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Abstract

In this paper we study the subgroup of the Picard group of Voevodsky’s category
of geometric motives DMgm(k;Z/2) generated by the reduced motives of affine
quadrics. Our main tools here are the functors of Bachmann [On the invertibility of
motives of affine quadrics, Doc. Math. 22 (2017), 363–395], but we also provide an
alternative method. We show that the group in question can be described in terms
of indecomposable direct summands in the motives of projective quadrics over k. In
particular, we describe all the relations among the reduced motives of affine quadrics.
We also extend the criterion of motivic equivalence of projective quadrics.

1. Introduction

The study of the Picard group of the motivic category in the algebro-gemetric context was
initiated by Hu in [Hu05], who considered the case of the A1-stable homotopy category of
Morel and Voevodsky. It was established there that the reduced classes of affine Pfister quadrics
{〈〈a1, . . . , ar〉〉 = b} of small foldness represent invertible objects in SH(k), and some relations
among these classes in Pic(SH(k)) were found. It was conjectured that the same should hold for
arbitrary r.

The topic was picked up by Bachmann in [Bac17]. Here, instead of the A1-stable homotopic
category SH(k), Voevodsky’s category of motives DM(k;Z/2) was considered. This simplified
the task somewhat. As a result, not only the conjectures of Po Hu were proven in this context,
but it was shown that the reduced motive M̃(Aq) of any affine quadric Aq = {q = 1} is invertible
in DM(k;Z/2). This was established with the help of functors ΦE of Bachmann. These tensor
triangulated functors, defined for every finitely generated field extension E/k, map the tensor
triangulated category DQMgm generated by the motives of smooth projective quadrics to the
category Kb(Tate(Z/2)) of bigraded Z/2-vector spaces. They are characterized by the property
that ΦE(T (i)[j]) = T (i)[j] (the one-dimensional vector space of the specified bidegree), where
T is the monoidal unit, while ΦE(M(Q)) = 0, for every projective quadric Q/k which stays
anisotropic over E. It was shown in [Bac17] that the collection of these functors (for all finitely
generated E/k) is conservative, detects invertible objects, and is injective on the Pic.

In [BV18] it was proven that the map q 7→ M̃(Aq) defines an embedding of sets GW (k) ↪→
Pic(DM(k;Z/2)) of the Grothendieck–Witt ring of quadratic forms (or, by Morel’s result [Mor04],
of πs(0)[0](S)) into the Picard group of the motivic category.

In the current paper, we study the relations among these elements in Pic. Or,equivalently,
the subgroup Picqua of Pic(DM(k;Z/2)) generated by the reduced motives of affine quadrics.
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Affine quadrics and the Picard group of the motivic category

It appears that these can be described in terms of motives of projective quadrics and the direct

sum operation. Inside Picqua there is a subgroup T ∼= Z ⊕ Z consisting of Tate motives T (i)[j].

It is enough to describe Picqua /T. This group is generated by our (shifted) reduced motives

eq := M̃(Aq)[1] of affine quadrics. First of all, in Proposition 2.1, we complement Bachmann’s

invertibility result by observing that our set of generators is closed under inverses, (eq)−1 = eq
′

in

Picqua /T, where q′ = 〈1〉 ⊥ −q (note that the operation q 7→ q′ is a ‘square root’ of q 7→ q ⊥ H).

In particular, this gives that e〈〈α〉〉 is the inverse of the reduced Rost motive M̃α (here α is a

pure symbol in KM
∗ (k)/2). In Theorem 3.1 we provide a large supply of linearly independent

elements in Picqua. Namely, the collection {eqi}i will be linearly independent as long as all the

projective quadrics Q′i are anisotropic and pairwise not stably birationally equivalent. Moreover,

it is shown in Proposition 3.17 that if Question 3.16 has positive answer, then a maximal such

collection will form a Z-basis of Picqua /T (note that the fact that this group is torsion free

follows from [Bac17]). Every smooth projective quadric Q can be cut into affine ones (using

some flag of plane sections). Multiplying the respective elements eq, we get the new element

det(Q). From some basic relations among the eq it follows that this does not depend on the

choice of a flag, and is an invariant of Q, and even of the motive of Q. The set {det(Q)}Q,

where Q runs over all smooth projective quadrics over k, provides another set of generators

of Picqua. In Theorem 3.12 we establish all the relations among these elements in Picqua /T.

Namely,
∏
i det(Pi) =

∏
j det(Qj) ∈ Picqua /T if and only if

⊕
iM(Pi) and

⊕
jM(Qj) are Tate

equivalent, that is, if we ignore the Tate summands in both, then the respective indecomposable

(anisotropic) direct summands of both sides can be identified up to Tate shift. This embeds

Picqua into the free abelian group with the basis consisting of indecomposable direct summands

in the motives of k-quadrics considered up to Tate shift. What is remarkable here is that the

question about Voevodsky’s triangulated motives and the tensor product operation is reduced

to the one about classical Chow motives and the direct sum operation. As a small by-product

we can complement the classical criterion of motivic equivalence of projective quadrics ([Vis98,

Vis04]; see also [Kar00]) with the equality det(P ) = det(Q) ∈ Picqua. Thus, in Picqua we have

two generating subsets: one identified with the isomorphism classes of quadratic forms, another

with the isomorphism classes of motives of projective quadrics.

All the above results are obtained with the help of Bachmann’s functors ΦE which provide

a very effective tool for comparing elements of Picqua. In § 4 we introduce an alternative method

which allows us to perform the same calculations. Here we use the Čech simplicial schemes and

some ideas from [Vis98]. The idea is very simple: for a smooth projective P , the motive XP
of the Čech simplicial scheme is an idempotent, X⊗2

P
∼= XP , and so is its ‘complement’, X̃P =

Cone(XP → T ). As a result, we get two orthogonal projections ⊗XP and ⊗X̃P on DM(k) which

define a semi-orthogonal decomposition of this category. For different varieties, these projectors

naturally commute, and we can consider a poly-semi-orthogonal decomposition corresponding to

a finite collection X = {Xi}i∈I of smooth projective varieties. The resulting functor is obviously

conservative and so detects invertible geometric objects. It is shown in Proposition 4.3 that it is

also injective on the Pic. It follows from the results of [Vis98] that, for any object A of DQMgm,

there is an appropriate collection X, for which all the projections of A will be extensions of

Tate motives. And if A represents an element of Picqua, then there is a collection where all

the projections are the Tate motives T (i)[j]. In particular, we re-prove Bachmann’s result on

the invertibility of the reduced motives of affine quadrics (see Proposition 4.6). Moreover, two

elements of Picqua are equal if and only if the respective functions (i)[j] on the set of (non-trivial)

projectors are the same. This creates an environment which permits us to substitute the functors
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of Bachmann in the study of Picqua. The new approach is not restricted to the subcategory
DQMgm only, but allows us to study the whole Pic of DM(k). We will address this question in
a sequel to this paper.

2. Motives of affine quadrics

2.1 Notations and some basic facts
Let k be a field of characteristic different from 2, and q be a (non-degenerate) quadratic form of
dimension n over k. We denote by Aq the affine quadric {q = 1}. Then Aq can be considered as a
(not necessarily split) sphere. In particular, over k, the motive M(Aq)k = T ⊕T ([n/2])[n−1] is a

sum of just two Tate motives. This motive is a complete invariant of q (see [BV18, Theorem 2.1]).
We have a natural projection Aq→ Spec(k), and it was shown in [BV18] that the reduced motive

M̃(Aq) = Cone[−1](M(Aq)→ T ) of Aq determines q as well. This reduced motive is a form of
a Tate motive, as over k it becomes isomorphic to T ([n/2])[n − 1]. It belongs to the category
DMgm(k;Z/2) of geometric motives of Voevodsky (see [Voe00]). Moreover, it was shown by
Bachmann in [Bac17] that this motive is invertible there, that is, it represents an element of

Pic(DMgm(k;Z/2)). And for p = q ⊥ H, one has M̃(P ) ∼= M̃(Q)(1)[2] (see [Bac17, Lemma 34]).
Hence, we get an embedding

GW (k) ↪→ Pic(DMgm(k;Z/2))

q − rH 7→ M̃(Aq)(−r)[−2r + 1]

of sets of the Grothendieck–Witt ring of quadratic forms into the Picard of the category of
geometric motives. In other words, we get a complete invariant of the (0)[0]-stable A1-homotopy
group of spheres (as, by the result of Morel [Mor04, Theorem 6.2.1] this group coincides with
the GW (k)). The corresponding map in topology is the map Z = πs0(S)→ Pic(D(Ab)) sending
n to T [n], which happens to be an isomorphism. The aim of the current paper is to study the
motivic variant of such a map.

We start by introducing some notation. Let us denote by eq ∈ Pic(DMgm(k;Z/2)) the shifted

reduced motive M̃(Aq)[1] and by Picqua the subgroup of Pic(DMgm(k;Z/2)) generated by eq, for
all quadratic forms q/k.

For a quadratic form q, let q′ be the quadratic form 〈1〉 ⊥ −q, and Q,Q′ be the respective
smooth projective quadrics. Then Aq = Q′\Q, and we have the Gysin triangle

M(Q′)→M(Q)(1)[2]→M(Aq)[1]→M(Q′)[1]. (1)

When both quadratic forms q and q′ are split, M(Q′) and M(Q) are sums of (pure) Tate motives,
which implies that M(Aq) = T ⊕T ([n/2])[n−1] and eq = T ([n/2])[n] (one can also see this from
[Bac17, Lemma 34]). In particular, Picqua contains a subgroup T ∼= Z × Z consisting of Tate
motives T (i)[j], i, j ∈ Z, which coincides with the entire Picqua for an algebraically closed field
(since all quadrics are split there). Restriction to k, together with the projection, provides an

isomorphism Picqua

∼=−→ T × (Picqua /T). Thus, the description of Picqua is reduced to that of
Picqua /T, which amounts to describing the relations among the eq there.

First, we will describe the inverse of eq.

Proposition 2.1. Let q′ = 〈1〉 ⊥ −q. Then in Picqua /T,

(eq)−1 = eq
′
.
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Proof. Let q′′ = 〈1〉 ⊥ −q′ = H ⊥ q and dim(q) = n. Considering the Cone[−1] of the map of
triangles

M(Aq)

��

//M(Q′)

��

//M(Q)(1)[2]

0
��

//M(Aq)[1]

��
T // 0 // T [1] T [1]

where M(Aq)→ T is the standard projection, we obtain a distinguished triangle

M̃(Aq) //M(Q′)
(a,b) //M(Q)(1)[2]⊕ T

(c,d) // M̃(Aq)[1],

where c is the unique lifting of the map M(Q)(1)[2] → M(Aq)[1] from (1), d is the canonical

map from the definition of M̃(Aq), a is a map from (1), and from the diagram chase one can see
that the standard projection M(Q′)→ T factors through b, which means that these two maps
coincide. The same applies to the pair Q′ ⊂ Q′′. We get exact triangles (after shifting):

M(Q′)→M(Q)(1)[2]⊕ T → M̃(Aq)[1]→M(Q′)[1],

M(Q′′)→M(Q′)(1)[2]⊕ T → M̃(Aq′)[1]→M(Q′′)[1].

Since q′′ = H ⊥ q, Q′′ is isotropic, and Q can be identified with the quadric of lines l on Q′′ passing
through a fixed rational point p. This gives the decomposition M(Q′′) = T ⊕ M(Q)(1)[2] ⊕
T (n)[2n], where the map M(Q)(1)[2] → M(Q′′) is given by the cycle A = {(l, x)|x ∈ l} ⊂
Q × Q′′. The map M(Q′′) → M(Q′)(1)[2] from the Gysin triangle is dual to the embedding
M(Q′) → M(Q′′) and given by the cycle B = ∆Q′′ ∩ (Q′ × Q′′). Taking p outside Q′ ⊂ Q′′,
we obtain that the composition M(Q)(1)[2] → M(Q′′) → M(Q′)(1)[2] is given by the cycle
C = ∆Q′ ∩ (Q × Q′), where the embedding Q ⊂ Q′ is given by the choice of p. In other words,
this composition is dual to the embedding M(Q) → M(Q′). The map T (n)[2n] → M(Q′′) is
given by the generic cycle of Q′′, so the composition T (n)[2n]→M(Q′′)→M(Q′)(1)[2] is given
by the generic cycle of Q′ and, hence, is dual to the projection M(Q′)→ T . Thus, the resulting
map M(Q)(1)[2]⊕T (n)[2n]→M(Q′)(1)[2] is dual to the map M(Q′)→M(Q)(1)[2]⊕T , and we
obtain that eq

′
= Hom(eq, T (n)[2n+1]), where Hom(−,−) is the internal Hom in DMgm(k;Z/2).

By [Bac17, Theorem 33] (see also Proposition 4.6 below), eq is an invertible object. It follows
from the standard properties of duality that the dual of an invertible object is its inverse. Thus,

eq · eq′ = T (n)[2n+ 1] ∈ Picqua. 2

Example 2.2. Let α ∈ KM
∗ (k)/2 be some pure symbol, and 〈〈α〉〉 be the respective Pfister form.

Then 〈〈α〉〉 = qα = 〈1〉 ⊥ −q̃α, and the motive of the affine quadric Qα\Q̃α is the Rost motive
Mα [Ros98]. Hence, in Picqua /T, e〈〈α〉〉 = (eq̃α)−1 is the inverse of the reduced Rost motive

M̃α = Cone[−1](Mα→ T ).

2.2 Bachmann’s functors
In [Bac17] Bachmann considers DQMgm, the thick tensor triangulated subcategory of
DMgm(k;Z/2) generated by motives of smooth projective quadrics over k. Then, for any field
extension E/k, he constructs a tensor triangulated functor

ΦE : DQMgm −→ Kb(Tate(Z/2)),

where Kb(Tate(Z/2)) is the category of finite-dimensional bigraded Z/2-vector spaces (which
we can view as direct sums of Tate motives T (i)[j]). This functor is essentially defined by the
following two properties:
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(1) ΦE(T (i)[j]) = T (i)[j];

(2) if smooth projective quadric QE is anisotropic, then ΦE(Q) = 0.

The main result of [Bac17] is the following theorem.

Theorem 2.3 (Bachmann [Bac17, Theorem 31]). The collection of functors {ΦE} for all finitely
generated extensions E/k is conservative, and it is injective on the Picard.

Since Pic(Kb(Tate(Z/2))) = Z× Z, in particular, this implies the following proposition.

Proposition 2.4 (Bachmann [Bac17, Corollary 32]). The group Picqua has no torsion.

The above functors of Bachmann will be the main tool in our calculations.

3. Structure of Picqua

3.1 Linearly independent elements
We will identify the elements of Pic(Kb(Tate(Z/2))) with the Tate motives T (i)[j] (with
identification given by ΦE). It follows from Bachmann’s results [Bac17] that, for any quadratic
form q/k and any extension E/k, the value of Φ on eq is a single Tate motive T (f(q, E))[g(q, E)].
Thus, we get two functions: (q, E) 7→ f(q, E), g(q, E) ∈ Z. We can identify targets of various ΦE ,
and since ΦE(eq) is invertible, we can consider expressions like (ΦE/ΦF )(eq) which is still a single
Tate motive.

We would like to describe the group Picqua /T. Since ΦE maps T isomorphically to
Pic(Kb(Tate(Z/2))), this quotient-group is still torsion-free. The following theorem provides
a large supply of linearly independent elements there.

Theorem 3.1. Let {qi}i∈I be a collection of quadratic forms over k, such that q′i is anisotropic,
for all i, and for i 6= j, the forms q′i and q′j are not stably birationally equivalent. Then the
collection of elements {eqi}i∈I is linearly independent in Picqua /T.

Proof. Recall that two quadrics P and Q are stably birationally equivalent if and only if there
are rational maps P 99K Q and Q 99K P (see [Lam05, Theorem X.4.25]). Suppose we have some
linear relation in Picqua, ∏

i

(eqi)mi = T (∗)[∗′].

Consider a directed graph whose vertices are q′i (for qi appearing in the above equation), and
where we have an arrow q′i→ q′j if and only if there exists a rational map Q′i 99KQ

′
j (note that this

condition just means that Q′j |k(Q′i)
has a rational point, or in other words, that iW (q′j |k(Q′i)

) > 0).

Since this property is transitive (by the valuative criterion of properness [Har77, Theorem II.4.7]),
and all our forms q′i are pairwise not stably birationally equivalent, we obtain that our graph
has no oriented cycles. Hence, there is (at least) one final vertex q′l. Consider Fl = k(Q′l). Then
iW (q′j |Fl) = 0, for j 6= l (as the vertex is final), while iW (q′l|Fl) 6= 0 (because any quadric is
isotropic over its own function field). Since the forms q′j , and so qj , for j 6= l, stay anisotropic

over Fl, it follows that ΦFl acts in the same way on eqj as Φk. At the same time, since q′l is
anisotropic over k and isotropic over Fl, these functors act differently on eql (see [BV18, § 3] or
Proposition 3.3 below). As a result, we obtain that

ΦFl

Φk

(∏
i

(eqi)mi
)

= T (x ·ml)[y ·ml] where T (x)[y] 6= T.
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And this must be equal to T , since all ΦE act the same way on Tate motives. Hence, ml = 0,
and we managed to exclude one term from our relation. Then we argue by induction. 2

Corollary 3.2. Let {〈〈α〉〉}α be the collection of all Pfister forms (of various foldness) for all
non-zero pure symbols α ∈ KM

∗ (k)/2. Then the collection {e〈〈α〉〉}α is linearly independent in
Picqua /T.

Proof. Indeed, let 〈〈α〉〉 = qα = 〈1〉 ⊥ −q̃α, where q̃α is a pure part of a Pfister form. Then
the collection {q̃α}α satisfies the conditions of Theorem 3.1, since different Pfister forms are
not stably birationally equivalent (because the existence of a rational map Qα 99K Qβ means
that Qβ|k(Qα) is isotropic and hence hyperbolic (being a Pfister form), which implies that qβ is

divisible by qα; see [EKM08, Corollary 23.6]). Finally, by Proposition 2.1, e〈〈α〉〉 = (eq̃α)−1. 2

3.2 The new generators
Let Q ⊃ P be a codimension-one embedding of smooth projective quadrics. We will use the
notation eQ\P for the (shifted) reduced motive of the affine quadric Q\P .

Let us explicitly describe the value of the functor ΦE on eQ\P in terms of the Witt indices
of both projective quadrics (cf. [BV18, § 3]). Below we will use the additive notation (x)[y] for
the elements of the abelian group Z2.

Proposition 3.3. Let P ′ ⊃ P be a codimension-one embedding of smooth projective quadrics,
dim(P ′) = m′, dim(P ) = m (of course, m′ = m + 1), E/k be some field extension and jP ′ =
iW (P ′E), jP = iW (PE) be the Witt indices of P ′ and P over E. Then ΦE(eP

′\P ) = T (x)[y], where
(x)[y] = (f(P ′)− f(P ))[g(P ′)− g(P )], for some functions f and g. More precisely,

(x)[y] =

jP ′−1∑
l′=0

(m′ − 2l′)[2m′ − 4l′ + 1]−
jP−1∑
l=0

(m− 2l)[2m− 4l + 1].

Proof. We have an exact triangle

M(P ′)→M(P )(1)[2]⊕ T → M̃(P ′\P )[1]→M(P ′)[1].

Our Witt indices are related as follows: jP 6 jP ′ 6 jP + 1 (since p ⊂ p′ ⊂ p ⊥ H). From the
defining property of Bachmann’s functors (as well as from [Bac17]) we see that ΦE(eP

′\P ) will be
a single Tate motive T (x)[y] whose grading depends only on the above Witt indices. It remains to
determine the exact shape of such a dependence. If (jP ′ , jP ) = (l, l), then the ‘non-cancelled’ Tate
motive is on the P -side and (x)[y] = (l)[2l], while if (jP ′ , jP ) = (l+ 1, l), then the ‘non-cancelled’
Tate motive is on the P ′-side and (x)[y] = (m′− l)[2m′− 2l+ 1]. Consider (x)[y] as a function of
(l′, l) (for l 6 l′ 6 l+ 1) defined by these formulas. We can move from the pair (0, 0) to (jP ′ , jP )
in jP ′ + jP steps: (0, 0)→ (1, 0)→ (1, 1)→ (2, 1)→ · · · . When we move (l′, l′)→ (l′ + 1, l′),
(x)[y] jumps up by (m′−2l′)[2m′−4l′+ 1]. When we move (l+ 1, l)→ (l+ 1, l+ 1), (x)[y] jumps
down by (m− 2l)[2m− 4l+ 1]. Finally, for (l′, l) = (0, 0), (x)[y] = (0)[0]. Hence the formula. 2

Proposition 3.4. Suppose we have codimension-one embeddings

Q

��
S P

~~

__

R

__
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of smooth projective quadrics. Then in Picqua,

eS\Q · eQ\P = eS\R · eR\P .

Proof. Let E/k be some field extension, and jS , jR, jQ, jP be the Witt indices of our quadrics
over E. Then, by Proposition 3.3, we have that both ΦE(eS\Q · eQ\P ) and ΦE(eS\R · eR\P ) are
isomorphic to T (x)[y], where

(x)[y] =

jS−1∑
i=0

(dim(S)− 2i)[2 dim(S)− 4i+ 1]−
jP−1∑
l=0

(dim(P )− 2l)[2 dim(P )− 4l + 1].

By Theorem 2.3, eS\Q · eQ\P = eS\R · eR\P in Picqua. 2

The above relations among eq allow us to introduce new generators of Picqua.

Definition 3.5. Let Q be an m-dimensional smooth projective quadric with the complete flag
of subquadrics Q = Qm ⊃ Qm−1 ⊃ · · · ⊃ Q0. Define

det(Q) := eQm\Qm−1 · eQm−1\Qm−2 · . . . · eQ0 ∈ Picqua.

One can express the shifted reduced motive eQ\P of an affine quadric Q\P as det(Q)/det(P ).
Thus, determinants of smooth projective quadrics form another system of generators of Picqua.
It follows from Proposition 3.4 that det(Q) does not depend on the choice of a complete flag in
Q and is an invariant of Q. Moreover, it actually depends on M(Q) only.

Proposition 3.6. Let Q be a smooth projective quadric of dimension m. Then,

(1) for any E/k, ΦE(det(Q)) = T (x)[y], where

(x)[y] =

iW (QE)−1∑
i=0

(m− 2i)[2m− 4i+ 1];

(2) det(Q) depends on M(Q) only.

Proof. (1) Follows straight from the Definition 3.5 and Proposition 3.3.
(2) It follows from part (1) that ΦE(det(Q)) depends only on m and iW (QE). By the criterion

of motivic equivalence of projective quadrics ([Vis98, Proposition 5.1] or [Vis04, Theorem 4.18];
see also [Kar00]), the motives M(P ) and M(Q) of two smooth projective quadrics are isomorphic
if and only if dim(P ) = dim(Q) and iW (PE) = iW (QE), for any field extension E/k. Thus,
ΦE(det(Q)) depends only on M(Q), and by Theorem 2.3, so does det(Q) itself. 2

Let N be a direct summand of the (possibly shifted) motive M(Q)(i)[2i] of an anisotropic
quadric. Then, over k, it splits into a direct sum of pure Tate motives T (l)[2l]. These Tate motives
are of two kinds: lower and upper. The lower ones are characterized by the property that the
splitting map N → T (l)[2l] is defined already over the ground field k, while for the upper ones
the splitting map T (l)[2l]→ N is defined over k (see [Vis11, Appendix] for details). Similarly,
for an extension E/k, we denote by Tateup(NE) the collection of upper Tate motives splitting
from NE , and by Tatelo(NE) the collection of lower Tate motives splitting from N over E. Let
us define certain auxiliary elements of Pic(Kb(Tate(Z/2))) we will use.
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Definition 3.7. Let N be a direct summand of M(Q)(i)[2i] with Q anisotropic. Define

ΦE

Φk
(det(N)) :=

(⊗
T (l)[2l]∈Tateup(NE)T (l)[2l]

)
⊗
(⊗

T (l)[2l]∈Tatelo(NE)T (l)[2l − 1]
)−1

.

If N is a direct summand of the motive of a possibly isotropic quadric Q, then we can define
(ΦE/Φk)(det(N)) by the same formula, where we ignore those Tate summands of NE which
already split over k. Note that the number of upper Tate motives splitting from NE is equal
to the number of the lower Tate motives splitting there (by [Vis04, Theorem 4.19]), for any
anisotropic N . Hence, the Tate shift of N does not affect the result:

ΦE

Φk
(det(N(i)[2i])) =

ΦE

Φk
(det(N)).

Our elements behave multiplicatively with respect to the direct sum of motives:

ΦE

Φk
(det(N1 ⊕N2)) =

ΦE

Φk
(det(N1))⊗ ΦE

Φk
(det(N2)).

Consequently, it can be extended to arbitrary direct sums of direct summands as above.
In the case of N = M(Q) with dim(Q) = m, we have the decomposition over E:

M(QE) =

iW (QE)−1⊕
i=0

(
Tlo(i)[2i]⊕ T up(m− i)[2m− 2i]

)
⊕M((QE)anis)(iW (QE))[2iW (QE)].

From Proposition 3.6(1) we get

ΦE

Φk
(det(M(Q))) =

ΦE

Φk
(det(Q)).

This explains the notation. A priori, it is unclear if the element (ΦE/Φk)(det(N)) comes from
some element ‘det(N)’ in Picqua (so the notation is somewhat misleading). But, in certain cases,
we can produce det(N) ∈ Picqua.

Example 3.8. Let α ∈ KM
r (k)/2 be a pure symbol, and 〈〈α〉〉 be the respective Pfister form. Then

〈〈α〉〉 = qα = 〈1〉 ⊥ −q̃α, the Gysin triangle

M(Qα)→M(Q̃α)(1)[2]→M(Qα\Q̃α)[1]→M(Qα)[1]

is split, and the motive M(Qα\Q̃α) is the Rost motive Mα. Also, eQα\Q̃α = det(Qα)/det(Q̃α).
Since M(Qα) = M(Q̃α)(1)[2]⊕Mα, we obtain that

ΦE

Φk
(det(Qα)/det(Q̃α)) =

ΦE

Φk
(det(Mα)).

So, we can define det(Mα) ∈ Picqua as det(Qα)/det(Q̃α) = eQα\Q̃α . It is nothing more than the

shifted reduced Rost motive M̃α[1]. By Rost’s result [Ros90, Ros98],

M(Qα) =
2r−1−1⊕
i=0

Mα(i)[2i].
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Due to the multiplicativity property of the (ΦE/Φk)(det(−)) and Bachmann’s injectivity result,
Theorem 2.3 (comparing also Φk of both parts), we obtain

det(Qα) = (eQα\Q̃α)2r−1
.

In particular, by Proposition 2.1, in Picqua /T we have an identity,

det(Qα) = (e〈〈α〉〉)−2r−1
.

Consider the full additive subcategory Chowqua(k,Z/2) of Chow(k,Z/2) which is the pseudo-
abelian envelope of the subcategory generated by the motives of smooth projective quadrics. Then
in this category the Krull–Schmidt principle holds, that is, the decomposition into irreducible
objects is unique (see [Vis04, CM06]). Let us introduce the following equivalence relation on the
set of objects of Chowqua(k,Z/2).

Definition 3.9. Suppose N and M are objects of Chowqua(k,Z/2). We say that N
T∼ M if

anisotropic indecomposable direct summands of N can be identified up to (reordering and) Tate
shifts with such summands of M . More precisely, if N ∼= (⊕Tates)⊕

⊕r
i=1Ni, M ∼= (⊕Tates)⊕⊕r

i=1Mi, where Mi
∼= Ni(ai)[2ai], for some ai ∈ Z and some choice of ordering.

In particular, the T -equivalence ignores Tate motives, but it keeps the total rank of
anisotropic direct summands, and it is stable under field extensions.

We will use a minor modification of Bachmann’s injectivity theorem (Theorem 2.3). Observe
that, for any E/k, the map ΦE/Φk : Picqua /T→ Pic(Kb(Tate(Z/2))) is well defined.

Proposition 3.10. The collection of maps ΦE/Φk, for all finitely generated E/k, is injective on
Picqua /T.

Proof. Suppose all the homomorphisms ΦE/Φk vanish on a certain element x ∈ Picqua. This
means that ΦE(x) = Φk(x) = T (a)[b], for any E/k and some fixed a, b ∈ Z. But ΦE(T (a)[b]) is
also equal to T (a)[b]. By Bachmann’s injectivity theorem, x = T (a)[b]. 2

Let us recall some facts about indecomposable direct summands in the motives of quadrics.
Suppose N is such a summand in the motive of a quadric Q, such that the smallest Tate
motive in the decomposition of Nk is T (n)[2n]. Then we can assign to N the Grassmannian
XN = G(Q,n) of n-dimensional projective subspaces on Q, and to the latter variety we can
assign the motive XXN of the respective Čech simplicial scheme Čech(XN ) (where all our motives
are with Z/2-coefficients). Recall that this is a form of a Tate motive which becomes isomorphic
to the Tate motive if and only if our variety has a zero-cycle of degree 1 (see [Vis98, § 2.3]). For
quadratic Grassmannians the latter condition is equivalent to the existence of a rational point
(by Springer’s theorem).

Proposition 3.11. With notation as above, let N and L be indecomposable direct summands
in the motives of quadrics. Then the following are equivalent:

(1) N is isomorphic to L up to Tate shift;

(2) XN and XL are stably birationally equivalent;

(3) XXN ∼= XXL (in this case, this isomorphism is unique).
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Proof. The fact that the lowest Tate motive T (n)[2n] splits fromN is equivalent to the fact that it
splits from the motive of the respective quadric Q. This, in turn, is equivalent to the fact that
iW (Q) > n (by [Ros90, Proposition 1] and [Vis04, Proposition 2.6]), which means exactly that the
Grassmannian XN has a rational point. Thus (1) implies that XN and XL have rational points
simultaneously, that is, there are rational maps both ways. For quadratic Grassmannians the
latter condition is equivalent to stable birational equivalence. Indeed, clearly, XN = G(Q,n) is
stably birationally equivalent to the flag variety F (Q,n) of subspaces of dimensions from 0 to n
(as the latter variety is a consecutive projective bundle over the former). And flag variety
is rational as soon as it has a rational point (as a consecutive quadric fibration F (Q,n) →
F (Q,n− 1)→ · · ·→ Q→ Spec(k)). If F (P, l) is the flag variety corresponding to the motive L,
then F (Q,n)× F (P, l) is stably birationally equivalent to both F (Q,n) and F (P, l), since each
variety is rational over the generic point of the other (recall that these varieties have rational
points simultaneously). Thus, (1) implies (2). The opposite implication follows from [Vis04,
Theorem 4.17], taking into account [Vis04, Corollary 4.4].

Finally, (2) ⇔ (3) by [Vis98, Theorem 2.3.4] and above considerations, since for quadratic
Grassmannians the existence of a zero-cycle of degree 1 is equivalent to that of a rational point
(by the Theorem of Springer). 2

Now we can describe the relations among det(Q) in Picqua /T. Any such relation can be
reduced to the form

∏
i det(Pi) =

∏
j det(Qj).

Theorem 3.12. Let Pi, Qj be some smooth projective quadrics. The following conditions are
equivalent:

(1)
∏
i det(Pi) =

∏
j det(Qj) ∈ Picqua /T;

(2)
⊕

iM(Pi)
T∼
⊕

jM(Qj).

Proof. (2 ⇒ 1) Let
⊕

iM(Pi) = (⊕Tates) ⊕
⊕

lNl and
⊕

jM(Qj) = (⊕Tates) ⊕
⊕

lMl be
the decompositions of both sides of (2) into Tates and anisotropic irreducibles. Then (after
reordering) we have isomorphisms Ml

∼= Nl(al)[2al], for some al ∈ Z. Then as ΦE/Φk ignores
Tate motives and Tate shifts, we get:

ΦE

Φk

(∏
i

det(Pi)

)
=

ΦE

Φk

(
det
(⊕

iM(Pi)
))

=
ΦE

Φk

(
det
(⊕

lNl

))
=

ΦE

Φk

(
det
(⊕

lMl

))
=

ΦE

Φk

(
det
(⊕

jM(Qj)
))

=
ΦE

Φk

(∏
j

det(Qj)

)
.

By Proposition 3.10,
∏
i det(Pi) =

∏
j det(Qj) ∈ Picqua /T.

(1 ⇒ 2) Let
⊕

iM(Pi) = (⊕Tates) ⊕
⊕

lNl and
⊕

jM(Qj) = (⊕Tates) ⊕
⊕

rMr be the
decomposition into a direct sum of Tates and anisotropic irreducibles. From (1) we know that

ΦE

Φk

(
det
(⊕

lNl

))
=

ΦE

Φk

(
det
(⊕

iM(Pi)
))

=
ΦE

Φk

(∏
i

det(Pi)

)
=

ΦE

Φk

(∏
j

det(Qj)

)
=

ΦE

Φk

(
det
(⊕

jM(Qj)
))

=
ΦE

Φk

(
det
(⊕

rMr

))
.

Let us cancel as many isomorphic (up to Tate shift) direct summands from both sides as possible.
Suppose the remaining relation is non-trivial. So we can assume that Nl is not isomorphic to Mr
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for any l, r, while we have

ΦE

Φk

(
det
(⊕

lNl

))
=

ΦE

Φk

(
det
(⊕

rMr

))
.

Each such irreducible is a direct summand in the (possibly shifted) motive of some smooth

projective anisotropic quadric. To each such summand Nl (respectively, Mr), we can associate

the field extension Fl/k (respectively, Er/k) as follows. Let Nl be a direct summand of M(R),

such that the smallest Tate in (Nl)k is T (m)[2m]. Then take Fl = k(Xl), the function field of

the Grassmannian Xl = G(R,m) of m-dimensional projective subspaces on R, and similarly for

Er = k(Yr).

If any two of the above extensions are stably birationally equivalent, then the respective

indecomposable direct summands are isomorphic (up to shift) by Proposition 3.11. Consider the

directed graph whose vertices are isomorphism (up to shift) classes of {Nl}l, {Mr}r and where we

have an arrow Nl→Mr (respectively, Nl→Nl′ , Mr→Mr′) if and only if there is a rational map

Xl 99K Yr (Xl 99K Xl′ , etc.). Since the existence of such a map is a transitive property, our graph

has no directed cycles (as we have chosen a single representative from each isomorphism class of

direct summands). Hence, our graph has (at least one) final vertex. Suppose it is Nl. Then every

indecomposable summand (from our list) which is not isomorphic to Nl will stay anisotropic

over Fl. Indeed, if L is this other summand, and some Tate motive would split from LFl (by

[Vis04, Theorem 4.19] we can always assume it to be the ‘lower’ one; see [Vis11, Appendix]),

then the lowest Tate motive (from which L ‘starts’) will split there as well (since splitting from

L is equivalent to the splitting from the motive of the respective quadric L is part of, and for

quadrics the splitting of the larger ‘lower’ Tate motive implies the splitting of the smaller one).

But the lowest such Tate motive cannot split from the motive of the quadric mentioned, since the

respective Grassmannian has no rational point over Fl. In particular, since noMr were isomorphic

to Nl, we get that all Mr stay anisotropic over Fl. Hence, (ΦFl/Φk)(det(
⊕

rMr)) = T . Similarly,

(ΦFl/Φk)(det(Nl′)) = T , for all Nl′ not isomorphic to Nl. At the same time, some (actually,

exactly two) Tate motives split from Nl over Fl, since the Tate motive T (m)[2m] splits from

M(R)|Fl . The fact that the number of ‘lower’ Tate summands split from Nl|Fl is equal to the

number of ‘upper’ Tate summands split follows from [Vis04, Theorem 4.19] (while the fact that

there is only one of each kind follows from [Vis04, Theorem 4.17], but we do not need this). Hence

(ΦFl/Φk)(det(Nl)) = T (x)[y] 6= T (this follows from the Definition 3.7, taking into account that

no ‘lower’ Tate motive of Nl can be ‘above’ an ‘upper’ one (since it is so for the quadric)). Then

(ΦFl/Φk)(det(
⊕

nNn)) = T (d ·x)[d · y], where d is the number of indecomposable Nl′ isomorphic

(up to shift) to Nl. We obtain a contradiction: T = T (d ·x)[d · y]. Thus, we can cancel all the

terms, and so
⊕

iM(Pi)
T∼
⊕

jM(Qj). 2

In particular, we can see that det(Q) ∈ Picqua is a complete invariant of M(Q). This extends

the criterion of motivic equivalence of projective quadrics ([Vis98, Proposition 5.1] or [Vis04,

Theorem 4.18]; see also [Kar00]).

Corollary 3.13. Let P and Q be smooth projective quadrics. Then the following conditions

are equivalent:

(1) M(P ) ∼= M(Q);

(2) det(P ) = det(Q) ∈ Picqua.

1510

https://doi.org/10.1112/S0010437X19007401 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007401


Affine quadrics and the Picard group of the motivic category

Proof. (1⇒ 2) This is Proposition 3.6(2).
(2 ⇒ 1) Since det(Pk) = det(Qk), we obtain that dim(P ) = dim(Q). It follows from (2)

and Theorem 3.12 that M(P )
T∼ M(Q). Since T -equivalence preserves the rank of anisotropic

summand, and the total rank is the same (since dimensions are the same), we obtain that the
number of Tate summands in M(PE) and M(QE) is the same, hence, iW (QE) = iW (PE), for all
E/k. By the criterion of motivic equivalence, M(P ) ∼= M(Q). 2

Let {Xl}l be the collection of all anisotropic quadratic Grassmannians for all quadrics from
the set {Pi}i (considered with multiplicities), and {Yr}r be the collection of all anisotropic
quadratic Grassmannians for all quadrics from the set {Qj}j . Let {XXl}l be the collection of
the motives of the respective Čech simplicial schemes Čech(Xl) (again with multiplicity), and
similarly for {XYr}r. Repeating the arguments of the proof of [Vis98, Proposition 5.1], we obtain
the following result.

Proposition 3.14. Conditions (1) and (2) of Theorem 3.12 are equivalent to:

(3) {XXl}l ∼= {XYr}r.

Proof. Note that, by [Vis98, Theorem 3.1], the anisotropic part of
⊕

iM(Pi) is an extension of
(shifted) X s from the union of the two copies of the set {XXl}l (corresponding to the ‘upper’
and ‘lower’ Tate motives, respectively) which I will denote by ‘2’{XXl}l, and similarly for the
right-hand side.

Let Nl be some indecomposable (anisotropic) irreducible summand of the
⊕

iM(Pi), and Xl

be the respective Grassmannian (corresponding to the lowest Tate motive inNl). Then (3) implies
that XXl is isomorphic to some XYr , and it follows from [Vis04, Theorem 4.17] that

⊕
jM(Qj)

contains an irreducible summand isomorphic up to shift toNl. By [Vis98, Theorems 3.1, 3.7],Nl is
an extension of (shifted) motives of Čech simplicial schemes of Grassmannians and the respective
X s are determined uniquely by Nl (since such an X is trivial if and only if the respective Tate
motive splits from Nl, and this information determines X by [Vis98, Theorem 2.3.4]). Hence, we
can identify the respective subsets in ‘2’{XXl}l and ‘2’{XYr}r. Cancelling Nls on both sides as
well as the subsets mentioned, we reduce to smaller identical collections in ‘2’(3) and to shorter
sums of indecomposables in (2). Continuing in this way, we cancel all the indecomposables in (2).
This shows that (3) implies (2). The converse is clear, since Nl is an extension of X s which are
uniquely determined by Nl as explained above. Thus, (2) implies that ‘2’{XXl}l ∼= ‘2’{XYr}r. 2

Denote by N (k) the set of isomorphism (up to shift) classes of indecomposable anisotropic
direct summands in the motives of smooth projective quadrics over k. Then Theorem 3.12 shows
that we have an embedding of Picqua /T into a free abelian group generated by the set N (k),

Picqua /T �
� //

⊕
N∈N (k) Z · det(N),

mapping det(Q) to the sum of determinants of anisotropic irreducible summands M(Q) is a direct
sum of (Tate summands are ignored). Indeed, since Picqua/T is a quotient of a free abelian group
generated by det(Q) where Q runs over (isomorphism classes of) smooth projective quadrics
over k modulo relations in (1) of Theorem 3.12, this theorem (together with Definition 3.9
and the fact that det is stable under Tate shift) ensures that the map is well defined and
injective, since

∏
i det(Pi)/

∏
j det(Qj) = 1 in Picqua /T if and only if the respective element∑

l det(Nl) −
∑

r det(Mr) is zero in
⊕

N∈N (k) Z · det(N). Note also that our map maps det(Q)
the same way as the determinant of its anisotropic part. So we obtain the following corollary.
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Corollary 3.15. The group Picqua /T is isomorphic to the image of the map

ϕ :
⊕
Q∈Q

Z · det(Q) −→
⊕

N∈N (k)

Z · det(N),

where Q is the set of isomorphism classes of smooth anisotropic projective quadrics over k. In
particular, Picqua is a free abelian group.

It is an interesting question whether ϕ is surjective or not. It is related to an old and
non-trivial motivic question.

Question 3.16 [Vis04, Question 4.16]. Let Q be a smooth projective quadric and N be an
indecomposable direct summand in M(Q). Is it true that there exists a smooth projective quadric
P over k with direct summand M of M(P ), such that M is isomorphic to N up to Tate shift,
and Mk contains T?

We obtain the following proposition.

Proposition 3.17. Suppose Question 3.16 has a positive answer. Then

Picqua /T ∼=
⊕

N∈N (k)

Z · det(N).

Alternatively, in Picqua /T we can choose a basis {eqi}i, where we take exactly one representative
q′i in every class of stable birational equivalence of anisotropic quadratic forms over k.

Proof. If Question 3.16 has a positive answer, then any N ∈ N (k) will be represented by
a direct summand in M(Q′i), for some i, a direct summand starting from T (over k). By
[Vis04, Theorem 4.13] (taking into account [Vis04, Corollary 4.4] and Proposition 3.11) the
multiplicity (up to shift) of such a summand in M(Q′i) is equal to the first higher Witt
index i1(q′i) of our quadric (see [Vis04, § 7]). Since Qi is a subquadric of codimension 1 in Q′i,
by [Vis04, Corollary 4.9], the multiplicity of N in M(Q′i) will be exactly 1 more than that
in M(Qi). Indeed, recall that size(N) = max(i|Chi(Nk) 6= 0) − min(i|Chi(Nk) 6= 0), [Vis04,
Definition 4.6]. Then either i1(q′i) = 1, in which case size(N) = dim(Q′i) [Vis04, Proposition 4.5]
and M(Qi) does not contain such summands at all, or i1(q′i) > 1, in which case N is also a
direct summand of M(Qi) of multiplicity i1(qi) = i1(q′i) − 1. Also, by the same results, the
remaining indecomposable direct summands of M(Qi) and M(Q′i) will be of strictly smaller
size. Indeed, the ‘outer shell’ (all the Tate motives split over the generic point) of M(Q′i) as
well as that of M(Qi) (if i1(q′i) > 1) are completely covered by the copies of N , by [Vis04,
Theorem 4.13]. Hence, remaining direct summands start and end in ‘higher shells’, and so have
smaller size, [Vis04, Corollary 4.14]. Hence, det(Q′i) = det(N)i1(q′i) · det(smaller motives), while
det(Qi) = det(N)i1(q′i)−1 · det(smaller motives) and so, eqi/det(N) = det(Q′i)/(det(Qi) · det(N))
is expressible in terms of det(M), for size(M) < size(N). By induction on size(N), we get that
the map ϕ is surjective and the collection {eqi}i generates Picqua /T. The fact that it is linearly
independent follows from Theorem 3.1. 2

Example 3.18. Let k = R. Then the only indecomposable anisotropic direct summands in the
motives of real quadrics are Rost motives corresponding to the pure symbols {−1}r, r ∈ N, and
so it follows from Example 3.8 that the map ϕ is surjective and

(Picqua /T)(R) =
⊕
r∈N

Z · e〈〈−1〉〉r .
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4. An alternative to the method of Bachmann

In this section I present an approach which can serve as an alternative to that used by Bachmann.
Here I instead employ some ideas of [Vis98]. This allows us to look at the same questions from
a slightly different point of view. That said, there are certain similarities in both approaches. At
the same time, the new method is applicable not just to the category generated by the motives
of quadrics but to arbitrary geometric motives, and can be used for the study of the entire Pic
group of DMgm(k). This approach in the end leads to the ‘motivic category of an extension’
which has many remarkable properties and allows us to study Voevodsky motives ‘locally’. It
will be discussed in detail in a separate paper.

Let DM(k;F ) be the Voevodsky triangulated category of motives with coefficients in an
arbitrary commutative (unital) ring F . Let Q be a smooth projective variety (not necessarily
connected) over k. Let Čech(Q) be the respective Čech simplicial scheme, where (Čech(Q))n =
Q×n+1 with faces and degeneracy maps being partial diagonals and partial projections. Denote
its motive by XQ. We get the natural projection Čech(Q)→ Spec(k), which gives a distinguished
triangle ∆Q in DM(k;F ):

XQ −→ T −→ X̃Q −→ XQ[1]. (2)

Motives XQ and X̃Q are mutually orthogonal idempotents in DM(k;F ):

X⊗2
Q

∼=
→ XQ, X̃⊗2

Q

∼=
← X̃Q, XQ⊗X̃Q ∼= 0.

Denote by πQ : DM(k;F )→ DM(k;F ) and π̃Q : DM(k;F )→ DM(k;F ) the projection functors

given by ⊗XQ and ⊗X̃Q, respectively. Then the image of πQ is the full localizing subcategory
DMQ(k;F ) consisting of objects which are stable under ⊗XQ, while the image of π̃Q is the full
localizing subcategory DM

Q̃
(k;F ) consisting of objects which are killed by ⊗XQ. It follows from

[Vis98, Theorem 2.3.2] (which is, basically, [Voe95, Lemma 4.9]) that

HomDM(k;F )(U, V ) = 0, for any U ∈ Ob(DMQ(k;F )) and V ∈ Ob(DM
Q̃

(k;F )). (3)

At the same time, any object W in DM(k;F ) has a functorial decomposition

πQ(W ) −→W −→ π̃Q(W ) −→ πQ(W )[1].

If P and Q are two smooth projective varieties over k, then there are natural identifications

XP×Q
∼=
→ XP ⊗XQ, X̃PtQ

∼=
← X̃P ⊗X̃Q.

The respective functors πQ, π̃Q, πP , π̃P commute up to isomorphism, and we have identifications
of functors πQ×P ∼= πQ ◦πP and π̃QtP ∼= π̃Q⊗ π̃P . It is also worth recalling [Vis98, Theorem 2.3.4]
that there is an identification XQ ∼= XP if and only if P has a zero-cycle of degree 1 over every
generic point of Q, and vice versa.

Now let X = {Xi}i∈I be some finite collection of smooth projective varieties. For any subset
J ⊂ I, write

XXJ
:=
(⊗

i∈JXXi
)
⊗
(⊗

i 6∈J X̃Xi
)
.

Note that these are still idempotents: X⊗2
XJ

∼= XXJ
. Denote by πXJ

the respective projector. Its
image is a full localizing subcategory DMXJ

(k;F ) of DM(k;F ) made out of objects which are
stable under ⊗XXi , for i ∈ J , and are killed by ⊗XXi , for i 6∈ J .

Tensoring the distinguished triangles ∆Xi from (2) for every Xi, i ∈ I, we obtain what I will
call a distinguished poly-triangle ∆X. It presents the unit T of the tensor structure of DM(k;F )
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as an extension of graded pieces XXJ
, for all J ⊂ I. Note that it follows from (3) that, for

J1, J2 ⊂ I, we have

HomDM(k;F )(U, V ) = 0, for U ∈ Ob(DMXJ1
(k;F )), V ∈ Ob(DMXJ2

(k;F )), if J1 6⊂ J2. (4)

As any object W of DM(k) is an extension of πXJ
(W ), for J ⊂ I, we obtain the following

proposition.

Proposition 4.1. The functor

×J⊂I πXJ
: DM(k;F ) −→ ×J⊂I DMXJ

(k;F )

is conservative.

Since πXJ
is symmetric monoidal, it preserves duals. Hence, using Proposition 4.1, we obtain

our next result.

Proposition 4.2. The functor

×J⊂I πXJ
: DMgm(k;F ) −→ ×J⊂I DMXJ

(k;F )

detects invertible objects.

Moreover, we have the following proposition.

Proposition 4.3. The functor ×J⊂IπXJ
is injective on the Pic.

Proof. Denote by TP (respectively, T
P×Q̃) the unit objects of the category DMP (k;F )

(respectively, DM
P×Q̃(k;F )).

Lemma 4.4. Let P and Q be smooth projective varieties, and V ∈ Pic(DMP (k;F )) be such
an invertible object that V ⊗XQ ∼= TP×Q and V ⊗X̃Q ∼= T

P×Q̃. Then V ∼= TP . Moreover, this

identification ⊗XQ coincides with the original identification of V ⊗XQ and TP×Q.

Proof. Let U ∈ Pic(DMP (k;F )) be the inverse of V . Tensoring V and TP with ∆Q, we get two
exact triangles in DMP (k;F ), where we can identify the TP×Q-terms:

TP // T
P×Q̃

// TP×Q[1] //

ϕ

��

TP [1]

V // T
P×Q̃

// TP×Q[1] //

ψ

OO

V [1]

(5)

Since U = V −1 is invertible, we have

Hom(T
P×Q̃, V [1]) = Hom(U ⊗T

P×Q̃, TP [1]) = Hom(T
P×Q̃, TP [1]).

By [Vis98, Theorem 2.3.2] (or [Voe95, Lemma 4.9]), we can identify

Hom(TP , TP [1]) = Hom(TP , T [1]) = H1,0
M(Čech(P ), F ) = H1

Zar(Čech(P ), F ),

Hom(TP×Q, TP [1]) = Hom(TP×Q, T [1]) = H1,0
M(Čech(P ×Q), F ) = H1

Zar(Čech(P ×Q), F ).
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And since Čech(P ) and Čech(P × Q) in étale topology are both contractable to Spec(k), by
the Beilinson–Lichtenbaum conjecture in weight zero (classical), the groups H1,0

M(Čech(P ), F )

and H1,0
M(Čech(P × Q), F ) both embed into H1

ét(Spec(k), F ), as the map from Zariski to étale
cohomology is injective on the first diagonal [Voe03, Corollary 6.9]. In particular, the natural map
Hom(TP , TP [1]) ↪→ Hom(TP×Q, TP [1]) is injective. On the other hand, Hom(TP×Q[1], TP [1]) =
Hom(TP×Q, T ) = F , Hom(TP [1], TP [1]) = Hom(TP , T ) = F and the map Hom(TP [1], TP [1])→
Hom(TP×Q[1], TP [1]) is an isomorphism. Considering long exact sequences of Homs from the
triangle TP×Q → TP → T

P×Q̃ → TP×Q[1] to TP and V , we get that both groups Hom(T
P×Q̃,

TP [1]) and Hom(T
P×Q̃, V [1]) are trivial. Hence the above mutually inverse isomorphisms ϕ,ψ can

be extended to maps of exact triangles. In particular, we get maps TP
f // V
g
oo . Moreover, since

by (3) there are no homs from TP×Q[1] to T
P×Q̃, it follows that (g ◦ f)⊗TP×Q = (ψ ◦ϕ). Indeed,

let u : TP×Q[1]→ TP [1]; then u ◦ (ψ ◦ϕ) = (g ◦ f) ◦ u. On the other hand, u ◦ ((g ◦ f)⊗TP×Q) =
(g ◦ f) ◦ u, and so, the difference (ψ ◦ϕ) − (g ◦ f)⊗TP×Q lifts to a map to T

P×Q̃ which must

be zero. Since End(TP ) = F = End(TP×Q) with the isomorphism (from left to right) given by
⊗TP×Q, and (ψ ◦ϕ) is invertible, we obtain that (g ◦ f) is invertible as well. That means that
TP is a direct summand in V . By [Bac18, Lemma 30], this implies that V ∼= TP .1 Alternatively,
applying the same considerations to the bottom row of (5) instead of the top, one obtains
that (f ◦ g)⊗TP×Q = (ϕ ◦ψ) and so (f ◦ g) is invertible too, which gives the same isomorphism
V ∼= TP . 2

Lemma 4.5. If P and Q are smooth projective varieties, V ∈ Pic(DM(k;F )) is such that
V ⊗XP ∼= TP , V ⊗XQ ∼= TQ and V ⊗XP×Q ∼= TP×Q, and these identifications commute with the
maps TP ← TP×Q → TQ, then there is an identification V ⊗XPtQ ∼= TPtQ and this commutes
with the maps TP → TPtQ← TQ.

Proof. The natural projections provide a complex

TP×Q −→ TP ⊕ TQ −→ TPtQ.

I claim that it extends to a distinguished triangle. Indeed, tenszoring it with XQ and X̃Q, we get
split exact complexes TP×Q → TP×Q ⊕ TQ → TQ and 0→ T

P×Q̃ → T
P×Q̃. Since the unit T is

an extension of XQ and X̃Q, we obtain the Mayer–Vietoris type distinguished triangle

TP×Q −→ TP ⊕ TQ −→ TPtQ −→ TP×Q[1].

Tensoring it with V and identifying both in TP×Q and TP ⊕ TQ terms

TP×Q //

∼=
��

TP ⊕ TQ //

∼=
��

TPtQ // TP×Q[1]

∼=
��

TP×Q // TP ⊕ TQ // VPtQ // TP×Q[1]

we extend it to an isomorphism of distinguished triangles. In particular, we get an identification
TPtQ ∼= VPtQ commuting with the needed maps. 2

Returning to the proof of Proposition 4.3, let XJ =
∏
i∈J Xi, and TXJ = XXJ . We now prove

by decreasing induction on |J | that V ⊗TXJ
∼= TXJ and these identifications commute with the

canonical maps TXL → TXJ , for J ⊂ L.

1 I am grateful to the referee for pointing out that connectivity of coefficients is not needed in this statement.
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For J = I we have XXI = XXI
, and we get the identification from the conditions of

Proposition 4.3.
Suppose we want to prove the inductive step for a given J . By the inductive assumption, we

have (coherent) isomorphisms for all TXJ′ with J $ J ′. It follows from the inductive application
of Lemma 4.5 that we can add to this coherent collection the isomorphism for TXJ×(ti 6∈JXi).

Since T
XJ× ˜(ti 6∈JXi)

= XXJ
, from the conditions of Proposition 4.3 and Lemma 4.4, we get that

TXJ can be added to our collection as well. The induction step is proven. For J = ∅ we get an
isomorphism V ∼= T . Hence our map is injective on Pic. 2

To start with, let us re-prove Bachmann’s result claiming that the reduced motives of affine
quadrics are invertible.

Proposition 4.6 (Bachmann [Bac17, Theorem 33]). Let Aq be an affine quadric {q = 1}. Then

the reduced motive M̃(Aq) is invertible in DMgm(k;Z/2).

Proof. Let dim(q) = n and q′ = 〈1〉 ⊥ −q. Then Aq = Q′\Q, and we have an exact triangle in
DM(k;Z/2):

M(Q′)→M(Q)(1)[2]⊕ T → M̃(Aq)[1]→M(Q′)[1].

For a smooth projective quadric R let us denote by Ri the Grassmannian of the i-dimensional
projective planes on R. Since Q is a codimension-one subquadric of Q′, we have that, for
any extension E/k, the following inequalities on the Witt indices hold: iW (q|E) 6 iW (q′|E) 6
iW (q|E)+1. In particular, we have a chain of rational maps between the respective Grassmannians

Q′0 Q0oo Q′1oo Q1oo · · ·oo

which induces a chain of morphisms of motives of their Čech simplicial schemes (cf. [BV18, proof
of Proposition 2.3])

XQ′0 ← XQ0 ← XQ′1 ← XQ1 ← XQ′2 ← XQ2 ← · · · .

Let us rewrite it as:
XX1 ← XX2 ← XX3 ← · · ·← XXn .

Consider the collection X = {Xi}ni=1. We can use the standard poly-binary approach as above,
but since our motives of Čech simplicial schemes are ordered, we can substitute it by an ‘ordered’
version. We have a Postnikov system in DM(k;Z/2):

XX0/1

[1]

��

XX1/2

[1]

��

XXn−1/n

[1]

��

XXn/n+1

[1]

��
T

==

XX1
oo

;;

?

XX2
oo

?

. . . XXn−1

99

XXnoo

99

?

0oo
?

whereXXi/i+1
= XXi ⊗X̃Xi+1 . Thus, the unit T is an extension of idempotents XXi/i+1

, i= 1, . . . , n.

Note that XXi ⊗XXj = Xmax(i,j), while X̃Xi ⊗X̃Xj = X̃min(i,j), and so XXi/i+1
⊗XXj = XXi/i+1

,
for j 6 i, and is zero otherwise. Let N ′ = n− 1 = dim(Q′) and N = n− 2 = dim(Q). By [Vis98,
Proposition 3.6], for a quadric R of dimension M , we have an exact triangle in DM(k;Z/2):

k⊕
l=0

XRk/k+1(M − l)[2M − 2l] −→M(R)⊗XRk/k+1 −→
k⊕
l=0

XRk/k+1(l)[2l] −→ · · · ,
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where the maps are induced by the plane section cycles T (M − l)[2M − 2l] → M(R) and the
dual ones M(R) → T (l)[2l] (in the same proposition it is stated for odd-dimensional quadrics
only as motives were integral there, but the same arguments work for all quadrics for motives
with Z/2-coefficients). Considering R = Q′ and R = Q, and tensoring the above triangle with the
appropriate XXi/i+1

(with k = [i − 1/2] (respectively, k = [i − 2/2])), we obtain exact triangles
in DM(k;Z/2):

[i−1/2]⊕
l=0

XXi/i+1
(N ′ − l)[2N ′ − 2l] −→M(Q′)⊗XXi/i+1

−→
[i−1/2]⊕
l=0

XXi/i+1
(l)[2l] −→ · · · ,

[i−2/2]⊕
l=0

XXi/i+1
(N − l)[2N − 2l] −→M(Q)⊗XXi/i+1

−→
[i−2/2]⊕
l=0

XXi/i+1
(l)[2l] −→ · · · .

Thus M̃(Aq)⊗XXi/i+1
∼= XXi/i+1

(i/2)[i−1], for i even, and ∼= XXi/i+1
(N ′−(i−1/2))[2N ′− i+1],

for i odd. In any case, M̃(Aq)⊗XXi/i+1
is invertible in DMXi/i+1

(k;Z/2), for every i. By the
‘ordered’ version of Proposition 4.2, the functor

× (⊗XXi/i+1
) : DMgm(k;Z/2)→ ×i DMXi/i+1

(k;Z/2)

is conservative and detects invertible objects. Hence, M̃(Aq) is invertible in DM(k;Z/2). 2

Denote by TateXJ
= Tate(DMXJ

(k;F )) the thick tensor triangulated subcategory of
DMXJ

(k;F ) generated by the Tate motives TXJ
(a). Then Pic(TateXJ

) contains the subgroup T
consisting of Tate motives TXJ

(a)[b], a, b ∈ Z.

Proposition 4.7. Suppose the category DMXJ
(k;F ) is non-zero. Then T ∼= Z⊕ Z.

Proof. Suppose that TXJ
∼= TXJ

(a)[b], for some (a)[b] 6= (0)[0].

Our projector XXJ
has the form XP ⊗X̃Q for some smooth projective P and Q. This projector

will be non-zero if and only if Q has no zero-cycle of degree 1 over the function field E of some
connected component of P . Indeed, it follows from [Vis98, Theorems 2.3.4 and 2.3.5] that if Q
has a zero-cycle of degree 1 over each such function field, then M(P )⊗X̃Q = 0. Since XP belongs

to the localizing subcategory generated by M(P ), XP ⊗X̃Q is zero as well. For the converse, it is

sufficient to restrict to E and observe that X̃Q|E is non-zero by [Vis98, Theorem 2.3.3]. Hence,

in our situation, XP ⊗X̃Q|E = X̃QE is still non-zero. Thus, by passing to E, we can assume that

our projector is X̃Q. As we have (a)[b]-periodicity, we obtain

0 6= Hom(T
Q̃
, T

Q̃
) = Hom(T

Q̃
, T

Q̃
(a)[b]) = Hom(T

Q̃
, T

Q̃
(−a)[−b]).

From the fact that Hom(TQ, TQ̃(∗)[∗′]) = 0, we have Hom(T
Q̃
, T

Q̃
(c)[d]) = Hom(T, T

Q̃
(c)[d]), and

we have an exact sequence Hom(T, TQ(c)[d + 1])← Hom(T, T
Q̃

(c)[d])← Hom(T, T (c)[d]). The

group Hom(T, T (c)[d]) is zero, for d > c and for c < 0, while the group Hom(T, TQ(c)[d + 1]) is
zero, for d > c. Thus, one of the groups Hom(T

Q̃
, T

Q̃
(a)[b]) or Hom(T

Q̃
, T

Q̃
(−a)[−b]) will be zero

– a contradiction. Hence, all the Tate motives TXJ
(a)[b] are different. 2

For X = {Xi}i∈I , denote by 2I the set of those J ⊂ I, for which the projector XXJ
is non-zero.

Corollary 4.8. Let A be an object of DMgm(k;F ) and X = {Xi}i∈I be some collection such
that πXJ

(A) ∼= TXJ
(aJ)[bJ ], for every J ⊂ I. Then A is invertible. Moreover, two such objects

are isomorphic if and only if the respective functions (aJ)[bJ ] : 2I → (Z)[Z] are the same.
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Proof. This follows directly from Propositions 4.2, 4.3 and 4.7. 2

Now let A be some object of DQMgm (the category considered by Bachmann). Then A is
obtained from motives of finitely many smooth projective quadrics {Ql}l∈L using cone operations
and tensor products (as well as direct summands and Tate shifts). Let Qrl , r = 0, . . . , [dim(Ql)/2],
be the quadratic Grassmannians of Ql. Consider the collection X(A) = {Xi}i∈I of all these
Grassmannians.

Proposition 4.9. Let F = Z/2, and A be an object of DQMgm. Let X = X(A). Then πXJ
(A)

belongs to TateXJ
, for every J ⊂ I.

Proof. From [Vis98, Proposition 3.6] we have exact triangles in DM(k;Z/2):

r⊕
j=0

X
Q
r/r+1
l

(N − j)[2N − 2j] −→M(Ql)⊗XQr/r+1
l

−→
r⊕
j=0

X
Q
r/r+1
l

(j)[2j] −→ · · · ,

where X
Q
r/r+1
l

= XQrl ⊗X̃Qr+1
l

and N = dim(Ql). Hence, π
Q
r/r+1
l

(M(Ql)) belongs to the Tate

motivic category. And every projector πXJ
factors through some π

Q
r/r+1
l

, r = 0, . . . , [dim(Ql)/2]

(for a fixed l). Indeed, if Qtl ∈ J and Qsl 6∈ J , for some t > s, then the projector πXJ
contains

the factor XQtl ⊗X̃Qsl , and so is zero (as XQtl > XQsl ; see below). Hence, for a non-zero projector

(and fixed l), there exists r such that Qtl ∈ J , for t 6 r, and Qsl 6∈ J , for s > r. Then πXJ
has the

factor π
Q
r/r+1
l

. Thus, πXJ
(M(Ql)) belongs to TateXJ

, and so does πXJ
(A), as TateXJ

is closed

under the operations mentioned. 2

Remark 4.10. The restriction on coefficients is caused by even-dimensional quadrics. For integral
coefficients one has to use, in addition, Artin motives corresponding to quadratic extensions. But
if we restrict ourselves to odd-dimensional quadrics only, then the statement is true with integral
(and so, any) coefficients.

For a collection X, let the reduced collection X be the subset of those Xi for which there are
no zero-cycles of degree 1 over k. For a coefficient ring F of prime characteristic, the collection
is reduced exactly when ∅ ∈ 2I . If the collection Y contains X, we call it a refinement of X.

The following result shows that, at least in working with Picqua, both approaches are
equivalent. For A ∈ Picqua, let X(A) = X be the collection such that πXJ

(A) ∈ T, for all J .
We know from the proof of Proposition 4.6 that such a collection exists.

Proposition 4.11. Let A ∈ Picqua, and Y be any refinement of X(A) reduced. Then Φk(A) =
T (a)[b] ∈ Kb(Tate(Z/2)) and πY

∅
(A) = T (a)[b] ∈ DMY

∅
(k;Z/2), for the same (a)[b].

Proof. It is sufficient to check this for A = eq, where we get from Proposition 3.3 and the proof
of Proposition 4.6 that in both cases

(a)[b] =

iW (Q′)−1∑
l′=0

(m′ − 2l′)[2m′ − 4l′ + 1]−
iW (Q)−1∑
l=0

(m− 2l)[2m− 4l + 1],

where q′ = 〈1〉 ⊥ −q, m′ = dim(Q′) and m = dim(Q). 2
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Thus, to recover Φk(A), we do not need the whole collection Y, but only πY
∅
. It is enough

to take Q =
⊔
lQl the disjoint union of sufficiently many anisotropic quadrics, so that X̃Q⊗A ∼=

T
Q̃

(a)[b]. Then Φk(A) ∼= T (a)[b] as well. One can define ΦE(A) similarly.

Let us introduce an ordering on Čech simplicial schemes: XR > XS if and only if the projection
XR → T factors through a map XR → XS in DM(k;Z/2). This is equivalent to the map
XR⊗XS → XR being an isomorphism, or, equivalently, X̃S ∼= X̃R⊗X̃S . Since the automorphism
group of X̃R is trivial, we can choose these identifications simultaneously for all inequalities in
an associative way. Then XR ∼= XS if and only if there are inequalities in both directions. Let E
be a finitely generated field extension, and P be a smooth projective variety with k(P ) = E. Let
Q be the disjoint union of all connected varieties Q with XQ 	 XP (so it is a smooth variety,
but with infinitely many components). Let XQ be the motive of the respective Čech simplicial

scheme, and X̃Q be the complementary projector. Define the ‘motivic category of an extension’:

DM(E/k;Z/2) = XP ⊗X̃Q⊗ DM(k;Z/2). (6)

Note that the category DM(E/k;Z/2) is non-zero, and by the arguments from the proof of
Proposition 4.7, Pic of it contains the subgroup of Tate motives isomorphic to Z ⊕ Z. Let ϕE :
DM(k;Z/2)→ DM(E/k;Z/2) be the natural projection functor. For A ∈ Picqua, we know that
ϕE(A) ∼= TE(a)[b], for some (unique) a, b ∈ Z. Then ΦE(A) ∼= T (a)[b] as well. Indeed, we can
reduce to the case of a trivial field extension using the natural functor

DM(E/k;Z/2)→ DM(E/E;Z/2).

Now all the calculations we did in § 3 can be performed with the help of Corollary 4.8 instead
of [Bac17, Theorem 31]. Actually, the whole functor ΦE of Bachmann can be alternatively
introduced along these lines.
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