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Surfactant spreading in a two-dimensional cavity
and emergent contact-line singularities
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We model the advective Marangoni spreading of insoluble surfactant at the free surface
of a viscous fluid that is confined within a two-dimensional rectangular cavity. Interfacial
deflections are assumed small, with contact lines pinned to the walls of the cavity, and
inertia is neglected. Linearising the surfactant transport equation about the equilibrium
state allows a modal decomposition of the dynamics, with eigenvalues corresponding
to decay rates of perturbations. Computation of the family of mutually orthogonal
two-dimensional eigenfunctions reveals singular flow structures near each contact line,
resulting in spatially oscillatory patterns of shear stress and a pressure field that diverges
logarithmically. These singularities at a stationary contact line are associated with dynamic
compression of the surfactant monolayer. We show how they can be regularised by weak
surface diffusion. Their existence highlights the need for careful treatment in computations
of unsteady advection-dominated surfactant transport in confined domains.
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1. Introduction

Surfactants play a crucial role in a variety of natural and industrial flows (Kovalchuk
& Simmons 2021), including cleaning and decontamination (Landel & Wilson 2021),
transport in lung airways (Filoche, Tai & Grotberg 2015; Stetten et al. 2018) and
microfluidic applications (Temprano-Coleto et al. 2018). Understanding how surfactants
equilibrate near contact lines is also important for flows over superhydrophobic surfaces,
and slippery-liquid-infused porous surfaces (Wang & Guo 2020). As recently shown,
surfactants can significantly affect the drag-reducing properties of superhydrophobic
surfaces when a flow concentrates them at stationary contact lines (Landel et al. 2020;
Baier & Hardt 2021; Peaudecerf et al. 2017). Surfactants are amphiphilic materials that
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accumulate at interfaces, where they lower surface tension. Surfactant concentration
gradients induce surface tension gradients, leading to so-called Marangoni flows of
adjacent liquids that transport the surfactant itself (Manikantan & Squires 2020). Here, we
address a canonical surfactant transport problem in a two-dimensional confined geometry,
showing how singular flow structures arise when spreading is impeded by a solid boundary.

The self-induced spreading of a surfactant monolayer over a gas–liquid interface
generates a variety of striking flow features (Afsar-Siddiqui, Luckham & Matar 2003;
Matar & Craster 2009; Liu, Peco & Dolbow 2019). If surface diffusion and solubility
effects are weak, the leading edge of a localised surfactant monolayer spreading on
an otherwise uncontaminated interface effectively rigidifies the interface locally. For a
monolayer spreading on a thin viscous film, this induces a jump in film depth via mass
conservation effects (Gaver & Grotberg 1990; Dussaud, Matar & Troian 2005), that
is captured within lubrication theory as a kinematic shock (Borgas & Grotberg 1988).
Lubrication theory also predicts a jump in surface shear stress, although a more refined
analysis over shorter length scales reveals an integrable shear-stress singularity at the
leading edge of the monolayer, which can be regularised by surface diffusion or the
presence of low levels of pre-existing (endogenous) surfactant (Jensen & Halpern 1998).
Out-of-plane displacement of the free surface may be suppressed by surface tension or
gravity (Gaver & Grotberg 1992; Jensen & Grotberg 1992). Inertial effects (which may
be important if the initial spreading flow is sufficiently rapid) can generate an interfacial
deflection at the leading edge of the monolayer known as the Reynolds ridge, arising due
to displacement effects in the viscous boundary layer beneath the spreading monolayer
(Scott 1982; Jensen 1998). Spreading on thin films may also be accompanied by dramatic
secondary fingering instabilities (Warner, Craster & Matar 2004; Jensen & Naire 2006;
Liu et al. 2019), showing the richness of surfactant flow phenomena.

The present paper addresses a complementary spreading problem, namely surfactant
spreading at the free surface of viscous fluid that is confined within a two-dimensional
cavity. We make a number of simplifying assumptions to aid our analysis: the free surface
remains (almost) flat as a result of a restoring force, provided for example by surface
tension, with contact lines pinned to the lateral walls of the cavity; the surfactant is
insoluble and has a linear equation of state (a weakness discussed by Swanson et al. 2015);
inertial effects are neglected and the Stokes flow is two-dimensional; molecular diffusion
of surfactant at the free surface is assumed negligible, except when analysing its impact
on the regularisation of the singularities at the contact line; and the interface is pre-loaded
with endogenous surfactant, to which exogenous surfactant is added. These modelling
assumptions and their implications are discussed further in § 4.

The aim of this study is to describe the interfacial and bulk transient flows produced
by self-induced Marangoni spreading of surfactant in a confined geometry. Exogenous
surfactant added to the interface spreads, compressing the endogenous surfactant ahead of
it (Grotberg, Halpern & Jensen 1995; Sauleda et al. 2021). Since the surfactant monolayer
is laterally confined, the surfactant concentration rises at the pinned contact lines, while
Marangoni stresses drive further surfactants towards the stationary boundary. Although
there is no motion of the contact line with respect to the solid wall, and therefore no
risk of generating a non-integrable stress singularity associated with contact-line motion
(Huh & Scriven 1971), we nevertheless find that the unsteady Marangoni flow generates
its own singular flow behaviour. We find two separate classes of singularities generated
at the corner, one inducing an oscillatory shear-stress pattern and the other a logarithmic
pressure singularity. In the main part of the paper, we focus our study to the case of a
single-fluid flow with a free surface pinned at the contact line at an angle of π/2. This
special case simplifies the numerical simulation and asymptotic analysis. In § 4 we relax
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Surfactant cavity flow

these assumptions and discuss other wedge angles, between 0 and π, and two-fluid flows
with arbitrary viscosities and where the surfactants lie at the interface. Our asymptotic
analysis shows that the structure of the flow and the type of singularities identified for the
single-fluid flow with π/2 contact angle extend to this broader class of problems.

These findings complement studies of the lid-driven and shear-driven cavity problems
(Shankar & Deshpande 2000), benchmark problems for computational fluid dynamics,
for which corner singularities are a recognised computational challenge (Kuhlmann &
Romanò 2019). Rather than tackle the full unsteady nonlinear problem numerically, our
approach is to address the problem of small surfactant gradients, allowing the advective
surfactant transport equation to be linearised. When coupled to the linear Stokes flow in
the cavity, we derive a problem that admits a decomposition into eigenmodes, with each
eigenvalue representing the decay rate of a particular modal disturbance. This approach
allows us to focus our numerical effort on capturing spatial structures. While the temporal
dynamics resembles a purely diffusive process, with mutually orthogonal modes decaying
exponentially in time, each eigenmode has a singular form near the contact lines in the
absence of surface diffusion. We combine asymptotic and numerical approximations to
obtain a full understanding of the flow structure at the interface and in the bulk.

The model and the methods used to solve this surfactant Marangoni-driven cavity flow
problem are described in § 2, with results presented in § 3. Implications of the study are
discussed in § 4.

2. Model

We model the spreading of an insoluble surfactant at the surface of an incompressible
liquid of dynamic viscosity μ∗ in a two-dimensional rectangular domain. The domain V
spans from −W∗ � x∗ � W∗ and −H∗ � y∗ � 0 with x∗ and y∗ in the horizontal and
vertical directions, respectively, with W∗ the half-width of the cavity, H∗ its height, as
shown in figure 1. Stars in superscript indicate dimensional variables. To model the flow
induced by the surfactant spreading at the free surface, we use the Stokes equations to
relate the velocity field u∗(x∗, t∗) = (u∗, v∗) to the pressure p∗(x∗, t∗), with x∗ = (x∗, y∗)
ignoring gravity and inertia. We impose the no-slip and no-penetration conditions on the
three solid boundaries found at x∗ = −W∗ and W∗ for −H∗ � y∗ � 0 for the sidewalls,
and y∗ = −H∗ for −W∗ � x∗ � W∗ for the bottom wall. The free surface F , assumed
flat to leading order, is located at y∗ = 0 for −W∗ � x∗ � W∗. We balance the Cauchy
stress σ ∗ · n at F (with the normal unit vector n = (0, 1)) with the gradient of the surface
tension γ ∗ tangentially and a restoring force due to strong surface tension normally.
The insoluble surfactant concentration Γ ∗ at the surface is coupled to the flow via a
time-dependent advective transport equation, and to the surface tension via an equation of
state, assumed linear, which is valid for small variations of the concentration of surfactant
from a reference concentration (Stone & Leal 1990). The governing equations are therefore

∇∗p∗ = μ∗∇∗2u∗, ∇∗ · u∗ = 0, Γ ∗
t∗ = − ∂

∂x∗
(
u∗

sΓ
∗) , γ ∗ = γ ∗

0 − (γ ∗
0 − γ ∗

c )
Γ ∗

Γ ∗
c
,

(2.1a–d)

where subscript s denotes evaluation on F , γ ∗
0 is the reference surface tension and γ ∗

c is
its (lower) value when the surfactant is at a reference concentration Γ ∗

c . The boundary
conditions associated with (2.1a–d) are

u∗ = 0 on x∗ = ±W∗, y∗ = −H∗, (2.2a)

u∗ · n = 0 on y∗ = 0, (2.2b)
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y∗

x∗

v∗

H∗ u∗

2W∗

Figure 1. Diagram of the two-dimensional rectangular domain of the flow problem. The flow is confined
within rigid walls (hashed lines) and a free surface, for −W∗ � x∗ � W∗ and −H∗ � y∗ � 0. The
incompressible Stokes flow in the bulk has velocity u∗ in the x∗ coordinate direction, and v∗ in the y∗ direction.
At the free surface located at y∗ = 0 and −W∗ � x∗ � W∗, an arbitrary initial non-uniform concentration
profile of surfactant leads to an unsteady Marangoni flow that drives the flow in the bulk. The arbitrary initial
concentration profile can be formed by exogeneous surfactant (in red) deposited on the free surface at t∗ = 0,
and some pre-existing endogenous surfactant with uniform concentration (in blue).

σ ∗ · n = −γ ∗n(∇∗ · n)+ ∂γ ∗

∂x∗ t on F , (2.2c)

with t = (1, 0) the tangential unit vector at the free surface. We have made the assumption
that S∗ = γ ∗

0 − γ ∗
c � γ ∗

c , so that the surface tension remains sufficiently large, in
comparison with its reduction by surfactant S∗, to suppress deflections of the free surface
from y∗ = 0. Effectively, the capillary number in our problem is S∗/γc � 1, since S∗
is a characteristic viscosity–velocity scale. This small capillary number assumption is
discussed further in §§ 3 and 4. Hence, the leading-order kinematic boundary condition
reduces to (2.2b) and any surface curvature can be neglected, such that W∗∇∗ · n � 1.
We will exploit the normal stress condition later to evaluate the small surface deflections
induced by the flow, while imposing the tangential component of (2.2c) on F .

Using the length scale W∗, velocity scale S∗/μ∗ and pressure scale S∗/W∗, we relate
dimensional starred variables to their dimensionless counterparts via

x = (x, y) =
(

x∗

W∗ ,
y∗

W∗

)
, H = H∗

W∗ , Γ = Γ ∗

Γ ∗
c
, γ = γ ∗ − γ ∗

c

S∗ , (2.3a)

u = (u, v) = μ∗

S∗ (u
∗, v∗), t = S∗t∗

W∗μ∗ , p = W∗p∗

S∗ . (2.3b)
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Surfactant cavity flow

After rescaling, the governing equations become, in the bulk,(
px
py

)
=
(

uxx + uyy
vxx + wyy

)
, ux + vy = 0, γ = 1 − Γ, (2.4a)

with, at the free surface,

Γt = −(Γ u)x, uy = −Γx, v = 0, on y = 0 (2.4b)

and
u = 0, on x = ±1, and y = −H. (2.4c)

We introduce a streamfunction ψ(x, y, t) such that ψy = u, and ψx = −v, enforcing
incompressibility. The problem reduces to the biharmonic equation in the bulk

∇4ψ = 0, (2.5)

subject to

Γt = −(Γ ψy)x, ψyy = −Γx, ψ = 0 on y = 0, (2.6a)

ψx(±1, y) = ψ(±1, y) = 0, (2.6b)

ψ(x,−H) = ψy(x,−H) = 0. (2.6c)

The streamfunction vanishes at the four boundaries of the domain, in order to impose
the no-flux boundary condition. The problem is closed by imposing an initial surfactant
profile, representing the addition of exogenous surfactant to an endogenous monolayer
initially present on the interface. We note that the transport equation (2.6a) is linear
in Γ , given a surface velocity ψy. Therefore writing Γ as the sum of endogenous and
exogenous components, Γ = Γ1 + Γ2 say, the two components satisfy the same transport
equation Γit = −(Γiψy)x (i = 1, 2), allowing the evolution of the components to be
tracked individually if necessary (Grotberg et al. 1995). From (2.6a,b) we anticipate the
presence of singularities at the contact lines (x, y) = (±1, 0), as the boundary conditions
are discontinuous here. We discuss these in detail in § 2.3 below, to understand their impact
on the surface and bulk velocity fields and the surfactant distribution.

2.1. Linearisation
At large times, the surfactant relaxes to a uniform level Γ̄ and the velocity field decays
to zero. We perturb the system around this state, noting that the resulting problem is
homogeneous. We decompose the solution into individual eigenmodes, writing for one
such mode

Γ (x, t) = Γ̄ + Γ̂ (x)e−λt, where
∫ 1

−1
Γ̂ (x) dx = 0, (2.7)

assuming the same time dependence for other variables, for example u(x, y, t) =
û(x, y)e−λt. The surfactant transport equation at the free surface (first equation in (2.6a))
is the only equation that changes under linearisation, becoming

αΓ̂ = ûx, on y = 0, (2.8)

where α = λ/Γ̄ . Equation (2.8) is valid for small surfactant concentration perturbation,
or at large times since we assume |Γ̂ (x)|e−λt � Γ̄ . Equation (2.8) may be combined with
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the stress condition Γx = −uy to give the homogeneous boundary condition

−αûy = ûxx, on y = 0. (2.9)

The resulting eigenvalue problem for the perturbation streamfunction may then be stated
as the biharmonic equation (2.5), under the boundary conditions (2.6b,c) for ψ̂ and

αψ̂yy = −ψ̂xxy ψ̂ = 0, on y = 0. (2.10)

We seek the set of decay rates αn, n = 1, 2, . . . , which are eigenvalues for which a
solution exists with the corresponding eigenmodes ψ̂n. We distinguish two families for
the decay rates αn and eigenmodes ψ̂n, such that ψ̂n is either an even or odd function of
x. For the rest of this study the subscript n will refer to the odd modes unless otherwise
specified. From each of these eigenmodes and eigenvalues we can derive the associated
surfactant distribution Γ̂n, the shear stress at the free surface τn(x) = ∂ ûn(x, 0)/∂y, the
vorticity field ω̂n = −∇2ψ̂n and the pressure field p̂n, obtained from the vorticity via
∇p̂n = (−∂ω̂n/∂y, ∂ω̂n/∂x).

This problem has two key global characteristics. An energy dissipation argument (see
Appendix A) shows that all the decay rates satisfy

αn =

∫
V
ω̂2

n dA∫ 1

−1
Γ̂ 2

n dx

, (2.11)

where V is the rectangular flow domain (see figure 1). Application of the reciprocal
theorem (Masoud & Stone 2019) (see Appendix B) yields the orthogonality condition∫ 1

−1
Γ̂mΓ̂n dx = 0, ∀ m /= n. (2.12)

When solving an initial value problem with time-dependent surfactant and velocity fields,
the condition (2.12) can be used to project the initial condition for Γ̂ onto its component
modes. The initial Marangoni gradient that drives the flow can arise for example from
the addition of exogenous surfactant to an otherwise uniform endogenous surfactant
distribution. In this study, we do not track the interface between these distributions
explicitly, and we assume that the exogenous and endogenous surfactant concentrations
add together to form a single concentration field (Grotberg et al. 1995).

2.2. Finite-difference numerical solution

We compute a numerical solution ψ̃n (where a wide tilde denotes a numerically computed
variable) of the unknown perturbation modes of the streamfunction, ψ̂n, satisfying the
biharmonic equation (2.5) and the boundary conditions (2.6b,c) and (2.10), using a
finite-difference scheme. Using a row×column ordering convention, the domain described
in figure 1 is discretised as an M × N rectangular grid, in the y and x directions,
respectively, with uniform spacing	y and	x, and supplemented with a set of ghost-points
around the periphery creating an (M + 2)× (N + 2) grid. We use a second-order accurate
13-point stencil, involving standard finite-difference approximations of derivatives (see
e.g. Fornberg 1988), to approximate the biharmonic operator in (2.5) on the grid of
unknowns. These unknowns correspond to the unknown values of the perturbation
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Surfactant cavity flow

streamfunction of a given mode at a given grid point ψ̃n(xj, yi), with 3 � i � M, 3 �
j � N. We impose ψ̃n(xj, yi) = 0 at the boundaries of the domain j = 2 and j = N + 1,
with 2 � i � M + 1, and i = 2 and i = M + 1, with 2 � j � N + 1, to implement the
boundary conditions in (2.6b,c) and (2.10) which state that the streamfunction vanishes
at all the boundaries. The (M − 2)× (N − 2) grid of unknowns is expressed as a column
vector ψ which is assembled by the vertical concatenation of the rows of unknowns of
ψ̃n(xj, yi). The numerical operator modelling the biharmonic operator on the grid can then
be approximated by a matrix operating on ψ . The remaining no-slip boundary conditions
in (2.6b,c) at the walls and the surfactant boundary condition in (2.10) at the free surface
can be approximated by a finite-difference discretisation acting on the M × N grid and the
ghost points. Values of the streamfunction at the ghost points are calculated as functions
of the values in the interior points and added to the linear system such that the boundary
conditions are satisfied. The system can then be rearranged so that ψ satisfies,

Bψ = αCψ, (2.13)

where B and C are sparse (N − 2)(M − 2)× (N − 2)(M − 2) matrices. Equation (2.13)
represents a generalised numerical eigenvalue problem for the eigenmodes ψ̃n and
the associated numerically calculated decay rates α̃n, from the free-surface boundary
condition (2.10). We solved (2.13) using the MATLAB function eigs. From the solutions
for each mode ψ̃n we compute numerical approximations of all other quantities of interest
for each mode, such as the surfactant concentration profile Γ̃n(x), the surface stress τ̃n(x) =
ψ̃n,yy(x, y = 0), the velocity field (ũn, ṽn)(x, y), the vorticity field ω̃n(x, y) and the pressure
field p̃n(x, y). The solutions ψ̃n are normalised by requiring max(Γ̃n(x))− min(Γ̃n(x)) = 1
for each n.

We use global integrated measures to estimate the accuracy of the computational
scheme, such as the energy balance (2.11), see table 1, and mode orthogonality, see
Appendix B. The relative error of the decay rates computed directly as eigenvalues
from (2.13) and indirectly from the eigenmodes via (2.11) (denoted as ᾰn) remains less
than 4 × 10−4 for all odd and even modes calculated (up to n = 4) for H = 2 using
a 4000 × 4000 grid (see table 1). For the same refinement and the same modes, the
concentration profiles Γ̃n are orthogonal with an absolute error less than 8 × 10−6 [see
(B5)]. We use asymptotic methods, described below, to assess and contain (via global grid
refinement) the inevitable local numerical inaccuracies associated with corner singularities
at the contact lines (x, y) = (±1, 0).

2.3. Corner asymptotics
We anticipate from the outset the appearance of Moffatt vortices (Moffatt 1964) in
the lower corners of the domain, at (x, y) = (±1,−H), as we will show in our results
presented in § 3. However, the structure of the flow at the top corners of the domain,
where the surfactant-laden surface meets the wall, needs separate asymptotic treatment.
We illustrate this at the top left corner, introducing polar coordinates (r, θ) centred on
(x, y) = (−1, 0) with θ = 0 along y = 0 (and r increasing in the positive x direction)
and θ = −π/2 along x = −1 (and r increasing in the negative y direction) and seeking
separable solutions of the form

ψ̂(r, θ) ≈ Re

[∑
i

AirΦi fΦi(θ)

]
, for r → 0. (2.14)
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Even modes Eigenvalue α̃n Eigenvalue ᾰn from (2.11) Relative error (α̃n − ᾰn)/α̃n

1 0.57313 0.57290 0.00039
2 2.10723 2.10738 −0.00007
3 3.67670 3.67710 −0.00011
4 5.24715 5.24820 −0.00020

Odd modes
1 1.29728 1.29725 0.00002
2 2.88997 2.89018 −0.00007
3 4.46164 4.46232 −0.00015
4 6.03235 6.03390 −0.00026

Table 1. Decay rates predicted as eigenvalues α̃n computed numerically from (2.13) compared with ᾰn, which
are those computed from eigenmodes using (2.11) for H = 2, found using a 4000 × 4000 grid. The relative
error provides a measure of global numerical error, suggesting that the values for α̃n are accurate up to three
significant figures.

Here, Re[·] indicates taking the real part, noting that the amplitudes Ai and exponents Φi
of local modes of the biharmonic equation may be complex. We will find that the sum in
(2.14) is a sum of multiple countable series. For notational simplicity, we will use Φ to
represent exponents, and we will suppress the subscript n on ψ̂ and α associated with each
eigenmode. To satisfy the governing biharmonic equation (2.5), ∇4ψ̂(r, θ) = 0, and the
boundary conditions (2.6b,c), ψ̂(r, 0) = ψ̂(r,−π/2) = ψ̂θ (r,−π/2) = 0, starting from
more general formulas for the θ -dependent functions (Moffatt 1964), we find that

f1(θ) = π

2
sin θ − 2

π
θ cos θ + θ sin θ (Φ = 1), (2.15a)

f2(θ) = cos (2θ)− 2
π

sin (2θ)− 4θ
π

− 1 (Φ = 2), (2.15b)

and generally for Φ > 0, Φ /= 1, 2,

fΦ(θ) = cos (Φπ/2) sin (Φπ/2)

sin2 (Φπ/2)−Φ
(cos (Φθ)− cos ((Φ − 2)θ))

+ cos2 (Φπ/2)−Φ + 1

sin2 (Φπ/2)−Φ
sin (Φθ)+ sin ((Φ − 2)θ), (2.15c)

which in the special case of integer Φ reduces to

fΦ(θ) =
⎧⎨
⎩

sin (Φθ)+ sin ((Φ − 2)θ), Φ is an odd integer strictly greater than 1,
Φ − 2
Φ

sin(Φθ)+ sin((Φ − 2)θ), Φ is an even integer strictly greater than 2.

(2.15d)

The final boundary condition, the surfactant boundary condition at the free surface in
(2.10): −αψ̂yy = ψ̂xxy at y = 0, is, in polar coordinates,

−α
(

1
r2 ψ̂θθ + 1

r
ψ̂r

)
= 1

r
ψ̂rrθ − 2

r2 ψ̂rθ + 2
r3 ψ̂θ , for θ = 0. (2.16)
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Writing the first few terms in the expansion (2.14) for ψ̂ in the form

ψ̂ = Re
[
Aarafa(θ)+ Abrbfb(θ)+ Acrcfc(θ)+ . . .

]
(2.17)

where a, b, c . . . are complex numbers (representing exponents Φi) such that Re(a) <
Re(b) < Re(c) and Aa /= 0, we obtain from (2.16) (after multiplying by r3)

−α(Aara+1f ′′
a (0)+ Abrb+1f ′′

b (0)+ Acrc+1f ′′
c (0)+ . . . )

=
(

a2 − 3a + 2
)

Aaraf ′
a(0)+

(
b2 − 3b + 2

)
Abrbf ′

b(0)

+
(

c2 − 3c + 2
)

Acrcf ′
c(0)+ . . . . (2.18)

The ra term is dominant as r → 0, imposing that

(a − 1)(a − 2)f ′
a(0) = 0. (2.19)

This equation opens multiple possibilities. The first case a = 1 corresponds to a solution
with non-integrable stress τ(r) = ψ̂θθ (θ = 0)/r2, and therefore unbounded surfactant
concentration as r → 0, so we impose A1 = 0. This leaves two other cases: a = 2 and
f ′
a(0) = 0. The latter third case yields an infinite set of complex exponents of the type

described by Moffatt (1964), each representing a homogeneous local solution, which we
will analyse further below. The expansion (2.14) therefore constitutes multiple independent
series.

In the second case, with a = 2, (2.18) becomes

−α(A2r3f ′′
2 (0)+ Abrb+1f ′′

b (0)+ Acrc+1f ′′
c (0)+ . . . )

=
(

b2 − 3b + 2
)

Abrbf ′
b(0)+

(
c2 − 3c + 2

)
Acrcf ′

c(0)+ . . . . (2.20)

The dominant balance must be between the rb and r3 terms since we imposed Re(a) <
Re(b), hence b = 3. We then have

−αA2f ′′
2 (0) = 2A3f ′

3(0). (2.21)

Using (2.15b) and (2.15d) for f2 and f3, respectively, (2.21) becomes αA2 = 2A3. The
next balance in (2.20) gives −αA3f ′′

3 (0) = 6A4f ′
4(0), however, from (2.15d) we can see

that f ′′
3 (0) = 0, which implies that A4 = 0 and this series terminates. The first series

contributing to ψ̂ is therefore simply

A2r2
(

f2(θ)+ α

2
rf3(θ)

)

= A2r2
(

cos (2θ)− 2
π

sin (2θ)− 4θ
π

− 1 + α

2
r(sin (3θ)+ sin θ)

)
. (2.22)

In the third case, setting f ′
a(0) = 0 in (2.19) (with a /= 1, 2) gives

cos2 (aπ/2)− a + 1

sin2 (aπ/2)− a
a + (a − 2) = 0, (2.23)

so that the complex roots satisfy

sin2 (aπ/2)− a(2 − a) = 0. (2.24)

We label the roots of (2.24) which have non-zero imaginary part as a1, a2, . . . with
0 < Re(a1) < Re(a2) < . . . . The roots ai are independent of H, and correspond to
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a1 ≈ 3.7396 + 1.1190i K11 ≈ −0.036666 + 0.076161i
a2 ≈ 5.8083 + 1.4639i K12 ≈ 0.046960 + 0.002377i
a3 ≈ 7.8451 + 1.6816i K13 ≈ −0.001195 + 0.000349i
a4 ≈ 9.8688 + 1.8424i K14 ≈ 0.000198 + 0.000122i
a5 ≈ 11.886 + 1.9702i K15 ≈ −0.000002 − 0.000002i

Table 2. Left: approximate numerical values of the first five complex roots ai of (2.24). These roots are the
exponents in Moffatt’s series for anti-symmetric Stokes flow (Moffatt 1964) subject to a disturbance at a large
distance in the case of right-angle corners. Right: approximate values of the first five coefficients Kij for the
dominant root i = 1 in the series expansion (2.27) associated with ψ̂ and computed using (2.28). All of these
quantities are independent of the global parameter H.

the exponents in Moffatt’s series (Moffatt 1964) for anti-symmetric Stokes flow in a
right-angle corner subject to arbitrary disturbance at a large distance. The first five complex
roots are shown in table 2. Each complex root a generates its own asymptotic series of
the form (2.17) with a = ai, b = bi, c = ci, etc. where 0 < Re(ai) < Re(bi) < . . . , for
i = 1, 2, 3, . . . For example, for i = 1 (2.18) gives

−α(Aa1ra1+1f ′′
a1
(0)+ Ab1rb1+1f ′′

b1
(0)+ Ac1rc1+1f ′′

c1
(0)+ . . . )

=
(

b2
1 − 3b1 + 2

)
Ab1rb1 f ′

b1
(0)+

(
c2

1 − 3c1 + 2
)

Ac1rc1 f ′
c1
(0)+ . . . , (2.25)

such that the dominant balance is b1 = a1 + 1, requiring that

−αAa1 f ′′
a1
(0) = a1(a1 − 1)Ab1 f ′

b1
(0), (2.26)

with the approximate value of a1 given in table 2. From such relations for a1, b1, c1, . . .

we can derive the associated contribution to ψ̂ , of the form

Aa1

(
ra1 fa1(θ)+ αK11ra1+1fa1+1(θ)+ α2K12ra1+2fa1+2(θ)+ . . .

)
, (2.27)

where the first five coefficients K1j related to a1 in (2.27) are shown in table 2. These
coefficients can be computed through the recurrence relation

Kij = −
Ki(j−1)f ′′

ai+j−1(0)

((ai + j)2 − 3(ai + j)+ 2)f ′
ai+j(0)

, (2.28)

for integers i � 1 and j � 1 and with Ki0 = 1.
In summary, the full asymptotic series for the nth eigenmode in the neighbourhood of

the contact line, which we originally stated in the form (2.14), is

ψ̂n(r, θ) = An2r2
[

f2(θ)+ αn

2
rf3(θ)

]
+ Re

⎡
⎣ ∞∑

i=1

Anai

⎛
⎝ ∞∑

j=0

α j
nKijrai+jfai+j(θ)

⎞
⎠
⎤
⎦ .
(2.29)

The coefficients Kij can be computed from the recurrence relation (2.28), whilst the
coefficients An2 and Anai must be determined from fitting to numerical solutions.
Analysing (2.29) we can notice that ψ̂n approaches different values as r → 0 for different
values of θ , capturing the streamfunction’s singular behaviour in this limit. Away from the
corner, the complex exponents involved in the second term of (2.29) produce oscillatory
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Surfactant cavity flow

behaviour as a function of r, such that for the corresponding parameters, (2.29) is capable
of producing Moffat-type eddies at the top corners, which are observed in the numerical
solution for higher-order modes (shown in § 3). This is a local expansion at the top corner,
however, global information about the aspect ratio of the domain and the global symmetry
or anti-symmetry of ψ̂n enters into this expression through αn. We note for later reference
that the surface shear stress τn(x) has the local form

τ̂n(x) = ∂ ûn

∂y

∣∣∣∣
y=0

≈ −4An2 + Re
{

Ana1(1 + x)a1−2f ′′
a1(0)+ . . .

}
as x → −1, (2.30)

which has a non-zero asymptotic value at the contact lines τ̂n(−1) = −4An2. Moreover,
the complex roots ai imply that the value of the shear stress oscillates as x → −1. Near the
contact line (x, y) = (−1, 0), the leading-order surfactant distribution has a finite non-zero
gradient, computed from (2.8),

Γ̂n(x) ≈ −8An2

παn
+ 4An2(1 + x)+ . . . as x → −1. (2.31)

The leading-order vorticity near the contact line (x, y) = (−1, 0) has the form

ω̂n ≈ 4An2

(
1 + 4

π
tan−1 y

1 + x

)
+ . . . , (2.32)

which shows that the vorticity is multi-valued at the corner owing to the singularity and
depending on the angle of approach. From the vorticity, we find that the leading-order
pressure locally is

p̂n ≈ −8An2

π
log( y2 + (1 + x)2)+ . . . , (2.33)

which shows that the pressure diverges in a logarithmic fashion at the corner. The above
expressions give the local expansion at the top left corner of the domain. A similar
expansion is then trivially obtained at the top right corner by symmetry. These asymptotic
results complement the numerical solutions, less accurate near the contact lines (x, y) =
(±1, 0), providing a complete understanding of the effect of the corner singularities on the
relevant physical quantities in this problem.

3. Results

Figure 2(a) shows how the decay rates α̃n of the odd and even modes, computed
numerically from the eigenvalue problem (2.13), vary with the depth of the domain H.
The decay rates become independent of the cavity depth for H � 2. We can find an
exact asymptotic expression for the odd and even decay rates in the limit H → 0 using
a lubrication approximation (see Appendix C)

αn → n2π2H
4

, (odd modes), αn → (2n − 1)2π2H
16

(even modes), (3.1a,b)

as shown with dashed lines in figure 2(a) for the first two odd and even modes. The
surfactant concentration profiles of the corresponding modes are shown in figure 2(b)
(using the same colours as in figure 2a). All the surfactant profiles have a non-zero
finite value and slope at the boundaries x = ±1, as anticipated from (2.31). We compute
the dominant singularity strength −4An2 from the slope of the surfactant profile at the
boundaries x = ±1 according to (2.31).
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Figure 2. (a) Decay rates computed numerically by solving (2.13) (solid lines) as functions of H, and compared
with the analytical predictions obtained from lubrication theory (3.1a,b) in the limit H → 0 (dashed lines).
(b) Plots of the surfactant concentration profiles (using the same colour code as in (a)) for the first two even and
two odd modes for H = 2 using a solution for the streamfunction ψ̃n calculated numerically using 4000 × 4000
grid points.

The contour plots computed numerically in figure 3(a,b) show the streamfunction and
vorticity of the dominant mode (first odd eigenmode n = 1) for H = 2. Weak Moffatt
eddies can be seen in the lower corners of the cavity (x, y) = (±1,−2). Vorticity contours
converge at the upper corners, indicating that ω̂ is multi-valued there, consistent with
(2.32). The numerical results of the contour plot of the streamfunction in a deep channel
with H = 8, as shown in figure 3(c), reveals a sequence of recirculations. The strength
of the streamfunction decreases rapidly with increasing depth, by approximately three
orders of magnitude for the amplitude of the streamfunction between successive cores.
In a shallow channel with H = 0.2 (figure 3d), elongated eddies appear, consistent with
predictions of lubrication theory.

Figure 4(a) shows the surface shear stress, computed numerically from the
viscous-Marangoni stress condition τ̃ (x) = −Γ̃x(x), for the dominant mode (first odd
mode, n = 1) for H = 2, revealing an oscillatory structure near the contact lines as
x → ±1, consistent with (2.30). The log–log plot in figure 4(b) reveals in more detail how
the stress calculated from the numerical solution matches against the stress found using
the asymptotic approximation (2.30). The finite-difference approximation, with a finite
grid size, necessarily fails to capture the increasingly short-wavelength oscillations as
x → −1 (as plotted with dashed lines when 1 + x � 100	x), and the asymptotic solution
can be expected to fail as 1 + x becomes too large. However, there is an overlap region
(indicated by solid lines for the numerical results), which grows in size with increasing
grid resolution, over which the agreement is sufficiently strong to provide confidence in
the numerical predictions throughout the rest of the domain. Thus, at the maximum grid
resolution (	x = 1/8000) the numerical results are close to the asymptotic results for
log(1 + x) ≈ −1.8. We note that the asymptotic results could be made more accurate by
including more terms in the series (2.30), which would for instance show variations in the
wavelength of the shear stress oscillations as x → −1. However, the dominant odd mode
n = 1 clearly captures the oscillatory behaviour of the shear stress near the corner.

3.1. Regularising the corner singularities
The corner singularities can be regularised by adding a small amount of surface diffusion
in the problem. In this case the transport equation for the surfactant, the first equation
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Figure 3. Contour plots of the dominant mode, the first odd eigenmode (n = 1), computed from numerical
simulations in a square domain (H = 2), showing (a) the streamfunction and (b) the vorticity. Similarly,
(c) shows numerical results of the contour plots of the streamfunction for the dominant mode (odd mode
n = 1) in a deep domain (H = 8) and (d) a shallow domain (H = 0.2).

in (2.6a), modifies to Γ ∗
t∗ = −(Γ ∗u∗)x∗ + D∗Γ ∗

x∗x∗ , in dimensional form with D∗ the
surface diffusivity of the surfactant. Hence, the stress boundary condition in the eigenvalue
problem for the perturbation streamfunction (first equation in (2.10)) becomes

αψ̂yy = −ψ̂xxy + Dψ̂xxyy, (3.2)

where D = D∗μ∗/(W∗S∗Γ̄ ). We then specify an additional boundary condition and
impose no flux of surfactant, Γx = 0, at the contact lines (x, y) = (±1, 0). Thus, in the
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Figure 4. Distribution of the surface shear stress computed from the dominant mode, the first odd mode n = 1.
(a) Numerical results (red) vs asymptotic results including two terms in (2.30) (blue) with coefficients 4A12 =
1.216 and A1a1 ≈ −0.175e0.157i which were locally optimised to fit the numerical solution. (b) Logarithmic
plot showing similar results as in (a) vs log(1 + x). This reveals overlap between asymptotics and numerics for
different grid resolutions; dashed lines for the numerical results are used for 1 + x � 100	x, where numerical
errors increase. (c) Distributions of the shear stress, calculated numerically and when surface diffusion is
included following (3.2). (d) Semi-log plots of the profiles in (c), with the horizontal coordinate scaled by
D in the inset. The dashed line in the main graph is the asymptotic value of the shear stress at x = −1, i.e.
τ = −4A12 = −1.216

presence of weak surface diffusion, surface stress falls abruptly to zero in small boundary
layers at the wall for D � 1 (figure 4c). Increasing D causes the surface stress of the
first odd mode n = 1 to take a smoother more sinusoidal profile, revealing the impact of
surface diffusion on the free surface. The profile of the shear-stress distribution near the
contact line is shown in greater detail in figure 4(d) (using a logarithmic spatial scale),
demonstrating its adjustment from the constant value −4An2 (value of the shear stress at
the corner for D = 0, plotted with a dashed line) to zero over a very short length scale.
Collapse of these data when x is rescaled by D (inset) provides evidence that weak surface
diffusion regularises the singularity over a boundary layer of characteristic length scale D.

We assumed initially that a restoring force is present that is sufficiently strong to
suppress interfacial deflections by imposing a flat interface and ignoring the normal stress
condition. Given the singularity in the pressure at the contact lines (2.33), it is prudent
to revisit this boundary condition. Linearising the normal stress condition around y = 0,
we can state this as p̃(x, 0)− pext − 2ψ̃xy(x, 0) = h̃xx, where the dimensional deflection
is (W∗S∗/γ ∗

0 )h̃ and pext is a reference pressure (recall that, for the small surfactant
concentration variations considered here, we can assume S∗ � γ ∗

0 ). The displacement
is computed by imposing h̃ = 0 at each contact line, and imposing a volume constraint

930 A15-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

91
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.911


Surfactant cavity flow

–1.0 –0.8 –0.6 –0.4 –0.2 0 0.2
x

h̃

0.4 0.6 0.8

1.00.5

420
0

2

4

6

8

10

log((1 + x)/D)

–p̃
(x

, 0
)

–p̃
(x

, 0
)/

lo
g(

D
)

–2–4

0–0.5–1.0
0

2

4

6

8

10

x

1.0
–0.2

0

0.2
Even mode 1
Odd mode 1
Even mode 2
Odd mode 2

(b)

(a)

Figure 5. (a) Surface pressure profiles computed numerically for the different values of the diffusion constant
D given using the colours indicated in figure 4(c). The inset shows a scaled semi-log graph showing the pressure
profiles collapsing on to each other in a diffusive boundary layer located for x ∈ [−1, 0] as D decreases.
(b) Non-dimensional interfacial deflections (relative to the length scale W∗S∗/γ ∗

0 ), computed numerically as
the leading-order correction to the flat state for the first two odd and even modes.∫ 1
−1 h̃ dx = 0. The pressure field at the free surface (computed numerically with gauge

p̃(0, 0) = 0) is shown in figure 5(a) for the same values of D as used in figure 4(c,d).
Collapse of the data (inset in figure 5a) demonstrates that the pressure, like the stress, is
regularised over a length scale in x of O(D) at the contact lines, reaching a maximum
value of O(log(1/D)). The corresponding interfacial displacement (figure 5b), computed
numerically with D = 0, shows that, despite the strong local forcing, displacements remain
bounded. For the first odd mode, for example, there is weak upwelling near each contact
line compensated by lowering of the free surface in the middle of the domain.

4. Discussion

Confined gas–liquid interfaces are commonly contaminated by surfactant, deliberately
or by trace amounts naturally present in the environment. Here, we have addressed
Marangoni-driven spreading of insoluble surfactant, towards an equilibrium state with
uniform concentration, taking place across the width of an interface in a channel, when
viscosity dominates the flow. Many features of this spreading are diffusive in character,
particularly the decomposition of the flow into a set of mutually orthogonal eigenmodes.
The modes decay exponentially in time at different rates, with the longest-wave modes
being the most long lasting. Despite this benign temporal structure, the dynamic
compression of surfactant near each lateral boundary gives eigenmodes more exotic
spatial features. The logarithmic pressure singularity near each contact line (2.33) has
the potential to generate a measurable surface deflection (figure 5), while the shear stress
has a pronounced oscillatory structure (figure 4b).

So far, we have focussed our study to the special case of a single-fluid flow with a
pinned contact line forming a π/2 contact angle with the cavity walls. However, we can
relax these assumptions to show that our results extend to a broader class of problems.
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In Appendix D, we present a local asymptotic analysis for the case of a two-fluid
incompressible Stokes flow, with fluids of arbitrary viscosities and with an arbitrary
contact angle between 0 and π for the interface which is still assumed locally flat and
pinned to the flat walls of the cavity. We show that the structure of the (two-fluid) flow near
the contact line and the type of singularities generated by the time-dependent spreading of
the surfactants lying at the interface between the two fluids is similar to what we found for
the single-fluid flow with π/2 contact angle. Indeed, the singularity is always associated
with a real exponent of 2 in the r-dependence of the streamfunction, which leads to the
logarithmic pressure singularity and the multi-valuedness of the vorticity near each contact
line. The main difference is that the part of the series of the streamfunction associated with
real exponents does not terminate at r3 for contact angles different from π/2 (see (2.22) for
the streamfunction with π/2 contact angle). The oscillatory structure of the shear stress,
associated with complex exponents in the r-dependence of the streamfunction, depends
on the wedge angle, but not on the viscosity ratio between the two fluids. The viscosity
ratio only affects the coefficients of higher-order terms in the series for each eigenmode.
We note that a local analysis is sufficient to establish the local flow structure and type
of singularities near the contact line, which can be generated by an arbitrary far-field
disturbance of the surfactant distribution. Such fundamental surfactant flows are found
across the range of applications mentioned in the introduction.

We have also shown how, in the case of a single-fluid flow with π/2 contact angle,
the introduction of a small amount of surface diffusion regularises the contact line
singularities, leading to prominent changes in stress distributions (figure 4c,d). Surface
diffusivity of 7 × 10−10 m2 s−1 for the common surfactant sodium dodecylsulphate
(Chang & Franses 1995) translates to a dimensionless diffusion coefficient D =
μ∗D∗/(S∗W∗) below 10−8 in magnitude, assuming a spreading coefficient S∗ =
10−2 kg s−2 over water in a channel of width 1 cm. At such low levels, the impact of
the singularities may still be visible, with the pressure maximum near each contact line,
proportional to log(1/D), generating surface deflections resembling that shown in figure 5.
We expect that diffusion will act in the same way for the broader class of problems
involving two-fluid viscous flows and arbitrary contact angles between 0 and π.

The singular flow structures near contact lines that we have identified have the potential
to contaminate dynamic computations that do not take proper account of these small-scale
local structures. In our calculations of spatial eigenmodes, we chose to combine asymptotic
analysis with a dense numerical grid to capture the dominant spatial features of the flow.
There are a range of alternative strategies that could be deployed, notably singularity
removal (Sprittles & Shikhmurzaev 2011; Game, Hodes & Papageorgiou 2019), although
(at least) two distinct singularities would require removal in the present problem. As
indicated above, singularity regularisation via the introduction of surface diffusion
can operate over extremely small length scales when using realistic parameter values,
itself presenting a computational challenge. Singularities can be expected to become a
particular difficulty in time-dependent studies, when artificial diffusion associated with a
computational scheme may generate spurious disturbances propagating outward from the
contact lines. Corner singularities can also present convergence difficulties for numerical
schemes that represent solutions using (Fadle–Papkovich) eigenfunctions that assume
separability of spatial variables (Meleshko 1996, 1997).

The present model rests on numerous assumptions. We have restricted attention to
the near-equilibrium state, ignoring nonlinearities associated with large concentration
gradients. One benefit of this assumption is that small concentration changes support
our assumption of a linearised equation of state, and the assumption that the Marangoni
flow is sufficiently weak for restoring forces to maintain a nearly flat interface. We have
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assumed that the surfactant is insoluble, but anticipate that desorption near the contact
line may contribute to regularisation of the singularity. While the planar flow studied here
could readily be extended to an axisymmetric geometry, a potentially more interesting
avenue, with regard to three-dimensionality, will be to examine how the transverse flow
studied here interacts with axial flows along the channel, as may occur in plastrons
used in superhydrophobic drag reduction (Peaudecerf et al. 2017), in maze solving by
surfactant (Temprano-Coleto et al. 2018) or in microfluidic applications. Furthermore,
although we have considered a purely viscous regime, Marangoni spreading can be very
rapid. The dimensional decay rates predicted here are 1/α times W∗μ∗/	γ ∗, where α is
an O(1) modal decay rate and 	γ ∗ = (γ ∗

0 − γ ∗
c )Γ̄

∗/Γ ∗
c is the surface tension reduction

due to the equilibrium surfactant distribution. Taking this as low as 10−3 kg s−2, say,
for water in a narrow channel of width 1 mm (and comparable depth), the decay time
scale is approximately 1 ms/α, with a Reynolds number of order unity. Despite decaying
exponentially with respect to time, the structure of the flow in wider and deeper channels
can therefore be expected to be influenced by inertia, at least initially.

In summary, this study shows how the unsteady spreading of a surfactant monolayer
along a liquid–liquid or liquid–gas interface, confined by a lateral rigid boundary, can
generate singular flow structures near stationary contact lines, including a logarithmically
divergent pressure field and an oscillatory shear-stress distribution. Careful treatment
of these structures is needed in computational simulations involving dynamic surfactant
transport in confined domains.
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Appendix A. The energy budget

The Stokes equation can be written as ∇ · σ = 0, where the non-dimensional Cauchy
stress tensor is σ = −pI + 2e and the strain-rate tensor e = (∇u + ∇uT)/2. Thus, for a
Stokes flow, ∇ · (u · σ ) = σ : ∇u = σ : e, exploiting the symmetry of σ . Given that pI :
e = trace(e)p = 0 by incompressibility, it follows that ∇ · (u · σ ) = 2e : e. Integrating
this over the domain and applying the divergence theorem gives

2
∫

V
e : e dA =

∫
∂V

u · σ · n ds, (A1)

where ∂V represents the boundary of V and ds is the curvilinear element along the
boundary. For the present perturbation problem, described by (2.5), (2.6b,c) and (2.10) for
each eigenmode, (A1) balancing work done by Marangoni forces with viscous dissipation
becomes

2
∫

V

(
2ψ̂2

yx + 1
2 ψ̂

2
yy + 1

2 ψ̂
2
xx − ψ̂xxψ̂yy

)
dA = −

∫ 1

−1

(
Γ̂xψ̂y

)∣∣∣
y=0

dx. (A2)

Integration by parts of the left-hand side of (A2) and the use of the no-slip boundary
condition on vertical boundaries and no penetration boundary condition on horizontal
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boundaries gives

2
∫

V

(
2ψ̂2

yx + 1
2 ψ̂

2
yy + 1

2 ψ̂
2
xx − ψ̂xxψ̂yy

)
dA =

∫
V

(
ψ̂2

yy + ψ̂2
xx + 2ψ̂xxψ̂yy

)
dA =

∫
V
ω̂2 dA,

(A3)

where ω̂ = −(ψ̂yy + ψ̂xx) is the vorticity. Further integration by parts of the right-hand
side of (A2) gives

−
∫ 1

−1

(
Γ̂xψ̂y

)∣∣∣
y=0

dx =
∫ 1

−1

(
Γ̂ ψ̂xy

)∣∣∣
y=0

dx. (A4)

Since ψ̂xy = αΓ̂ from (2.8), we obtain (2.11) for each decay rate α and corresponding
eigenmode {ψ̂, ω̂, Γ̂ }.

Appendix B. Orthogonality of modes

The reciprocal theorem (Masoud & Stone 2019) states that two Stokes flows, with velocity
fields and Cauchy stress tensors (u, σ ) and (u′, σ ′), satisfy in the same region∫

∂V
u · (σ ′ · n) dA =

∫
∂V

u′ · (σ · n) dA. (B1)

For the present perturbation problem, described by (2.5), (2.6b,c) and (2.10) for each
eigenmode, we have u = 0 on the three solid boundaries whilst at the free surface
uy = −Γx. Thus, for two distinct modes m and n, (B1) implies∫ 1

−1
ûmΓ̂n,x dx =

∫ 1

−1
ûnΓ̂m,x dx. (B2)

Integrating by parts and using αΓ̂ = −ûx gives[
ûmΓ̂n

]1

−1
−
∫ 1

−1
αmΓ̂mΓ̂n dx =

[
ûnΓ̂m

]1

−1
−
∫ 1

−1
αnΓ̂nΓ̂m dx. (B3)

As the surface velocity is zero at x = ±1, (B3) becomes

(αm − αn)

∫ 1

−1
Γ̂mΓ̂n dx = 0, (B4)

which shows that the surfactant concentration profiles corresponding to different modes
are orthogonal since αm /=αn, as stated in (2.12). Equivalently, we note that this result can
be derived by exploiting the self-adjointness of (2.5), (2.6b,c) and (2.10).

Numerical computation of the scalar product of the surfactant concentration modes for
1 � m, n � 5 gives

∫ 1

−1
Γ̃mΓ̃n dx

= Am,n =

⎛
⎜⎜⎜⎜⎝

0.20243519 −0.00000524 −0.00000370 −0.00000345 −0.00000358
−0.00000524 0.19832581 −0.00000394 −0.00000457 −0.00000508
−0.00000370 −0.00000394 0.19136202 −0.00000570 −0.00000635
−0.00000345 −0.00000457 −0.00000570 0.19112895 −0.00000744
−0.00000358 −0.00000508 −0.00000635 −0.00000744 0.19096022

⎞
⎟⎟⎟⎟⎠ .

(B5)
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These results were computed using our numerical scheme presented in § 2.2 with 4000 ×
4000 grid points. The non-diagonal elements of the matrix Am,n in (B5) are very small,
showing the orthogonality of the modes calculated numerically and the global accuracy of
our numerical scheme.

Appendix C. The thin-film limit

As H → 0, the biharmonic equation (2.5) can be approximated as ψyyyy = 0, therefore the
general solution in this limit is given by

ψ = f1(x)y3 + f2(x)y2 + f3(x)y + f4(x). (C1)

The boundary condition ψ(x, y = 0) = 0 means f4(x) = 0. The boundary conditions
ψ(x, y = −H) = 0 and ψy(x, y = −H) = 0 give

0 = −f1(x)H3 + f2(x)H2 − f3(x)H, (C2)

and

0 = 3f1(x)H2 − 2f2(x)H + f3(x). (C3)

Eliminating f3 gives f2(x) = 2f1(x)H, implying f3(x) = f1(x)H2. Hence, ψ = f1(x)( y3 +
2Hy2 + H2y). The stress boundary condition at the surface y = 0 is αψyy = −ψxxy, which
imposes

4αHf1(x) = −f ′′
1 (x)H

2. (C4)

The solution of this ordinary differential equation for f1(x) is

f1(x) = C1 cos

(√
4α
H

x

)
+ C2 sin

(√
4α
H

x

)
, (C5)

for some arbitrary integration constants C1 and C2. The odd and even modes are given by
setting either of these constants to zero. Let C2 = 0, then applying the boundary conditions
ψ(x = ±1) = 0 at the sidewalls gives cos (

√
4α/H) = 0, which implies

αn = (2n − 1)2π2H
16

, (C6)

where n can be any positive integer, n � 1. Equation (C6) is an approximation for the
decay rates for the modes even of the streamfunction in x as H becomes small. Similarly,
letting C1 = 0 in (C5), and then applying the boundary conditions ψ(x = ±1) = 0 at the
sidewalls gives sin (

√
4α/H) = 0, which implies

αn = n2π2H
4

, (C7)

where n can be any positive integer, n � 1. Equation (C7) is an approximation for the
decay rates for the modes even of the streamfunction in x as H becomes small. We note
finally that the sinusoidal modes (C5) in this long-wave theory predict zero slope of the
surfactant concentration at the contact lines, so fail to capture the finite slope predicted by
(2.31) and demonstrated in figure 2(b).
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Figure 6. (a) Schematic of the local problem near the contact line pinned at O, with surfactant on the interface
(θ = 0) between two incompressible fluids with viscosities μ1 (bottom fluid) and μ2 (top fluid) and contact
anglesΘ1 andΘ2, respectively. (b) Plot of the real part of admissible exponents for the radial dependence of the
streamfunction, calculated from (D4), against the contact angle Θ1. This gives the exponents in the asymptotic
series capturing the behaviour of the fluid as r → 0. Importantly, this shows no admissible exponents with 1 <
real(a1) < 2, which means that for any contact angle and viscosity ratio, the nature of the dominant singularity
presented in the main text for a single-fluid flow with contact angle π/2 is generic.

Appendix D. Asymptotics with arbitrary contact angle and two fluids of arbitrary
viscosities

We consider the generalisation of the local analysis of the single-fluid flow with π/2
contact angle made in § 2.3. As depicted in figure 6(a), we now assume a two-fluid
incompressible Stokes flow with arbitrary viscosities. We assume that the interface is
locally flat near the contact lines and remains pinned to the flat walls of the cavity at the
contact-line location at point O, which corresponds to the coordinates (x, y) = (−1, 0) in
the original problem described in figure 1. We allow the contact angle Θ to vary between
0 and π, thereby relaxing the assumption made in the main part of the text. We find local
approximations to the streamfunctions in each fluid, ψ(1) in fluid 1 (bottom fluid), and ψ(2)
in fluid 2 (top fluid). These fluids have viscosities μ1 and μ2, and contact angles Θ1 and
Θ2 = π −Θ1, respectively.

We use a plane polar coordinate system with r being the radial direction from the
origin, and θ the angular coordinate, with the interface along the line θ = 0 (see
figure 6a). Similar to the model presented in § 2, we formulate the flow problem with
the streamfunction, which follows the biharmonic equation (2.5) in each fluid, with no
flux and no penetration at the cavity wall, and no penetration at the interface, which is
assumed fixed and locally flat. At the interface (r � 0, θ = 0), we also assume continuity
of the tangential velocity, whilst the tangential dynamic boundary condition now becomes,
in dimensional form,

−τ · [[σ ∗]] · n = τ · ∇∗
sγ

∗, (D1)

where the jump in tangential stress across the interface is balanced by the
surfactant-induced Marangoni stress. The jump bracket is defined as [[σ ∗]] = σ ∗

2 − σ ∗
1.

The stress tensor σ ∗ is assumed Newtonian for both fluids. The unit tangential and normal
vectors at the interface follow τ = (1, 0) and n = (0, 1), in polar coordinates, as depicted
in figure 6(a). The surface gradient operator is defined as ∇∗

s = ∇∗ · (I − n ⊗ n), with
⊗ the outer product. Similar to before, we non-dimensionalise this problem using (2.3),
taking fluid 1 as the reference fluid, then we linearise the surfactant distribution around
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Γ̄ , and decompose the perturbation for each variable in the form Γ̂ (r)e−λt for example.
Relating all variables to the streamfunction, as done previously in § 2.1, the tangential
dynamic boundary condition (D1) becomes for each mode, in polar coordinates,

−α
(

1
r2ψ(1)θθ + 1

r
ψ(1)r − μr

r2 ψ(2)θθ − μr

r
ψ(2)r

)

= 1
r
ψ(1)rrθ − 2

r2ψ(1)rθ + 2
r3ψ(1)θ = 1

r
ψ(2)rrθ − 2

r2ψ(2)rθ + 2
r3ψ(2)θ , on θ = 0,

(D2)

where α = λ/Γ̄ is the decay rate of each mode, and μr = μ2/μ1 is the viscosity ratio
between the two fluids. The first term incorporates the difference in shear stress between
the lower and the upper fluid; the middle and final terms describe stretching of the
interface. Continuity of the tangential velocity field along the interface requires both fluids
to stretch at an equal rate.

We seek separable solutions to the above problem such that the leading-order terms in
each series is ψ(1) = ra1 fa1(θ) and ψ(2) = ra2 fa2(θ) where the functions f are given by
(2.15a) to (2.15d). Applying the boundary conditions we find that the constants in the
functions fa1 and fa2 depend on the contact angle, whilst the exponents a1 and a2 satisfy(

a2
1 − 3a1 + 2

)
f ′
a1
(0;Θ1) = 0 or

(
a2

2 − 3a2 + 2
)

f ′
a2
(0;−Θ2) = 0. (D3)

The conditions in (D3) can be satisfied with a1 = a2 = 2, based on the first bracket in each
condition, such that the streamfunction solutions must involve series with exponent equal
to 2. However, we ask the question whether taking either f ′

a1
(0;Θ1) = 0 or f ′

a2
(0;−Θ2) =

0 in (D3) can give us an exponent with real part between 1 and 2. This is important as an
exponent less than 2 would give us a stronger corner singularity than that discussed in the
main text for the case of a single-fluid flow with a contact angle of π/2. Exponents with
real part less than or equal to 1, from the conditions (D3), are rejected on physical grounds
to avoid the radial velocity to diverge or be non-zero as r → 0.

When we impose the condition f ′
a1
(0,Θ1) = 0, we find that the exponent must obey the

condition which is the same as found in Moffatt’s problem for a flow near a corner of angle
Θ1 subject to zero velocity boundary conditions at the boundaries (and similarly for a2)
(Moffatt 1964). This condition is

(a1 − 1) sin (Θ1) = ± sin (Θ1(a1 − 1)). (D4)

By inspection we can see that a1 = 0, 1, 2 (and similarly for a2) are solutions of (D4),
for any value of Θ1, and any integer is a solution when Θ1 = π. We show that a solution
with 1 < real(a1) < 2 cannot exist for 0 � Θ1 � π in figure 6(b) where we have plotted
the locations of the real parts of the admissible solutions of (D4) against Θ1. We also
note that none of the exponents in the expansions for ψ(1) or ψ(2) depend on the viscosity
ratio. Hence, in this problem the exponent in the dominant term in both streamfunctions
will be 2 for any contact angle and viscosity ratio, giving the same type of singularities as
presented in the main body of the paper for this broader class of problems.
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