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A New Characterization of Hardy
Martingale Cotype Space

Turdebek. N. Bekjan

Abstract. We give a new characterization of Hardy martingale cotype property of complex quasi-
Banach space by using the existence of a kind of plurisubharmonic functions. We also characterize the
best constants of Hardy martingale inequalities with values in the complex quasi-Banach space.

1 Introduction

It is well known, by now, that some special functions are closely related to the inequal-
ities of martingales and the geometric structure of Banach space. Burkholder[Bul]
[Bu2] gave the biconvex function characterization of Hilbert space and UMD space,
and the convex function characterization of martingale cotype space. Lee [L] gave the
biconcave function characterization of Hilbert space and UMD space. Piasecki [P]
obtained the shew-plurisubharmonic function characterization of AUMD space. In
this paper we establish a geometric characterization of Hardy martingale cotype space
via the plurisubharmonic function.

2 Preliminaries

Let Q = [0,27]V, ¥ be Borel o-algebra on [0,27]" and P the product measure
of normalized Lebesgue measure on [0,27]. An element § € () is written as § =
(61,0,,...). Let X, stand for o-algebra generated by the first n coordinates
01,0,,...,0,. Where 5y = {¢,[0,27]} and E is the expectation with respect to
P. Suppose that X is a complex quasi-Banach space. For simplicity, we assume that
the quasi-norm of X is plurisubharmonic, i.e.,

1 2w )
(1) llx]] < —/ Hx+yele||d9 Vx,y € X.
27 Jo

Then, by the result of Kalton [K], there is an equivalent quasi-norm which is both
plurisubharmonic and p-subadditive (||x + y||” < ||x[|” + ||y]|”, Vx, y € X) for some
0 < p < 1. So without loss of generality, throughout this paper, we assume that the
quasi-norm of X is p-subadditive.

A sequence F = (F,) of X-valued random variables adapted to the sequence of
sub-o-algebras (X,) is called Hardy martingale if

Fy=x,dF,=F,—F,_, = Z‘pn,kwl, e 0 )E forn> 1,
k=1
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where x € X, ¢, are X-valued (strongly) measurable function of 6,,...,6,_,, for
k=1,2,.... If additionally ¢,y = Oforallk > 2,n = 1,2,..., then F = (F,) is
called analytic martingale.

We say that X is of Hardy (resp. analytic) martingale cotype q(2 < g < o0) if
there is a constant C such that

(3 lar,2) " < Csupl|F,|
n>o nzo

for all Hardy (resp. analytic) martingales F = (F,) with values in X. By the renorm-
ing theorem of [X1](see also [X2], [LB]), X is of Hardy martingale cotype g iff X
has an equivalent quasi-norm | - | whose uniform H,-convexity modulus is of power

type q:
hi(e) > Cel, Yo <e<l,

where C > 0 is a constant, and the so called uniform H,-convexity modulus is

hi(e) = inf{HfHL,,([o,zw];(X.,\~|)) Hfo] =1,

1 = FOlytononn > & f € HyCO }

Several other equivalent conditions for the Hardy martingale cotype can be found in
[LB, X1, X2, X3]. For convenience we state the following criteria (see [LB]) that will
be applied below. We use the customary notations

Fy =sup||Fl|, F"=sup|Fll, [[Fll, = sup|Fxl,
k<n n>0 k>0

SPE) = O lldr)r,  SPE) = (3 [dFe]|)?.

k=0 k=0

Theorem A Let2 < q < 00,X be a quasi-Banach space, the following statements are
equivalent:

(i) X is of Hardy martingale cotype q.

(i) If||F|loc < 00, then S1(F) < o a.e. for every X-valued Hardy martingale F =
(Fn).

(iii) For 0 < p < oo there is a constant C,, such that

@) ISP@El, < ColIEl
for every X-valued Hardy martingale F = (F,,).

We recall a classical fact about lower semi-continuous functions (see [R 2.1.3]).

Lemma B Let u be a lower semi-continuous real-valued function defined on a metric
space X, such that u is bounded below on X. Then there exist uniformly continuous
functions ¢,: X — R such that the sequence ¢, is increasing and lim, o ¢, = u
onX.
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3 Main Theorems and Their Proofs

Let X be a quasi-Banach space. An X-valued Hardy(resp. analytic) martingale F =
(F,) is called simple if there is # such that F,, = F, for all m > n, and every ¢
(resp. ¢i11) is X-valued simple function of 0y, ...,0,_ forI=1,... ,n,k=1,2,....
One may check that such martingales are dense in the space of Bochner integrable
X-valued Hardy(resp. analytic) martingales.

Let2 < g < ooandv: X x [0,00) — R a function satisfying

(3) v(0,0) > 0,
(4) vix,t) < ||x||? ifr>1,
2T n n
(5) v < o [ vt Yome e | Y| s,
T Jo k=1 k=1

forallx,x; € X, (k=1,2,...,n),n>1andt > 0.
If (x,t) € Xx[0,00),let L(x, t) be the set of all X-valued simple Hardy martingales
F = (F,) such that F; = x and
Pt — ||x]|7 + (SPO(E)T > 1) = 1.
It is clear that L(x, t) is nonempty. Set

(6) u(x,t) = inf{HFHZ : F € L(x, t)} .

Lemma 1 Let X be a complex quasi-Banach space. Then u is the greatest plurisubhar-
monic function X x [0, 00) — R which satisfies (4) and (5).

Proof Ift > 1 and F, = x foralln > 0, then F = (F,) € L(x,t) and ||F|| = [|x[|*,
which implies that u(x, t) < ||x||*.

We next show that u has the property (5). Let Li(x, t) be the set of all X-valued
simple Hardy martingales F = (F,) such that Fy = x and

1
P(t— x|+ (S9F)1 > 1+ E) =1.
Define u(x,t) = inf{||F||Z : F € Li(x, t)} fork =1,2,.... Thenitis clear that
Li(x,1) C Lir1 (x, 1), g1 (x, 1) < ug(x, 1)
and

(7) u(x,t) = inf ue(x, t).
k>

In fact, Ly (x,t) € L(x,t) and u(x, t) < ur(x,t), so

(8) u(x,t) < inf up(x, t).
>1
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On the other hand, for arbitrary ¢ > 0, there is a simple Hardy martingale
F = (F,) € L(x,t) which satisfies

9) IS < ulx,t) +e.

Choose k and y € X so that (})”/1 < ¢,[|y||1 = . We introduce a new Hardy
martingale G = (G,) by

Gy =x,Gu1 = F, + eiey, for € [0,27], n > 0.
Notice that
£ = [lxl|? + (SPGNT =t — [[x]| 7+ (SDE)T + ]|
=t e+ DT,

therefore, G = (G,) € L(x,t). Hence, by (9),

1.
we(x,1) < G5 < FIG + 17 < IFIG + ()7 < ulx, 1) +2e

and
inf ug(x, t) < u(x,t) + 2e.
>1
We deduce that
(10) inf Mk(xat) < M(X, t)7
>1

since € > 0 is arbitrary. By (8) and (10), we obtain (7).
To show the function uy (k > 1) is continuous, it suffices to prove that

(11) [ueCx, t) — we(x/ )] < |lx—x'||P + [t = /|7 if (x, 1), (x, ') € X x [0, 00).
To see this, fort’ = tande > 0take F = (F,) € Li(x, t) such that ||FH§ < up(x, t)+e.
We define a new Hardy martingale G = (G,,) by Gy = x’, G, = (F,,— Fy) +Gj. Notice
that G = (G,) € Li(x',t), then

ue(x’, 1) < (|Gl <IN+ llx — x"[|P < e, £) + [|x — x"[|7 + €.
This gives ug(x’, 1) — ug(x, ) < ||x — x'||”. Similarly we have uy(x, ) — up(x’, 1) <
lx—x"|7, so |ug(x, t) —ur(x’, £)| < ||x—x’||” and (11) holds for the special case t’ = .
Ift' > t and y € X is chosen to satisfy ||y|| = (t' — ¢)7, we take F = (F,) € L(x,t’)
such that ||F[|# < w(x,t’) + € and define a new Hardy martingale G = (G,) by
Gy =x,Gu41 = F, + yei(’. Then G = (G,) € Li(x,t),

P
u(x, 1) <|GII7 < IFIG+ y[1” < e, t) + [t —¢]7 + e
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Hence, we get ug(x, 1) — ug(x,t') < [t —t/|P/T or |ug(x, ) — up(x, )| < |t — t/|P/9.
That is to say (11) holds for the special case x = x’. Combining these two special
cases with the triangle inequality, we derive (11).

Now suppose that

n
O =Y xe” 6clo2rl,xeX, I=1,...,n,n>1
I=1

and e > 0, k > 1. A continuity argument gives ] > 0 such that

@ - o <e JIsdzmi- 1o < o

(13) ‘uk(x+f(0),t+ ||f(9)||q)—uk(x+f(§27r),t+ ||f(§zw) ||q)‘ <e,

whenever j%lZW <0< i]427r for 1 < j < J. Clearly,

] %271'
a0 S5 [ b 0+ L@ 0
i=1 Hor

1 2T
= 2—/ up(x+ f(0),t + 1| £(0)]|9) d6.
T Jo
For each 1 < j < J, there exists FU) € Ly(x + f(§27r),t+ Hf(%Zﬂ')H‘f) with
(15) IFD()? < g+ f(§27r),t+ ||f(§z7r)|m te.
We now define a Hardy martingale F = (F,) by
FO =X, Fn(eaela- '-aan—l) - Ff,‘gl(ela- --70n—1)+f(0) - f(ljzﬂ')

for S12m < 0 < 227, 1< j< Jandn > 1. If0 € (542, 127], we have
0 .
t= x|+ SOENT =t + [ fO) T+ D [l |e.
I=1

We use FU) € Li(x+ f(42m),¢ + || f(32m)||), i.e.,
t+ Hf(%zﬂ')Hq — |lx+ f(ljzﬂ')”q + (S(q)(F(j)))q

= j - () 1
=t [ FEGROIT+ DN > 14 5 ae

=1
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and (12) to obtain that

t— x4+ SPENT =+ [ FO1+ D |dE |1 > 1+ o5 A

I=1

when 0 € (1542, 227]. So F = (F,) € Ly(x, t). From (12-15), it follows that

] Iog
1 7 )
w(x,t) < ||F||? < — FDPdo + ¢
a(x,t) < ||F||f < E‘:l o [}12ﬂ| 17

1
2

=
[

M-

3

uk x+f( 27r)t+Hf( 271')H) ]d9+5

~.
Il

A
M-
S’|H

k(x+ f(0), e+ £(0)]|9) db + 3¢

~.
Il
-

|-

/ ue(x+ FO),+ [ FO)]7) db + 3¢,

0
this implies

27
(1) < zi/ ue(x+ FO), 1+ F(0)]) db
™ Jo

Now take limits to obtain
1 2
u(x,t) < —/ u(x+ f6),t+ ||f(9)\|q) do
2 Jo

which shows that u satisfies (5).
To see that u is the greatest function, let v satisfy (4), (5), F = (F,) € L(x,t) and
choose 1 so that P(t — ||x]|7 + (S (F))? > 1) = 1. Then, by (4) and (5), we have

IF|[5 > E||F,l|” > Ev(F,, t — [|x]|? + (S (F)))
> Ev(Fo, t — [[x[| + (S5 (F)7) = v(x, 1),
which implies that u > v.
Now we have

Corollary If u satisfies (3), (4) and (5), and F = (F,) is a X-valued Hardy martingale,
then, for all A > 0,

(16) PSP(E) = N) < - (0 o)

https://doi.org/10.4153/CMB-2004-048-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-048-5

A New Characterization of Hardy Martingale Cotype Space 487
Proof It suffices to prove (16), for u as in Lemma 1. We assume that A = 1. For
X-valued Hardy martingale F = (F,), Fy = 0, by (4) and Chebyshev’s inequality,

P(S(F) > 1) < P(|[F,|” — u(F,, (S (F))?) +u(0,0) > u(0,0))
_ E[IB)1” — u(E,. (S (B)) +u(0,0)]
- u(0,0)
On the other hand, by (5),

u(0,0) = Eu(Fy, (S (F))7)

< Eu(Fy, (S\(F)))

< Eu(F,_1, (S (F))7)
< Eu(F,, (S (F))").

Hence, we have

@ E|[E|”
(17) P(SP(F) >1) < 20.0)°

Now we use homogeneity and take limits to obtain

[IF[l7
18 P(S9OF) > \) < —L_.
(18) ( (F) = ) ~ Au(0,0)
If X-valued Hardy martingale F = (F,), Fy = x # 0, we define a Hardy martingale
G = (G,) by

Go =0,Gpe1 = Gy, +€%dF,, forf e[0,2n], n>0.
Then SY(F) = S,(G), | Fall = ||Gpa1 s thus (18) yields (16).

+

Theorem 1 Let2 < q < 0o, X be a quasi-Banach space. Then X is of Hardy martin-
gale cotype q iff there is a plurisubharmonic function u: X x [0, 00) — R such that (3),
(4) and (5) hold.

Proof Suppose that X is of Hardy martingale cotype q. Theorem A implies that
there is a constant C > 0 such that ||F||§ > C whenever F = (F,) € L(0,0). Let u
be defined by (6), then u(0,0) > C > 0 i.e., u satisfies (3). From Lemma 1 we know
that (4) and (5) hold.

Conversely, suppose that there is a plurisubharmonic function u: X x [0,00) — R
such that (3), (4) and (5) hold, from the corollary of Lemma 1 and Theorem A, we
obtain that X is of Hardy martingale cotype q.

Let 7{,’{ ; (resp. 'y;q) be the least v < oo such that

(19) IST B, < ~IIFll,

for all Hardy (resp. analytic) martingales F = (F,) with values in X.

https://doi.org/10.4153/CMB-2004-048-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-048-5

488 Turdebek. N. Bekjan

Theorem 2 Suppose that X is a complex quasi-Banach space, p € (0,00),q € [2,0)
and~y € [1,00). Then

(20) 'yH <~

iff there is a lower semi-continuous function u: X x [0,00) — [—0o0, 0o] such that, for
allx,x, € X(k=1,2,...,n),n>1landt > 0,

(21) u(x,t) > ox,t),

27 n n
(22) u(x,t) > %/ u(x+ Zxkeika,t-i- Hzxkeikenq) a0
0 N -

where ¢(x, 1) = £ — ~P||x]|P.

Proof Assume that (20) holds. Let x € X, L(x) be the set of all X-valued simple
Hardy martingales F = (F,) satisfying Fy = x. Set

(23) u(x,t) = sup{ E¢(Foo,t — |x|7+ (SP(F))?) : F € L(x)}

where F, denotes the pointwise limit of the simple martingale F. Through consid-

ering the martingale F € L(x) with F,, = x,n > 0, we deduce that u satisfies (21).
From the definition of u, it is straightforward to verify that

(24) u(x,t) = sup{ E¢(x + Foo, t + (SV(F))?) : F € L(0)}.

In the following we will show that u is lower semi-continuous. Notice that for
fixed F = (F,) € L(0), the map

(x,1) = Ep(x + Foo, t + (SV(F))?)
is continuous. Indeed, if x; — x, fy — t then we have

Jim ¢ (% + Foo(0), 11+ (SV(F)UB)) = ¢(x + Foo(0), £ + (SV(F)U(B))

forall 6 € ). So

Jim Ee(x¢ + Foo, t + (SV(F))T) = E¢(x + Foo, t + (SO(F))1).

Hence, u is lower semi-continuous.
To show that u satisfies (22), let

n
fls) = Zxkeiks, se[0,2n],xx€X, k=1,...,n,n>1.
k=1
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Let m(s) be a continuous function on [0, 27] and
u(x+ fls),t+ ||f(s)||q) > mf(s),s € [0,2m].
For each fixed s € [0,27] and € > 0, there exists F®) € L(0) with
(25) E¢(x+ f(s) + FO t + (SO F)1) > m(s) —e.

Let
&(r) = Ep(x+ f(r) + FO,t + (SP(FD))1) — m(r) +e.

Since Eo(x + f(r) + F9 ¢t + (89 (F9))) and m(s) are continuous, g:(r) is contin-
uous function. By (25) it follows that g;(s) > 0. Hence there exists an open inter-
val I, such that s € I and g(r) > 0 for r € I,. From compactness of [0, 27], we
obtain that there are finitely many disjoint semi-open intervals I, I, . . ., I;, cover-
ing (0,27] C [0,27],s; € [0,27], j = 1,2,..., ] and corresponding martingales
F&), j=1,2,..., ] such that the following inequality
E(b(x-i- f(r)+ F&) ¢ 4+ (S(q)(F(Sf')))q) > m(r) — e forr € [
holds. We now define a Hardy martingale F = (F,) by
FO = 07 Fn(57 617 R 791171) = F;j_l(eh R 791171) + f(S)
fors e [,1<j< Jand n > 1, then it is clear that F = (F,) € L(0). Hence

u(x, ) > EG(x + Foo, t + (SO (F))7)

J
=> %/ E(x+ f(s) + F) t + | f(s)]|9 + (SD(F))7) ds
j=1 L
>3 L [ meds—e = T (s ds
j_lzﬂ_/lymss 6—5/0 mis) as 9

Then u(x, t) > ﬁ foh m(s) ds. Hence, using Theorem B, we derive that

1 2T
u(x,t) > g/o u(x+ fs),t +[|f(5)]|7) ds,

so u satisfies (22).
u is the least function satisfying (21) and (22). To see this, let v satisfy (21), (22),
F = (F,) € L(x). Then, by (21) and (22), it follows that

EF(Foo,t — |x|7+ S1(F)?) < Ev(Foo,t — |x|7+ S1(F)?)

< Ev(Fo,t — [|x|7+ (S (F)T) = v(x, 1),
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which implies that u < v.
Conversely, without loss of generality, we can assume that # as in (23). Then

(26) u(ax, |a|ft) = |afu(x,t), VYa€R,
To see this, consider v: X x [0,00) — [—00, 00] defined by

. u(Ax, (A7)
v(x,t) = /I\I;(f) G .
Then v satisfies (21), (22) and v < u. Using the minimality of u, we obtain that
u = v, this gives (26). To show (20) for the v in the definition of ¢, we need to prove
that (19) holds for all Hardy martingales F = (F,) with values in X. To do this, we
can assume that Hardy martingale F = (F,) is simple and Fy = 0. Then, from (21),
(22) and (26), we derive that

E¢(Fy, (S9(F)?) < Eu(F,, (S9(F)?) < --- < Eu(Fo, (S (F))) = u(0,0) = 0
so [|S1(F)||5 — vP||F||5 < 0and (19) follows.

Theorem 3  Suppose that X is a complex quasi-Banach space, p € (0,00),q € [2,00)
and~y € [1,00). Then

(27) Voq <

iff there is a lower semi-continuous function u: X x [0,00) — [—o0, o] such that, for
allx,y € Xandt > 0,

(28) u(x,t) > o(x,t),

1 2 )
(29) u(x,t) > —/ u(x+ye’6,t+ ||qu) do
27 Jo

where ¢(x, 1) = r— P ||| 2.

The proof of Theorem 3 is the same as the proof of Theorem 2, therefore we
omit it.
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