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POISSON TRANSFORMS AND MIXED AUTOMORPHIC FORMS
ON SEMISIMPLE LIE GROUPS

MIN Ho L E E AND HYO CHUL MYUNG

We discuss Poisson transforms which carry sections of certain vector bundles to mixed
automorphic forms, and identify vector bundles whose sections are liftings of holo-
morphic forms on families of Abelian varieties via Poisson transforms.

1. INTRODUCTION

Holomorphic mixed automorphic forms on semisimple Lie groups are automorphic
forms on Hermitian symmetric domains associated to equivariant holomorphic maps of
symmetric domains, and certain types of mixed automorphic forms arise as holomorphic
forms on families of Abelian varieties parametrised by a locally symmetric space. The goal
of this paper is to discuss Poisson transforms which carry sections of certain vector bundles
to mixed automorphic forms, and identify vector bundles whose sections are liftings, via
such Poisson transforms, of holomorphic forms on families of Abelian varieties.

Let T = {e" | -n ^ t < ir} be the unit circle in C, and let LX(T) be the space
of complex-valued integrable functions on T. Given an element / e LX(T), if we write
f(t) = /(eI() for t €T, the classical Poisson integral Vf of / is given by

for 0 ^ r < 1 and 0 € R. It is well-known that Vf(reie) is a harmonic function for any
/ € Ll(T) (see, for example, [15]). If we use the normalised measure dr for T, then the
formula (1.1) can be written in the form

for all z eU, where U is the open unit disk { z € C | | z | < l } . Note that T and U can be
identified with the quotients of SU(1,1) by a maximal compact subgroup and a minimal
parabolic subgroup, respectively. This observation suggests a possibility of extending the
notion of the Poisson integral to the case of more general semisimple Lie groups.
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Let G be a semisimple Lie group of Hermitian type, and let D = G/K be the
Hermitian symmetric domain determined by a maximal compact subgroup K C G. Let
a be a finite-dimensional representation of K in a complex vector space, and let P C G
be a minimal parabolic subgroup. We denote by g and t the Lie algebras of G and K,
respectively, and let p be the orthogonal complement of 6 in g relative to the Killing form.
If ac is the complexification of a maximal Abelian subspace a of p and if A € aj., then a
can be extended to a representation apt\ of P. Thus we can consider the homogeneous
vector bundle W(aPf\) (respectively, V(<r)) over G/P (respectively, G/K) associated to
aPtx (respectively, a). In this setting, the analogue of the classical Poisson integral is the
Poisson transform V\,p which assigns to each section <j> of W(ap,x) a section of V(a) (see
[3, Section II.3.4], [12]).

Let G' be another semisimple Lie group of Hermitian type, and let D' — G'/K'
be the Hermitian symmetric domain associated to a maximal compact subgroup K' c
G'. Then a homomorphism fi : G —> G' of Lie groups with fi(K) c K' induces an
equivariant holomorphic map r : D -» D'. Let F and F' be discrete subgroups of G
and G', respectively, with /x(F) c F'. Given automorphy factors j : F x D —> GL{W)
and j ' : V x D' -t GL(W) for finite-dimensional complex vector space W and W, a
holomorphic mixed automorphic form on G is a (W <g» VF')-valued function on D defined
using the automorphy factor

(see Section 3). When G' is a symplectic group, mixed automorphic forms associated
to certain automorphy factors can be identified with holomorphic forms of the highest
degree on some families of Abelian varieties parametrised by a locally symmetric space.

Let a! be a subspace of g' = LieG defined as in the case of a C g. In this paper, we
introduce the Poisson transform 7\A- associated to A € aj and A' 6 a^* defined on the
space of sections of a homogeneous vector bundle W(<7A,A') over G/P. Given a torsion-free
discrete subgroup F of G and a F-invariant section <j> of W(CTA,A')I we prove that 7\A'<A

is a holomorphic mixed automorphic form. Using the correspondence between mixed
automorphic forms and holomorphic forms on families of Abelian varieties, we identify
vector bundles whose sections are Poisson transform liftings of holomorphic forms of the
highest degree on some families of Abelian varieties.

2. CANONICAL AUTOMORPHY FACTORS

In this section we describe holomorphic automorphic forms on semisimple Lie groups
of Hermitian type and discuss canonical automorphy factors for such Lie groups.

Let G be a connected semisimple Lie group, and let K be a maximal compact
subgroup of G. We assume that G is of Hermitian type, which means that the associated
symmetric space D = G/K has a G-invariant complex structure. Thus D is a Hermitian
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symmetric space and can be realised as a bounded domain in C* for some positive integer
k. Let I V b e a finite-dimensional complex vector space, and let S be a subgroup of G. A
map J : S x D —> GL{W) is called an automorphy factor of S if it satisfies the following
conditions:

(i) For fixed g £ S, the map z t-» J(g, z),D -t GL(W) is holomorphic.

(ii) For all 51,52 £ 5 and z £ D, we have

(2.1) J(9i92, z) = J{gi,g2z) • J(g2, z).

Let F be a torsion-free discrete subgroup of G. Then the complex structure on D
induces the structure of a complex manifold on the locally symmetric space X = T\D,
and we can define automorphic forms on D as follows (see [2]).

DEFINITION 2.1: Let J : F x D -» GL(W) be an automorphy factor of T. A
holomorphic automorphic form on D (or on G) of type J for F is a holomorphic map
f : D —>W that satisfies

f(jz)=Jh,z)-f(z)

for all z £ D and 7 € F.

Given an automorphy factor J : F x D —> GL(W), we can construct the associated
vector bundle A^(F, J) on the locally symmetric space X = T\D as follows. Let the
discrete subgroup F of G act on D x W by

7 -(z, w) = (jz,J(r/,z)w)

for all 7 € F and {z, w) € D xW. The fact that this operation indeed defines an action
of F on D x W follows from the condition (2.1). We set

(2.2) M(T,J) = r\DxW,

where the quotient is taken with respect to the above action of F on D x W. Then the
natural projection D xW -* D induces the structure of a holomorphic vector bundle on
the induced map

with fibre W. Let ro(X,M(T, J)) denote the space of holomorphic sections of M(T, J)
over X, that is, holomorphic maps s : X —> M(T,J) such that u o s = 1*. Given a
section s : X -» M(T, J) of M{T, J) and an element z € D we have

s(Fz) = [(z,wz)} e M(r,j) = r\DxW

for some wz £ W, where Yz £ X and [(2, wz)] £ M(T,J) denote the elements cor-
responding to z £ D and (z,wz) £ D x W, respectively. We define fs : D -> W by
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fs(z) — wz for all z € D. Then it can be shown that the map s *-¥ fs determines a canon-
ical isomorphism between T0(X,M(T, J)) and the space of holomorphic automorphic
forms on D of type J for I\

We shall now describe the construction of the canonical automorphy factor of the
semisimple Lie group of G of Hermitian type. Let / be a G-invariant complex structure
on D = G/K. Then for each z € D it determines a complex structure Iz on the tangent
space TZ(D). Let g and I be the Lie algebras of G and K, respectively, and let g = t+p be
the corresponding Cartan decomposition of g. If z0 is the point in D with Kz0 = zQ, then
we can identify p with the tangent space TZ0(D); hence we obtain a complex structure
Izo on p. We set

and denote by P+, P- the C-subgroups of Gc corresponding to p+, p_, respectively; here
(•)c denotes the complexification. Then we have

P+ n KCP_ = {1}, G C P+KCP_, G n KCP- = K

(see [16, Lemma II.4.2], [14]). If g e P+KCP- C Gc, we denote by (g)+ € P+, (g)0 e Kc

and (p)_ e P- the components of g such that

5 = (d)+ • {9)0 • ( 5 ) -

Let (Gc x p+). denote the subset of Gc x p+ consisting of elements (g, z) such that
g • exp z 6 P+KcP-, and set

(2.3) J(g, z) = (g- exp z)0 € Kc

for (p, z) € (Gc x p+)». If we identify the Hermitian symmetric domain D with a subset
of p+ using the Harish-Chandra embedding D <-+ p+ (see [16, Section II.4]), then we
have

G x D C (Gc x p+) , .

Thus we obtain a map J : G x D -4 Kc which satisfies the condition

(2.4) J{9\92, z) = J{gi,g2z) • J{g2, z)

for <h, 52 € G and z € D. The map J is called the canonical automorphy factor of G.
Let a : K —> GL(VK) be a representation of K in a complex vector space W, and extend
it to a representation of KQ. Thus, using (2.4), we see that a o J -. G x D —> GL(W) is
an automorphy factor in the sense of Definition 2.1.
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3. M I X E D AUTOMORPHIC FORMS

Mixed automorphic forms were introduced by Hunt and Meyer [4] who showed that
holomorphic two-forms on an elliptic surface can be identified with certain mixed auto-
morphic forms. Such mixed automorphic forms are defined by using automorphy factors
that involve the monodromy representation and the period map of the given elliptic sur-
face. On the other hand, holomorphic forms on the fibre product of elliptic surfaces
correspond to mixed automorphic forms of higher weights (see, for example [7]). Mixed
automorphic forms of several variables and their connection with holomorphic forms on
families of Abelian varieties have also been studied recently (see [8, 10, 9, 11]). In this
section we describe holomorphic mixed automorphic forms on semisimple Lie groups.

Let G, K, D = G/K, F and X = T\D be as in Section 2. Let G' be another
semisimple Lie group of Hermitian type, and let D' = G'/K' be the Hermitian symmetric
domain associated to a maximal compact subgroup K' of G'. We assume that there are
a homomorphism n : G —> G' of Lie groups and a holomorphic map r : D —t D' that are
equivariant, that is, they satisfy r(gz) = n{g)r(z) for all g € G and z € D. In particular,
we have n{K) C K'. Let F' be a torsion-free discrete subgroup of G' such that /i(F) C F'.
Then the complex structure on D' induces the structure of a complex manifold on the
locally symmetric space X' = r'\D', and the holomorphic map r induces a map X —> X'.

D E F I N I T I O N 3 . 1 : Let j : F x D -» GL(W) and f : T' x D' -4 GL{W) be automor-

phy factors of V and F', respectively, where W and W are finite-dimensional complex
vector spaces. A holomorphic mixed automorphic form on D (or on G) of type (j, j ' , /z, r )
for F is a holomorphic map / : D -t W <g> W that satisfies

(3.1) H-yz) =j(7,z)®f{l*h),T(z)) -f(z)

for all z 6 D and j € F.

Let j and j ' be as in Definition 3.1, and let F act on D x (W ® W) by

7- (z,w) = (lz,j{~f,z)®j'(n{')),T{zj)w}

for all 7 € F, z G D and w € W <S> W. We denote by M(T, j , f) the associated quotient
space, that is,

M{r,j,f) = r\D x (W®W).

Then the natural projection Dx{W®W) —¥ D determines the structure of a holomorphic
vector bundle on the induced map

with fibre W®W. We denote by TQ{X, AA{T,j, j')) the space of holomorphic sections of
, j , j') over X, that is, holomorphic maps s : X —¥ M(T,j,f) satisfying w o s = 1*.
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LEMMA 3 . 2 . Tie space Fo (X, M (F, j , j')) of sections ofM (F, j , f) is isomorphic
to the space of holomorphic mixed automorphic forms on D of type (j, j ' , /z, r) for F.

PROOF: A holomorphic mixed automorphic form on D of type (j,f, n, r) for F is a
holomorphic automorphic form with respect to the automorphy factor

of F. On the other hand, we see that M(T,j, j') is simply the vector bundle M(T,J)
considered in (2.2) for J equal to this automorphy factor. Hence the lemma follows from
the usual isomorphism between M(T, J) and the space of automorphic forms of type J
described in Section 2. D

4. HOMOGENEOUS VECTOR BUNDLES

Let © be a Lie group, and let Sj be a closed subgroup of 0. Let ©//) denote the set
{gSj | g G 0} of left cosets modulo 55, and let p : 0 -> 0/i} be the natural projection
p(g) = fl-fi- Then 0/fj has a unique manifold structure such that p is smooth and for
each gSj £ 0/Sj there is a neighbourhood U of gS) and a smooth map /J. : U —*• <3 such
that p o fj, = id[/. The quotient space <3/f) with such a manifold structure is called a
homogeneous manifold.

DEFINITION 4.1: Let M — <&/Sj be a homogeneous manifold. A vector bundle E
over M is called a homogeneous vector bundle if © acts on E on the left and the ©-action
satisfies the following conditions:

(i) If Ex denotes the fibre of E over x € M, then g • Ex — Egx for all x € M

and j £ 0 .

(ii) The map Ex —• Egx induced by each g € 0 is linear for all x € M.

We shall now construct a homogeneous vector bundle associated to a representation
of Sj. Let M — 0/Jo be a homogeneous manifold, and let 77 be a representation of f) in
a finite-dimensional complex vector space V. Then S) acts on the product © x V on the
right by

(4.1) (g,v)-h^(gh,r1(h)-1v)

for alike fi and {g, v) € © x V. We set

Vfa) = 0 x

where the quotient is taken with respect to the action of f) on 0 x V given by (4.1). The
natural projection S x V ^ 0 induces the map n : V(r]) —> M which has the structure
of a vector bundle with fibre V (see [17]). It can be shown that V(ri) is a homogeneous
vector bundle over M. Let F0(M, V{T})) be the space of sections of V(7/), that is, smooth
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maps s : M -¥ V(r]) such that IT O S = 1M. If s : M -> V(r)) is a section of V(rj) and

g € G, we have

for some wg € V, where [(g, vg)] denotes the element of V{rj) corresponding to (g, vg) 6
D x V. We set fs{g) = vg for all geG. Then for each h £ H we have

s ( 5 # ) = S(<?/itf) = [(gh,vgh)} = [(s/i.t/pfc) • /T1] = [(g,ri(h)vgh)}.

Thus we see that

f,(g) =

Therefore each section s G T0[M, V(r/)) of V(77) can be identified with a smooth function
/ : (5 —»• V on © satisfying

(4.2) /(ffft) = ^( / i )" 1 /^)

for all (g,v) € G x V and fteff.

Suppose now that 0 is a semisimple Lie group of Hermitian type, and let A be a
maximal compact subgroup of 0 so that the associated homogeneous manifold M =
becomes a Hermitian symmetric domain. Let 77 be a representation of .6 in V, and let
A be a torsion-free discrete subgroup of 0 . We denote by r o (A, V(r])) the space of A-
invariant sections of the associated homogeneous vector bundle V(r)). Thus each element
of Fo(M, V(TI)) can be identified with a holomorphic function / : G —> V such that

f(5gk) = »?(*)-7(ff)

for all 6 € A, k € 8. and g € 0 .

LEMMA 4 . 2 . Let J : 0 x M -» £c be the canonical automorphy factor of<5, and
let Jn — 770 J •. 0 x M -» GL(y) be the automorphy factor of® associated to TJ. KZQ e M
is the element with Mz0 — z0, then the map [(g, v)] i-> [(<7Zo> ^)] determines a canonical
isomorphism between To (M, V{r))) and the space of all holomorphic automorphic forms
on M of type Jr, for A.

PROOF: See, for example [13, Theorem II.4.1]. D

5. POISSON TRANSFORMS

Let G, K, g, I and p be as in Section 2 with g = I + p, and let a be a maximal
Abelian subspace of p. Then we obtain the Iwasawa decomposition

g = E+ a + n
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of fl, where n is a nilpotent subalgebra of 0 (see for example [5, Section V.2]). Let A and
TV be subgroups of G corresponding to the Lie algebras o and n, respectively, so that we
obtain the Iwasawa decomposition G = KAN of G. Let M be the centraliser of A in
K, and set P — MAN, which is a minimal parabolic subgroup of G. We shall write any
element g G G in the form g — n(g) • eH^ • n with «;(</) G K, H(g) G a and n e N.

Let G', K' and fi : G -* G' be as in Section 3. We shall denote various objects
associated to G' by adding the prime symbol to the corresponding objects for G. Thus
G" = K'A'N' is the Iwasawa decomposition of G', and each element g' G G' can be
decomposed in the form

g' = K'(g') • e ™ • n'

with K' G K', H'{g') G o' and n' G N'. Let P' = M'A'N' be the associated minimal
parabolic subgroup of G', where M' is the centraliser of A' in K'. We assume that
fi(A) C A' and /i(N) c N'.

Let a (respectively, a') be an irreducible representation of K (respectively, K') in a
finite-dimensional complex vector space W (respectively, W), so that a®(cr'ofx) becomes
a representation of K in W <g> W. Given an element A e aj. we define the representation
ax,p of P in W by

for all m G M, a € A and n € N, where p is the half-sum of dim(0a)a over the positive
roots a of (0, a). Similarly, if A' S a^* and if p' is the half-sum of dim(0^,)a' over the
positive roots a' of (0', a'), we denote by a'x, P, the representation of P' in W defined by

a'x,<P,(m'a'n') = e<-A'+''>">V(m'),

for all m' € M', a' € A' and n' € N'. We then define the representation CTA,A' of P in
W ® W by

so that we have

(5.1) CTA,y (man) = c-<

for m G M, a e A and n e TV.

Let V(CT ® (IT' O ̂ )) (respectively, VV(CTA,A')) De the homogeneous vector bundle on
G/K (respectively, G/P) associated to the representation o®(o'ofi) (respectively, CTA.A')-

Using (4.2) and (5.1), we see that a section <j> G T0{G/P, W(CTA,A')) of the bundle W(CTA,A')

can be regarded as a smooth function (p :G -*W ®W satisfying

(5.2) <j>(gman) = ax,x'{rnan)~l(j){g)

a)) (ff g, {a> o / i)
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for g G G, m G M and a G A. Similarly, a section ip G TQ\G/K, V(a<8> {a1 o /*)) J of the

vector bundle V(CT <2> {a' ° y)) can be identified with a function ip : G —> W ® W such

that

(5.3) Vfo*) ={p® {a1 o /*)) (A;)"1 ip{g)

for all /c G K and 5 G G.

DEFINITION 5.1: Let 0 be an element of r o ( G / P , W(<7A,A'))> that is, a smooth
function 0 : G -> W ® W' satisfying (5.2). The Poisson transform Vx,x'<f> of <̂> is a
(W ® W)-valued function on G given by

(5.4) (J>x,x'(p){g) = (a®(a'oy))(k)<j>(gk)dk
JK

for all g G G.

LEMMA 5 . 2 . Let f be a continuous function on K that is right invariant under

K n M. Then we have

f f(k)dk= I
JK JK

for geG.

P R O O F : See for example [5, p. 170]. D

LEMMA 5 . 3 . The Poisson transform Vx,\'(j> of an element <f> e T0(G/P, W(CTA,V))

can be written in the form

(5.5) (Vx [
JK

for all geG.

PROOF: I f m e i f n M , then by (5.2) we have

4>(gkm) = (a ® (a' o n))(m)-l<f>(gk)

for g € G and k € K. Thus the function

is right invariant under K n M, and hence, applying Lemma 5.2 to this function, we
obtain

= f {a®(a'o
JK

= f e-2<"<l°-lk\a®(cT'ori){K(g-lk))<t>(gK(g-lk))dk
JK
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for g € G. Let g~lk = K(g~xk) • a.i • ni with ai G A and n^ € N. Then we have

gn{g~lk) = kn^a^1 — ka[ln'

for some n' £ N because A normalizes N. Hence, using (5.2), we see that

Thus, for g € G and k € K, we have

= f
JK

and hence the lemma follows. D

Let F be a torsion-free discrete subgroup of G as in Section 3, and consider the
left-action of F on G x (W ® W ) defined by

(5.6) 7 • {9, w) = (75, w)

for 7 € F, g € G and u> e py ® W . Since this action commutes with the one given
by (4.1) for rj = a ® (a' o fx) and V = W ® VK' that was used for the construction of a
homogeneous vector bundle, the homogeneous vector bundle

V(CT®(CT 'O M ) ) -> D = G/K

associated to a ® {a' o^) induces the vector bundle

V(r, a ® (a' o /x)) = r \V(a ® (a' o fj,))

over the locally symmetric space X = T\D = T\G/K with fibre W ® W'. Similarly, we
obtain the vector bundle

over the space V\G/P whose fibre is again W ® W. Thus each section

<f>ero(r\G/p,w(r,<jXiy))

of W(r,CTA,A') is a r-invariant section of the homogeneous vector bundle VV(OA,A') over
G/P, and it can be identified with a smooth function cj>: G —> W ® W on G satisfying
(5.2) and

(5.7)

https://doi.org/10.1017/S0004972700022401 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022401


[11] Poisson transforms 363

forall7 6 Tandp e G. Similarly, a section ip e T0(X, V(r,a®[a'on)) of V(F,<7<g>(crV))
can be regarded as a smooth function ip : G —> W®W satisfying (5.3) and tpijg) = ij)(g)
for 7 € T and g € G.

Now we state our main theorem in this section, which implies that each section of
the vector bundle W(F, CTA.A') over F\G/P can be regarded as a lifting, via the Poisson
transform map V\,\>, of a holomorphic mixed automorphic form on D for F.

THEOREM 5 . 4 . Let <j> be an element of r o (F \G /P , W(F,<7A,A')) regarded as a
(W®W')-valued smootb function on G satisfying (5.2) and (5.7), and let Ja = aoj and
J'a, = a'oj', where J : GxD —* Kc and J' : G' xD' —> K'c are t ie canonical automorphy
factors of G and G', respectively, described in Section 2. Then the Poisson transform
V\tx<i> of'4> is a bolomorpbic mixed automorpbic form on D of type (Ja, J'al,fi, r ) for F.

PROOF: Let <p be an element of F0(F\G/P, W(F, CTA.A-))- Using Lemma 5.3, for each
g € G and k\ € K we obtain

= f
JK

_ I
JK

_ /*

x ( a© (<7 'O / 0) (K((« / /M)- '

1fc)-(V-p')H'(M(*:i)-1/i(9-1t))

x (a ® {a' o /x)) (K{k^g-lk))<t>{k) dk

x (a ® (a ' o /x)) (A;r1/c(5-1A;))^(fc) dA;

K

which implies that Tx,x'4> is a smooth section of V(CT ® {a' o //)). Since the function

is analytic and K is compact, using (5.5), we see that Vx,x'<t> is also analytic. Furthermore,
since D — G/K is assumed to have a G-invariant complex structure, it follows that Vx,x'4>
is in fact a holomorphic section of the bundle V(o ® {a1 o /n)). On the other hand, using
(5.4), we obtain

= ( {
JK

{a1 o ii))(k)4>frgk) dk = (Px,x><t>)(g)

for all 7 € F and g € G. Therefore V\,x'<f> is F-invariant, and hence it follows that V\tx><j>

is an element of To(X,V(T,a ® (a' o n))). However, using Lemma 4.2, we see that
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Fo f X, V(F, a <g» (a' o //)) J is isomorphic to the space of holomorphic automorphic forms

on D of type (a <8> (a'o n)) o J for T, where J : G x D -¥ Kc is the canonical automorphy

factor of G. Now using (2.3), we obtain

0 {a' o fi)) o j)(g, z) = (a® (a1 o^))((g • expz)0)

= a((g- expz)0) ®a'{n{g • expz)0)

= a((g • expz)0) ® a ' ( p ^ • expr(.z))0)

= Jff ((g • exp z)0) ® J'a,

for all (g, z) £ G x. D. Hence it follows that V\tp(j> is a holomorphic mixed automorphic
form on D of type (Ja, J'a,,n, T) for T. Q

6. KUGA FIBRE VARIETIES

In this section we describe families of Abelian varieties, known as Kuga fibre vari-
eties, parametrised by a locally symmetric space and discuss a correspondence between
holomorphic forms of the highest degree on Kuga fibre varieties and certain mixed auto-
morphic forms.

Let V be a real vector space of dimension 2n defined over Q, and let /? be a nonde-
generate alternating bilinear form on V also defined over Q. We denote by Sp(V,P) the
symplectic group of the form /3 on V. Now we consider the homomorphism p : G -> G'
described in Section 3 for G' = G'(Q) with G' = Sp(V,/7), and set

D = G/K, H = G'/K',

where K and K' are maximal compact subgroups of G and G', respectively, as before.
Let F C G(Q) be a torsion-free arithmetic subgroup. Then the locally symmetric space
X = F\D has a natural structure of a complex quasi-projective variety (see [1]). Since
it is assumed that n(K) c K', the homomorphism /x induces an equivariant holomorphic
map T : D -y H satisfying

r(gz) = ii(g)r(z)

for all g 6 G and z 6 D. Let G «^ V be the semidirect product of G and V with respect
to the action of G on V via /J.. Thus G KM V consists of the elements (g, v) in G x V, and
its multiplication operation is given by

(g,v)-(g',v') = {gg',iJ.(g)v' + v)

for g,g' € G and v, v' € V. The space G tx^ V acts on D x V by

(6.1) (g,v)-{z,r/) = {g
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for all g G G, z G D and v,v' G V. Let L be a lattice in V such that n(F)L C L
and /?(L, L) C Z. Regarding % as the set of complex structures on V, each element
z € D determines a complex vector space (V,IT^), where 7T(2) is the complex structure
on V corresponding to r(z) G W. Let z0 be a fixed element of D, and let 70 be the
complex structure on V corresponding to the element T(ZQ) of H. Let Vfc = V <8>R C be
the complexification of V, and denote by V+ and VI the subspaces of Vfc defined by

V± = {v G Vc I hv = ±iv},

so that we have

Then each element v in (V, /T(z)) determines an element

(6.2) £(z, v) - v2 = v+ - T(Z)V_ = u+ - JT(2)i;_

of the subspace V+ of Vc, where the elements v± denote the V±-components of v G V C
Vc = V+ 0 VL: We set

the disjoint union of the vector spaces (V,/T(z)) with complex structure JT(Z) for the
elements z £ D. Then the map

(6.3) W -* D x V+, (2,«) K» (z, e(«,»))

determines a bijection W = D x V+ and a C-linear isomorphism (V, Ir(z)) — {z} x V+.
Thus the natural projection map W -¥ D has the structure of a holomorphic vector
bundle with fibre V+. Now G K , , V acts on W by

(6.4) (9,v)-{z,w) = (gz,n(g)(w + v))

for (<?,u) G G K^ V and (2:, w) G W, that is, z G D and u; G (V, IT(z))- Using the
isomorphism between W and D x V+ given in (6.3), we see that, if w — £(z, u) with
u G (V, IT(z))y G x^ V acts on D x V+ by

(6.5) (s, u) • (z, w) = (gz, £(gz, n{g)u) + £(gz, fi(g)v)}

( )

for (g,v) e G ^ V and (z,w) G D x V+.

We extend the alternating bilinear form 0 on V to /? : Vc x Vc -> C, and let
{ui , . . . , U2n) a symplectic basis of Vc for i/3 such that {«! , . . . , un} is a basis of V+ and
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i/3(ujt uk) = 0 = iP(un+j, un+k),

iP{uj, un+j) = 0 = if3(un+k, uk)

for 1 ^ j , k ^ n.

LEMMA 6 . 1 . Let (g,v) £ G H^V be such that

with respect to the basis {u\,... ,U2n} described above. Then the action in (6.5) can be
written in the form

(g, v) • (z, w) = (gz,« (C»T(Z) + £>„) ~lw + {n{g)v)g)

forall(z,w) e Dx V+.

PROOF: By (7.13) in [16, Chapter IV] we have

for g € G and (z,u) G W = LL e D (V, JT(2)). Thus the lemma follows from this and
(6.5). D

Then the action of G x^ V on W in (6.4) induces an action of T K^ V on W. We set

F = T K , L\W.

The natural projection map W -* D determines the structure of a fibre bundle on the
induced projection map IT : Y —> X — T\D whose fibre over Tz 6 X with z € D is the
quotient (V, IT(Z))/L of the complex vector space (V, Ir(z)) by the lattice L. The complex
torus (V, /T(2))/L is in fact an Abelian variety because the alternating bilinear form /?
can be used as a Riemann form. Thus we obtain a fibre bundle •K : Y —> X whose fibres
are Abelian varieties of the form (V, IT(Z))/L. The total space Y of such a fibre bundle is
called a Kuga fibre variety (see [6], [16, Chapter IV]).

Let JH '• G x D —> KQ be the canonical automorphy factor of G, and let Ad : G —>
GL(Q) be the adjoint representation of G. Thus we have Ad(ff) = dug for each g e G,
where ug : G —> G is the homomorphism given by vg{h) = ghg~x for all h € G. We
extend Ad to the representation Ad : GQ -> GL(QC) of the complexification GQ of G.
Then we see that

Ad(fc) • p+ C p+
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for all k € Kc- We denote by Adp+ : KQ -» GL(p+) the representation of Kc in p + given

by

Adp+(fc) = Ad(*) |p +

for k e Kc, and define the automorphy factor j H : G x D -4 Cx by

JH{9, Z) = det [Adp+ (JH {g,

for (g, z) € G x D. Then for each g e G the map z h-> JH{9,Z) is simply the Jacobian
map of the transformation z >-* gz oi D. We also define the automorphy factor jv '•
G' x £>' ->• Cx by

for Z € ft and

Now we state a theorem that describes a connection between mixed automorphic
forms and holomorphic forms on Kuga fibre varieties. This extends the result in [10,
Theorem 4.2], where the case of compact X was considered.

THEOREM 6 . 2 . Let Ym be the fibre product ofm copies of the Kuga fibre variety
Y over X constructed above, and let Clk+mn be the sheaf of holomorphic (k + mn)-forms
on Ym. Then the space H°{Ym,Q,k+mn) of sections ofQh+mn is canonically isomorphic
to the space of mixed automorphic forms on D of type {j^1, j™,!*, T) for F.

PROOF: Since D is a Hermitian symmetric domain, it can be realised as a bounded
domain in C* with k = dime D. Let z — (zi,... , zk) be the global coordinate system
for D. Recalling that each fibre of Ym is of the form (V+/L)m with V+/L a complex
torus, let £^) — (Q*',... , ^ J ) be a coordinate system for the complex vector space V+

for 1 < j ^ n. Let $ be a holomorphic (k + mn)-form on Ym. Then $ can be regarded
as a holomorphic {k + mn)-form on D x V™ that is invariant under the action of F x Lm.
Thus there is a holomorphic function /*(z,C) on D x V™ such that

*(*, 0 = / • (* , Qdz A dC(1) A • • • A dc(m),

where z = (zu ... , zk) e D, C = (C(1), • • • , C(m)) G V^ and

C0) = (Ci0), • • • , Cn
0)) G V+t dC0) = dCiW A • • • A dCB

0)

for I ^ j ^m. Give an element ZQ e D, the restriction of the form $ to the fibre Kz" of
Yn over Fz0 S X = F\Z) is the holomorphic mn-form

, C) = / • ( * , 0 ^ A
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where C *-• /*(2o>0 is a holomorphic function on F2". However, Y£ is a complex torus of
dimension mn, and therefore is compact. Since any holomorphic function on a compact
complex manifold is constant, we see that /* is a function of z only. Thus we have

*(*. 0 = f*(z)dz A < ( 1 ) A • • • A dC(m),

where / is a holomorphic function on D. In order to use the condition that $ is invariant
under the action of F x Lm, consider an element

Then its action on dz is given by

dz 0(7,1) =jH(-y,z)dz,

since z 1—>• JH(J, Z) is the Jacobian map for the transformation z \-¥ 72 of D into itself as
stated above. On the other hand, by Lemma 6.1 the action of F x Lm on

is given by

(6.6) dCW) ° (7, /) =
t = i

for 1 ^ j• ^ m, where

Thus we obtain

$ o (7,0 = 7*(7«)J»(7, ^)^(M(7),r(z))-md2 A dC(1) A • • • A

hence it follows that

for all 7 S F and z e D. On the other hand, given a mixed automorphic form / on D of

type (jff1, J™) MJ T)> w e define the (fc + mn)-form $ / on Km by

A dC(1) A • • • A
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Then for (7, /) = (7, lu ... , lm) e T x Lm we have

(* , o ( 7 , l ) ) ( z , 0 = /(7«)i*(7,«)jV(/i(7),T(«))"m<fa A dC(1) A • • • A dC(m)

- /(z)dz A dC(1) A • • • A dC(m) = */(«, 0 -

Thus $ / is a (F x Lm)-invariant (A; + mn)-form on D x V™, and therefore the map

f >-* $/ gives an isomorphism between the space of mixed automorphic forms on D of

type (Ji1 . Jv . M. T) and the space H°(Ym, nk+mn). D

COROLLARY 6 . 3 . Leto : K ->C* and a': K' ->• Cx be t i e representations of
K and K', respectively, in the one-dimensional complex vector space C given by

a{k) = det[Adp+(fc)]-\ o-'(k') = (detfcT

forkeK and k' € K', and let (j> be an element of T0(r\G/P, W(r,aA,v))- Then the
Poisson transform V\p<$> of <p can be identified with a bolomorphic (k + mn)-form on
the fibre product Ym of m copies of the Kuga fibre variety Y over X. In other words,
holomorpbic sections of W(T,ax,x') are Poisson transform liftings of bolomorpbic forms
of the highest degree on Ym.

P R O O F : This follows from Theorem 6.2 and the fact that the canonical automorphy
factor Jv : G' x D' -> K'c of the symplectic group G' is given by

for Z e U and g' = (g g) € Sp(n, R) (see for example [16, Chapter II, Corollary 7.4]). D
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