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Direct numerical simulations are conducted for temporally evolving stratified wake flows
at Reynolds numbers from 10 000 to 50 000 and Froude numbers from 2 to 50. Unlike
previous studies that obtained statistics from a single realization, we take ensemble
averages among 80–100 realizations. Our analysis shows that data from one realization
incur large convergence errors. These errors reduce quickly as the number of statistical
samples increases, with the benefit of ensemble average diminishing beyond 40–60
realizations. The data with ensemble average allow us to test the previously established
scalings and arrive at new scaling estimates. Specifically, the data do not support
power-law scaling in the centreline velocity deficit U0 beyond the near wake. Its decay
rate increases continuously from 0.1 at the onset of the non-equilibrium regime until the
end of our calculations without reaching any asymptote. Additionally, while no power-law
scalings could be found in the wake width (LH) and wake height (LV ) in the late wake,
LH ∼ (Nt)1/3 is a good working approximation of the wake’s horizontal size, where N
is buoyancy frequency and t is time. Besides the low-order statistics, we also report the
transverse integrated terms and the vertically integrated terms in the turbulent kinetic
energy budget equation as a function of the vertical and transverse coordinates. The data
indicate that there are two peaks in the vertically integrated production and transport terms,
and one peak when the two terms are integrated horizontally.

Key words: wakes

1. Introduction

The evolution of a wake in a stratified environment has garnered much attention since the
early work by Lin & Pao (1979), and reviews of the literature can be found in Spedding
(2014) and de Bruyn Kops & Riley (2019). Two model problems that have been studied
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extensively numerically are temporally evolving wakes and spatially developing wakes
in a linearly stratified environment, which are sketched in figures 1 and 2. The spatial
coordinate x in figure 1(a) and the time coordinate t in figure 1(b) are interchangeable
according to x = Ubt, where Ub is the convective velocity. Simulations of spatially
evolving wakes necessitate the concurrent resolution of both the near wake and the
far wake. On the other hand, simulations of temporally evolving wakes require only
the wake characterization at a specific time. Consequently, when investigating the late
wake, simulations of temporally evolving wakes are often more straightforward than
simulations of spatially developing wakes (Chongsiripinyo & Sarkar 2020). Nevertheless,
the initialization of temporally evolving wake simulations remains challenging practically,
unless calculations of a spatially evolving wake at the same flow condition are readily
available (Pasquetti 2011; VanDine, Chongsiripinyo & Sarkar 2018).

Significant insights have been gained into the flow physics of stratified wakes since the
seminal work of Lin & Pao (1979). Here, we provide a brief overview of the basic flow
phenomenology. First, we define the local Froude number Fr = U0/(NL), where L is an
integral length scale, U0 is the centreline velocity deficit, and N is the Brunt–Väisälä
frequency. The local Froude number describes the competition between the inertial and
buoyancy forces. In many real-world scenarios, such as the wake behind an underwater
vehicle in the deep sea, Froude numbers start off large, gradually decrease as the wake
decays, and eventually reach order one. From here, buoyancy becomes increasingly
important, and the wake loses its memory of the wake-generating body (Meunier &
Spedding 2004). Following Spedding (1997), the wake can be divided into three distinct
flow regimes: the near-wake regime (NW), the non-equilibrium regime (NEQ), and the
quasi-two-dimensional regime (Q2D). Buoyancy effects are negligible in the NW regime,
but are important in the NEQ and Q2D regimes. As different physics are at play in
the different flow regimes, important flow quantities like the centreline velocity deficit
and the wake width and height exhibit different scaling behaviours in these regimes. In
the following, we provide a review of existing data, with a focus on direct numerical
simulations (DNS) of temporally evolving wakes. Experimental data will be referenced
as needed.

The early experiments conducted by Spedding, Browand & Fincham (1996) and
Spedding (1997) indicated that the centreline velocity deficit decays as x−2/3, x−0.25 and
x−0.76 in the NW, NEQ and Q2D regimes, respectively. Spedding (1997) proposed defining
the flow regimes based on the scaling behaviour of the centreline velocity deficit U0.
According to that study, the NW regime ends at approximately Nt = 1.7 ± 0.3, and NEQ
ends at approximately Nt = 50 ± 15, beyond which the flow transitions to the Q2D regime.
The above power-law decay of the centreline velocity deficit has also been observed in
other studies, such as Diamessis, Domaradzki & Hesthaven (2005), Brucker & Sarkar
(2010) and Diamessis, Spedding & Domaradzki (2011), among others. However, the
specific time or downstream location at which the NW and NEQ regimes end varies across
different investigations. For example, Brucker & Sarkar (2010) identified the termination
of the NW regime at Nt = 5 and the NEQ regime at Nt = 100. In contrast, Diamessis et al.
(2011) and Spedding (1997) reported an early transition to the Q2D regime at Nt = 60 and
Nt = 50, respectively.

Like the extent of the three flow regimes, the scalings of the centreline velocity deficit
and wake sizes in each regime remain open research questions. Here, we summarize
the current understanding of these scalings in the NW, NEQ and Q2D regimes. In the
NW regime, the behaviour of a stratified wake is similar to that of an unstratified wake.
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Figure 1. Schematics of stratified wake flows. (a) A spatially developing wake in (i) the streamwise vertical
plane and (ii) the streamwise transverse plane. (b) A temporally evolving wake in (i) the streamwise vertical
plane and (ii) the streamwise transverse plane. The fields are from case R20F02 at Nt = 4.5, 52, 110 and 400,
which will be detailed in § 2.
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Figure 2. (a) Visualization of the instantaneous vertical vorticity field ωz on the horizontal plane z = 0.
(b) Instantaneous spanwise vorticity field ωy on the vertical plane y = 0. Four snapshots are at Nt = 4.5, 52,
110 and 400, respectively. The fields are from case R20F02.

The centreline velocity deficit decays as U0 ∼ x−2/3, while the vertical and horizontal
sizes of the wake grow as Lv ≈ Lh ∼ x1/3 (Tennekes & Lumley 1972; Townsend 1976).
Some studies have observed a x−1 scaling in U0, which arises from the anisotropic
dissipation of turbulent kinetic energy (TKE) (Nedić, Vassilicos & Ganapathisubramani
2013; Dairay, Obligado & Vassilicos 2015; Pal et al. 2017; Chongsiripinyo & Sarkar 2020;
Ortiz-Tarin, Nidhan & Sarkar 2021).

Moving on to the NEQ regime, buoyancy becomes significant. The streamwise and
vertical velocity fluctuations u′ and w′ are less correlated compared to the NW regime,
resulting in reduced energy transfer from the mean flow to turbulence. As a consequence,
the decay of the centreline velocity deficit in the NEQ regime is slower than in the NW
regime (Brucker & Sarkar 2010). Meunier, Diamessis & Spedding (2006) argued that the
NEQ regime can be divided further into an early NEQ regime and a late NEQ regime.
In the early NEQ regime, the centreline velocity deficit decays as x−0.24, while in the
late NEQ regime, it decays as x−0.37 (Brucker & Sarkar 2010). Regarding wake sizes, LV
remains relatively constant in the NEQ regime, while LH shows approximately x1/3 growth
(Spedding 1997; Gourlay et al. 2001; Diamessis et al. 2005, 2011; Brucker & Sarkar 2010).

Finally, in the Q2D regime, as we can see in figure 2, large-scale pancake-like
eddies emerge (Chongsiripinyo & Sarkar 2020). The centreline velocity deficit decays as
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Reference Flow parameters (Re/1000; Fr) NW NEQ Q2D

S97 5–12; 5–120 −2/3 −0.25 ± 0.04 −0.76 ± 0.12
G01 10; 5 −0.69 −0.25 −0.76
D02 10–100; 2 −2/3 NA −2/3
D05 5–20; 4 NA NA NA
BS10 10–50; 2–4 −2/3 −0.24, −0.37 −0.64, −0.69
D11 5–100; 2–32 −2/3 −1/4 −0.76

Table 1. Decay rate of the centreline velocity deficit. Here, S97 is Spedding (1997), G01 is Gourlay et al.
(2001), D02 is Dommermuth et al. (2002), BS10 is Brucker & Sarkar (2010) and D11 is Diamessis et al.
(2011). Diamessis et al. (2005) (D05) did not report the decay rate, leading to the NA in the table. The values
of the Froude number are adjusted so that they are consistent with our definition.

Reference NW NEQ Q2D

S97 1/3 1/3 1/3
G01 0.36 ± 0.13 0.36 ± 0.13 0.36 ± 0.13
D02 1/3 NA 1/3
D05 1/3 1/3 1/3
BS10 1/3 0.31 0.23–0.46
D11 1/3 1/3 1/3

Table 2. Growth rate of Lh. The flow parameters and the references are the same as in table 1. D02 did not
report the exact growth rate, leading to the NA in the table.

Reference NW NEQ Q2D

G01 1/3 0 0.32 ± 0.1
D05 NA 0 0.6
BS10 1/3 NA 0.5
D11 1/3 0 0.36–0.48

Table 3. Growth rate of the wake’s vertical size Lv . The flow parameters and the references are the same as in
table 1. In BS10, there is no numerical number reported, leading to NA in the table. A caveat is that one may
get vastly different values depending on the definition of Lv .

U0 ∼ x−0.76 (Spedding 1997; Gourlay et al. 2001; Diamessis et al. 2005, 2011; Brucker &
Sarkar 2010). The scalings of wake sizes in this regime are subject to some controversy.
Spedding (1997), Gourlay et al. (2001), Dommermuth et al. (2002) and Diamessis et al.
(2011) reported approximately x1/3 growth in LH . However, Brucker & Sarkar (2010)
found a varying growth rate of the wake’s horizontal size, with LH ∼ x0.46 and LH ∼ x0.23

for 100 < Nt < 250 and Nt > 350, respectively. As for the vertical size, Gourlay et al.
(2001), Diamessis et al. (2005), Brucker & Sarkar (2010) and Diamessis et al. (2011)
reported x0.32±0.1, x0.6, x0.5 and x0.36−0.48, respectively. Tables 1–3 summarize the data. In
summary, we see that the available data are scattered and exhibit variation across different
studies.

Next, we try to understand the scattering in the data. In figure 3, we have collected some
of the centreline velocity deficit data in the literature (Dommermuth et al. 2002; Diamessis
et al. 2005, 2011; Brucker & Sarkar 2010). The data cover the Reynolds number range
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Figure 3. A not comprehensive collection of the data in the literature showing the decay of the centreline
velocity deficit. Flow parameters are identified in the legend as R[Re/1000]F[Fr]. Here, solid lines are our DNS
(detailed in § 2); D11 is by Diamessis et al. (2011); D05 is by Diamessis et al. (2005); D02 is by Dommermuth
et al. (2002); BS10 is by Brucker & Sarkar (2010). The values of the Froude number are adjusted so that they
are consistent with our definition.

between 5000 and 400 000, and the Froude number range between 2 and 50. We note that
the Froude number in Diamessis et al. (2011) is defined as Fr ≡ 2U/ND, which is different
from the definition here, Fr = U/ND. The numbers in Diamessis et al. (2011) are adjusted
so that they are consistent with the definition here. Our data are also included in the figure
for comparison purposes. The details of our DNS will be presented in § 2. We observe
the following. First, wiggles can be observed in the data, particularly in the late NEQ and
Q2D regimes. These fluctuations make it challenging to discern clear scaling trends for
U0. Second, it is difficult to identify a specific range where the centreline velocity deficit
follows a consistent −0.25 or −0.76 scaling. In fact, the decay rate does not appear to
remain constant over an extended range. These factors contribute to the scattering of data
in table 1. In addition, a lack of good theories and clear definitions is also responsible.
In comparison to flow statistics in isotropic turbulence and boundary-layer flows, where
Kolmogorov’s theory of small-scale turbulence (Frisch 1995) and Townsend’s attached
eddy hypothesis (Marusic & Monty 2019; Yang & Meneveau 2019) provide good baseline
estimates, flow statistics in stratified wake flows lack well-established baseline estimates.
Meunier et al. (2006) provide estimates of the scalings of the mean flow statistics in a
stratified wake, but the work is much less well-established compared to Kolmogorov’s and
Townsend’s theories.

Furthermore, there exist different definitions of wake width and height. They may be
defined based on the velocity (Spedding 1997, 2001), the TKE (Pal et al. 2017; Ortiz-Tarin
et al. 2021) or other statistical objects (Brucker & Sarkar 2010; de Stadler, Sarkar &
Brucker 2010). The behaviours of the heights and widths depend on their definitions,
which also contribute to the scattering of data in tables 2 and 3. Here, we distinguish
LH and LV from the integral length scales in Zhou & Diamessis (2019) and de Bruyn Kops
& Riley (2019). The integral length scale in Zhou & Diamessis (2019) characterizes the
scale of the underlying turbulence, and the integral length scale in de Bruyn Kops & Riley
(2019) characterizes the scale of the mean flow.
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Figure 4. A not comprehensive collection of the data in the literature showing the phase diagram of
Reh Fr2

h–Frh. Nomenclature is the same as in figure 3. Here, ZD19 is the LES by Zhou & Diamessis (2019),
and CS19 is the LES by Chongsiripinyo & Sarkar (2020). The values of the Froude number are adjusted so that
they are consistent with our definition.

The discussion above focuses on the classification of stratified wakes into the NW,
NEQ and Q2D regimes. Alternatively, we may divide stratified wakes into weakly
stratified turbulence (WST), intermediately stratified turbulence (IST), strongly stratified
turbulence (SST) and viscous regimes (Billant & Chomaz 2001; Riley & de Bruyn
Kops 2003; Lindborg 2006; Brethouwer et al. 2007; Chongsiripinyo & Sarkar 2020).
This classification is based on the local horizontal Reynolds number Reh and the local
horizontal Froude number Frh, which are defined as

Reh = u′
hLHk

ν
, Frh = u′

h
NLHk

, (1.1a,b)

where u′
h is the root mean square of the horizontal velocity fluctuation u′

h = (u′2 + v′2)1/2,
and LHk is the distance from the centreline to where the TKE is half of its centreline
value in the transverse direction. The parameter Frh characterizes the importance of
buoyancy, while Reh Fr2

h characterizes the importance of inertia. Figure 4 illustrates the
Frh–Reh Fr2

h phase space and the evolution of stratified wakes within it. The WST regime
occupies the top right portion of the phase space, where 0.1 < Frh < 1. Below the WST
regime lie the IST and SST regimes, characterized by 0.03 < Frh < 0.1 and Frh < 0.03,
respectively (Chongsiripinyo & Sarkar 2020). The viscous regime is located to the left
of the stratified turbulence regimes and is defined by Reh Fr2

h < 1. As a stratified wake
at high Reynolds and Froude numbers evolves, it passes through the WST regime, IST
regime, SST regime, and eventually the viscous regime. Besides Frh–Reh Fr2

h, another
relevant space is the Frh–ε/(νN2) space. Figure 5 shows the evolution of stratified wakes
in this space. Nonetheless, since the statistic ε/(νN2) is rarely reported in DNS studies
of stratified wake flows, we could show our data only. The Frh–ε/(νN2) space is not very
different from the Frh–Reh Fr2

h space in terms of the positions of the WST, IST, SST and
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Figure 5. The phase diagram of ε/(νN2)–Frh calculated from the wake-centre value. The legend is the same
as in figure 3.

viscous regimes therein. The dissipation in our DNS first increases before it decreases, as
in Brucker & Sarkar (2010) and Chongsiripinyo & Sarkar (2020). This gives rise to the
arc at the initial stage. The trajectories of the DNS in the Frh–ε/(νN2) space is otherwise
similar to that in the Frh–Reh Fr2

h space. A detailed discussion of the two spaces and their
physical bearings falls out of the scope of this introduction, and the reader is directed
to Riley & de Bruyn Kops (2003) and de Bruyn Kops & Riley (2019) for more detailed
discussions. Regime classifications in figures 4 and 5 remove the uncertainties in the spans
of the flow regimes. However, the question regarding the scaling of the centreline velocity
deficit, width and height of wakes in these stratified turbulence regimes remains open.

A limitation of the present large-eddy simulations (LES) and DNS data is the lack of
statistical samples. A calculation of a temporally evolving wake provides one statistical
sample. While one can get reasonably well-converged low-order statistics by averaging in
the streamwise direction in one realization, obtaining statistically converged high-order
statistics such as the TKE or the terms in the TKE budget equation is challenging with
only one sample. In this study, we aim to address this limitation by collecting a larger
number of statistical samples at a given simulation parameter. By doing so, we can achieve
a better-converged centreline velocity deficit and reasonably well-converged terms in the
TKE budget equation. These additional samples will enable us to answer two outstanding
questions: the scaling of the centreline velocity deficit and the impact of buoyancy on the
balance of terms in the TKE budget equation. It is worth noting that the issue of statistical
convergence exists in experimental studies as well (Spedding et al. 1996; Spedding 1997,
2002). In those cases, the concern stems from the limited observational window and
insufficient sampling of large-scale structures.
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In anticipation of the discussion in § 3, here we review the model in Meunier et al.
(2006). In the late wake, the length scales of the mean flow are large in the streamwise
direction and small in the vertical and transverse directions; the vertical motions
are suppressed. Furthermore, the wake’s convective velocity Ub is much larger than the
wake’s centreline velocity deficit U0. Thus turbulence is assumed to act in the horizontal
direction only, and vertical growth is dominated by viscous diffusion. These assumptions
give rise to the following simplified form for the streamwise momentum equation:

Ub
∂U
∂x

= (ν + νt)
∂2U
∂y2 + ν

∂2U
∂z2 . (1.2)

Here, the eddy viscosity assumption is invoked, resulting in − 〈
u′v′〉 = νt ∂U/∂y. In

Meunier et al. (2006), the eddy viscosity was assumed to be a constant in the wake region.
Meunier et al. (2006) argued that the wake profile is approximately Gaussian:

U = Ub − U0 exp
(

− y2

L2
y

− z2

2L2
z

)
. (1.3)

Equations (1.2) and (1.3) give estimates for Lz, Ly and U0 for the late wake. These estimates
can be found in equations (20), (22), and (24) in Meunier et al. (2006), and are not repeated
here for brevity.

The remaining sections of the paper are organized as follows. We provide the details
of our DNS in § 2. The results are then presented in § 3. We first discuss the number of
samples needed to get converged statistics. Subsequently, we analyse the scalings of the
centreline velocity deficit, the velocity fluctuations, and the horizontal and vertical sizes of
the wake. Finally, we examine the transverse and vertically integrated TKE budget at both
high and low Froude numbers. The paper concludes in § 4 with a summary of the findings.

2. Direct numerical simulations

We conduct DNS of temporally evolving wakes. The DNS set-up is similar to that in
Brucker & Sarkar (2010) and de Stadler et al. (2010), but we repeat our DNS 80–100 times
for ensemble average.

2.1. Governing equations and normalization
The governing equations are the three-dimensional incompressible Navier–Strokes
equations with the Boussinesq approximation. In their dimensional forms, the equations
are

∂u∗
i

∂x∗
i

= 0, (2.1)

∂u∗
i

∂t∗
+

∂(u∗
j u∗

i )

∂x∗
j

= − 1
ρ0

∂p′∗

∂x∗
i

+ ν
∂2u∗

i
∂x∗

j ∂x∗
j

− ρ′∗

ρ0
gδi3, (2.2)

∂ρ∗

∂t∗
+ ∂(u∗

i ρ
∗)

∂x∗
i

= α
∂2ρ∗

∂x∗
i ∂x∗

i
, (2.3)

where (2.1) is the dimensional continuity equation, (2.2) is the dimensional momentum
equation, and (2.3) is the dimensional density equation; u∗

i is the dimensional velocity
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in the ith Cartesian direction, and ρ′∗ is the instantaneous density fluctuation from the
background mean field. Here, instead of solving the density equation directly, we solve the
transport equation for the temperature,

∂T∗

∂t∗
+ u∗

i
∂(T̄∗ + T∗)

∂x∗
i

= κ
∂2T∗

∂x∗
i ∂x∗

i
, (2.4)

and then compute the density field using the equation

ρ∗ − ρ0

ρ0
= −β(T̄∗ + T∗ − T0), β = − 1

ρ0

(
∂ρ

∂T

)
P

, (2.5)

where T̄∗ is the background temperature, T∗ is the dimensional temperature fluctuation,
ρ0 is the reference density, and β is the thermal expansion coefficient.

We use the convective velocity, the reference temperature T0, the reference density ρ0,
and the initial wake diameter D for non-dimensionalization. The non-dimensional flow
variables are

t = t∗Ub

D
, xi = x∗

i
D

, ui = u∗
i

Ub
, T = T∗

T0
, ρ = ρ∗

ρ0
, p = p′∗

ρ0U2
b
. (2.6a–f )

The non-dimensional forms of the governing equations are

∂ui

∂xi
= 0, (2.7)

∂ui

∂t
+ ∂(ujui)

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj ∂xj
− 1

Fr2 ρ′δi3, (2.8)

∂T
∂t

+ ui
∂(T̄ + T)

∂xi
= 1

Re Pr
∂2T

∂xi ∂xi
, (2.9)

where Re = UbD/ν is the (initial) Reynolds number, Pr = ν/κ is the Prandtl number,
Fr = Ub/(ND) is the Froude number, and T̄ is the imposed background temperature.
Stable stratification is imposed through ∂T̄/∂t = 0, ∂T̄/∂z = const. and ∂2T̄/∂z2 = 0.
From here on, all variables are non-dimensional unless noted otherwise.

2.2. Initial conditions
The initial velocity field is decomposed into a mean velocity field 〈u〉 and a fluctuating
field u′. The mean field is given by

〈u1〉(r) = U0 exp
(
−1

2
(r/r0)

2
)
, (2.10)

where U0 here is the initial centreline velocity deficit, r =
√

x2
2 + x2

3 is the radial distance
from the wake centre, and r0 is the initial wake radius. Here, U0 = 0.11 and r0 = 1/2,
following Dommermuth et al. (2002) and Brucker & Sarkar (2010). The fluctuating field is
generated as follows. First, a random field is generated from a uniform distribution between
0 and 1. Different realizations at given Re and Fr differ in these randomly generated initial
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fluctuation fields. Second, the field is made divergence-free and digitally filtered to match
the energy spectrum

E(k) ∼ (k/k0)
4 e−2(k/k0)

2
, (2.11)

where k0 = 4 (de Stadler et al. 2010). The initial turbulence intensity is denoted as α and
is set to 0.055. Third, the fluctuations are damped exponentially away from the centreline
according to the damping function

g(r) = α
(

1 + r
r0

)2
exp

(
− 1

2
(r/r0)

2
)
. (2.12)

Fourth, we hold the mean field and allow the fluctuations to evolve until the cross-stream
velocity fluctuation correlation is 0.15 < 〈u′

1u′
r〉/K < 0.25, where K is the TKE, u′

1 is
the root mean square of streamwise velocity fluctuation, and u′

r is the root mean square

of radial velocity fluctuation, u′
r =

√
u′2

2 + u′2
3 . This period lasts for approximately t = 7.

During the initial period, the gravitational force (1/Fr2) is turned off for 0 < t < 6 and
increases from 0 to the correct value in 6 < t < 8 according to the ramping function

g(t) = g0 tanh(t − ti/tramp), (2.13)

where ti = 6 and tramp = 2. The purpose of gravitational ramping is to compensate for the
lack of temperature perturbation in the initial field. The set-up described here is based on
the rationale presented in Brucker & Sarkar (2007). For more detailed information on the
initial condition, we refer the reader to Bevilaqua & Lykoudis (1978), Uberoi & Freymuth
(1970), Dommermuth et al. (2002) and Brucker & Sarkar (2010). According to Meunier &
Spedding (2004) and Redford, Lund & Coleman (2015), among others, the initialization
should affect only the NW, and the wake should be universal further downstream.

2.3. Further details
Sponge layers are added at the vertical and transverse boundaries of the computational
domain to absorb internal gravity waves, following the approach by Brucker & Sarkar
(2010). The size of the sponge layers is 1. Within the sponge layer, the velocity and
temperature are damped using a Rayleigh damping function,

−φ(xi)[Ui(xi, t) − Ui,∞], −φ(xi) [T(xi, t) − T∞] , (2.14a,b)

which are added to the right-hand side of the momentum equations and the temperature
transport equation, respectively. Here, Ui,∞ is the free stream velocity, and T∞ is the
background temperature.

The grid used in the simulation is uniform in each of the three Cartesian directions, but
the grid spacing varies in different directions. The resolution is chosen such that �x/η <

4 and �y/η, �z/η < 2, where η represents the Kolmogorov scale and is taken as the
minimum value of η(x2, x3, t). The computational domain has size 60D in the streamwise
direction, and the transverse and vertical sizes are chosen such that the boundaries are
sufficiently far from the wake, following the guidelines of Diamessis et al. (2011). Further
details of the grid resolution and domain dimensions can be found in table 4.

The DNS are run until they reach the viscous regime, which is characterized by
Reh Fr2

h < 1. This requires a long simulation time. To save computational resources,
the domain is re-gridded during the simulation according to the method proposed by
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Case Re Fr Nx Ny Nz Lx Ly Lz t No. ens.

R10F02 10 000 2 1280 768 256 60 38 14 1380 100
R20F021 20 000 2 1280 768 384 60 24 12 110 100
R20F022 20 000 2 1280 576 192 60 36 12 800 100
R20F101 20 000 10 1280 768 384 60 24 12 110 80
R20F102 20 000 10 1280 576 192 60 36 12 1220 80
R20F501 20 000 50 1280 768 384 60 24 12 110 80
R20F502 20 000 50 1280 576 192 60 36 12 570 80
R20F503 20 000 50 640 384 192 60 48 24 5200 80
R20F∞ 20 000 ∞ 1280 768 384 60 24 12 110 40
R20F∞2 20 000 ∞ 1280 576 192 60 36 12 800 40
R50F501 50 000 50 2560 550 550 60 8.25 8.25 68 80
R50F502 50 000 50 1280 768 384 60 23.04 11.52 265 80
R50F503 50 000 50 640 512 256 60 46.08 23.04 5800 80

Table 4. DNS details. The superscripts 1, 2, 3 denote the different stages of a case, and t is the physical time
simulated. ‘No. ens.’ is the number of ensembles computed.

Gourlay et al. (2001), Redford, Castro & Coleman (2012) and Redford et al. (2015). The
re-gridding is performed once or twice for each case. Specifically, the domain is re-gridded
one time at t = 110 for the cases R20F02 and R20F10, two times at t = 110 and t = 570 for
the case R20F50, and two times at t = 68 and t = 265 for the case R50F50. This leads to
two or three stages for one case. This re-gridding process should have little to no influence
on the wake according to Brucker & Sarkar (2010).

The DNS are performed using the in-house finite-volume solver AFiD. The code utilizes
second-order-accurate spatial discretization with a staggered grid and a low-storage
third-order Runge–Kutta method for temporal discretization. Further details of the code
can be found in Van Der Poel et al. (2015), Ostilla-Mónico et al. (2015) and Kim & Moin
(1985). The code has been used for stratified flows in Jain et al. (2022), Yang et al. (2015,
2020), Du, Zhang & Yang (2021), Bin et al. (2022) and Li & Yang (2021), among others.
Here, a single R20F02 or R20F10 case requires approximately 2000 CPU hours; a single
R20F50 realization requires 3000 CPU hours due to the increased simulation time; and a
single R50F50 realization requires approximately 9000 CPU hours.

Finally, it is worth noting that the computational efficiency of computing multiple
ensembles in a typically sized domain is superior to using an extremely long domain
in the streamwise direction for our code. This is due to better parallelization and the
convergence rate of the pressure Poisson equation. First, parallelization is generally more
efficient for many small calculations than for a single large calculation for our code.
Second, the convergence rate of the pressure Poisson equation depends on the mode with
the longest wavelength. A long computational domain leads to a long wavelength mode,
whose convergence rate is slow.

3. Results

3.1. Definitions
We define

ui = 〈ui〉 + u′
i, (3.1)
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Figure 6. Contours of the velocity deficit in the vertical transverse plane in case R20F02. (a–d) Results
obtained from one hundred samples, and (e–h) results obtained from one sample, for (a,e) Nt = 4, (b,f )
Nt = 30, (c,g) Nt = 110, (d,h) Nt = 400. For presentation purposes, we show only part of the domain. The
white dashed lines indicate the core of the wakes, and they extend 2LHk and 2LVk in the y and z directions.
The + symbols indicate the wake centre defined in (3.3). The red circle symbols indicate the geometric
centre of the wake, which is at y = 0, z = 0. Black lines indicate the contour lines of 1/4U0. The wake forms
non-self-similar, diamond-shaped profiles in the late wake (Nt = 110, 400).

where ui is the instantaneous velocity in the ith Cartesian direction, 〈·〉 denotes streamwise
and ensemble averaging, and u′

i is the fluctuation. The width and height of the wake are
denoted as

LH, LV , LHk, LVk and Ri, (3.2a–e)

where LH and LV are the distances from the centre of the wake to where the velocity deficit
is half of its centreline value in the horizontal and vertical directions, LHk and LVk are the
distances from the centre of the wake to where the TKE is half of its centreline value, and
Ri are given by

R2
i = A

∫
C
(xi − xc

i )
2〈u1〉2 dC

∫
C

〈u1〉2 dC
, xc

i =

∫
C

xi〈u1〉2 dC
∫

C
〈u1〉2 dC

, (3.3a,b)

where i = 2, 3, xC
i is the centre location of the wake, integration is in the entire vertical

transverse plane, and A = 2 is a constant (de Stadler et al. 2010).

3.2. Benefits of ensemble averaging
We compare the results from one and many realizations to illustrate the benefit of ensemble
averaging. For illustration purposes, the discussion here will focus on case R20F02.

Figure 6 shows the contours of mean velocity deficit at Nt = 4 (figures 6a,e), Nt = 30
(figures 6b,f ), Nt = 110 (figures 6c,g) and Nt = 400 (figures 6d,h) in the vertical transverse
plane in case R20F02. The wake is in the NW regime at Nt = 4, in the NEQ regime
at Nt = 30, and in the Q2D regime at Nt = 110 and 400. The results obtained from one
hundred samples are shown in figures 6(a–d), and the results obtained from one realization
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Figure 7. Contours of the TKE in the vertical transverse plane at (a,e,i) Nt = 4, (b,f,j) Nt = 30, (c,g,k) Nt =
110, and (d,h,l) Nt = 400, in case R20F02. The dashed lines are contour lines. (a–d) One hundred ensembles.
(e–h) Results from one realization. (i–l) Results from another realization.

are shown in figures 6(e–h). We see that the results in figures 6(a,e) are similar, and thus
the results from one sample and one hundred samples are similar in the NW regime. The
difference between the two becomes evident in the late wake. The results from one hundred
samples exhibit symmetry with respect to y = 0 and have the maximum velocity deficit
located at the centre of the wake. In contrast, the results from one realization do not show
such symmetry and have the maximum velocity deficit shifted away from the centre;
see figures 6(f –h). This lack of symmetry and deviation from the expected behaviour
suggest that results obtained from one realization are not statistically converged. A lack
of statistical convergence partly explains the scattering of the centreline velocity deficit
data in table 1.

Figure 7 shows the contours of the TKE in case R20F02 at Nt = 4 (figures 7a,e,i),
Nt = 30 (figures 7b,f,j), Nt = 110 (figures 7c,g,k) and Nt = 400 (figures 7d,h,l). The
results from one hundred samples are shown in figures 7(a–d), and the results from
two independent realizations are shown in figures 7(e–h) and 7(i–l), respectively. The
TKE is a second-order statistic, therefore obtaining statistically converged TKE is more
challenging than obtaining statistically converged mean velocity deficit. While there was
no apparent difference in the mean velocity deficit obtained from one and one hundred
realizations in the NW regime, here we see a difference between one and one hundred
ensembles as early as the NW regime. Insufficient averaging in the one-sample case leads
to irregular variations across the vertical transverse plane, as seen in figures 7(e–h). In
contrast, the results from one hundred samples, shown in figures 7(a–d), are regular and
symmetric with respect to y = 0. Specifically, the one-hundred-ensemble results display
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Figure 8. Same as figure 6 but for the production term in the TKE transport equation: (a,e) Nt = 4,
(b,f ) Nt = 30, (c,g) Nt = 110, (d,h) Nt = 400.

a single plateau at the centre of the wake, while the results from one realization show
two-peak behaviour, particularly noticeable in figure 7(l). This discrepancy suggests that
the two-peak behaviour reported in some realizations and in Brucker & Sarkar (2010) is a
result of insufficient averaging.

Although it is not the focus of this study, higher-order statistics such as the terms in the
TKE transport equation benefit more from ensemble averaging than low-order statistics
such as the velocity deficit. Furthermore, the contours of the production term in the TKE
transport equation are shown in figure 8. Comparing the results from one realization
(figures 8e–h) with the results from one hundred realizations (figures 8a–d), it can be
observed that ensemble averaging among one hundred realizations reveals structures of the
production term that are not discernible from the result of a single realization. Specifically,
the production term peaks towards the transverse boundary of the wake, and attains its
minimum at the centre of the wake at Nt = 30, 110 and 400, as shown in figures 8(b–d).

Figures 9(a–c) show the time evolution of the centreline velocity deficit, the wake width
R2, and the wake height R3, in case R10F02. The results from one realization may be
anywhere between the blue and red lines in the figures, incurring significant uncertainties
for the centreline velocity deficit and the width of the wake. Specifically, the uncertainty
in the centreline velocity deficit and the wake width is as large as 100 % in the late wake.
The results in figure 9 also help to explain the scattering of the data in tables 1 and 3.

The findings in this subsection prompt re-evaluation of how computational resources are
utilized in DNS of stratified wake flows. Currently, the prevailing approach in the literature
is to allocate all available resources to a single calculation at the highest practically
attainable Reynolds number (Diamessis et al. 2011; de Bruyn Kops & Riley 2019; Zhou &
Diamessis 2019). The rationale is that data at high Reynolds numbers will help to clarify
the Reynolds number scalings of flow statistics. Nonetheless, we can gain meaningful
insights only if the convergence error in the results is smaller than the change induced
by varying the Reynolds number. This might not be the case when there is only one
realization. Therefore, it might be worthwhile to allocate resources to increase the number
of statistical samples. Doing so will likely lead to more reliable data for further analysis.
In this section, we will revisit the scaling behaviours of statistics including the centreline
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Figure 9. Evolution of (a) the centreline velocity deficit, (b) the wake width and (c) the wake height, in case
R10F02. Here, SSB10 denotes the results in de Stadler et al. (2010), MAX and MIN are the maximum and
minimum among the one hundred realizations, and AVG denotes results obtained from one hundred samples.
Error bars in (a) and (b) characterize +100 % error about the min value, and the error bar in (c) characterizes
+15 % error with respect to the min value; R2 and R3 are defined in (3.3).

velocity deficit, the height and width of the wake, and terms in the TKE budget equation,
with the goal of extracting more accurate scaling estimates.

3.3. The convergence error and the number of realizations
The convergence error depends on the number of independent samples, which further
depends on the domain size and the number of independent realizations. We have kept the
domain size the same between different realizations, and here, we focus on the effect of
the number of independent realizations (or statistical samples). The discussion here will
focus on case R20F02, which, as we will see, is the most challenging case. The effects
of the Froude number and the Reynolds number will be discussed towards the end of the
subsection.

Transverse symmetry of the flow dictates that the transverse location of the wake centre
〈xc

2〉 must be 0, therefore |xc
2|/LHk provides a measure of the convergence error in 〈xc

2〉.
Figures 10(a–d) present |xc

2|/LHk for all one hundred realizations for case R20F02 at
Nt = 4, 30, 110 and 400, respectively. The dashed lines and dash-dotted lines in the
figure indicate the 5 % and 50 % margins, representing the probabilities that data from
one realization would incur errors above these lines. We see from figure 10 that there is
a 5 % probability that data from one realization incur an error larger than 0.028, 0.053,
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Figure 10. Plots of |xc
2|/LHk for all one hundred realizations for case R20F02 at (a) Nt = 4, (b) Nt = 30, (c)

Nt = 110, (d) Nt = 400. The dashed line indicates the 5 % margin, the dash-dotted line indicates the 50 %
margin, and the solid line indicates the ensemble average.

0.098 and 0.17 at Nt = 4, 30, 110 and 400, respectively; and there is a 50 % probability
that data from one realization incur an error larger than 0.0088, 0.019, 0.042 and 0.045
at these time instants, respectively. We see that data from one realization incurs large
convergence errors. Furthermore, the convergence error increases as the wake evolves.
The solid lines represent the ensemble average of one hundred samples. The error is
between 0.002 and 0.003 for the four time instants investigated here. Although there
has not been much discussion on an acceptable level of convergence error for DNS of
temporally evolving wakes in stratified environments, some discussion is available on the
acceptable level of error for DNS of channel flow (Oliver et al. 2014; Yang et al. 2021;
Chen et al. 2023). There, a 1 % error in the mean velocity profile with respect to the bulk
velocity is considered acceptable. Applying the same standard to the current study and
limiting the discussion to the convergence error only, we can conclude that one hundred
realizations lead to statistically converged xc

2 statistics.
We discuss the number of realizations needed to obtain converged 〈xc

2〉. First and
foremost, any finite number of statistical samples gives only an estimate of the true 〈xc

2〉.
The estimator itself is a random variable with mean being the true value of 〈xc

2〉 (0 in this
case), and standard deviation inversely proportional to the square root of the number of
samples, i.e. σ ∼ 1/

√
n. If there is a p% probability that the error is above e when there

are N samples, then one needs N(e/e′)2 samples to claim that there is a p% probability that
the error is above e′. From the data presented in figure 10, we can estimate that there would
be a 50 % probability that the error is above 0.01 if we take averages among 1, 4, 17 and
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Figure 11. The centre location xc
2/LHk for all realizations for case R20F∞ at (a) t = 8 and (b) t = 800. The

dashed line indicates the 5 % margin, the dash-dotted line indicates the 50 % margin, and the solid line indicates
the ensemble average.

20 samples at Nt = 4, 30, 110 and 400, respectively; and there would be a 5 % probability
that the error is above 0.01 if we take averages among 8, 28, 95 and 289 samples at these
four time instants. We see that more samples are needed to get statistically converged data
in the late wake than in the early wake. This is likely because of the large-scale structures
in the late wake that lead to a reduction in the number of effective statistical samples in
the domain.

Before we proceed further, we examine the unstratified wake results shown in figure 11.
These results pertain to case R20F∞ at the time instants t = 8 and 800, which correspond
to Nt = 4 and 400 in case R20F02. The results exhibit similarities to those in figure 10.
With 40 samples, the errors in the ensemble average are 0.21 % and 0.4 % at times t = 8
and 800. There are 5 % and 50 % probabilities that data from one realization incur errors
above 0.05 and 0.021 at t = 800, and above 0.024 and 0.0096 at t = 8. Comparing these
numbers to those for R20F02, we can conclude that it is more straightforward to get
converged statistics for an unstratified wake (for a given t).

In addition to 〈xc
2〉/LHk, err defined below measures the spanwise asymmetry of the

TKE, which also serves as a measure of the statistical convergence:

err =

∫ 2LVK

−2LVk

∫ 0

−2LHk

〈k〉 dy dz −
∫ 2LVK

−2LVk

∫ 2LHk

0
〈k〉 dy

∫ 2LVK

−2LVk

∫ 2LHk

−2LHk

〈k〉 dy dz

× 100 %. (3.4)

Figure 12 shows err as a function of the number of samples for case R20F02 at Nt = 4,
30, 110 and 400. For any given number of samples, e.g. n, we randomly draw n samples
from all available realizations five times. As a result, for any given n, there are five data
points. The trends are similar at the four time instants. The error decreases rapidly as the
number of statistical samples increases from 1 to 20, and does not decrease significantly
beyond 40–60 statistical samples. For the four time instants investigated here, the error is
approximately 1 %–2 % when there are approximately 40–60 samples. Again, there is not
a lot of discussion about the acceptable level of error in the context of DNS of stratified
wake flows, but there is discussion in the context of DNS of channel flow. There, an
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Figure 12. Plots of err in case R20F02 at (a) Nt = 4, (b) Nt = 30, (c) Nt = 110, (d) Nt = 400. For any given
number of samples n, err is computed five times by randomly drawing n samples from the available realizations.
The solid line is at err = 2 %.

approximately 2 %–3 % error in TKE is considered acceptable. We see that approximately
40–60 samples bring us to that regime, with the late wake requiring more realizations.

Finally, figure 13 shows the results for cases R20F10, R20F50, R50F50 and R20F∞
at time t = 800 (corresponding to Nt = 400 for case R20F02). We observe the following.
First, the ensemble average in these cases reduces the convergence error to 2 % at t =
800. Second, stratification has a notable effect on the result. Comparing figures 12(d)
and 13(a–d), we see that for a given number of statistical samples, case R20F02 incurs a
significantly larger convergence error than the other stratified cases (R20F10, R20F50 and
R50F50), and the other stratified cases incur larger convergence errors than the unstratified
case. Third, comparing figures 13(b,c), we see that there is no apparent Reynolds number
effect from varying the Reynolds number by a factor 2.5.

3.4. Centreline velocity deficit
Figure 14(a) presents the time evolution of the centreline velocity deficit U0, the horizontal
and vertical velocity fluctuations u′

h and w′, and the square root of the TKE for cases
R20F50 and R50F50. We see no apparent Reynolds number effect at the given range
of the Reynolds numbers. In both cases, the centreline velocity decays as Nt−2/3 in the
NW regime up to Nt ≈ 1; the decay rate decreases between Nt = 1 and Nt = 50 in the
NEQ regime, and increases beyond Nt = 50 in the Q2D regime. Contrary to the existing
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Figure 13. Plots of err at t = 800 in cases (a) R20F10, (b) R20F50, (c) R50F50, (d) R20F∞. For any given
number of samples n, err is computed five times by randomly drawing n samples from the available realizations.
The solid line is at err = 2 %.
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Figure 14. (a) Evolution of centreline velocity deficit U0, horizontal and vertical velocity fluctuations u′
h and

w′, and root mean square of the TKE in cases R20F50 and R50F50. The solid lines represent the R50F50 case,
and the dashed lines represent the R20F50 case. (b) Premultiplied centreline velocity deficit.

literature, we see no clear evidence of a −0.25 scaling or a −0.76 scaling. In fact, it is
hard to find any power-law scaling. The decay rate changes continuously without staying
constant for an extended period of time. This becomes more clear from figure 14(b), where
we show the premultiplied centreline velocity deficit, i.e. t0.25U0. If there is a region within
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Figure 15. (a,b) Evolution of centreline velocity deficit U0, horizontal and vertical velocity fluctuations u′
h

and w′, and root mean square of the TKE in cases (a) R20F10, (b) R20F02 and R10F02. We use dashed lines
for R20F02 and solid lines for R10F02. (c,d) Premultiplied centreline velocity deficit.

which the centreline velocity deficit follows U0 ∼ (Nt)−0.25, then we should observe a
plateau in figure 14(b). However, no such a region can be identified. The t0.76 compensated
centreline velocity deficit is shown in the Appendix, and no plateau can be observed there
either.

Figure 15(a) shows the results for case R20F10, and figure 15(b) shows the results for
cases R10F02 and R20F02. Similar to previous cases, no significant Reynolds number
effect is evident in these figures. Due to the strong buoyancy effect, a distinct NW regime
is barely observable in the two F02 cases. If one defines the beginning of the NEQ regime
to be the time instant at which the U0 decay rate begins to decrease, then it is clear from
figures 14(a) and 15(a,b) that the onset of the NEQ regime depends on the Froude number.
Figures 15(c,d) show the premultiplied centreline velocity deficit. Once again, we do not
see a plateau. We also examined the U0t2/3 compensated scalings in the Appendix, and no
plateaus are identified there either.

Finally, figure 16 shows the power-law exponent b ≡ d log(U0)/d log(t), or the decay
rate of the centreline velocity deficit, as a function of the non-dimensional time Nt for all
four cases. The plots are shown in both log and linear scales. The estimates in Meunier
et al. (2006) are included for comparison. We notice a discontinuity in the estimate at
Nt ≈ 2, prior to which is the NW regime and b = −2/3 (Tennekes & Lumley 1972;
Meunier et al. 2006). We make the following observations. First, the initial period of
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Figure 16. Power-law exponent b = d log(U0)/d log(t) as a function of Nt. Solid lines represent the theoretical
predictions in Meunier et al. (2006) and the symbols are our DNS results: (a) linear-log scale; (b) linear-linear
scale.

the wake evolution is affected by the initialization. The gravitational ramping lasts until
t = 8, which corresponds to Nt = 4, 0.8 and 0.16 for Fr = 2, 10 and 50, respectively.
In a plot whose x axis is Nt, initialization will appear to have a more significant impact
on wakes with lower Froude numbers. Second, the computed power-law exponents show
a reasonable level of collapse. The value of the power-law exponent is approximately
−2/3 for Nt � 1, decreases to approximately −0.1 between Nt ≈ 5 and Nt ≈ 10, then
gradually increases. Third, the estimate in Meunier et al. (2006) provides a reasonable
approximation of the data. According to the estimate, the decay rate attains its minimum
0.1 at Nt = 2. Although the data suggest that the decay rate attains its minimum between
Nt ≈ 5 and Nt ≈ 10, the value is indeed approximately 0.1. The estimate also captures
the gradual increase of the decay rate in the stratified turbulence regime – although there
are discrepancies, particularly when the flow is strongly stratified. Finally, the anticipated
Q2D regime asymptotics, where b approaches −0.76, are not observed in our data.

3.5. Velocity fluctuations
The evolution of the horizontal and vertical velocity fluctuations u′

h, w′ and the square
root of the TKE K1/2 in R20F50 and R50F50 is shown in figure 14(a). From the plot,
we observe that the results are not affected significantly by the Reynolds number, at least
within the range of Reynolds numbers investigated in this study. Both the vertical and
horizontal velocity fluctuations follow approximately a power-law decay with an exponent
close to −1.08 in the NW regime between Nt = 0.8 and Nt = 4. This is consistent with the
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Figure 17. Wake width and height as functions of the non-dimensional time Nt: (a) LH , (b) LV , (c) LHk,
(d) LVk. The solid lines represent estimates in Meunier et al. (2006). Again, normalization is by the diameter
of the wake-generating body.

−1 scaling reported in Chongsiripinyo & Sarkar (2020) and is in agreement with the t−1.08

scaling reported in Brucker & Sarkar (2010). The vertical velocity fluctuation continues
to decay as Nt−1.08 in the NEQ and Q2D regimes until the end of the simulation. On the
other hand, the decay rate of the horizontal velocity fluctuations decreases as the flow
enters the NEQ regime, and remains almost constant between Nt = 20 and Nt = 80. Due
to this disparate decay rate between u′

h and w′ in the NEQ and Q2D regimes, u′
h becomes

increasingly larger than w′ as the wake evolves. Consequently, the TKE is K ≈ u′
h/

√
2.

Figure 15(a) shows the time evolution of u′
h, w′ and K′ in case R20F10, and figure 15(b)

shows the corresponding results for cases R10F02 and R20F02. In the two F02 cases, a
clear NW regime can barely be observed as the flow quickly enters the NEQ regime after
the initialization period. In the NEQ and Q2D regimes, the decay rates of the horizontal
velocity fluctuations and the square root of the TKE continue to increase. It is worth noting
that the undulations in w′ observed in the two F02 cases are the result of rapid exchange
between TKE and available potential energy. Interestingly, these undulations are limited
to w′ in our DNS, while others have reported undulations in U0 as well (Pal et al. 2017;
Chongsiripinyo & Sarkar 2020). The vertical velocity fluctuation w′ follows a power law
at these cases shortly after the calculation begins and all the way into the viscous regime.
A least squares fit of the data gives power-law exponents −1.19 and −1.29 at the F10 and
F02 cases, which are slightly different from the exponent in the F50 case.

Furthermore, by comparing the decay of w′ at different Froude numbers, it becomes
evident that the exponent increases as Fr decreases. An empirical fit of decay of w′ as a
function of Fr gives w′ = x−1.33+0.065 ln(Fr). Nevertheless, further study is needed to clarify
the exact effects of the Froude number and consolidate this empirical scaling estimate.
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3.6. Length scale statistics
Figure 17 shows the time evolution of the wake width and height, denoted as LH , LV , LHk
and LVk. As before, LH and LV represent the distance from the wake centre to where the
velocity deficit is half of its centreline value, while LHk and LVk measure the distance from
the wake centre to where the TKE is half of its centreline value. First, we observe that the
Reynolds number has a negligible effect on the data. From figure 17(a), we can see that the
wake width LH grows as (Nt)1/3 in the NW regime; its growth rate decreases at Nt ≈ 5 and
increases shortly after that. The 1/3 power law provides a good working approximation of
LH throughout the NW, NEQ and Q2D regimes. From figure 17(b), we see that the wake
height LV , also grows as (Nt)1/3 in the NW regime; it then decreases in the NEQ regime,
and reaches its minimum at Nt ≈ 50 before it begins to increase again. The decrease of
LV in the NEQ regime was also found in Davidson (2010) and Chongsiripinyo & Sarkar
(2020), where it was attributed to buoyancy effects. The estimates in Meunier et al. (2006)
are included in figures 17(a,b) for comparison. Despite some quantitative differences, the
estimates from Meunier et al. (2006) capture the overall trend quite well. For instance, the
estimate in Meunier et al. (2006) captures accurately the decrease and subsequent increase
in the LH decay rate in the NEQ regime. Additionally, it also captures the suppression of
the vertical length scale in the stratified flow regime. Finally, figures 17(c,d) depict LHk
and LVk. The two length scales behave similarly to LH and LV , with LHk growing faster
than LH , and LVk decreasing more rapidly in the NEQ regime following a −0.4 power law
(Chongsiripinyo & Sarkar 2020).

Before we conclude this subsection, we comment on the interplay between U0, LH and
LV . If the wake profile is such that U = U0(x) f (y/LH, z/LV), where f is generic function,
then the momentum conservation would imply that U0LHLV = const. (Meunier et al.
2006). Figure 18(a) illustrates the evolution of U0LVLH , which shows that this statistic
is approximately constant after an initial transient period. We denote this constant as
Cm. In figures 18(b,c), we compare U0 with Cm/(LHLV) and Cm/[LVCH(Nt)1/3], where
LH ≈ CH(Nt)1/3. Here, CH is obtained from fitting the wake width data. We observe that
the three quantities agree well. With the decay of LH contributing to a −1/3 power-law
decay throughout, the results in figures 18(b,c) suggest that the decrease in the U0 decay
rate in the NEQ regime is mainly due to the decreasing LV , while the increase in the U0
decay rate in the Q2D regime is a result of the increasing LV .

3.7. TKE budget
We devote this section to the TKE budget. The TKE transport equation reads

∂k
∂t

= −C + P − D + B − T . (3.5)

Here, C is the convection term

C ≡ 〈ui〉 ∂k
xi

, (3.6)

P is the production term

P ≡ −〈u′
iu

′
j〉

∂ui

∂xj
, (3.7)

D is the dissipation term
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Figure 18. Plots of (a) U0LvLH , (b) Cm/(LV LH) and (c) Cm/[LV CH(Nt)−1/3], as functions of time. The plots
(b,c) are shifted vertically by an arbitrary distance so that they collapse at Nt = 10. Solid lines represent the
estimated U0, whereas the dashed line denotes U0 in the DNS.

D ≡ 2
Re0

〈s′
ijs

′
ij〉, (3.8)

where

s′
ij = 1

2

(
∂ui

′

∂xj
+ ∂uj

′

∂xi

)
, (3.9)

B is the buoyancy flux term

B ≡ − 1
Fr2 〈u′

3T ′〉, (3.10)

and T is the transport/diffusion term

T ≡ ∂〈u′
ip

′〉
∂xi

+ 1
2

∂〈u′
iu

′
ju

′
j〉

∂xi
− 2

Re0

∂〈u′
js

′
ij〉

∂xi
. (3.11)

Pal & Sarkar (2015), Redford et al. (2015) and Chongsiripinyo & Sarkar (2020), among
others, have reported the time evolution of the transverse and vertical integrated (integrated
in both directions) terms in the TKE equation. Following these authors, we first report the
transverse and vertical integrated terms. The integration is over −2LHk < y < 2LHk and
−2LVk < y < 2LVk, representing the core of the wake. Also, since the flow is not affected
significantly by the Reynolds number in the investigated range, the analysis here will focus
on a high-Froude-number case R50F50 and a low-Froude-number case R20F02.

980 A3-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1099


J.J.L. Li, X.I.A. Yang and R.F. Kunz

5.0

2.5

0

–2.5

–5.0
0.2 0.4 0.6 0.8 1.0

(×10–4)

1.0

0.5

0

–0.5

–1.0

5

Nt
10 15

(×10–5)

3.0

1.5

0

–1.5

–3.0

Nt
20 40 60 80 100

(×10–7)

2

1

0

–1

–2
1.0 1.5 2.0 2.5 3.0

(×10–4)

P
C
B
T
D

(a) (b)

(c) (d )

Figure 19. The volume integrated TKE budget terms in case R50F50, X = ∫
V X dV , where X represents the

terms in the budget equation (3.5). Note that we did not divide the volume, following Brucker & Sarkar (2010).
Plots of the budget terms as a function of Nt (a) from 0.2 to 1, (b) from 1 to 3, (c) from 3 to 15, (d) from 15 to
110. Here, P, C, B, T and D represent the production, convective, buoyancy, transport and dissipation terms.

Figures 19(a–d) show the evolution of the budget terms for case R50F50; the values
of the budget terms vary vastly from one time to another, so we have plotted separately
0.2 < Nt < 1, 1 < Nt < 3, 3 < Nt < 15 and 15 < Nt < 110, respectively. The production
term and the dissipation terms are the dominant terms for Nt � 0.5. Dissipation is by
far the most dominant term between Nt ≈ 1 and Nt ≈ 10. From Nt ≈ 15 until the end of
the simulation, the production, transport and dissipation terms are the most significant
terms. We note that buoyancy is never significant. It is also worth noting that our results
align closely with the budget reported in Brucker & Sarkar (2010), suggesting that
even one statistical sample is sufficient for transverse and vertically integrated budget
terms. Figure 20 shows the transverse and vertically integrated budget terms for case
R20F02. Unlike in case R50F50, the buoyancy term is a dominant term from the early
stage until Nt ≈ 30, which is consistent with the findings in Chongsiripinyo & Sarkar
(2020). Additionally, the buoyancy term exhibits rapid sign changes during the early stage,
alternating between acting as a sink and a source, which manifests the exchange between
the available potential energy and TKE (Redford et al. 2015; Chongsiripinyo & Sarkar
2020). This behaviour explains the observed undulations in K1/2 and w′ as depicted in
figure 15(b). In the late wake, the dissipation and production terms emerge as dominant,
which is similar to R50F50. Finally, the transport term is comparable to the production
term between Nt ≈ 15 and Nt ≈ 35, but becomes negligibly small beyond Nt ≈ 100.
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Figure 20. Same as figure 19 but for R20F02. Plots of the budget terms as a function of Nt (a) from 4 to 15,
(b) from 15 to 50, (c) from 50 to 180, (d) from 180 to 400.

By integrating in both the transverse and vertical directions, one obtains statistics that
are less susceptible to convergence errors, but information pertaining to the transverse and
vertical distributions is lost. In this study, we have obtained many statistical samples. They
allow us to integrate in one direction yet still get converged data.

Figure 21 shows the transverse integrated budget terms as well as the vertically
integrated budget terms in R50F50 at three time instants, Nt = 2, 30 and 110,
corresponding to the NW, NEQ and Q2D regimes, respectively. The transverse integrated
terms are shown in figures 21(a,c,e) as functions of the vertical coordinate z. The vertically
integrated terms are shown in figures 21(b,d,f ) as functions of the transverse coordinate
y. We first examine the terms in the NW regime. The dissipation term is the dominant
term, and it has similar distributions in the vertical and the transverse directions – in the
sense that one could not tell if the quantity is vertically integrated or transverse integrated
from the plots themselves. The other terms are small. Next, we examine the terms in the
NEQ regime. The production, dissipation and transport terms are the dominant terms.
The wake is anisotropic, with significant differences between the transverse and vertically
integrated terms. The transverse integrated production and transport terms have one peak
at the wake centre, whereas the vertically integrated production and transport terms have
two peaks at y/LHk ≈ ±0.6. Additionally, the transverse integrated dissipation term shows
double peaks at z/LVk ≈ ±0.6, while the vertically integrated dissipation term has a single
peak at the wake centre. The destruction terms, i.e. the dissipation and transport terms, are
largely balanced by the production term. This explains the reduced decay rate of K1/2
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Figure 21. The terms in the TKE budget equation in case R50F50: (a,b) Nt = 2, (c,d) Nt = 30, and (e,f )
Nt = 110. (a,c,e) Integrated in the transverse direction, X = ∫

y X dy. (b,d,f ) Integrated in the vertical direction,
X = ∫

z X dz. Here, P, C, B, T and D denote the production, convective, buoyancy, transport and dissipation
terms. Considering the symmetry with respect to the centreline, we show only results from the wake centre.

in the NEQ regime. Finally, we examine the terms in the Q2D regime: they are not
qualitatively different from their counterparts in the NEQ regime. The dominant terms
remain production, dissipation and transport. However, the balance between these terms
changes. The production term decreases faster than the destruction terms, leading to a
faster decay of K1/2 in the Q2D regime. An interesting observation is that the vertically
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Figure 22. The terms in the TKE budget equation in case R20F02: (a,b) Nt = 4, (c,d) Nt = 30, and (e,f )
Nt = 110. (a,c,e) Integrated in the transverse direction. (b,d,f ) Integrated in the vertical direction. Legend is the
same as in figure 21.

integrated production term becomes negative at the wake centre, indicating that the mean
flow extracts energy from turbulence in that region.

Figure 22 presents the transverse integrated budget terms and the vertically integrated
terms in case R20F02. The buoyancy term is the dominant term in the NW regime.
From figure 20, we know that the term flips sign in the early wake. While the term is
positive at Nt = 4, it is negative at Nt = 5.5 (not shown). The production, dissipation and
transport terms are the dominant terms in the lake wake, similar to R50F50. However,
unlike R50F50, the destruction terms in R20F02 are noticeably larger than the generation
terms. This leads to a fast decaying K1/2, as is evident in figure 15(b). It is interesting that

980 A3-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
99

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1099


J.J.L. Li, X.I.A. Yang and R.F. Kunz

the transport terms take energy from the wake centre and put it near the edge of the wake
in the late wake, as shown in figures 21(d,f ) and 22(d,f ).

4. Concluding remarks

We report DNS results of temporally evolving wake at Reynolds numbers from 10 000
to 50 000, and Froude numbers from 2 to 50. Instead of computing statistics from one
realization, we take ensemble averages among 80–100 realizations. To assess the statistical
convergence of our data, two statistical objects are considered: the transverse location of
the wake centre, denoted as xc

2, and the transverse asymmetry in the TKE, denoted as
err. Both should be 0 when there are sufficiently many statistical samples. The analysis
shows high convergence error when data are taken from one realization. The convergence
error quickly decreases as the number of realizations/samples increases. The benefit,
however, diminishes beyond 20 and 60 realizations before and after entering Q2D regimes,
respectively.

The data allow us to assess the previously established scaling laws and establish new
scaling estimates. First, the velocity deficit, denoted as U0, does not seem to follow any
power-law scaling in the late wake. The decay rate, defined as −d log(U0)/d log(t), attains
its minimum 0.1 at a time between Nt = 5 and Nt = 10, and increases continuously as
the wake evolves. No power-law scalings are found in LH or LV either, but LH ∼ (Nt)1/3

proves to be a good working approximation of the wake width. Furthermore, while the
wake is not self-similar, U0LHLV is approximately a constant after the initial transient
period. It follows that U0 ∼ (Nt)−1/3/LV . Hence we may conclude that the decrease in
the U0 decay rate in the NEQ regime is a result of the decrease in the wake’s vertical
size, and that the increase in the U0 decay rate in the Q2D regime is a consequence
of the increase in the wake’s vertical size. Finally, the power-law decay of the vertical
velocity fluctuation is verified, but there is no power-law decay in the horizontal velocity
fluctuation.

In addition to low-order statistics, we report the transverse integrated budget terms, the
vertically integrated budget terms, and the budget terms integrated in both cross-sectional
directions. The behaviours of these terms as functions of the vertical and transverse
coordinates have not received much attention due to the high number of ensembles needed
to get converged statistics. Our data suggest that there are two peaks in the vertically
integrated production and transport terms at y = ±0.6LHk, and one peak at the wake centre
when the terms are transverse integrated. It is interesting that the transverse integrated
production term is negative at the wake centre, suggesting energy transfer from turbulence
to the mean flow.

Finally, we add a caveat. Although the results do not seem to be affected significantly
by the Reynolds number, the Reynolds numbers investigated here (i.e. 10 000 to 50 000)
are quite limited. The Reynolds number of a wake behind an underwater vehicle can be
as high as O(109) (Li, Yang & Kunz 2022). Work by Meunier et al. (2006) and Brucker
& Sarkar (2010) suggests that the NEQ regime extends as the Reynolds number increases.
A lack of power-law decay of the centreline velocity deficit in the NEQ regime can be a
result of the limited Reynolds number, which needs to be investigated further.

Funding. This work was sponsored by the US Office of Naval Research under contract N000142012315, with
Dr P. Chang as Technical Monitor.

Declaration of interests. The authors report no conflict of interest.
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Figure 23. Rescaled centreline velocity deficit.
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Figure 24. Rescaled evolution of wake width and height as functions of the non-dimensional time Nt: (a) LH ,
(b) LV , (c) LHk, (d) LVk.
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Appendix. Additional results

In this section, we present additional results.
We present the rescaled/premultiplied centreline velocity deficit and wake width and

height in figures 23 and 24. The centreline velocity deficit is premultiplied with Fr2/3 in
figure 23(a).
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Figure 26. Premultiplied evolution of (a) LH , (b) U0.

Compared to figure 3, premultiplying Fr2/3 helps to collapse data, but there are still
notable differences among the F02, F10 and F50 cases. Premultiplying Fr0.54 yields
good data collapse. Here, Fr0.54 is entirely empirical. Figure 24 shows the rescaled
wake width and height. The horizontal length scales LH and LHk show good collapse
after premultiplying Fr−1/3. The vertical length scales LV and LVk, on the other hand,
do not collapse after premultiplying Fr−1/3. This is similar to the results reported by
Spedding (2002). However, as shown in figure 25, the data still show compromising
collapse after rescaling with Fr−0.6 as suggested by Spedding (2002).

Figure 26(a) shows the premultiplied LH . We see that LH(Nt)−1/3 is approximately a
constant. Figure 26(b) shows the Nt0.76 premultiplied centreline velocity deficit. We do
not see any plateau in the plot.
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