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ON BALANCED ONE-SIDED IDEALS

T.G. SCHULTZ

The relation between the subclass x °f balanced one-sided ideals,

which contains all two-sided ideals, and weakly prime one-sided

ideals is considered. If a member P of x i-s prime, then it

is prime in its idealizer I(P) . Furthermore, if the ring is

left and right noetherian, then I(P) modulo P is a prime

Goldie ring.

Introduction.

In this paper we study aspects of a situation which is fairly

common in for example matrix rings: L and R are a left and a right

ideal respectively, the largest two-sided ideal contained in L equals

that contained in R , and, modulo this two-sided ideal, L is the left

annihilator of R and vice versa. We call such a pair (L,R) a

balanced pair, and derive some elementary properties of balanced pairs

in section 1.

In section 2 we consider briefly left ideals which satisfy a

necessary condition to be one component of a balanced pair, namely those

which satisfy a double annihilator condition modulo the largest two-sided

ideal which they contain. Such left ideals are called right balanced
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weakly prime Csee [3^) left ideals.

Section 3 is devoted to right balanced prime left ideals. It is

shown that such a left ideal conforms to Fitting's [I] definition of a

prime left ideal, namely it is a prime two-sided ideal of its idealizer.

Furthermore, if the ring is left and right noetherian modulo the largest

two-sided ideal contained in the right balanced prime left ideal L , then

I(L) ,j. is a prime Goldie ring.

In all our considerations, the ring A is associative and possesses an

identity.

1. Balanced Pairs of One-sided Ideals.
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(a) p (L) is the sum of all right ideals of A contained in the

•idealizer I(L) of L 3

(b) p(L) is the largest right -ideal of A oontained in I(L),

(a) p(L) is a two-sided ideal of I(L) ,

(d) p(L) is the right annihilator of L modulo L ,

(e) I(L) c l(p(L)) 3

(f) L c \(P(L)) . D

DEFINITION. A pair (L,R) where L is a left and R a right

ideal of A , is called a balanced pair if p (L) = R and X(R) = L ,

The following result contain some easy deductions from Proposition

1.1. We recall that a left ideal L is weakly prime if for left ideals

J and K , with JK c_ L c_J n K imply J = L or K = L , See [ 3] for

details.
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PROPOSITION 1.2. I f (L,R) is a balanced pair, then
la) 1(1) = I(R) ,

(b) L is a weakly prime left ideal,
(c) R is a weakly prime right ideal,
(d) LA = AR,

(e) p(Ln) = R , n e IN .

Proof. (a) follows from Proposition 1.1 (d) and its dual.

(b) and (c) follow from Proposition 1.1 (a) and its dual.

(d) Clearly L c p(L) = R , which implies that L. c R . The dual

statement completes the proof.

(e) By [3], I(L) = 1(1 ) , because L is weakly prime. So, R is the

largest right ideal of A contained in I(L ). Q

PROPOSITION 1.3. If (L,R) is a balanced pair, then L = L and
R

dually LR = R.

Proof. Clearly

Ln = {x e A I xR c L},

= {x e A I xR £ L = R] ,

= {x € A I xR £ R] = \(R) = L . D

2. Balanced One-sided Ideals.

It is interesting to note that all two-sided ideals L satisfy the

conclusion of Proposition 1.3, namely that £ , _ . = £ . However, from

Proposition 1.2 (b) it is clear that (L,A) is a balanced pair if and

only if L = A.

In the sequel we consider left ideals L such that L ,_, = L ,

DEFINITION. A left ideal L is called right balanced (abbreviated

as rb) if L ,T. = L .p(L)

In view of Proposition 1.2, we have that

PROPOSITION 2.1. If L is a rb left ideal of A , then:

(a) I(L) = Kp(D) ,
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(b) p(L) is a weakly prime right ideal.

Proof. (a) If x e I(pCD) , then x,p(L) £ p (I) and hence

Lx.p(L) ^_L . But then Lx c^L , that is, x e I(L) , Proposition 1.1 (c)

completes the proof.

(b) From [3], the dual of Proposition 1.1 (a) suffices as proof. D

In the following example it is shown that not all rb left ideals

are weakly prime.

EXAMPLE 2.2.

Z Z,

Let A =

and L =

p(L) =

0

.0

1

0

, where Z is the integers modulo 6 ,
6

It is easily verified that

n si
and \(p(D) =

0 SI,

The following result provides a criterion for a rb left ideal to be

weakly prime.

PROPOSITION 2.3. If L is a rb left ideal of A, then the

following are equivalent:

(a) LA = Ap(L) ,

(b) L is weakly prime.

Proof.
(a) => (b) . If a e A is such that L.Aa £ L , then

L.Aa p(L) ^_L. )L) <=_ L = Ap(L)

and hence Aa.p(L) <= .p(L) = L. . Since L ,T . = L , we conclude that
— A A p I LiJ

a e L.

(b) => (a): Clearly L £ /fi^). Therefore, if x e .p(L) , then
A A A

LAxA £ L . Since L is weakly prime, we have by [3] that AxA £ L . D
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UE any one of the above two conditions are satisfied, then

(L,p(D) is a balanced pair.

Another way in which a balanced pair can be obtained from a rb

left ideal is

PROPOSITION 2.4. If L is a rb left ideal of A such that

L.\(p(D) = L , then (\(p(D), p(D) is a balanced pair.

Proof. It suffices to show that I(\(p(D) = I(L) . Thus, if

x e I(\(p(D) , then

\(p(L))x.p(L) ^\(p(L)).p(L) ^p(L) 3

and hence, by our hypothesis,

Lx.p(L) = {L.\(p(L))}x. p(L) ̂ L.p(L) £ L.

Since L is rb, Lx c L ,T , = L . D
— pllij

3. Balanced Prime One-sided Ideals.

Throughout this section P is a rb prime left ideal. Since P

is prime it is weakly prime and hence (P,p(P)) is a balanced pair.

Furthermore:

PROPOSITION 3.1. If P is a rb prime left ideal, then:

(a) p(P) is a prime right ideal,

(b) P and p(P) are both prime two-sided ideals of I(P) .

Proof. (a) If xA.yA cpfpj , then (PxA).(PyA) £ P . But since

P is prime, either PxA £ P , whence x e p(P) , or PyA £ P , whence

y e p(P).

(b) If a,b e I(P) such that a.I(P).b £ P , then ap(P) .A.bp(P) £ P.

Since P is prime in A , a.p(P) £ P or b.p(P) £ P , that is a e P

or b e P.

Similarly, it is shown that p(P) is prime in I(P). D

COROLLARY 3.2. P n p(P) is the prime radical of P in I(P).

Proof. Clearly, the prime radical of P is contained in P n p(P).

Conversely, since {P n p(P)} £ P. it follows that P n p(P) is

contained in the prime radical of P in I(P). D
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PROPOSITION 3.3. If A satisfies the ascending chain condition

on right annihilators modulo P , then so does I(P) modulo P.

Proof. It suffices to show that if P c A c A are non-trivial

right annihilators modulo P in I(P) , then kyp(P) + P c K2.p(P)+ P

are right annihilators of A modulo P. ,

If Aj => A2 => P are the left ideals of I(P) such that

A"1:. A. c P (i = 1,2) ,

then

LA'1:), (A. p(P) + P ) £ P (i = 1,2) ,

where [A.) is the left ideals of A generated by A. . Furthermore, if

A .p(P) + P = A2.p(P) + P , then by Proposition 3.1 (b), A^ A2 £ P ,

that is, A2 £ Aj . D

Similarly it is shown that:

PROPOSITION 3.4. If A satisfies the ascending chain condition

on left annihilator ideals modulo P , then so does I(P) modulo P.

Proof. If Q is a left annihilator of Q modulo P in I(P) ,

then AQ is the left annihilator of Q.p(P) in A modulo P. . D

With little adaptation, we can show that:

PROPOSITION 3.5. If A modulo P^ satisfies the ascending chain

condition on left (respectively, right) annihilator ideals, then so does

I(P) modulo p(P) . 0

With the help of the previous results, it is now possible to show

that:

THEOREM 3.6. Let P be a rb prime left ideal of A. If A is

that it is left and r-,

P is a prime Goldie ring.

such that it is left and right noetherian modulo P , then I(P) modulo
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Proof. In view of Propositions 3.3 and 3.4, we need show only that
I(P) modulo P is of finite left and right uniform dimension.

Let {£/.} be a family of left ideals of I(P) containing P
V iel

such that U. n f £ £/J £ P . Since A modulo P4 is left noetherian,

there exists a finite subset F of I such that A.U. c J AU. for a l l

i . But then p(P).U. c 7 p(P).U. . Consequently, since U. are left

ideals of I(P) ,
p(P).U. £ ( I UJ n V. c P 3

OeF 3 ^

for all i e J\F . Since P is prime, we have that U. £ £ J/. , for

all i e J\F .

On the other hand, let {V.} be a family of right ideals of
% iel

I(P) containing P such that P => V. n ( \ V.) , Again, since A

modulo P. is right noetherian, we have that there exists a finite subset

T of J s u c h t h a t V..p(P) £ £ V..p(P) + P , f o r a l l i e l .
% teT 3 A

Furthermore, we have that

V..p(P) c ( I V ) n V. c p _,
% UT * l

for all i e I\T . Again, using the primeness of P in I(P) , we

conclude that V. £ P , for all i e I\T . Q

Dually:

THEOREM 3.7. l e t P fee a vb prime left ideal of A. If A is
such that it is left and right noetherian modulo P. } then I(P) modulo

p(P) is a prime Goldie ring. D
Another important result related to P is:

PROPOSITION 3.8. If P is a rb prime left ideal of A , then
I(P) = I(P n p(P)) , where I(P n p(P)) is the largest subring of A
which contains P n p(P) as a two-sided ideal.
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Proof. If x e A is such, that x(P n p (P)) <^P n p(Pj , then

x.p(p).p <^x(p n pep;; £ ? n pfp; 5pfpj .

By Proposition 3.1 (b) , it follows that x.pfPJ £ p (P) , that is,

a; e I(p(P)) = I(P) , by Proposition 1.2 (a).

Similarly, it follows that if x e A such that

(P n pfP;j.x c P n p f P i , then x e I(P). Q

Since the subdirect product of prime Goldie rings is Goldie, we

have that:

THEOREM 3.9. Let P be a rb prime left ideal of A. If A is

such that A modulo P. is left and right noetherian, the I(P) modulo

P n p(P) is a semiprime Goldie ring.

Proof. We need only recognize I(P) modulo P n p(P) as a sub-

direct product of I(P) modulo P and I(P) modulo p(P). D
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