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Notes

107.01 A simple integral representation of the Fibonacci
numbers

The sequence  where each number
is the sum of the two preceding ones corresponds to the famous Fibonacci
sequence. As is well known, if  is a non-negative integer, the  Fibonacci
number  is defined by the recurrence relation  for

 with  and . Known properties for the Fibonacci
numbers are vast, and if anyone is in any doubt about this one need look no
further than the two volumes devoted to these numbers by Koshy [1, 2].

{0,  1,  1,  2,  3,  5,  8,  13,  21,  34, … }

n n th
Fn Fn = Fn − 1 + Fn − 2

n ≥ 2 F0 = 0 F1 = 1

In this Note I give a simple* integral representation for these numbers. I
begin by stating the result before proceeding to give a proof. Some
consequences of the result are then discussed and an application making use
of the result considered.

For  an integral representation of the Fibonacci numbers is given
by

n ≥ 1

Fn =
n
2n ∫

 1

−1
(1 + x 5)n − 1

dx. (1)

To prove the result we recall Catalan's formula for the Fibonacci
numbers [1, p. 197]

Fn =
1

2n − 1 ∑
⎣n − 1

2 ⎦

k = 0
( ) 5k.n
2k + 1

Here  denotes the floor function, that is, the greatest integer less than or
equal to .  Since the binomial coefficient can be expressed as

⎣x⎦
x

( ) =
n

2k + 1 ( ) ,n
2k + 1

n − 1
2k

Catalan's formula can be rewritten as

Fn =
n
2n ∑

⎣n − 1
2 ⎦

k = 0
( ) 5k 2

2k + 1
.n − 1

2k
Reindexing the sum by  producesk → k

2

Fn =
n
2n ∑

2⎣n − 1
2 ⎦

k = 0
k ∈ even

( ) 5k/2 2
k + 1

. (2)n − 1
k

Noting that

∫
 1

−1
xk dx =

⎧

⎩
⎨
⎪

⎪

0, k odd,
2

k + 1
, k even,

* Some might say obvious, but I have not seen it before and failed to find it
anywhere including in Koshy's two volume set of texts which would be the
obvious first place to look.
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we may rewrite (2) as

Fn =
n
2n ∑

2⎣n − 1
2 ⎦

k = 0
k ∈ even

( ) 5k/2 ∫
 1

−1
xk dx. (3)n − 1

k

Now when  is odd, the integral appearing in (3) is zero causing all such
terms in the summation to be zero. The upper limit of the summation may
therefore be changed from  to  without it affecting the value
of the sum. With the changed upper limit for the sum, interchanging the
summation with the integration produces

k

2 ⎣n − 1
2 ⎦ (n − 1)

Fn =
n
2n ∫

 1

−1
∑
n − 1

k = 0
( ) (x 5)k

dx =
n
2n ∫

 1

−1
(1 + x 5)n − 1

dx.n − 1
k

Here we have made use of the binomial theorem, and completes the proof.
An immediate consequence of this result is Binet's formula for the

Fibonacci numbers [1, p. 90, Theorem 5.5]. To see this, as the integral
appearing in (1) is elementary, integrating gives

Fn =
1
5

⎡
⎢⎣(1 + x 5

2 )n⎤
⎥⎦

 1

−1
=

1
5

⎡
⎢⎣( 5 + 1

2 )n

− (−1)n ( 5 − 1
2 )n⎤

⎥⎦

=
1
5 (ϕn −

(−1)n

ϕn ) ,

which is Binet's formula for the  Fibonacci numbers. Here  denotes the
golden ratio defined by . Indeed, (1) can be seen as a thinly
disguised form of Binet's formula for  with the connection becoming
obvious if we write

n th ϕ
( 5 + 1) / 2

Fn

Fn =
n
5 ∫

 ϕ

−1/ϕ
tn − 1dt,

and substitute .t = (1 + x 5) / 2
From the integral representation of the Fibonacci numbers we used to

arrive at Binet's formula, using this as a guide one can almost guess what the
integral representation of the Fibonacci numbers for even orders ought to be.
The clue here is to be found in the value for the square of the golden ratio,
namely . From this we conjectureϕ2 = (3 + 5) / 2

F2n =
n
2n ∫

 1

−1
(3 + x 5)n − 1

dx, (4)

for . In proving the conjecture true, replacing  with  in (1) yieldsn ≥ 1 n 2n

F2n =
2n
22n ∫

 1

−1
(1 + x 5)2n − 1

dx.

Substituting  produces
while the limits of integration remain unchanged. Thus

t = 1
2 5

[(1 + x 5)2 − 6] dx = dt / 6 + 2t 5

F2n =
2n
22n ∫

 1

−1
( 6 + 2t 5)2n − 1 dt

6 + 2t 5
=

n
2n ∫

 1

−1
(3 + t 5)n − 1

dt,

as required to prove.

https://doi.org/10.1017/mag.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.15


122 THE MATHEMATICAL GAZETTE

The integral representation of the Fibonacci numbers for even orders
given by (4) is known in the literature. It first appears to have been given by
Dilcher [3, p. 358, Eq. (10.2)] who obtained it using an approach that relied
on the (Gaussian) hypergeometric function. Dilcher's result is presented as a
trigonometric integral that is obtained by using a substitution of  in
(4). For alternative integral representations of the Fibonacci numbers see [4,
Eq. (1.2)], [5, Eq. (4.29), p. 132] and for the Fibonacci numbers for even
orders see [4, Eq. (3.12)].

x = cos t

As an application of the integral representation given by (1) we will use
it to show the well-known result for the generating function of the Fibonacci
numbers of [1, pp. 236-237, Example 13.8]

∑
∞

n = 0

Fnx
n =

x
1 − x − x2

,  | x | <
1
ϕ

.

To prove this result, replacing  in the series with its integral
representation we have

Fn

∑
∞

n= 0

Fnx
n = ∑

∞

n= 0

n
2n ∫

 1

−1
(1 + t 5)n− 1

xndt =
x
2 ∫

 1

−1
∑
∞

n= 0

n(x(1 + t 5)
2 )n− 1

dt.

The interchange made here between the integration and the summation is
permissible due to Fubini's theorem [6, p. 55, Theorem 2.25]. Recalling the
result

∑
∞

n = 0

nzn − 1 =
1

(1 − z)2
,  | z | < 1,

we see that

∑
∞

n = 0

n (x (1 + t 5)
2 )n − 1

=
1

(1 − x(1 + t 5)
2 )2 ,

where  for . Thus| x | < 1 / ϕ t ∈ (−1,1)

∑
∞

n = 0

Fnx
n =

x
2 ∫

 1

−1

dt

(1 − x(1 + t 5)
2 )2 =

x
2

⎡⎢⎣
−4

x 5 (xt 5 + x − 2)
⎤⎥⎦

 1

−1

= −
2
5

⎡⎢⎣
1

x + x 5 − 2
−

1
x − x 5 − 2

⎤⎥⎦ =
x

1 − x − x2
,

as required to show. If integral representation (4) is used instead of (1), in a
similar manner it can be shown that

∑
∞

n = 0

F2nx
n =

x
x2 − 3x + 1

,  | x | <
1
ϕ2

,

a generating function for the even order Fibonacci numbers.
We end this Note by giving an integral representation of the Lucas

numbers. The Lucas numbers are closely connected with the Fibonacci
numbers. Recall if  is a non-negative integer, the  Lucas number  is
defined by the recurrence relation  for  with

 and . One particularly useful relation between the Lucas

n n th Ln
Ln = Ln − 1 + Ln − 2 n ≥ 2

L0 = 2 L1 = 1
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numbers and the Fibonacci numbers is: ,  (see [1,
p. 117, Ex. 5.44]). Combining this relation with the result given in (1) leads
to a relatively simple integral representation of the Lucas numbers. It is

Ln = Fn + 2Fn − 1 n ≥ 1

Ln =
n
2n ∫

 1

−1
(5 + x 5 −

4
n) (1 + x 5)n − 2

dx,

and is valid for . Many other integral representations of the Lucas
numbers can be found by employing other known relations between the two
numbers  and  which the reader may care to find.

n ≥ 1

Ln Fn
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107.02 Collatz conjecture: coalescing orbits and conditions
on a minimum counterexample

Introduction
Originally proposed by Lothar Collatz in the 1930s, the Collatz

Conjecture, also known as the Collatz Problem, Syracuse Problem, and
 Conjecture, has become a notoriously difficult unsolved problem in

mathematics. Much of its appeal is in the simplicity of the problem
statement. The conjecture states that for every positive integer , iterating

3n + 1

n
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