion → pion. All have Pr = Cr = +1.

I Gr sgn Reggeon α(0) α′ Resonance

0 + + P 1 0.25 ?
f (P′) 0.5 1 f2(1270), f4(2050), f6(2510)

1 − − ρ 0.5 1 ρ(770), ρ3(1690), ρ5(2350)
2 + + ? none

t-channel. Since the pions are spinless, the spatial parity is

P = (−1)� = (−1)j =⇒ Pr = +1.

The pions are identical Bose-particles, therefore the vertex must be sym-
metric under the transmutation of two particles, that is of their positions
and isotopic indices: +1 = (−1)�(−1)I = (−1)j(−1)I . Consequently, ππ
states with a total isospin I = 0, 2 in the t-channel are linked to reggeons
with positive signature and those with I = 1 to ones with negative signa-
ture. The ππ charge parity is also unique: C = (−1)� =⇒ Cr = +1.

Possible quantum numbers of the ππ system are listed in Table 8.1.

8.5.2 The nucleon vertex

Now we turn to the lower vertex in Fig. 8.8(a), that for the nucleon. In the
construction of the nucleon vertex, ΓN , we may employ Lorentz invariants
and Dirac matrices,

Γ̂N = a · I + b · γμ × (vectors)μ + cγ5 + d · γ5γμ × (vectors)μ,

to be sandwiched between final and initial nucleon spinors,

gN = ū(p′2)Γ̂N

(
p2, q;

p1

s

)
u(p2).

As we have already learned, Γ̂ depends on the momentum in the ‘alien’
vertex through the four-vector p̂1/s. Convoluting γμ with vectors p2 and
q produce p̂2 and p̂′2 which reduce to the scalar mN when acting on the
neighbouring spinors. So the most general expression for Γ̂ we are left
with reads

Γ̂ = a(q2) + b(q2)
p̂1

s
+ c(q2)γ5 + d(q2)γ5

p̂1

s
. (8.59)

Contrary to the ππ vertex, the nucleon one contains, generally speak-
ing, four independent scalar functions. We need to understand whether
all these structures are really independent or some of them can mix
with each other. To this end we have to look at the N̄N system in the
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t-channel to see what this system can transfer to; in other words, what
are the quantum numbers of each of the four terms in (8.59).

Given the total angular momentum j, we have four possible states:

(1, 2) : σ = 1, � = j ± 1,
(3) : σ = 1, � = j,
(4) : σ = 0, � = j.

(8.60)

Here � is the orbital momentum of the N̄N pair and σ its full spin.
Bearing in mind that the internal parity of a fermion and its antifermion

is opposite, spatial parity of the N̄N pair is

P = (−1) × (−1)� =
{

(−1)j for � = j ± 1,
(−1)j+1 for � = j.

This separates the first two and the last two states in (8.60):

Pr(1, 2) = +1, Pr(3, 4) = −1.

Consider now the charge parity C (or G-parity which generalizes it onto
full isotopic multiplets). Under charge conjugation of a neutral system,
say, pp̄, the particle becomes an antiparticle and vice versa,

p(x1, σ1) + p̄(x2, σ2) → p̄(x1, σ1) + p(x2, σ2).

To get back to the initial state one has to exchange space coordinates and
spin variables. This operation results in the phase factor

C = (−1)� × (−1)σ =
{

(−1)j =⇒ Cr = +1 for (1, 2) and (4),
(−1)j+1 =⇒ Cr = −1 for (3).

Now we know quantum numbers of the four states listed in (8.60):

(1, 2) : σ = 1, � = j ± 1, Pr = +1, Cr = +1,
(3) : σ = 1, � = j, Pr = −1, Cr = −1,
(4) : σ = 0, � = j, Pr = −1, Cr = +1.

(8.61)

We conclude that the first two states can actually mix, so that we can
expect three (rather than four) distinct sets of reggeons that couple to a
nucleon.

It is interesting to notice that the list (8.61) does not contain one com-
bination, namely (Pr, Cr) = (+,−): such a state cannot be constructed
from a fermion and an antifermion. Remarkably, particles with this spe-
cific combination of quantum numbers were not observed experimentally!
This may mean that all mesons are indeed built of a fermion–antifermion
pair (as in the quark model).

Let us learn how to establish spatial and charge parities for each term
of the reggeon vertex (8.59). To do that we have to go into the t-channel
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cms and perform the symmetry operation in one vertex (obviously, under
the reflection of both vertices the amplitude stays invariant). We start
with spatial reflection, that is, changing signs of three-momenta without
touching spins. Under this operation,

p
(t)
2 →

(
p
(t)
20 ;−p(t)

2

)
, p′2

(t) →
(
p′20

(t);−p′
2
(t))

,

the spinors transform as follows, u → γ0u, ū → ūγ0, so that the vertex
gets wrapped by γ0 matrices,

Γ̂N → γ0 Γ̂N γ0 (γ2
0 = γ0, γ0γiγ0 = −γi, γ0γ5γ0 = −γ5).

Then we have to recall that p1 � p+ represents in the t-channel a circular
polarization vector which has no energy component, p(t)

1 � (0,p(t)
1 ); as a

result, γ0p̂
(t)
1 γ0 = −p̂

(t)
1 . Finally, under the reflection, the t-channel scat-

tering angle undergoes Θ(t) → Θ(t) + π, so that the sign of s also has to
be changed since s ∝ cos Θ(t). All this said, we obtain

(a) : 1 → 1, (b) :
p̂1

s
→ −p̂1

−s
, (c) : γ5 → −γ5, (d) : γ5

p̂1

s
→ −γ5

−p̂1

−s
,

which gives us Pr parity of each of the four structures in the vertex (8.59):

g(1,2) = ū

[
a + b

p̂1

s

]
u → +g(1,2),

g(3) = ū

[
c γ5

]
u → −g(3),

g(4) = ū

[
dγ5

p̂1

s

]
u → −g(4).

Charge conjugation is a bit more complicated. The crossing amounts to

s → u � −s, (8.62a)

and transforming the nucleon wave functions as follows,

u → C−1v̄T , ū → vTC, (8.62b)

where v is a spinor describing the antiparticle (superscript T stands for
transposition), and C is the charge conjugation matrix:

C−1γμC = −γTμ , C−1γ5C = γT5 . (8.62c)

Making use of the rules (8.62) it is straightforward to derive that, differ-
ently from three other vertices, the vertex g4 has an odd charge parity.

Both spatial and charge reflections include the s → −s operation be-
cause of which the reggeon propagator sαξα produces an additional factor
(−1)α ≡ (−1)j . This factor is included in the definition of Pr and Cr.
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Table 8.2 Reggeons coupled with nucleon → nucleon.

vertex Pr Cr I Gr sgn Reggeon

+ + 0 + + P, f (P′)

a + b
p̂1

s
0 + − ω

1 − + A2

1 − − ρ

− + 0 + + η
c γ5 1 − + π

− − 0 + − f1

d γ5
p̂1

s
1 − − a1

In Table 8.2 the corresponding Regge trajectories are presented.

8.5.3 Spin phenomena in πN and NN scattering

We start from the πN → πN scattering process of Fig. 8.8(a). Examining
Tables 8.1 and 8.2 we conclude that reggeon exchanges with Pr = Cr =
+1 are possible, which include reggeons with vacuum quantum numbers,
P, f(P′), etc. as well as negative signature trajectories like ρ. All such
reggeons contribute, but at s → ∞ only the rightmost one, the pomeron
P, survives. In this limit elastic scattering dominates, and the amplitude
can be written in the following form,

Ael
πp(s, q

2) � gπ(q2)ūλ
′
(p′2)

[
a(q2) + 2mb(q2)

p̂1

s

]
uλ(p2) · sαξα, (8.63)

where the pion residue gπ and the nucleon vertex functions a, b are all
isospin-diagonal and refer to the pomeron, α = αP(q2). Indices λ and λ′

marking the Dirac four-spinors stand for polarizations of the incoming
and the outgoing protons, correspondingly. Let us see whether there is
anything new in (8.63) compared to the case of spinless particles. We
observe that the amplitude still depends on spins so that even at tremen-
dously large energies, proton polarization changes (whereas isospin does
not: charge exchange reactions, like π−p → π0n, have died out).

What may happen to spin observables in principle? There are different
possibilities: a polarized nucleon may flip its spin, or lose its polarization
altogether; an unpolarized one may acquire non-zero polarization, etc.
What happens in reality? From the reggeon expression (8.63) it follows
that only one of the whole variety of spin phenomena survives in the high
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energy limit, namely the nucleon spin turns. Moreover, this occurs in a
rather unusual form.

What would we expect in a simple diffraction picture? If a particle
in NQM scatters at small angle, we could imagine that its spin either
does not change as in Fig. 8.9(a) or turns, following the change in the
particle-momentum direction (if spin and momentum are firmly tied),
Fig. 8.9(b). In the relativistic case, in spite of a miniscule scattering an-

σ

σ

p

p
σ

σ

p

p
θs θs

Fig. 8.9

gle θs � |p′
⊥|/|p′| � 1, the spin turns to a large angle, θ = O(1), which

depends on the momentum transfer but not on the collision energy. This
shows that the reggeon interaction acts in a non-trivial way, independently
on the momentum and the spin of the participating particle.

We start with the first term in the nucleon vertex (8.63),

a(q2)ūλ
′
(p′2)u

λ(p2),

and treat it in a frame where the proton is fast, |p′
2| � |p2| 
 |q|, and

scatters at a small angle

θs � sin θs; θs =
[p2 × p′

2]
|p2| |p′

2|
� [ez × q]

|p02|
.

To evaluate the product of Dirac spinors we can express the final state
wave function u(p′2) via the initial state one, u(p′2) = R̂(θs)u(p2), using
the rotation matrix R̂ which we expand to the first order in θs:

R̂(θs) =
(

exp
(
i
2σ · θs

)
0

0 exp
(
− i

2σ · θs

) )
� I + γ0

iσ · θs

2
.

This gives

ūλ
′
(p′2)u

λ(p2) � ūλ
′
(p2)

(
1 − γ0

iσ · θs

2

)
uλ(p2)

= ϕλ′∗
(

2m− 2p20
iσ · θs

2

)
ϕλ = ϕλ′∗(2m + i[σ × q]z

)
ϕλ.
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Here we have represented the Dirac wave functions in terms of 2 × 2 Weyl
spinors ϕ,

uλ(p) =

⎛
⎝ √

p0 + mϕλ

σ · p√
p0 + m

ϕλ

⎞
⎠ ,

and used the well known relations

ūλ
′
(p)uλ(p) = 2mϕλ′∗ϕλ,

ūλ
′
(p)γμuλ(p) = 2pμϕλ′∗ϕλ.

In the second term of the nucleon vertex we can set p′2 = p2, up to negli-
gible corrections O

(
s−1

)
, and use (8.64) to get

2mb
p1μ

s
ū(p′2)γ

μu(p2) � 2mbϕ∗ϕ
[p1μ

s
· 2pμ2 + · · ·

]
� 2mb(q2)ϕ∗ϕ.

Combining the two terms, for the nucleon vertex we obtain the expression

ūλ
′
(p′2)

[
a(q2) + 2mb(q2)

p̂1

s

]
uλ(p2)

� ϕλ′∗(2m[a(q2) + b(q2)] + ia(q2)[σ × q]z
)
ϕλ.

(8.64)

The matrix structure of the nucleon Regge residue (8.64) tells us that
the spin of the proton turns around the normal to the scattering plane,
[n × n′], to a finite angle θ:

tan
θ

2
=

|q⊥|
2m

a(−q2
⊥)

a(−q2
⊥) + b(−q2

⊥)
= O(1) . (8.65)

Here a few comments are due. First of all, we see that θ is determined
by the functions a and b which describe pomeron attachment to target
nucleon and do not depend on the type of the projectile. Therefore, for
a given q, the nucleon spin will rotate by the same angle (8.65) in πN
and NN scattering. Moreover, since in the single-pole approximation all
spin amplitudes have the same phase (all complexity is embodied in the
universal signature factor ξα), polarization can neither emerge nor dis-
appear as a result of collision since these effects are proportional to an
interference between amplitudes with and without ‘spin–flip’:

P ∝ Im
(
A∗

↑↑A↑↓
)
.

For the same reason at asymptotically high energies these is no other more
subtle effects such as correlation between two spins in the NN scattering.
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8.6 Conspiracy

Concerning NN scattering, one interesting phenomenon remains to be
investigated known as ‘conspiracy’.

As we have established already, this amplitude contains three separate
contributions,

ANN→NN = A(1)

(
Pr = +1
Cr = +1

)
+ A(2)

(
Pr = −1
Cr = +1

)
+ A(3)

(
Pr = −1
Cr = −1

)
,

whose energy dependence is described by three reggeons with different,
generally speaking, Regge trajectories:

A(1) =
(
ū1

[
a(q2) + b(q2)

p̂2

s

]
u1

)(
ū2

[
a(q2) + b(q2)

p̂1

s

]
u2

)
sα1ξα1 , (8.66a)

A(2) =
(
ū1

[
c(q2)γ5

]
u1

)(
ū2

[
c(q2)γ5

]
u2

)
sα2ξα2 , (8.66b)

A(3) =
(
ū1

[
d(q2)γ5

p̂2

s

]
u1

)(
ū2

[
d(q2)γ5

p̂1

s

]
u2

)
sα3ξα3 . (8.66c)

Let us take a moderately large energy where all the poles are essential,
add their contributions and . . . we will be surprised! Look at the value of
the amplitude at q = 0, i.e. at the exactly forward scattering. Then the
first amplitude (8.66a) trivializes and becomes diagonal with respect to
the spin,

ūλ
′
(p1)

[ p̂2

s

]
uλ(p1) =

pμ2
s

· ūγμu =
pμ2
s

· 2p1μ · δλλ′ = δλλ′ .

As for the rest, A(2) vanishes and A(3) stays finite. To see this it suffices
to look at one vertex in the rest frame, say, p1 = (m,0), where the four-
spinor has only an upper component,

uλ(p1) =
(

ϕλ

0

)
,

and of three matrices,

γ5 =
(

0 1
−1 0

)
, γ5γ0 = −

(
0 1
1 0

)
, γ5γi = −

(
σi 0
0 σi

)
,

only the last one (diagonal) survives,

ū(p1)γ5γu(p1) = ϕ∗
1σϕ1 ≡ σ(1),

yielding the matrix element σ
(1)
z upon multiplication by p2μ in (8.66c).

Thus from A(1) and A(3) we have two contributions to the forward
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amplitude:

A(q = 0) = c + c′σ(1)
z σ(2)

z ; (8.67)

z is the collision axis as before.
This expression is formally legitimate (the z-direction is special, while

rotational symmetry in the transverse plane is respected). Still it looks
strange: from general considerations we could expect the presence of an-
other term in (8.67)

· · · + c′′
(
σ

(1)
⊥ · σ(2)

⊥
)

= c′′
(
σ(1)
x σ(2)

x + σ(1)
y σ(2)

y

)
. (8.68)

Why have we lost this invariant? It is not a question of the asymptotic
behaviour since we have added all Regge pole contributions; so, what has
happened?

Let us see whether we could restore the term (8.68) in the forward
scattering amplitude. We have to be a bit more accurate. Taking the
q = 0 limit in (8.66a), we have dropped the second, linear in q, term in
the full expression (8.64) for the first amplitude,

∝ ia(−q2
⊥)

[
σ × q⊥

]
z

(
∝ σx for q⊥|| y

)
. (8.69)

This would have been a bad idea if the coefficient was singular at q⊥ = 0.
Imagine that we force this contribution to be finite in the q⊥ → 0 limit.
The result is bizarre: the amplitude would remember about the direction
of the vector q⊥ before it vanished! Indeed, if q is directed along the y-
axis, the rescued term contains the matrix σx, as envisaged in (8.69). So,
we have found the σx ⊗ σx term rather than the full σ⊥ ⊗ σ⊥ of (8.68).

Let us search for the missing σy ⊗ σy. The vertex in A(2) is a pseu-
doscalar and should therefore contain ϕ∗(σ · q⊥)ϕ ∝ σy (and the coeffi-
cient c(q2) in (8.66b) could also be singular). Indeed, rewriting (8.66) in
the two-component form at small momentum transfer, we obtain

A(1) =
{
f1 + f2[σ(1) × q⊥]z

} {
f1 + f2[σ(2) × q⊥]z

}
sα1ξα1 , (8.70a)

A(2) = f2
3

(
σ(1) · q⊥

) (
σ(2) · q⊥

)
sα2ξα2 , (8.70b)

A(3) = f2
4 σ(1)

z σ(2)
z sα3ξα3 , (8.70c)

where fi = fi(q2) and σ(i) ≡ ϕ∗
iσϕi.

The strategy of restoring the lost contribution (8.68) is now clear: f2

and f3 must be both singular and, moreover, have to have the same q → 0
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limit,

f2
2 (q2

⊥) � f2
3 (q2

⊥) � c′′

q2
⊥

at q⊥ → 0. (8.71a)

But the two pieces, σxσx and σyσy, belong to different trajectories! In or-
der to preserve the rotational invariance in the {x, y} plane at all energies,
the vacuum trajectory (A(1)) must cross with a trajectory with π-meson
quantum numbers (A(2)) at t = 0. This explains the name conspiracy :
two reggeons must ‘make a deal’ concerning both their trajectories and
residues,

α1(0) = α2(0), r1(0) = r2(0). (8.71b)

Is this a miracle? Not entirely. We have lost, in the first place, (8.68)
because (σ⊥ · σ⊥) does not correspond to a state with definite quantum
numbers in the t-channel: it has a mixture of two states with different
parity.

Recall what was the reason for Regge trajectories with differing quan-
tum numbers to be different? It was the unitarity that separated them.
Satisfying different unitarity conditions, two reggeons have no reason to
be related unless there is a specific symmetry in the works. Is there not
an additional symmetry at t = 0? Obviously, there is.

What is the parity of a given object? We go to its rest frame and
see which sign the wave function acquires under the spatial reflection.
However, if a particle has m = 0, one cannot stop it and the notion of
parity loses sense. But the point t = 0 corresponds exactly to a zero mass
object in the t-channel, and our states A(1) and A(2), which differed only
by their parity, Pr = ±, become physically indistinguishable. Certainly,
this argument does not prove the conspiracy phenomenon but makes its
possible existence less mysterious.

From the point of view of the interaction in the t-channel, the conspir-
acy means that the ‘potential’ possesses an additional symmetry at t = 0
which prevents the unitarity condition from separating the amplitudes
with different parities. A closer examination of various reactions shows
that the conditions (8.71) are not sufficient. Having made fi singular,
we did something serious: inserted a singularity that the total amplitude
should not have. As a remedy, another Regge trajectory must enter the
conspiracy plot, with an intercept smaller by one unity. (Actually, a whole
series of shifted trajectories – ‘daughters’ – appear.)

To conclude, if forward-scattering amplitudes contain the contribution
proportional to (σ⊥ · σ⊥) then, within the Regge-pole approach, this is
an evidence for conspiracy. Experimentally such a phenomenon is not
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u = (m
 + μ) 2

Fig. 8.10 Backward πN scattering on the Mandelstam plane.

observed so far. In any case, an experimental proof is difficult because of
the influence of the reggeon branchings.

8.7 Fermion Regge poles

Up to now we have studied the behaviour of two-particle scattering ampli-
tudes in the region |t| ∼ m2, s → ∞. However, since we formally allowed
an incident particle to change identity, this means that we have already
treated the backward scattering as well! Look, for example, at the region
|u| ∼ m2, s → ∞ in the πN → πN scattering amplitude shown on the
Mandelstam plane in Fig. 8.10.

What is so remarkable about this region? In Lecture 5 we have seen
that in the relativistic theory there exists, in addition to a forward peak,
also one in the backward direction. The magnitude of the backward peak
depends on how willingly the particle is ready to change its individuality
(recall the Compton effect).

With the help of the theory of complex angular momenta we have
learned how to write the asymptotics for the scattering of spinless par-
ticles at a small angle θs =

√
−t/s and found that it was determined by

quantum numbers in the t-channel. Later, we have generalized the ob-
tained results to the case of non-zero spin particles.

Obviously, the same programme can be carried out also for backward
scattering, θu =

√
−u/s � 1. In the case of spinless particles, or parti-

cles with integer spins, the whole story will be a mere repetition, the
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Fig. 8.11 (a) Backward πN scattering; (b) u-channel fermion exchange.

only difference being that the asymptotics will now be determined by the
quantum numbers of the u-channel exchange. In a backward scattering of
a fermion, e.g. backward πN scattering shown in Fig. 8.11(a), an inter-
esting new phenomenon appears owing to the fact that the exchange is
now carried out by a reggeon with a half-integer angular momentum. Let
us investigate this case in detail.

How to write an amplitude corresponding to a fermion exchange? Let
us turn to the perturbation theory. The exchange amplitude for a particle
with σ = 1

2 shown in Fig. 8.11(b) has the form

A(s, u) = ū(p2)g(q2)
1

m− q̂
g(q2)u(p1), q = p1 − k2. (8.72)

Given the spinor normalization u(p) ∼ √
p0, at large s this amplitude

behaves as A[σ = 1
2 ] ∝ √

s = sσ, as expected.
If we have a σ = 3

2 particle exchange, the longitudinal polarization ten-
sor, e−μ e

+
ν ∝ p1μk1ν/s, convolutes with the momenta in the vertices, kμ1 p

ν
1

and produces an extra s, yielding A[σ = 3
2 ] ∼ sσ, etc.

Generalizing to the case of an arbitrary spin as before, we shall write
the reggeon exchange amplitude as (cf. (8.63))

A(s, u) = ū(p2)
[
a(q2) + b(q2)q̂

]
u(p1)sα(q2)−1

2 ξ
α(q2)−1

2
. (8.73)

Here we put α− 1
2 in the exponent since spinors provide an additional

factor
√
s, as they already did before in (8.72).

Following our logic, let us determine the quantum numbers in the u
channel. If we assume that there is no degeneracy so that unitarity does
separate trajectories with different quantum numbers, we need to learn
to write amplitudes with definite parity which correspond to two opposite
parity u-channel states with � = j ± 1

2 .
To do so, we move, as usual, to the u-channel cms and carry out spatial

reflection in one of the vertices, e.g. in the lower one in Fig. 8.11b. The
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matrix q̂, transversal in the s channel, in the u-channel centre-of-mass
frame has only a time component:

q̂(u) = γ0q0(u) = γ0

√
q2.

The spinor u(p1) under reflection produces

u(p1) =⇒ iγ0u(p1).

Then, the cosine of the u-channel scattering angle changes sign, zu =
cos θu → −zu, which corresponds to the reflection s → −s, yielding the

factor (−1)α−
1
2 . Altogether, the parity operation acts on the amplitude

as follows:

A ∝
[
a + bq0(u) · γ0

]
=⇒

[
a · γ0 + bq0(u)

]
(−1)α.

To have a definite parity Pr = P · (−1)α, one of the conditions

aγ0 + bq0(u) = ±(a + bq0(u)γ0)

has to be satisfied, that is, returning to the Lorentz invariant form,

a(q2) = ± b(q2)
√
q2.

Thus, the contribution of a fermionic Regge pole with a definite parity Pr

reads

A± = r±(q2)ū(p2)
[
q̂ ±

√
q2

]
u(p1) · sα±−1/2ξα±−1/2. (8.74)

We see right away that A±(s, u) have rather unusual features.

(1) The existence of a singularity at q2 =0 contradicts the analytic
structure of the Mandelstam plane where the first u-channel
(threshold) singularity appears at q2 = u = (m + μ)2 > 0.

(2) In the physical region of the s-channel (q2 ≤ 0) the complexity of
A± is not limited to the complexity of the signature factor.

Hence, we cannot assume that the high-energy behaviour of the backward
scattering is determined by a single pole of definite parity without con-
tradicting analyticity of the scattering amplitude in u. The only way to
avoid this contradiction is to say that the asymptotics is determined by
both poles simultaneously:

A = A+ + A− = r+ū2(q̂ +
√
q2)u1s

α+−1
2 ξ

α+−1
2

+ r−ū2(q̂ −
√
q2)u1s

α−−1
2 ξ

α−−1
2
, (8.75a)
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α−(u) α+(u)
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u=0
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Pr = −1Reα

Pr = +1

(b)

u

Fig. 8.12 (a) Movement of fermionic reggeons from positive to negative u on
the j plane; (b) conspiracy of fermionic trajectories on the Chew–Frautschi
plot.

where the two trajectories derive from one function, as do the residues:

α+ ≡ α(
√
u), α− = α(−

√
u); (8.75b)

r+ ≡ r(
√
u), r− = r(−

√
u). (8.75c)

Let us see what are the consequences of this picture.

Conspiracy. First of all, how do the Regge trajectories α±(u) behave?

u > 0: the physical region of the u-channel. The trajectories α+ and α−
are values of the same function of different real arguments.

u < 0: the physical region of the s-channel; the arguments are imagi-
nary, complex conjugate, and we have

α+ = α(i
√
−u) = α∗(−i

√
−u) = α∗

−.

The possible behaviour of the poles in the j-plane while moving from one
region to the other is shown in Fig. 8.12(a). At u > 0 the trajectories
are real and, generally speaking, different, see Fig. 8.12(b). They cross
at u = 0 (‘conspiracy’ !); at u < 0 they become complex conjugate and
diverge in the j plane.

So our attempt to separate fermionic trajectories with different parities,
without violating the analyticity, has led us to unavoidable conspiracy. As
we have already discussed above in Section 8.6, this phenomenon is due
to the uncertainty in the parity of a massless particle.

Let us demonstrate this in perturbation theory. Suppose that an ex-
change with a Fermi-particle ν takes place described by the diagram in
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Fig. 8.11(b) (one can imagine, e.g., backward π−e− scattering via neutrino
exchange). If mν �= 0, we can write two different amplitudes:

A1 = ū2 · (iγ5)
mν + q̂

m2
ν − q2

· (iγ5)u1 = ū2
mν − q̂

m2
ν − q2

u1,

A2 = ū2 ·
mν + q̂

m2
ν − q2

· u1.

On the mass shell, q2 = m2
ν , the parity of the amplitude A1 is P1 = −i

(here we, again, have to carry out a reflection in one of the vertices in the
cms of the u-channel); the parity of the second amplitude (A2) is P2 = i.
Taking now mν = 0, the two amplitudes become indistinguishable,

A1 = ū2
q̂

q2
u1 = −A2,

and we arrive at a degeneracy in parity.

Oscillations. Since the backward scattering amplitude is described by
a pair of complex conjugate fermionic Regge poles, this should lead to
oscillations, both in s and u. Parameterizing α±(u) = α1(u) ± iα2(u), the
amplitude can be represented as follows:

A(s, u) = |r(u)|sα1−1
2 · ū(p2)

[
f1q̂⊥ + f2

√
q2
⊥

]
u(p1);

f1 = f cos[α2(u) ln s + ϕ(u)] , f2 = f sin[α2(u) ln s + ϕ(u)] .
(8.76)

To observe these oscillations turns out to be not so simple. Indeed, if we
consider the cross section

dσ

dΩ
∝ 1

s
AA†

summed (averaged) over the polarization of the final (initial) nucleon,

dσ

dΩ
∝ 1

2 Tr
(
A · (p̂1 + m) · Ā · (p̂2 + m)

)
, Ā = γ0Aγ0,

the oscillations will not manifest themselves, since here the sum |f1|2 +
|f2|2 enters, and we obtain

dσ

dΩ
∝ |r(u)|2s2(α1(u)−1) · f2(u).

The cross section will not oscillate even if we measure the polarization
of one of the nucleons; only the spin correlation between the initial and
final fermions will be an oscillating function of energy.
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Thus, the theory, in the pole approximation, predicts that:

(1) the baryon resonances lie on Regge trajectories;

(2) cross sections with baryon number exchange decrease as powers of s;

(3) trajectories with different parities conspire at u = 0; and

(4) in the asymptotics of the amplitude there are unusual oscillations.

Indeed, many fermionic resonances, up to very high spins, are observed
experimentally. Surprisingly, their trajectories look linear in the mass
squared, u = m2, similarly to the bosonic case (see Fig. 8.1 on page 180),
in spite of the fact that the fermion propagator depends on the first power
of the mass, G ∝ 1/(m− q̂), rather than on m2 as boson propagators do.
This means that in the series expansion for the analytic function α which
determines the nucleon trajectories according to (8.75b), the square-root
term is very small, if not altogether absent:

α(
√
u) � α0 + α1

√
u + α2u + · · · , α1 � 0.

But if this is the case then according to (8.75b) there must be parity
degeneracy for all values of u: α+(u) = α−(u) � α0 + α2u. Hence, there
must exist resonances with opposite parity and equal masses, lying on the
same trajectory. This is, however, not observed experimentally.

In order to reconcile the theory with the experiment, one can try to
‘conceal’ this degeneracy by putting the residue of one of the two tra-
jectories equal zero in the position of an unwanted resonance. This may
look weird (indeed, how to force a resonance not to interact with any-
thing in the theory of strong interactions?), but in some dual models (see
Lecture 16) such a possibility is considered.

So, at the moment we have the following situation. On the one hand,
we do see fermionic Regge poles. On the other hand, there must be an
additional trick in Nature that makes the apparent linearity of baryon tra-
jectories and the absence of parity degeneracy in the spectrum of baryon
resonances consistent.
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