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Twin concordance rates are usually reported without reference to the number of parents 
affected, apparently because the simple demonstration that monozygotic (MZ) twins are 
more concordant than are dizygotic (DZ) twins is the goal of most twin studies. Depending 
on the underlying mechanism, however, twin concordance rates can vary widely when con­
ditioned on the number of parents affected. For the generalized single-locus model it is 
shown that conditional concordance rates in monozygotic twins, along with an estimate 
of the disorder's prevalence in the population, uniquely specify the underlying parameters 
of this important model. Knowledge of the exact parameter set is essential for competent 
genetic counseling. 
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INTRODUCTION 

One of the most persuasive pieces of evidence implicating transmissible factors in the eti­
ology of physical or behavioral disorders is the demonstration that monozygotic (MZ) 
twins are more concordant than dizygotic (DZ) twins. Indeed, this type of evidence is so 
persuasive that in many cases it seems to be the goal of twin research rather than the start­
ing point for further investigation. Increased concordance rates for MZ twins compared 
to DZ twins, by themselves, do little to elucidate the exact mode of transmission and, 
surely, do little to address what Elston and Stewart [1 ] assert to be the single most im­
portant question concerning the inheritance of any character: " . . . is most of the genetic 
variation due to one locus or are many loci necessarily involved?" 

When a disorder is suspected of resulting from allelic variation at an incompletely 
penetrant single locus, however, the reporting of unconditional twin concordance rates 
does not provide sufficient information to estimate the underlying parameters of this 
general model. In this paper it is shown that this ambiguity can be removed by condi­
tioning concordance rates on the number of affected parents. When this approach is taken, 
conditional concordance rates from just MZ twins are sufficient to obtain unique estimates 
of the model's parameters. 
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THE MODEL 

The generalized single-locus model assumes that the disorder under study is determined 
by allelic variation at a single autosomal locus. A description of the main features of the 
model can be found in Reich et al [6]. In the treatment given here, however, the assump­
tion that the liability for the trait is normally distributed within a genotype can be dropped, 
since only one threshold is assumed. Although there may be multiple alleles in the popula­
tion, only two qualitative classes are assumed, that is, for a system of alleles At , A 2 , . . . , 
AK, all relevant variation must be describable as At , say, and non-A!. Since all non-A! 
alleles are assumed to be equivalent, in effect we denote the entire collection by A2. Let 
p denote the population frequency of Aj and q = 1 - p the frequency of all remaining al­
leles. Now suppose that a proportion fj of each genotype is affected with the disorder, 
where i = 1, 2, 3, for the respective genotypes A! Ai, Ai A2, A2 A2. With panmixia, the 
prevalence of the disorder in the general population (K) is given by: 

K = p2f! +2pqf2+q2f3 (1) 

The fj are allowed to assume any values between zero and one and need not be ordered. 
Mendelian transmission is then a special case of this general model when f i = 0, f3 = 1, 
and f2 = 1 or 0, depending on whether the disorder is dominant or recessive. 

The model's four parameters (f!, f2, f3, q) can be used to define two useful quanti­
ties, the additive variance of each locus (VA) and its dominance variance (Vrj) [5]. These 
are, respectively: 

VA = 2pq[q(f, - f 2 ) + p ( f 2 - f 1 ) ] 2 (2) 

VD = P 2 q 2 ( f . - 2 f 2 + f 3 ) 2 (3) 

These variance components have the same meaning for the generalized single-locus model 
that they have for polygenic traits. That is, VA measures the variance of breeding values 
and is the chief determinant of how much a population will change if it is subjected to 
directional selection, whereas Vp measures the variance contributed when the proportion 
of affected heterozygotes is not exactly halfway between the proportions of the two 
homo zygotes. 

The three quantities, K, VA, and Vj3 are important parameters because, among other 
things, they determine the unconditional concordance expected for any class of relatives 
of a proband. For MZ co-twins, the concordance rate (C) is simple [4] : 

C = K + ^ ± V D _ ( 4 ) 

K. 

The probandwise concordance rate for any class of relatives other than MZ twins is easily 
calculated from Eq. 4 by weighting VX by the probability that persons in that relationship 
share a given allele identical by descent and by weighting Vp by the probability that they 
share both alleles identical by descent. 

The three parameters that determine the probandwise concordance rate (ie: K, VA, 
V D ) map into a continuum of parameter sets in the four-dimensional parameter space (ie: 
fi, f2, f3, q) that defines the underlying generalized single-locus model. This indeterminism 
has been referred to as the "parameter problem" [2]. 
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For many purposes, a researcher is content to obtain estimates of K, V A , and Vrj, since 
these allow an initial fit of the model to incidence data [8 ] , or, alternatively, can be used 
in a linkage analysis [ 7 , 1 0 ] , Once the model's adequacy has been established, however, it is 
desirable to obtain an estimate of the four underlying parameters, especially if the analysis 
is to be used for counseling purposes. Two different approaches for obtaining unique esti­
mates of q, f i , f2, and f3 have been suggested. When two separate populations are known 
to differ in K, then the methods of Suarez et al [9] may be used. Alternatively, unique esti­
mates may be obtained from a single population by conditioning the probandwise concor­
dance rate on an additional observation [2 ] . Any class of relatives may be used to obtain 
these estimates, although the further removed they are from the proband, the poorer 
the estimates. Since MZ twins are, by definition, genetically identical, they are capable of 
providing the most information. For MZ twins the most convenient additional conditioning 
event is the number of parents similarly affected with the disorder. This information is often 
available to a researcher, but rarely is it reported. 

Derivation of the conditional concordance rate for MZ twins can be facilitated by 
considering the following three-by-three array: 

Number of 
parents affected Proband's genotype 

AiAi AiA2 A2A2 

Both co21 co22 co23 c o 2 = K 2 K 2 

One co u co12 co13 u>x = 2K(1 - K)K.! 

Neither co01 co02 co03 co0. = (1 - K)2 K0 

co a = p2f! co 2 = 2pqf2 co . 3 =q 2 f 3 co. . = K 

The entry in each cell (the coy) is the probability that a person has genotype j(j = 1 , 2 , 3 , 
for the respective genotypes Ai A i , At A 2 , A2 A 2 ) , is affected, and has i affected parents 
(where i = 0, 1, or 2, depending on whether neither, one, or both parents are affected, re­
spectively). Except for mendelian transmission, these quantities are not directly observable 
since, with incomplete penetrance, there is no one-to-one transformation between genotype 
and phenotype. The coy can be thought of as the distribution of cells from which the pro­
bands are drawn. Because the genotype of a proband is not directly observable, the marginal 
totals, co •, are not either. The marginal totals, co; , are the probabilities of observing an affect­
ed child (the proband) and i affected parents. These quantities are directly observable, 
being simply the proportion of affected offspring given i affected parents weighted by the 
probability of i affected parents. Assuming random mating, the probability of 2, 1, or 0 af­
fected parents is K2, 2K(1 - K), and (1 - K) 2 , respectively. The proportion of affected 
children, given i affected parents (the Kj), is given in Suarez et al [9] . Since these propor­
tions can be expressed in terms of just K, V ^ , V p and since the probabilityof observing 
i affected parents depends only on K, the coj are not dependent on the four unique param­
eters of the model (ie, q and fj). Associated with each COJ. is the conditional concordance 
rate, Q , directly observable, although rarely reported. These are, of course, obtained by 
determining whether a proband's co-twin is affected, and since the co-twin is identical to 
the proband, for any row in the array the expected concordance rate is simply: 

(fltOJ! +f2COi2 +f3COi3)/GJj. 
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Consequently, the C[ depend on all four underlying parameters as given below: 

C2 = [P2fi2(p2fi2 +2pqf,f2 +q2f2
2 ) + 2pqf2

2(p2f1f2 +pqf1f3 +pqf2
2 +q2f2f3) 

+ q2 f3
 2 (p2 f2

 2 + 2pqf2 f3 + q2 f3 2 )] /co2, (5) 

C 1 =<p 2 f 1
2 [2p 2 f 1 ( l - f 1 )+2pq[ f 1 ( l - f 2 ) + f 2 ( l - f 1 ) ] + 2 q 2 f 2 ( l - f 2 ) ] + 

2pqf2
2[p2[f1(l - f 2 ) + f2(l - f , ) ] +pq[f,(l - f 3 ) + f30 - f i ) l +2pqf2(l - f 2 ) 

+ q2 [f2(l - f3) + f3(l - f2)] ] + q2f3
2 [2p2f2(l - f2) + 2pq[f2(l - f3) + 

f 3 ( l - f 2 ) ] +2q2f3(l-f3)]>/o;1 . , (6) 

Co = <p2fi2 [P20 - fi)2 + 2pq(l - f,)(l - f2) + q2(l - f2)2] + 2pqf2
2 [p2(l - f,)(l - f2) 

+ pq(l - f,Xl - f3) + pq(l - f2)2 + q2(l - f2)(l - f3)] +q2f3
2[p2(l - f2)2 + 

2 p q ( l - f 2 ) ( l - f 3 ) + q2( l-f3)2]>/a;0 , (7) 

Let the observed probandwise concordance rate be denoted as 02, 0 i , and 00 for 
MZ twins with both, one, and neither parent affected, respectively. The parameters q and 
fi are then obtained by maximizing the function: 

F = - 2 ( ( 0 2 - C 2 ) 2 + ( 0 , - O ' + C O o - C o ) 2 + (K-K) 2 ) 

where K is the predicted population prevalence from Eq. 1. 
The surface described by this function in terms of the parameters q and fi; appears 

to contain many local maxima, making the search procedure tedious and convergence slow. 
However, when the search is given new parameters by substituting the following three equa­
tions for the fj, the surface appears smooth, and convergence is rapid. The substitutions 
are [8]: 

f = K _ gA(2pq)1/z + gpq (8) 

f 2 = K - a D + ^ 2 R ) ( 9 ) 

(2Pq)V2 

f - v , gA(2pq)1/2 + PDP 
3 ~ K q (10) 

where a A = (VA)1/2 and ap = ±(Vp)^. 

DISCUSSION 

It is important to reemphasize that, under the assumptions of the generalized single-locus 
model treated here, a person's probability of being affected depends only on that person's 
genotype. In other words, expression of the trait is not influenced by the particular genetic 
background or environmental circumstances present. This problem of incomplete penetrance 
has concerned researchers for many years. An early attempt at estimating penetrance from 
twin concordance rates was made by Huizinga and Heiden [3]. The model they investigated 
is a special case of the one treated here. In the terminology of the present paper, Huizinga 
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and Heiden assume that fi = 0 and f3 = 1. They then estimate the values of f2 and the gene 
frequency by comparing the unconditional concordance rate in DZ twins with that of MZ 
twins. In contrast, the approach taken here is to estimate all four parameters by fitting a 
less restrictive model to the conditional concordance rates of MZ twins. 

It is indeed unfortunate that so few workers report the conditional concordance rates 
for MZ or, for that matter, DZ twins. The reason for this failure most likely lies in the fact 
that the goal of much twin research is the simple demonstration of transmissible factors, 
which is easily accomplished by comparing the unconditional concordance rate of MZ and 
DZ twins. As a result, conditional concordance rates have largely been ignored. While it is 
the case that the frequency of MZ twins with one or both parents affected may represent 
a small proportion of a total twin sample, this need not deter their being reported. 

As an example of the power of conditional concordance rates in MZ twins to resolve 
the "parameter problem," consider a disorder with a population prevalence of K = 5%. 
Suppose further that the additive and dominance variances are both 0.0064. These para­
meters yield an unconditional concordance rate for MZ twins of 30.6% which, when 
compared to the unconditional concordance rate of 14.6% for DZ twins, argues for 
a moderate heritable component (h2 in the broad sense is 26.95% for this example). These 
unconditional concordance rates are consistent with a broad spectrum of parameters in the 
<q, fj> space. With techniques developed elsewhere [9], the lower limit of this spectrum is 
found to occur at a gene frequency of q = 0.112, at which point the penetrances are fi = 
0.0199, f2 = 0.1089, f3 = 1.0. The upper limit occurs at a gene frequency of q = 0.372, 
where f, = 0.0103, f2 = 0, f3 = 0.3322. Both of these parameter sets and all intermediate 
sets defined by Eq. 8—10 with 0.112 < q < 0.372 will yield the same unconditional con­
cordance rates in MZ twins. However, as the Figure indicates, the conditional concordance 
rates differ widely, depending on the exact set of underlying parameters. For this example, 
the conditional concordance rates are most different when q is small (0.112) and, for 
practical purposes, indistinguishable as q approaches its upper limit (0.372). Note that 
the frequency with which neither parent, one parent, or both parents are affected is in­
dependent of the exact (q, fj> parameter set. For the above example, only 1.4% of parental 
couples are both expected to be affected. However, 20% of all twin pairs will have one 
parent who is affected. 
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Figure. Probandwise concordance rate in MZ twins with (A) both parents, (B) one parent, (C) neither 
parent affected. The unconditional concordance is 30.6% for all gene frequencies (and appropriate 
penetrances) in the range 0.112 <q < 0.372 since all are capable of yielding K = 0.05 and V, = VD 
= 0.0064. 
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Knowledge of the exact gene frequency and penetrance set is essential for adequate 
genetic counseling. In the present example, for instance, the recurrence risk for a family 
that has already segregated an affected child is 54.3% when both parents are affected, and 
the exact parameter set is at its lower bound (ie, when q = 0.112); whereas for the same 
family the recurrence risk is 33.2% if the parameter set is at its upper bound (ie, q = 0.372). 
Since unusual families are most likely to seek genetic counseling, the potential leverage 
gained from MZ twin conditional rates in determining the exact parameter set will be 
welcome. 
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