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This book presents a thorough and detailed description of the very successful
Lund model of the dynamics of particle physics. The Lund model, inspired by
quantum chromodynamics, has provided a very promising and pictorial approach
to the dynamics of quark and gluon interactions. Starting with a brief reprise of
basic concepts in relativity, the quantum mechanics of fields and particle physics,
this book goes on to discuss the dynamics of the massless relativistic string,
confinement, causality and relativistic covariance, Lund fragmentation processes,
QED and QCD bremsstrahlung, multiplicities and particle-parton distributions.
The book also explores the relationships between the Lund model and other
models based on field theory (the Schwinger model, S-matrix models, lightcone
algebra physics and variations of the parton model) or on statistical mechanics
(the Feynman-Wilson gas, scaling, iterative cascade models).

The book will be of interest to experimental and theoretical particle physicists,
and also to those working in other branches of physics who would like to develop
a feel for these basic interactions. This title, first published in 1998, has been
reissued as an Open Access publication on Cambridge Core.
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1

Introduction

This book stems from lectures in different places and at different times.
I would like to thank all those colleagues, graduate students and collab-
orators, who have patiently listened, commented upon and by insistent
questioning given me insight into the physics described in this text.

You will find that the physics is described in a semi-classical language. I
believe that my generation, the grandchildren of the wonderful generation
that developed the tools of quantum mechanics, have largely learned to use
semi-classical dynamical pictures while avoiding the quantum mechanical
pitfalls. After having understood that the state density is different and
that probabilities are not additive in quantum mechanics most of one’s
classical intuition can be used. I provide an example in Chapter 2 which
shows that you can never fool Heisenberg’s indeterminacy relations (i.e.
position and conjugate momentum cannot be determined simultaneously
with arbitrary precision). But you may choose your variables in such a
way (rapidity and position for high-energy particles) that all the quantum
mechanical rules are fulfilled and you may still transfer easily between the
descriptions in terms of the different variable sets.

The material in the book has been chosen to stress the connections
between different approaches to high-energy physics. The basic picture
is nevertheless the one stemming from field theory as it is used in the
Lund model. The Lund model has been successful in describing many
of the dynamical features of multiparticle production because it contains
so many relations to earlier and contemporary work, although often
with very different dynamical starting points. I am very sorry that due
to space limitations I have had to exclude many interesting and still-
viable theoretical approaches to the physics of high-energy multiparticle
production from this book.

It may at this point be useful to try to clarify what I mean by the
Lund model in this book. There is some confusion because during the

1
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2 Introduction

years many of the original contributors (and also people never working
with the Lund Group) have provided a lot of material described as ‘in
accordance with the Lund model’. After chapters on relativistic kinematics,
field theory, renormalisation and the parton model, all introduced to provide
the notation as well as some useful formulas, I will consider the Lund
fragmentation model of quarks and gluons.

This part of the Lund model (which was the first part produced and
which, owing to lucky coincidences has not been changed very much over
the years) makes use of the massless relativistic string as a model for
the QCD color force fields. It provides a description of the transition
from the partonic entities to the final-state observables in terms of the
hadronic states. The model is described in detail in Chapters 6-15 and is
implemented in the well-known Monte Carlo simulation program JETSET.
The major achievements are

1 A consistent space-time and energy-momentum-space description
leading to a unique (Markov) stochastic process for the breakup of
the (string) field into hadrons. The process is described on the (1+1)-
dimensional surface spanned by the string field during its periodic
motion (and it is determined uniquely from the partons).

2 A highly nontrivial description of the partons, with the quarks (g-
particles) and antiquarks (g-particles) as endpoint excitations and
the gluons (g) as internal excitations on the string field.

3 The breakup of the fields into ‘new’ gg-pairs stems from a quantum
mechanical tunnelling process. Although all the formulas of the
model are derived in a semi-classical framework the final results
can be interpreted within a consistent quantum mechanical scenario
(and actually also within statistical mechanics, thereby providing the
so-called Feynman-Wilson gas analogy).

4 Tt is possible within the model to account for the strong (transverse)
polarisation effects observed and to describe more subtle quantum
mechanical interference effects such as Bose-Einstein correlations.

There is secondly the Lund dipole cascade model (the DCM), which
contains a description of the multiparton bremsstrahlung emissions in
perturbative QCD, thereby providing the states for which the Lund frag-
mentation model may be applied. This is described in Chapters 16-18 and
it is implemented in the ARIADNE Monte Carlo simulation program. A
different approach, the method of independent parton cascades, has been
implemented in the JETSET and, according to the Webber-Marchesini
model, cf. Chapter 17, in the HERWIG Monte Carlo simulation pro-
grams.
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There is finally (and this is a very recent advance) the linked dipole
chain model, providing a description of the states occurring in deep in-
elastic scattering (DIS) events. I start with Chapter 19 on the ‘ordinary’
approach to DIS using the (double) leading-logarithm approximation as
well as the results of approximating the matrix elements by the (major)
lightcone singularities. The main problem is to describe the hadron struc-
ture functions, i.e. the partonic flux factors, stemming from the hadronic
wave function, in accordance with perturbative QCD. The well-known
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations are de-
rived and also the considerations behind the Balitsky-Fadin-Kuraev-Lipa-
tov (BFKL) mechanism. Finally I have included a section on the recent-
ly developed Ciafaloni-Catani-Marchesini-Fiorani (CCMF) model, which
contains a very ambitious effort to re-sum the large-order contributions
to the perturbative QCD diagrams.

The linked dipole chain (LDC) model, described in Chapter 20, is
a generalisation and simplification of the results of the CCFM model
and just as for CCFM it interpolates between the DGLAP and BFKL
results for the structure functions. It provides a general framework to
describe all kinds of deep inelastic scattering events (besides the ‘ordinary’
parton-probe events that occur in accordance with perturbative QCD and
the Feynman parton model there are boson-gluon fusion events, which
contribute a large part of the present HERA cross section, and Rutherford
scattering between the resolved probe structure and the hadron structure).

In this way the Lund model contains one common general feature at every
level of the description of QCD, i.e. the occurrence of dipoles:

e An excitation in the vacuum, e.g. from an e*e™ annihilation event,
produces a color gg-dipole, which decays via gluon bremsstrahlung
according to the dipole cascade model into a set of color dipoles,
spanned between the partons. This is known as a ‘timelike’ cascade
because the original large excitation mass decays into smaller and
smaller dipole masses. The dipoles move apart thereby producing a
force field similar to the modes of the massless relativistic string.

e Afterwards the string field breaks up into hadrons, ‘the ultimate
dipoles’, produced in the Lund fragmentation model from a quark
and antiquark from adjacent breakup vertices together with the field
in between.

e When such a hadron is probed the states can again be described
as a set of dipoles, according to the linked dipole chain model,
spanned between the color-adjacent gluons emitted in the ensuing
bremsstrahlung. This is known as a ‘spacelike’ cascade because it
corresponds to probing the hadron wave function up towards larger
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and larger ‘virtualities’, i.e. more and more spacelike momentum
transfers, —q? = Q? (smaller wavelengths A ~ 1/Q). The interaction
with the probe brings the whole chain on-shell and then the dipoles
again decay via the dipole cascade model to smaller dipoles and
finally into hadrons via the Lund fragmentation model.

At this point 1 would like to make two remarks. Firstly there is a
duality between descriptions of perturbative QCD in terms of dipoles
and in terms of gluonic excitations. The gluons correspond to pointlike
excitations in the color field while the dipoles are the (field) ‘links’ between
these points. In other words the color from one dipole meets the anticolor
from the adjacent one at a gluon ‘corner’ (note that the color-8 gluons
can be considered as a combination of 33 color charges).

My second remark is that the only solvable confined field theory we
know of, (1 + 1)-dimensional QED (the Schwinger model described in
Chapter 6) is just a theory of dipoles. The Lagrangian of the original
fermion—antifermion field interacting with the connecting electric field
can be transformed into the Lagrangian of a free field, corresponding
to a dipole density of massive quanta composed of such a pair and the
adjoining field. It should be stressed, however, that it is not known whether
confinement implies a dipole picture of the charges and the fields.

Hadronic interactions per se have been investigated during a longer
timespan than any other parts of multiparticle dynamics, but we are still
very far from a consistent and useful description. I have at different places
introduced some features, e.g. the S-matrix and unitarity, which are so
general that they must be part of any future theory. But I have owing to
space limitations decided to exclude all specific models, although some of
them, like Gribov’s Reggeon theory, have beauty and generality sufficient
to redeem even a partial study.

I have also generally avoided to include experimental material. It should
be stressed that no phenomenological work is alive without the necessary
experimental checks on the approach. There have been, however, a large
number of investigations, reviews and comparisons with experimental
data in all the conference proceedings of the last decade. They are all
in agreement with the general approach of the book. I will as a further
excuse make use of the following sentence, which occurs in many places
and must have been invented for just this situation: ‘New experimental
material is also coming in at such a rapid rate that the book would date
unnecessarily quickly by including only the presently available data’. I
admire my experimental colleagues for the fact that it is a true statement!

But we should always keep in mind what Bacon has pointed out (this is
a free translation of the credo of phenomenology): “You have not learned
anything by being in agreement with data, because there are always other
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possible explanations. But if you put forward an idea, calculate inside the
framework in an honest way and find disagreements with experiments
then you have learned something, i.e. that this approach is not taken by
Nature’. Or as one of my friends enthusiastically said during a heated
conference discussion: We must dare to be wrong!

I have used the units conventional in today’s high-energy physics put-
ting the velocity of light ¢ and Planck’s constant % equal to unity thereby
making energy dimensions inverse to length dimensions. In that connection
it is useful to remember that a transfer between energy and length units
is with this convention provided by the rather precise approximation 1fm
x 1GeV ~ 5.

In order to keep the reference list reasonably short I have taken the
liberty of omitting references to phenomena like the parton model, Wick’s
theorem, the Ward identity etc.,, which nowadays are all part of our
common physics heritage. I may have overdone it and if so I apologise to
the authors. I would like to mention that material included in the books

J.D. Jackson, Classical Electrodynamics, John Wiley & Sons

H. Goldstein, Classical Mechanics, Addison-Wesley

E. Merzbacher, Quantum Mechanics, John Wiley & Sons
is referred to by these authors’ name only. There is evidently a set of
equally useful basic text-books where you can find the same material,
but it is impossible to be exhaustive. When it comes to quantum field
theory the subject has still not matured to the extent of these text-books.
A rather formal description (containing, however, many useful references)
is given by C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-
Hill, 1980. For perturbative QCD there is a recent book, Yu.L. Dokshitzer,
V.A. Khoze, A.H. Mueller and S.I. Troyan, Basics of Perturbative QCD,
Editions Frontieres, 1991, which is very good. An early reference to the
Lund model (as of 1982) is Phys. Rep. 97 31, 1983.
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2

Relativistic kinematics, electromagnetic
fields and the method of virtual quanta

The dynamics of the massless relativistic string (which we will meet at very
many different places in this book) is a delightful theoretical laboratory to
study the properties of the theory of special relativity. To make the book
self-contained and also to define our notation we will briefly review in this
chapter some properties of special relativity, in particular with respect to
its implications for high-energy particle kinematics.

We will also review some properties of electromagnetic fields with
particular emphasis on the features we are going to make use of later in
the book. We will end with a description of the interaction ability of an
electrically charged particle.

This is the first but not the last example in this book of the law of the
conservation of useful dynamics. This says that every new generation of
theoretical physicists tends to reinvent, reuse (and usually also rename)
the most useful results of earlier generations. One reason is evidently that
there are few situations where it is possible to find a closed mathematical
expression for the solution to a dynamical problem.

Here our basic aim is to describe the interactions between charged
particles which are moving with very large velocities (as they do in high-
energy physics). As a charged particle interacts via its field the question
can be reformulated into finding a way to describe the field of a charged
particle which is moving very fast. To account for quantum mechanics we
need a way to describe the quantum properties of the charged particle’s
field and this problem can be solved even at a semi-classical level. It is
possible to obtain a closed formula for the flux of the field quanta in this
case.

Fermi addressed the problem in the 1920s, Weizsdcker and Williams
found the method independently of Fermi and each other in the 1930s.
After that it became a standard tool in connection with QED in terms of
the method of virtual quanta, the MVQ. Later again Feynman made use

6
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2.1 The Lorentz boost 7

of it in order to introduce the parton model. We will discuss that model
repeatedly in this book, but it is useful to see how ‘partons’ emerge even
at the semi-classical level in electromagnetism.

2.1 The Lorentz boost

Michelson and Morley demonstrated that the velocity of light, c, is inde-
pendent of the direction of a light beam. Einstein interpreted this finding
to imply that the velocity ¢ is independent of the relative motion of the
light source and the detector.

We are not going to dwell upon the many basic questions that are raised
by this interpretation but simply accept that it has profound implications
with respect to measurements of events in space and time. The resulting
predictions have been tested repeatedly and always been found to be true.
In this section we will briefly consider some of these predictions.

1 The Lorentz boost. Consider two observers 4 and B, moving with
respect to each other. We will suppose that they have calibrated their
watches and decided upon a common origin in space and time as well
as the directions of the coordinate axes in space. The arrangement
will be that they move along their common x-axis so that B has the
velocity v with respect to A. We will for simplicity use units such that
the velocity of light ¢ = 1. Then an event (1) which for 4 occurs at
the space-time coordinates

(1) = (t14, X145 Y14, 214) (2.1)
will for B, in his system, seem to occur at the time and space
coordinates (with the corresponding index B):

tip = y(0)(t1a —vx14)

x18 = P(0)(X14 — vl14)

YiB = )14

Z1B = Z14

(2.2)

This transformation is termed a boost along the x-axis and y(v) =
1/+/1 —v2. The time- and the (longitudinal) x-coordinates get mixed
by the transformation but the transverse coordinates, ie. the y- and
z-coordinates, are unaffected. Several boosts may be performed one
after the other. It is easy to see that the final result does not depend
upon the order and therefore the boosts along a single direction
constitute a commutative (abelian) group.

More complex transformations also include rotations of the coordinate
systems. Note that such rotations in general do not commute with each
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other or with the boost transformations. This means that the outcome of
the total transformation depends upon the order in which each one of the
rotations and boosts is done.

II The proper time. The coordinate and time values are all differences
between the commonly agreed origin and the space-time point at
which event (1) occurs. They are all relative coordinates. A and B will
have different values for their measured ¢, x values for the event but
there is one combination which they will agree upon,

2 -

ti4— X{4 = tip — X{g =1 (2.3)
The proper time of the event, 71, is evidently an invariant with respect
to all boosts along the x-axis. This means that it does not contain any
reference to the relative velocity of the observers along the x-axis.

The proper time is the value a watch would show if it started out from
the origin (i.e. at t = 0,x = 0) in A’s system and moved away with velocity
vg4 = X14/t14. Then it will arrive at x4 at time ¢;4, just when the event
(1) occurs. To see this imagine that observer B had chosen the velocity
v = vy. It is therefore the time obtained in the rest frame of the watch.
This is the frame in which both events occur at the same place, the space
origin (make use of the second line in Eq. (2.2)!).

IIIA Time dilation. The observer A will conclude that the time difference
in his system that corresponds to the proper time 7; would be (make
use of the first line of Eq. (2.2}!)

tiq = L{ (2.4)

1 - UA
This means that to A it will seem that the time difference is larger,
ie. it will seem as if time is passing more slowly in the watch rest
system. This effect is called time dilation.

This is a noticeable effect for the fast-moving fragments of a collision
between cosmic ray elements and the atoms of the upper atmosphere.
There are e.g. the p-particles, very short-lived when we produce them
basically at rest, in the laboratory on earth. The lifetime of a y-particle is
around 2 x 107 seconds. Therefore even if it was moving with the velocity
of light it would only be able to cover about 600 metres!

Nevertheless the produced u-particles survive a sufficiently long time to
be able to go all the way from the top of the atmosphere down to earth,
where we can find them in abundance.

To understand this effect we note that the decay time is related to the
properties of the particle in its rest frame while the ‘survival time’ we

https://doi.org/10.1017/9781009401296 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401296

2.1 The Lorentz boost 9

observe is the time it will take a fast-moving particle (with velocity close
to ¢) to move the distance d from the top of the atmosphere (at a height
of around 2 x 10* meters) to the observation point on earth. According
to Eq. (2.4) this survival time is much longer and therefore many of the
u-particles survive to reach the ground.

IIIB Lorentz contraction. There is a corresponding effect for distances,
which is called Lorentz contraction. For the surviving u-particles,
the distance &, which to us is about 2 x 10* meters, will seem to be
at most the 600 metres mentioned above. Considered from the rest
system of the u-particle the distance . is the length that the earth
and its atmosphere moves towards it during its lifetime! From the
Eq. (2.4) we conclude for the Lorentz contraction effect

Srest = O/ — 12 (2.5)

IV Covariance. The scalar product of two ordinary vectors a - b, written
in terms of the coordinates as achy + ayb, + a;b;, is an invariant
with respect to rotations. It is possible to write the invariant t7 as a
(generalised) scalar product. The quantity

(1)2) = t1ty — x1%2 — y1y2 — 2122 (2.6)

will be invariant with respect to the general Lorentz transformations
(i.c. boosts and rotations in any order) if the coordinates and times
of the events (1) and (2) transform with respect to Lorentz boosts
as in Eq. (2.2) (and (1) = (x1, y1,21) and similarly (2) transform as
ordinary vectors under rotation).

Such quantities as (1) in Eq. (2.1) are called four-vectors. They transform
as vectors with respect to the Lorentz transformations, in particular as in
Eq. (2.2) for boosts along an axis. Besides the invariants, in the same way
called scalars under the Lorentz transformations, and the four-vectors it
is possible to define four-tensors (the electromagnetic field tensor is an
example of such a quantity).

All these quantities are said to be covariant: they transform in a linear
way with respect to the Lorentz transformations, i.e. the corresponding
quantities in different Lorentz frames are related by means of linear
equations.

V The transformation of the velocity. As an example of a quantity with
more complex properties with respect to the Lorentz transformations
we consider the velocity. We have already mentioned the velocity v4
measured in A’s system. From B’s point of view the corresponding
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velocity will be (use both the first and the second line of Eq. (2.2)!)

Ugq —0
= 2.7
=T, (2.7)

It is not difficult to show that if the velocities v4,v do not exceed
¢ = 1 then the velocity vp will have the same property.

VI The energy-momentum four-vector. The classical (Newtonian) defini-
tion of momentum is the mass (m) times the velocity (vp) of the
particle. But from Eq. (2.7) it is obvious that the transformation
properties of the velocity are complex under a Lorentz boost. In
order to generalise the definition of momentum FEinstein made use
of the proper time of the particle motion in the following way.

The velocity of the particle is defined in terms of its trajectory r(t) (i.e.
its space position r labelled by means of the time f) as
_dr
=
For every (massive) particle it is possible to imagine a rest frame in which
the particle is always at the (space) origin. In this way it is possible to
define the proper time t for the particle’s motion; it is the time in this, the
particle’s rest system.
Considered from any other Lorentz frame the proper time t will be
related to the ‘ordinary’ time ¢ by means of the differential equation

dr = dty /1 —v2 (2.9)

according to Egs. (2.3), (2.4).

The proper time 7(t) defined in this way is unique as soon as proper
boundary conditions are given for the differential equation. (Its functional
dependence upon the time ¢ will in general be different in different Lorentz
frames, however.)

We conclude that the corresponding four-velocity u defined by

dt d
"= (d_id—D = 3(v,)(L,Vy) (2.10)

will transform covariantly as a vector under the Lorentz transformations.
(The third line of Eq. (2.10) is obtained from the differential equation
(2.9).) Note that the corresponding invariant uu = u® has the value u* = 1.
Einstein defined the four-momentum p of a particle as

(2.8)

p = (e,p) = mu = my(vp)(1,vp,) (2.11)

The space components p (from now on the momentum) of this four-
momentum (which we sometimes will call the energy-momentum vector)
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have the property that for small velocities |v,| = |v,| (which should be
interpreted to mean |v,| < ¢, of course) they coincide with the classical
momentum components.

The ‘extra’ component e = my(v,) can be identified with the energy of
the particle because for small velocities we obtain by expanding the square
root

my(vp) ~ m+ mv§/2 (2.12)

The second term corresponds to the well-known expression for the kinetic
energy of a (nonrelativistic) particle. The first term, the rest energy, cor-
responds to the famous Einstein conclusion that the mass content of a
particle is related to a stored energy, e

e = mc* (2.13)
The ordinary vector velocity v, can according to Eq. (2.11) be expressed
as
v, =" (2.14)
e

2.2 Particle kinematics

The invariance equation for the energy-momentum vector p = (e, p), if we
consider a particle moving along a fixed direction p = pn, described by
the unit vector n is

et —pt=m? (2.15)

This means that the energy (which always is positive for a particle) can
be expressed as e = \/p? + m?,

VII The rapidity variable. According to Eq. (2.15) a particle with a fixed
mass has a four-momentum which lies on a hyperbola in the ep-
plane. It is possible to introduce a hyperbolic angle y, to describe
any particular point on the hyperbola:

= h
= mEos Yy (2.16)
p = msinhy,

This hyperbolic angle is called the rapidity, and we note from the

relationship between (e, p) and the ordinary velocity v, in Eq. (2.11)

that

vy, =tanhy, ~ y, (2.17)

with the last line valid for small values of v, and y,. We also note
that y(vp) = cosh y,.
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For a Lorentz boost along the direction n we obtain, using the first
two lines of Eq. (2.2), with a boost velocity v = tanh y and using the
notation (ep, pp) for the energy-momentum components in the new
frame,

ep = y(v)(e — vp)
= m(cosh y, cosh y — sinh y, sinh y) = mcosh(y, — y)

ps = y(v)(p —vE) (2.18)
= m(sinh y, cosh y — cosh y, sinh y) = msinh(y, — y)

This means that Lorentz boosts along n will move us along the
hyperbola of Eq. (2.15). In particular any value of the energy-
momentum can be obtained by a suitable boost from the rest system
yp = 0. In other words the rapidity variable is additive.

This also comes out of the relation for adding ordinary velocities, Eq.
(2.7), if we express the velocities in terms of rapidities:

vp = tanhyp = A" — tanh(yq — y) (2.19)
1 —ovyv
If the rapidity is expressed in terms of the corresponding velocity v we
obtain
1 1+v 1 e+p
= =1 = — 2.20
=3 (1) =2 (555 (220

It often occurs that in a given dynamical situation there may be a direction
which is of particular importance. It is then useful to describe the particles
under investigation in terms of their rapidities defined with respect to that
direction (even if some or all of the particles move in somewhat different
directions). This corresponds to using the velocity component, v, along
that (longitudinal) direction; we then obtain

1 1+v, 1 e+ py
=_1 ==1 221
ye 2”(1—1;;) 2n<e—p/) 221
with p, the corresponding momentum component.

VIII The lightcone components. It is often useful to describe the energy-
momentum vector with respect to the direction n in terms of the
components

P+ =e+p=mexpy, p-=e—p=mexp(—y,) (222)
For a boost with rapidity y along n these quantities transform as

p+ — prexp(—y), p— — p_expy (2.23)

It is of course natural that their product is a constant, equal to
the invariant in Eq. (2.15). For the case in Eq. (2.21) one defines
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the lightcone components (e + p¢). They can then be described with
respect to the rapidity y, in the same way as in Eq. (2.22) except that
the mass m is exchanged for the transverse mass m,. This quantity is

defined by
m; = \/m? + p? (2.24)

in terms of the transverse momentum vector p,, corresponding to the
two components of the momentum that are transverse to the chosen
longitudinal direction.

We will at this point briefly consider Heisenberg’s indeterminacy rela-
tions and indicate that although the position and the conjugate momentum
of a particle cannot be determined simultaneously it is possible to deter-
mine the rapidity and the position for a high-energy particle simultaneously
with any degree of exactness, [66].

The indeterminacy relations mean that owing to the commutation rela-
tion

[p,x] = —i (2.25)

it is necessary that the width of a wave-packet in position x, Ax, is related
to the corresponding width in momentum p, Ap by

AxAp > 1/2 (2.26)
Merzbacher shows, by defining the mean and the width in the state with
the wave function p as
() = [ dsp(axp(x)
(AxP = (= (P) = [ dwp"()x — (9Ppix)

with a similar relationship for p that there is a single kind of state, the
Gaussian wave packet, for which Eq. (2.26) is an equality.

We can rewrite Eq. (2.26) in the following way for a particle with
energy-momentum (e, p) with rapidity according to Eq. (2.16):

(2.27)

Axg = AxAy > i -0 (2.28)
e 2e

when e is very large. Note that Eq. (2.16) implies that dp/e = dy.
Relation (2.28) is shown for a free particle, in [66], by actual construction
of the necessary wave-packets. It implies that, although you can never fool
Heisenberg, you are allowed to choose your variables in such a way that
quantum mechanical effects can be small or negligible.
As you will find in connection with the Lund model, when we are
concerned with the longitudinal dynamics we shall use the freedom to
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present semi-classical pictures, in which we go between coordinate- and
rapidity-space descriptions. This cannot be done in the same cavalier way
in connection with the transverse dynamics, because transverse momenta
are in general very limited in size in high-energy physics.

2.3 Timelike, lightlike and spacelike vectors in Minkowski space

Up to now we have neglected the fact that the invariant size of a four-
vector, like the squared proper time in Eq. (2.3), is not positive definite
as is the corresponding length of an ordinary vector. This means that it
is possible to find space-time points for which the proper time squared is
vanishing or negative.

In both these cases the interpretation of proper time discussed above is
no longer valid. There is no (proper) Lorentz frame that is a rest frame
for an observer, in which both the start (at the origin) and the event itself
occur at the same point in space.

Those points for which the proper-time interpretation is valid are called
timelike and we note that they fulfil

ltral > |14l = /134 (2.29)

This is evidently a Lorentz-covariant definition.
All energy-momentum vectors for massive particles are also in the same
way called timelike.

1 Lightlike four-vectors

In the case when the proper time squared vanishes it is possible to send
a light signal directly from the origin to the event point and we therefore
refer to this situation as a lightlike space-time vector difference.

There are other cases for which we will meet such lightlike vectors, e.g.
when we want to describe massless particles such as the quanta of the
electromagnetic field, photons. For them the energy (cf. Eq. (2.15)) is equal
to the total momentum, i.e. e = |k| = |k|. The corresponding rapidity y,
as defined in Eq. (2.21) is directly expressible in terms of the angle, 6,
between a given axis and the photon direction:

ks = |k|cos 8
= 1ln (————1+COS0) = Incot <Q> ~ —In <Q) (230
Ye=a3 M\ 1cos0) ~ 2) = 2

The last statement is an approximation valid for small angles.
Although Eq. (2.30) is strictly valid only for massless particles it is
often a very good approximation (and then the variable is called the
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pseudo-rapidity) for other particles, those whose mass is small compared
to their energy. In this way we obtain another intuitive way to look at
the rapidity; it is directly related to the angle with respect to the chosen
longitudinal direction.

While both the individual masses of two lightlike particles vanish, the
sum of their energy-momenta is in general no longer lightlike but timelike:

kikj =k} =¢ —(kj)* =0
s12 = (ki + ka)? = 2kiky = 2eqex(1 — cos 012) = dejersin® 012/2 > 0
(2.31)

unless the two lightlike vectors are parallel, which means that the angle
between them 017 = 0.

It is always possible by means of a Lorentz boost to go to the centre-
of-mass system (from now on the cms) of two lightlike or timelike vectors.
This system is defined so that the total momentum vector vanishes. If the
mass of the four-vector sum \/§E from Eq. (2.31) is nonvanishing, the size
of the velocity of the sum is less than c:

_ ki+k
k1| + k2|

It is a useful exercise to prove to oneself that by a boost of vy, one reaches
a Lorentz frame in which the two vectors in Eq. (2.31) have after the
boost, the components

=kl = s kL =K =0, kjy =k, =0 (2.33)

Thus they have ‘oppositely’ directed lightcone components in the cms.
Another way to formulate this is to note that a timelike vector may be
uniquely partitioned into two lightlike vectors (oppositely directed in space
in the restframe of the timelike vector).

Y12 (2.32)

2 Spacelike four-vectors

If the invariant length in Eq. (2.3) (generalised possibly by means of Eq.
(2.6)) is negative then the four-vector is called spacelike. An example of a
spacelike vector in space-time is the difference vector between two points
in space measured at the same time.

Actually, it is always possible for a spacelike vector in space-time, to
find a frame such that the time component vanishes. To see this let us
assume that in the situation described above involving the two observers
A and B event (1) has a spacelike difference vector with respect to the
origin, e.g.

0<tig <xyq4 and Yia=214=0 (2.34)
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(the sign choice of (t14,x14) being made for convenience). Then if the
observer B moves at a velocity of size v = t14/x14 (although it appears to
be a rather peculiar ‘velocity’ it is evidently smaller than ¢ = 1) we obtain
directly from (the first line of) Eq. (2.2) that event (1) will occur for B at
the same time as he starts out from the origin.

For the observer B there is, however, a (space) distance between the
origin and (1), that can be obtained from (the second line of) Eq. (2.2),

i.e. the invariant length, as expected.

When the difference vector between two space-time points is spacelike
then it is impossible to send any kind of signal between them. Therefore,
it is impossible for two physical events occurring at the two points to be
causally connected. The occurrence of one of the events cannot affect the
occurrence of the other. We will in the course of this book have many
occasions to come back to such situations.

The typical spacelike vectors in energy-momentum space correspond
to momentum transfers. If two particles with rest masses m; and m; are
scattered elastically from each other then in general there is a momentum
transfer between them. Elastic scattering means that the same kinds of
particle occur in the initial state and in the final state.

The energy-momentum vectors in the initial state, pj;, and in the final
state, pjy, of the particles indexed j = 1,2 are, however, in general different.
Energy-momentum conservation means that

2 2
>_pji=_Pif (2:36)
j=1

j=1
This implies that the difference vector, ¢, ie. the momentum transfer
between the two particles during the scattering, fulfils
q = p1y — p1i = —(p2s — p21) (2.37)

If we analyse the situation in the cms, with the two particles approaching
each other along the x-axis with p;; = pn, = —p2; (see Fig. 2.1) we
conclude that

I The absolute sizes of the momenta of the final-state particles are the
same as for the initial-state particles. To see this we note that

1 The total momentum in the cms vanishes also in the final state.
Therefore the two final-state particles must have oppositely
directed momentum vectors of equal size also.
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Fig. 2.1. Two particles experience elastic scattering against each other with
notation described in the text.

2 Each of the particle energies is given by the momentum size,
e.g eji=4/p*+ m% and in order to conserve the total energy, cf.
(2.36), the final-state momentum sizes therefore must be p, too.

IT In the cms the momentum transfer four-vector, g, has no energy
component, and we obtain for the invariant momentum transfer
(conventionally called ¢t or —Q?)

—Q% =t = q* = —4p*sin(0/2) ~ —p? (2.38)

in terms of the scattering angle 6 (see Fig. 2.1) and in the small
angle limit, sin(0/2) ~ (sinf)/2, in the last line with the transverse
momentum p; = p sin(6).

3 Minkowski space

The vector space endowed with the metric defined by the Lorentz-invariant
four-vector product in Eqs. (2.3), (2.6) is called Minkowski space. Although
ordinary space-time contains three space dimensions, it frequently occurs
that physical models are formulated in lower-dimensional regions, corre-
sponding to one- or two-dimensional space. (It is, of course, sometimes
useful to make use of larger dimensions both for time and space but we
shall not need to do so in this book.)

Minkowski space can be subdivided into the three different parts, con-
sidered above, i.e. into timelike, lightlike and spacelike points with respect
to the origin (or for that matter with respect to any other point).

The lightlike vectors form three-dimensional regions, called lightcones,
in between the other two classes, which are both four-dimensional. It is
possible to further classify a lightcone into a positive (forward) part and a
negative (backward) part, according to the sign of the time component, i.e.

t =412 (2.39)
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In the same way timelike points can be inside the forward or the backward
lightcones.

The significance of these notions is that it is always possible to reach a
point inside, or on, the forward lightcone by means of a signal from the
origin. In a similar way the origin can be reached from all the points inside,
or on, the backward lightcone by means of a signal. All the spacelike points
are, however, non-causal with respect to the origin, i.e. as mentioned above,
events in the two points can have no dynamical influence on each other.

24 The electromagnetic field equations and some of their consequences

We will start with the notion of gauge invariance and after that turn to
the properties of dielectrics. The rationale for introducing dielectrics is the
following. The vacuum in a quantum theory, which intuitively corresponds
to the no-particle state, behaves owing to quantum fluctuations in a way
effectively similar to a dielectric medium.

1 Gauge invariance

The two Maxwell equations corresponding to Faraday’s induction law
and the absence of magnetic charges connect the electric field & and the
magnetic field £ in the following ways:

0
Vx£+a—'?=o, V-B=0 (2.40)
These equations can be solved by introducing the four-vector potential
A!l = (A(), A)I
B=VxA, £=—VA0—-%? (241)

It is well known that these relations do not completely determine A4, from
a knowledge of &, 4. It is always possible to introduce the change

A= A+VA, Ao—er—%[?\ (2.42)

and still obtain the same electric and magnetic fields.

The transformation in Eq. (2.42) is a local gauge transformation. The
word local means that it is possible to choose the function A so that it
varies from point to point in space and time.

In somewhat loose language this means that the vector field 4, contains
redundant, non-observable, degrees of freedom and that one must by
convention fix these degrees of freedom in order to be able to discuss its
quantum properties.
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Such gauge-fixing conventions of a more or less ‘physical’ kind have
been suggested and used but it is essential to understand that one con-
vention is, from a dynamical point of view, just as good as another. Any
observable result of a calculation must be gauge-independent.

One should always remember when considering the emission of the
quanta of 4, that, with a certain gauge-fixing condition, the quanta may
seem to be emitted from some particular part of the emitting current. It
may well be the case, however, that the same observable quanta would
seem to be emitted from a completely different part of the current if
one were to use a different gauge condition (or as a matter of fact the
same gauge condition but a different Lorentz frame). We will discuss these
matters in more detail when we come to matter fields in Chapter 11 and
to gluon radiation in Chapter 16.

If we introduce the energy-momentum-space quantities (we use the
notation A(q) or 2/(q) for the Fourier transform of a space-time quantity
A(x), with g the Fourier transform variable) a gauge transformation is

A(g) > A(q) + igA(q) (2.43)

This means that, for a radiation field, when the vector potential 4 =
eexp(ikx) describes a photonic quantum with energy-momentum vector
k (k* = 0 for real photons) and polarisation vector e, the physics results
should be independent of the change

€ — e + ikA(k) (2.44)

for any A.

In order to understand the relation in Eq. (2.44) we consider a boost
along the direction of motion of the quantum, i.e. along the direction of
k. In the new frame the size of the momentum |k| and therefore also
the energy are changed. For the polarisation vector e this change can be
compensated by a gauge transformation according to Eq. (2.44). Therefore
in a charge-free region only the polarisation-vector components transverse
to the direction of motion (that are invariant with respect to such boosts,
i.e. those with ke = 0) are physically important (cf. the (brief) discussion
of helicity in Chapter 5).

2 The notion of dielectrics

Besides the two equations mentioned above there are in Maxwell’s treat-
ment also Coulomb’s and Ampere’s laws, which tell us how to construct
the fields from a knowledge of the charges and currents. They are expected
to be precise in the microscopic sense (we use small letters to denote the
microscopic fields and large letters for the corresponding macroscopic
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ones):

V-e=n, VXb—QS=l (2.45)
ot

Here # and 1 are the ‘local’ charge and vector current densities, stemming
from e.g. individual atomic charges. A quantum field does not really make
sense as an operator acting as a single point (although with suitable care
it is often possible to write quantum field operators in that way) because
it is distribution valued. It should be smoothed out over a region by means
of a ‘test-function’ f, [31]:

e(f) =&(f) = / dxf(x)e(x) (2.46)

We have here assumed that the test function f is nonvanishing (mathe-
matically ‘has support in’) a region of suitable size around the point x.
The typical atomic dimension is of the order of 10~8 c¢m (about twice
the Bohr radius for hydrogen), and depending upon the system under
consideration we may need this or other length units when we consider
this averaging procedure. Jackson gives a lucid description, to which we
refer the interested reader.

The result of the averaging procedure is, however, that not only ‘the
true’ charges will affect the fields; there are also induced dipole moments,
P and M, stemming from the polarisation and magnetisation of the
medium. The effective values of charge and current vector densities are
thus changed; it is necessary to take into account also the polarisation
charge, the polarisation current and the magnetic moment current. We
then arrive at the macroscopic equations containing the free charge (p)
and current (j) densities (the difference from the rapidly changing local
n and 1 densities in Eq. (2.45), which describe individual atomic charges
in motion, is that these microscopic fluctuations are averaged out, giving
relatively smooth and slowly varying macroscopic quantities):

V-D =p, VxH—a—D=j
ot . (2.47)
D=&+2=€*6, H=.%‘—J%=;*ﬂ

Here D is the electric displacement vector and H is the magnetic field; € and
u are the dielectricity and the magnetic permeability, of the material under
investigation. The symbol * is used in order to indicate the possibility

that, e.g.

D(x)=e*& = / dx'e(x — x)E(x) (2.48)
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This would correspond to an energy-momentum-dependent displacement

2(q) = [1 + E(@)&(g) (2.49)

where we have introduced the index of refraction & =& — 1.

If we consider plane-wave solutions to the electromagnetic equations,
(2.47), in a (true) charge- and current-free medium we may write (with the
convention in classical physics that we are supposed to take the real part
of all complex quantities)

& =8&pexpitkn-x — wt), RB = Boexpilkn-x — wt) (2.50)
We then obtain the following requirements:
k’n? — it =0, n- & =n-By=0, Bo=+Tienx & (2.51)

At this point we may consider a few limiting situations. Suppose firstly
that & is a constant and (for simplicity) i = 1. This means that D and
H = B are completely local fields. We may in particular consider the
vector m to be a unit vector. Then we will according to the last two
equations of (2.51) have transverse waves in the medium. According to
the first equation in (2.51) there is also a relation, usually referred to
as a dispersion relation, between the wavenumber k ~ 1/4, with A the
wavelength, and the frequency w.

To see what this relation implies we note that the transport velocity
of the field energy-momentum is given by the ratio of the (space-time
averaged) Poynting vector S (|S| = S) and the (space-time averaged)
energy density u:

) . N
S=§|é”x=7f|=§1£’|2, u=%(§é”-é”'+.%',%*)=§|éa|2 (2.52)

The factor % results from averaging the squared harmonic waves and we
find in this way that the velocity has changed from ¢ = 1 to v = 1/,/&.
Thus we require € > 1 in order that the transport velocity of the energy
should not exceed the velocity of light in the vacuum. We note that the
phase velocity of the waves, which is w/k, then coincides with v.

Another case of interest is an electron plasma in the limit @ > wp,
where o, is the plasma frequency. Then (cf. Jackson) & = 1 —(w,/w)? and
we obtain the same relation between k and w as for a particle with mass
wp (this is the only true Higgs-phenomenon we know of at present, i.e.
the velocity of the electromagnetic waves in a medium is smaller than the
vacuum velocity; this is tantamount to give a mass, corresponding to the
plasma frequency, to the field quanta):

w? =k + ] (2.53)

In this case the phase velocity of the waves, w/k, is greater than the
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Fig. 2.2. A charged particle, g approaches a charged observer at the origin with
velocity v along a direction with impact parameter b.

velocity of light. The true velocity, called the group velocity, is then instead
the variation of w with respect to k, dw/dk = k/w < 1, as we find by
the well-known construction of local wave-packets from the waves in Eq.
(2.50), cf. Jackson and Merzbacher. Consequently the index of refraction
in Eq. (2.49) may be both positive and negative in real life situations.

We finally note that the index of refraction, €, may have an imaginary
part. This corresponds to an absorption of the waves, i.e. to an interaction
between the medium and the waves. There is a general set of relations, the
Kramers-Kronig relations, [89], [88], between the real and the imaginary
parts of the index of refraction. They stem from the causality requirement
that there can be no effect until the waves have reached the medium. This
leads to analyticity properties for . We will meet the same properties
in connection with the vacuum polarisation functions in quantum field
theory in Chapter 4.

2.5 The method of virtual quanta

In this section we consider the electromagnetic field of a fast-moving
charge and show how to express it in terms of its field quanta. The
problem will be phrased as follows:

e Describe the field of an electric charge (size g), moving with velocity
v along a direction (the 1-direction) having impact parameter b (for
definiteness in the 12-plane) with respect to an observation point at
the origin x; = x = 0.

We assume that there is an observer, i.e. a detector carrying charge g,
at the origin (Fig. 2.2). We expect that the approach of g will be noticeable
as a pulse of radiation energy for this charged observer. This pulse will
now be described in a semi-classical framework.

The Lorentz rest frames of the charges g and g; will be assumed to
coincide at time t; = t = 0. Then we may calculate the Coulomb force
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field in the rest system of the charge g (where it is the usual spherically
symmetric field falling off with distance R as oc 1/R?).

After that we may use the rules of special relativity and translate this
field by a boost (with velocity —v) along the 1-axis to obtain the field
components in the rest system of the charge g; (Jackson does it for us so
we will not dwell upon the details):

goty
i

£2=—-g—r%—y, .@3=Ué’72 (254)

&1 =

(with r defined below in Eq. (2.55)). Note that the components in the
2- and 3-directions basically constitute a ‘radiation field’, ie. & = v x &,
when v ~ ¢ = 1. We are now going to investigate that field.

The y-factor is as usual 1/+/1 — v? and the space extensions of the field
components are Lorentz-contracted. Therefore, apart from the times ¢ ~ 0,
when the charges are close to each other, the distance r is a large number:

r=4/b% + (vty)? (2.55)

The field components in Eq. (2.54) provide two Poynting-vector pulses,
one along the 1-axis and one along the 2-axis. The latter is small and we
will neglect it from now on. The main 1-axis radiation pulse is strongly
Lorentz-contracted and looks like a bell-shaped curve in the time variable
with a width (noticeable from Eq. (2.55)) around ¢t = 0 of 6t, where

b
ot=— .
- (2.56)
Note that this typical passage time, 6t, can be written as
mb
ot = — (2.57)
p

where m is the rest mass and p ~ e (for large v ~ ¢ = 1) are the momentum
and energy of the charge g.

We can describe these results in terms of frequency (Jackson provides the
exact formulas but we do not need the details). The differential intensity
of the 1-axis pulse, dI(w), where w is the frequency will be essentially
constant from a low-frequency value w,,;, (Where the wavelength becomes

so long that there is nothing to observe) up to a maximum (determined
by Egs. (2.56), (2.57)):

1 p
~ =1 2.58
wmax 5 t mb ( )
This follows from the properties of the Fourier transform and also comes
out of Jackson’s formulas in terms of combinations of Bessel functions.

We obtain approximately (note that the Poynting vector corresponds to
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the surface density of the field momentum)

dl(w,b) = dcodAtz—a (2.59)
n2b?
For values of @ > 1/4t the distribution contains an exponential tail, with
fast falloff. Here dA; = 2nbdb, i.e. the increase in the transverse area per
unit impact parameter b. We have also defined the fine structure constant
a = g?/(4nhc) under the assumption that g is a unit, i.e. electron, charge.
We have been careful to keep Planck’s constant in the expression (although
we usually put # = 1 according to the conventions in the Introduction)
because up to now there has been no reference to quantum mechanics.
We may, however, now make the time-honoured transition to quantum
mechanics by noting that for a fixed frequency w the number of quanta,
dn (in this case photons) in the pulse dI is given by

dl = howdn (2.60)

This means that the whole field energy is carried by individual field quanta,
each with an energy proportional to its frequency according to Einstein’s
proposal.

Therefore we have found an (approximate) expression for the number
of field quanta which will be available for an interaction with the charge

g1 at the origin:
a\ [dA; dw
dn = (E) (n—b;) — (2.61)

This is basically a classical formula (but with quantum mechanics sneaked
in through Eq. (2.60)). It describes the flux factor in connection with the
interaction of the charged-particle field quanta. If the scattering cross
section for the individual quanta is known then we simply multiply by
this flux in order to get the cross section for the whole charged field.

Before the flux factor can be used we note, however, that it is singular
in two different ways. The first way corresponds to the singularity for
large wavelengths, @ — 0, to which reference already has been made.
(The Lund model is everywhere infrared stable and we will therefore not
consider the problems corresponding to infrared singularities. The main
point is that when the number of quanta increases indefinitely at small
frequencies then the dynamical behaviour is not given by their number
but instead by their ‘combined action’, which corresponds to the action of
a classical field.)

The second singularity is the logarithmic divergence for small values of
b. This is a typical problem in all situations involving a charged particle. It
is necessary to define what is meant by the energy of the particle itself and
what should be attributed to the field. This is called mass renormalisation,
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i.e. it is necessary to provide the particle with a given rest energy equal to
its mass, independently of the field surrounding it.

Classically the field energy from a point particle is always infinite and
therefore after the discovery of the electron it was described not as a
‘point’ but as a small charged sphere with a radius ro > 0 such that its
(Coulomb) field energy was exactly equal to the mass, m,:

e2

—=m, (2.62)
47rg
This quantity rg, the classical electron radius, is approximately 3 x 10~13
m (using the conventions of ¢ = /i = 1 to convert to metres) and occurs in
the cross section for the interaction between an electron and low-frequency
radiation, w — O:

2
j—; = %0(1 +cos? ) (2.63)
This is the Thompson cross section in the solid angle dQ) = sin6d6d¢,
where 0 is the scattering angle and ¢ the azimuthal angle around the
beam direction. It should, however, be understood that as far as we
know (and this is at least down to 10~17 m because of the results of the
LEP experiments at CERN) there is no extended space structure of the
electron. The Thompson cross section therefore corresponds to the size of
the Coulomb field around the particle rather than to some ‘solid-sphere’
behaviour.

The necessary cutoff in impact parameter depends upon the problem
one is considering,. 1t is either the Compton wavelength of the particle that
is used or the characteristic size of the quantity that is probed by the field
(but it is always the largest of the parameters). The Compton wavelength
is Ac = h/m and this b-cutoff therefore means that wy,, as defined in Eq.
(2.58) will be given by

O < Oy = =p~e (2.64)

m/lc
This is not an unreasonable requirement. After all you cannot radiate
away more energy than you have got!

The above representation is not normally used in connection with
quantum field theory, where one usually describes the field not in terms
of the energy and the impact parameter of the field quanta but instead in
terms of their energy and transverse momentum.

The impact parameter vector b is, as we will see later in Chapter 10,
the canonically conjugate variable to the transverse momentum k; in a
high-energy scattering event. Therefore one obtains the distribution of
one from the other by means of a Fourier transform of the transition
amplitude.
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We note that the formulas above contain (as always for observables
in quantum mechanics) the square of the amplitude (in this case |&]?)
but from the scaling behaviour (no dimensional constants) we may guess
that the relation between the distribution in impact parameter and the
transverse momentum will be

2nbdb  db*  dk?
—_— e ——— —) ——
nh? b? k?
and this turns out to be the right answer.
It is also conventional to rearrange the w-dependence into a dependence

upon the scaled variable x = w/e, e being the moving charged particle’s
energy. In that way we may write

in=(%) (dk—’f) & (266)

which we will later meet as the spectrum for dipole bremsstrahlung radi-
ation. The scaled variable x evidently has a range x < 1 according to Eq.
(2.64).

Thus the method of virtual quanta (MVQ) redefines the interaction
ability of a charged particle in terms of a flux of available (but virtual)
field quanta, with precise properties with respect to interactions. Note that
the word ‘virtual’ is appropriate: the field quanta are available but do not
do anything until they find something to interact with.

(2.65)
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3

The harmonic oscillator
and the quantum field

3.1 Introduction

In this and the next chapter we will consider some properties of quantum
fields. The examples taken will be mostly scalar fields and only when
necessary will we invoke the complexities stemming from the vector nature
of the interactions in QED and QCD; there are many good text-books
devoted to a detailed treatment of the subject.

We need only intuition and a set of understood formulas for the investi-
gations contained in this book. We start with a discussion of the quantum
mechanical harmonic oscillator coupled to an external force. There are
several reasons to dwell on this particular system. Firstly its sine and cosine
behaviour in time is matched by the corresponding harmonic behaviour
of the plane wave solutions for the quanta in a field theory.

It was noted even in the first papers on quantum field theory that
a free or weakly interacting quantum field is in a rather precise way
a superposition of an infinite, although enumerable, set of harmonic
oscillators, one for each degree of freedom.

A real interacting-field theory does not behave in this way with respect
to its excitations. There is always, however, at the basis of any experiment
in high-energy particle physics the idea of a three-act scenario in time.

1 In the first phase, a long time before the interaction, the initial states
are prepared with production setups in general arranged so that each
state is isolated.

2 After that there will be a more or less violent encounter in the second
phase.

3 In the final state the produced quanta are observed by means of
detectors placed far apart, a long time after the interaction.

27
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Therefore the descriptions of the initial and final states are expected
to correspond to the states of free non-interacting fields. For a confining
theory like QCD this particular asymptotic before-and-after scenario does
not hold but there is instead another asymptotics, the asymptotic freedom
of the theory in which the free-field theories are expected to be relevant.

The second reason for considering both the free and the interacting
harmonic oscillator is that from a mathematical point of view they cor-
respond to very well-behaved systems. This is not the case in general for
interacting quantum fields, which contain many different mathematical
complications. But it turns out that almost all the things which can be
done in a simple and precise way for the single harmonic oscillator can
also, albeit after a large amount of cumbersome mathematics, be done
for infinite-dimensional quantum fields. It is therefore easier to present
the methods in a well-behaved manner for those who are not particularly
interested in the mathematical complexities but nevertheless would like to
understand what they are doing inside a computable framework.

After we have rehearsed the properties of interacting harmonic oscilla-
tors from an elementary quantum mechanical point of view we will exhibit
the corresponding properties for a scalar quantum field. We will in partic-
ular consider quantum states which correspond as closely as possible to
classical fields (coherent states). At the same time we will introduce the S-
operator, which connects the initial- and final-state free fields, mentioned
above as phases 1 and 3 in the interaction.

After that we consider interacting fields. It is then necessary to provide
a more precise definition of the S-operator. We introduce the Feynman-
Dyson prescription of time-ordering and, for simple cases, show how to
make calculations in this framework. We consider the Feynman propaga-
tor and show its significance with regard to Heisenberg’s indeterminacy
requirements. We also calculate the scattering cross section in a simple
situation. Finally we exhibit some features of the lightcone formulation of
a field theory, often referred to as ‘a field theory in the infinite-momentum
frame’.

3.2 The quantum field as a sum of harmonic oscillators

This section will firstly contain a few reminders of the properties of
the one-dimensional harmonic oscillator. After we have shown how the
harmonic oscillator reacts to a time-dependent external force we discuss
the corresponding properties of a scalar quantum field coupled to an
external current.

In both cases we obtain a set of states called coherent states. They are
the closest correspondence to classical behaviour which can be found for
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simple quantum systems. Therefore they are often used as models for
more complex situations. When we go from the single harmonic oscillator
to quantum fields it will be necessary to introduce some cutoff procedures,
which are used repeatedly in connection with the calculation of observables
such as cross sections later in the book.

1 The one-dimensional harmonic oscillator

I The equation of motion. The (classical) equation of motion of a one-
dimensional harmonic oscillator in an external field, j(z) is
m¥ + mo?x = J(t) (3.1

Here the dot(s) correspond to time derivative(s) and the harmonic oscil-
lator frequency w has been explicitly introduced.
Equation (3.1) can be derived from Hamilton’s equations:

J0H J0H
= — = —— 32
X o’ p o (3.2)
where
2 2.2
P moxt
H = o + 5 xj (3.3)

Il The commutation relations. Quantum considerations are introduced by
means of the Heisenberg commutator relations

[p, X] = _i: [pap] = [x’ x] =0 (34)

For the harmonic oscillator it is useful to introduce two adjoint operators
a" and a, usually referred to as the raising and lowering (or in more
colorful language creation and annihilation) operators:

x=a+a ’ p=l:{mw(a —a) (35)
\2mw V2
Their commutation relations are obtained from Eq. (3.4):
[a,a’] =1, [a,a] =[a",a"] =0 (3.6)

III The case of no disturbance. For the case when j = 0 the hamiltonian
H = Hj can be written as

Hy=ow (a*a + %) , {o|Holor) =

for any state |a). There is a lowest energy eigenstate |0) with an x-space
representation, yo(x), obtained from the requirement ayg x) =0, i.e.

mm 1 d [mw mawx?
( TX + - ;—zma) E) 1P0(x) = 07 Yo = ETC— €xp <_ ) ) (38)

(SIS

= E, (3.7)
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with o normalised to 1: [dx|po(x)|? = 1. It obviously fulfils H |0) =
Ey |0).

IV The excited states. All other eigenstates of the hamiltonian are given
by Nn(a®)"|0) = |n); in an x-space representation these are polynomials
of nth degree in x multiplying o. Using

[a,(a")"] = n(@)"V, [a'a,(a")] =n(a")" (3.9)

the normalisation constant N, can by iteration be shown to be

*\n
N, = L so that |n) = @)

i N7
The corresponding eigenvalue is E, = (n + 1/2)o.
V Normal-ordering. It is useful to introduce the notion of normal-ordering.
This means that in an operator expression O containing both a and a*
operators the normal-ordered O, denoted :0:, contains all the a-operators
to the right of the a*-operators. In particular this means that (0/:0:]0) =0
if O contains a nonzero number of operators.
VI The time dependence. The time dependence of the operators a and a*
is found, in the Heisenberg picture (for j = 0), as follows:

10) (3.10)

@ = i[Hp,a] = —iwa = a(t) = aexp(—iwt)

dt
it (3.11)
;t = i[Hp,a"] = iwa” = a’(t) = a’ exp(iot)

We also note that the identification of the canonical momentum p with
mx is consistent with the time development:

p = mi[Hp, x] (3.12)

VII Time-independent disturbance. When j is nonvanishing but independent
of time the hamiltonian can be rewritten as

2 2 2 2,2 :
p mw“(x — xo) mw-xg Jj
H=: — , Xo=——s 3.13
2m + 2 2 07 mw? (313)
We can then choose to re-express everything using a new coordinate
x' = x — xg and a new hamiltonian H' = H + j2/(2mw?) (where we have
introduced the expression for xg in the energy change).
The new ground-state wave function, yy;, obviously corresponds to a

translation of the old one:
Poj(x) = wolx — x0) = {exp[—?/(2me?)] } {exp(xj/@)} wo(x) (3.14)

and can therefore by a suitable expansion be expressed in terms of the
the old set |n) (this applies, of course, to any other state as well).
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The exponential of an operator should be interpreted in terms of a
power series expansion and can be handled in almost the same way as an
ordinary exponential.

e We will use two simple properties of the operator T = exp(jx/®)
expressed in terms of the original operators a and a*. In general
if A and B are operators and if [4,B] = ¢, ¢ being an operator-
independent constant (conventionally called a c-number),

(expA)Bexp(—A) = B + [A4, B]

(exp A)(exp B) exp(—[4, B]/2) = exp(A4 + B) (3.15)

The first relation in Eq. (3.15) can be obtained from a Taylor series
expansion of the function f(1) around A = 0, where

f(A) = exp(A4)B exp(—4i4) (3.16)
Consider the derivatives of f (note the careful ordering!)
d n
Y = af—a= 14501 TL =144 (450011 317)

As f(A = 0) = B we obtain that all but the first of the derivatives of f
vanishat A=0:

f(A) = B+ A4, B] (3.18)

The result in the first line in Eq. (3.15) then corresponds to 4 = 1.
For the second equation in (3.15) consider the function g(4), where

g(A) = exp(44) exp(AB) exp {—A(4 + B)} (3.19)
Using the first equation in (3.15), we obtain for the derivative of g:
dg
A .20
= = A4, Blg(3) (3.20)

This is a differential equation with a plain number Ac in front of g on the
right-hand side. We conclude that g, which is equal to 1 for A = 0 from
its definition, is the following simple function:

g(A) = exp(cA?/2) (3.21)

which again provides the expected result for 4 = 1. Note that we have
extensively used that the commutator of A and B is a plain number.
Setting A = ja*/(v/2mw?) and B = ja/(/2mw3) we obtain

2

J
A,Bl=——— 3.22
[4,B] =~ (322)
so that already expressed in a normal-ordered form the operator T be-

comes

T = exp [jz/(4mw3)] exp(ja” //2mw3) exp(ja//2mw3) (3.23)
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From Eq. (3.14) this means that

vo; = exp [—2/(4m?)] exp(ja’ /~/2m o (3.24)
or

N 2 3] v i ' 1

0j) = exp [~/ (4mo )],,;)(—W) w62

Therefore the application of a constant force j to the harmonic oscillator
will bring it into a new ground state with the property that the transition
amplitudes will fulfil

7 hn

, n —
| {nl0j) |* = —y exp(=7) (3.26)
This corresponds to a Poisson distribution with the mean excitation 7
given by
2
= J
=3 (3.27)

This is, however, dynamically incorrect: there is no way to change the
system unless we use a time-dependent scenario so that there is energy
pumped in or out of the system.

VIII A time-dependent scenario. In order to describe an actual dynamical
situation we assume that the force j introduced above is nonvanishing
and changes in time, ¢, during a finite period t; < t < t; so that we can
talk about the situation ‘before’, t < t1, and ‘after’, t > t, (the ‘three-way-
scenario’ mentioned before!). Then the hamiltonian will be

H=w(@a+1/2)—g(t)a—g*(t)a" = Hy+ H;
Hy = —j(t)x = —g(t)a—g*(t)a"

where we have written j — g(t) = g* = j(t)//2mw in anticipation of a
more general situation, when g is a complex function.

The equations of motion become

d * d * * . * .

d_‘; = i[H, a] = —iwa + ig (t), —;—t =i[H,a’] = iwa —ig(t) (3.29)
We will assume that there are initial-state operators a;(t), a;(t), which, like
the operators in Eq. (3.11), describe the undisturbed system before ¢t = ¢;
(when g(t) = g*(t) = 0 so that the equations of motion coincide) and
likewise final-state operators az(t), a}(t), which describe the system after
t=1s.

Then the equations (3.29) can be solved in a general way by means of
the Green’s function method. We define the functions Gg(t) and G4(t) as

(3.28)
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the solutions of the equation
4G +i0G = 6(t) (3.30)

dt
with boundary conditions

Gr(®)=0 if <0

31
Ga(t)=0 if t>0 (3:31)

They are called the retarded and the advanced Green’s function, respec-
tively, and are in this case rather easily constructed:

Gr(t) = O(t) exp(—iot), Ga(t) = —O(—t)exp(—iwt)  (3.32)

where © is the Heaviside distribution, which is equal to 1 for a positive
argument and vanishes elsewhere.

The fact that the solutions of Eq. (3.30) should correspond to step-
functions at t = 0 can be understood from an integration of the equation
from t = —e to t = +€ when € — +0:

lim [G(e) _Gl—e)+io [ dtG(t)] =1 (3.33)

Here we have used the following property of the §-distribution: [ dtd(t) =

1, if the integration region includes ¢t = 0. The fact that the contribution

from the integral in Eq. (3.33) vanishes as e is left for the reader to prove.
In this way we obtain the following solutions for a(t):

a(t) = a;(t) + i/_t dt'g"(t') exp [—iw(t — )]

a(t) = as(t) — i/too dt'g"(t') exp [—iw(t — )]

Therefore the final-state operators can be expressed in terms of the initial-
state ones by a translation (noting that they all have the trivial time
dependence exp(tiwt), which can be divided away):

(3.34)

v o]
ap = a; +i / dt'g" (¢) explio?) = a; + ig" (@) (3.35)
—0Q0

Consequently the final-state operators, af,a}, in a similar way to VII
above have been translated with respect to the initial ones, a;, a;, this time,
however, by the Fourier transform of the force!

IX The S-operator. It is possible to construct a unitary operator S, which
transforms the initial states into the final states in this simple situation:

S'S=1<5"1=5" a;=5"aS=a+ig" (o)

3.36
$*10i) =10f) < S10f) =10i) (336
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(note that this also fixes the relation between a} and a;!). The operator S
provides a complete mapping of the eigenstates of the final system onto
the initial eigenstates:

|nf) = S™ |ni) (3.37)

It is easy to find by means of the results we have obtained in VII and
VIII:

S = exp {i[¢"(w)a; + #(w)a;]} (3.38)

The expression in the exponent can be neatly reformulated by noting that
e o} o0
|t = [ atlg(a) + ¢ 0a; (o)
—0 —00

- / " dtlaig(t) exp(—iot) + g (t) expliot)]
= g(w)a; + §"(w)a; (3.39)

Then the S-operator can be expressed as

S = exp {i B dt{g(t)a;(t) + g* (t)a; (t)]} = expi /_ O:O dtj(t)x(t)  (3.40)

—00
This is a general result in the perturbative treatments of quantum field
theory, which holds also when j is an operator-valued function. We obtain
the (negative) difference between the operator H in Eq. (3.28) and the ‘free’
harmonic oscillator hamiltonian Hy in Eq. (3.2), integrated over time, as
the exponent in the expression for the S-operator.

In this more general case the exponential must be treated with care
because operators for different times have complicated commutation re-
lations. One cannot without a prescription for ordering use the ordinary
exponential property that the exponent of a sum is equal to the product
of the exponents of the terms in the sum.

X The transition probabilities. For the case when j is an external ‘nice’
function ‘real’ transitions are possible. An original state such as the initial
ground state, |0i), will afterwards become some outgoing, possibly excited,

state:
NI 2%\ | @)
(nf)0i) = (ni|S|0i) = [exp <_T>] Jl (3.41)

In VII we presented the transition probabilities | (nf|0i) |* as a Poisson
distribution in the free harmonic oscillator states. This is evidently still
true and the mean excitation level, i, for the Poissonian will be for the
general case:

2

= ﬁl / dtj(t) exp(iwt) (3.42)
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3.2 The quantum field as a sum of harmonic oscillators 35

The result in the case (3.27) is characteristic for a single sudden change
in the force. A suitable force (corresponding to a limiting situation when
e > 0 approaches 0 after the integral has been performed) would be

j(t) = jexp(—et)O(t). (3.43)

Before we go over to quantum fields we note another property of the
states. The state |0i) is actually an eigenstate of the operator ay:

ar 100) = asS (0f) = ar 3 {exp ( |g2|2>] (? inf)

n=1

=g'S10f) =" 103) (3.44)

This also implies that the expectation value in the initial ground state of
the final-state operator xs(t) = [a; exp(—iwt) + a} exp(iot)]/(/2mw) is

& exp(—iwt) + g exp(iwt)
2mm
= dt ](t )cos[w(t’ —t)] (3.45)
—0

This is the final-state harmomc motion in a classical mechanics situation
when one starts out with a harmonic oscillator at rest and then applies
the external force j(t) over a finite time interval t; < t' < t,. Evidently the
integrand in Eq. (3.45) is only nonvanishing over this time region and we
consider t > t5.

In order to prove (3.45) it should be noted that the equations of motion
in Egs. (3.2) and (3.29) also work classically for the quantities a,a* defined
in Egs. (3.5). The whole formalism involving Green’s functions that relate
the initial-state and final-state quantities a;,a; and af,a} is just as valid
when the a’s and a*’s are classical c-numbers!

X(t) = (0i|x,«(t)|0i) =

2 A scalar quantum field coupled to an external current

We will now consider the corresponding situation for a scalar quantum
field ¢(x). We will firstly show that it has the same behaviour as a
superposition of an infinite number of independent harmonic oscillators.
It will then follow that we can take over everything we have done in I to
X when we treat ¢(x). Every time one introduces an infinity, however, it
is necessary to worry a little about convergence problems. We will soon
find that there are plenty of such things to worry about when we go to
interacting quantum fields!

X1 The Klein-Gordon equation. A scalar field, ¢(x,t), which fulfils the
Klein—Gordon equation

O+MYp=d—Ap+M¢p=j (3.46)
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where stated earlier the Laplacian A = V? is given by

2 &2 02
A= —+—5+— 3.47
ox?  0x3  0x3 (3:47)
will, in momentum space, ¢ — ¢(t) exp(ix - k), fulfil the equation
b+ 0 K)p =] (3.48)

This essentially coincides with Eq. (3.1) for the single harmonic oscillator
with frequency o — w(k) = k2 + M2

In order to facilitate this transfer to momentum space we assume that
the whole system is enclosed in a large box with three space dimensions
and volume V, and that only those waves that fit into the box with
periodic boundary conditions are included. This means that instead of
a field ¢ defined at every space point we obtain an enumerable set of
amplitude fields for the momentum-space waves.

The allowed momenta, e.g. in the 1-direction with a large box-length
L,, are, for any integer ny,

(3.49)

A sum over n; can be made into an integral over dk; by the formal
exchange (which is valid when we sum and integrate over ‘nice’ functions)

S fam=st [ S - o [de 650

ni,m,n3

With this construction we have the following identities

/ Pxexp [ik —K) - x] = Vg
14

Zexp(ik -X) = Vo(x) (3:31)
k

In the first equation the symbol on the right-hand side is equal to 1 when
the two arguments coincide and vanishes elsewhere. The second equation
contains the usual J-distribution in three dimensions.

The results in Eq. (3.51) stem directly from Fourier analysis and corre-
spond to the orthonormality and completeness relations of Fourier waves.
We will later see that in all formulas describing physical observables the
volume V' will disappear.

XII The hamiltonian formulation. The field equation can also be described
by a variation of the hamiltonian H in which ¢(x),II(x) are the canonical
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3.2 The quantum field as a sum of harmonic oscillators 37
coordinates at every space point X:
Ho =1 [ @I+ (Vo) + M?¢?)
H = Hop+ H;

(3.52)

with
H —— /V Pxj(x, 1)p(x) = /V LxHs (3.53)

The fields IT and ¢ can be decomposed as sums over the different mo-
mentum components similar to the single harmonic oscillator in Eq. (3.5):

ik - x) + a* (k) exp(—ik - x)]

1

i JoK) . . .

I1 Xk: \/2_V [—a(k) exp(ik - x) + a” (k) exp(—ik - x)]
We note that the field ¢ in this way is written as a set of harmonic
oscillators (cf. Eq. (3.5)) x = >2;(1/ «/2mw)(aj+a;-)ej, although this time the
(euclidean) vectors e; (with eje,, = din) are exchanged for the normalised
eigenfunctions exp(+ik - x)//V, which are vectors in a Hilbert space,
i.e. an infinite-dimensional generalisation of a euclidean space. This also
implies that the field ¢ has energy dimension dim¢ = 1 (corresponding
to a negative length dimension —1). We will use similar dimensional
arguments many times later in the book.

This dimensional assignment for ¢ is necessary in order that the hamilto-
nian Hy in Eq. (3.52) should also have energy dimension 1 (dimd3x = —3,
dimM? = 2 and dimV = 1). In the same way we conclude that for H; to
have energy dimension 1 the current j must have dimj = 3.

It is straightforward to prove that the commutation relations

[a(k),a"(kK")] = okw, [a(k),a(k’)] = [a"(k),a" (k)] =0 (3.55)

imply

[MI(x), p(x')] = —id(x —x),  [p(x), p(x)] = [T1(x),TI(x')] =0 (3.56)

if we use Egs. (3.55), (3.50) and (3.51). The sets of commutation relations in
Egs. (3.55) and (3.56) are thus equivalent and are obvious generalisations
of the harmonic oscillator relations in Egs. (3.6) and (3.4).

XIII The ground-state energy. For an undisturbed set of harmonic oscilla-
tors the hamiltonian in terms of operators is

Ho =Y w(k)a" ®ak)] + C (3.57)
k
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The constant C corresponds to the sum of the energies of all the zero-
point modes of the oscillators, ie. C = > w(k)/2. In that way it is simply
the energy of the vacuum and is consequently not an observable quantity.
There are, however, situations when the difference in energy between
the ‘total’ vacuum fluctuations in C and those from a particular boundary
configuration can be measured, [41]. This effect is outside the scope of this
book. It is, nevertheless, of great interest because it exhibits experimentally
the existence of quantum field fluctuations in the vacuum state.
XIV The time dependence. To obtain the time dependence we use the same
relations as in Egs. (3.11) and (3.12):
day . I o(k o(k
5 — Hoa] = —iokja = ax(t) = axexp[—io(k)] (3.58)

H(x) = ¢ = i[Hy, ¢(x)]
In this way ¢(x) — ¢(x,t) by including the time dependence of the
a- and a®-operators. We note in passing that this will result in Lorentz-
invariant exponential factors exp *(ik-x—wt) = exp F(ik,x*) = exp(Fikx)
multiplying the a- and a"-operators.
When the current j is nonvanishing the time dependences will take on
the form of Egs. (3.29):

da _ i[H, ax] = —iow(k)ay + ig*(k, )
dt (3.59)
day,
1
k.t) = [ dx s ot explik - x) (3.60)

Thus here g(t) — g(k,t), the Fourier transform of the external current.
This means that the numbers g(k,t) are in general complex but for a
real-valued current j(x) they fulfil g*(k,t) = g(—k,?).

All these steps from the definition of the Green’s functions to the
resulting equation for the S-operator in Egs. (3.30) to (3.40) can then be
performed separately for each wavenumber k. The final S-operator is a
product over all components and can be written as

S =exp [—i/_z dtHu(t)] = exp {i/d“xd),-(x)j(x)

The index i is introduced in order to stress that we are using the initial-
state fields, i.e. those that describe the state a long time before the in-
teraction is turned on. The time dependence in Hj;(t) contains also the
free-field time dependence of the oscillators so that a;(k) is changed into
ai(k) exp(—iw(k)t). The integration symbol [ d*x = [}, d*x [%, dt.

An interesting observable is the probability that the vacuum before the

(3.61)
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3.2 The quantum field as a sum of harmonic oscillators 39

interaction is turned on (the no-quanta state) is still the vacuum after the
interaction, i.e. the probability that there has been no excitation due to
the onset of the current j

| (0£10i) |* = | (0i]S]0i) |* = exp(—U)

(3.62)
—Z — (k)V’ / Lxdtj(x, ) explio k)t — kx]

2

The quantity U is the sum over all the mean excitations for the Poisson-
distributed oscillators (cf. Eq. (3.42)). It can be rearranged by changing
the sum over k to an integral, see Eq. (3.50); we then arrive at (with the
vector ox = (t — t/,x — X))

_ / Lk / & xd*x! j(x) (') explilo(k)(5t) — k(Gx)])
20 oK) SO IERP

— / dxdx’ j(x)A4(6x)j(x) (3.63)
3
Ap(x) = (—271[—)3 / %(kk) expli[+w(k)t —k - x]} (3.64)

We firstly note that the volume V' has vanished from these expressions
(when we have taken the limit ¥ — oo we use the symbol dx instead of
d*x). Secondly we note that the functions A defined in the last line of Eq.
(3.63) are Lorentz-invariant. In order to show that we use the following
property of the é-distribution:

/ dadb®(+a)d(a® — b)f(a,b)

— [ dadvora [6(a — b)) + ;(;' + b])]f (a,b)
_ [ 4bf(xIbl,b)
"/ 2|b] (3.65)
For Eq. (3.64) we have
1.2 _ ag2
20(K) = / dk&* (k= — M*)f (k, ko) (3.66)

where the symbols dk = d*kdko and ©(dko)d(k3 —k*>—M?) = 5t (k2 — M?)
will be used from now on. (Note that the prescription ko > 0 is Lorentz-
invariant together with the o-distribution!)

Thus the functions A, become (changing k to —k for A_):

As(x) = / dkdt(k* — M?) exp(ikx) (3.67)

(2n)?
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The distribution A, (x) actually corresponds to the matrix element

(0ilpi(x1)i(x2)[08) = (Oil; (x1); (x2)107)
-y explik(x; — x1)]
= Wk

=Ai(x2—x1) (3.68)
K

We have here introduced the notation ¢ = ¢~ + ¢ where we include
the sum of all the a-operators (a*-operators) in ¢~ (¢™). The second line
stems from the fact that the only (nonvanishing) intermediate state is a
single quantum, which can be created by ¢; and annihilated by ¢;. For
the third and fourth lines we have used Egs. (3.63) and (3.64).

We also note that the (in-)vacuum expectation value of the field ¢;(x)
is

(0il(x)|0i) = / dx [A*(x—X) + A (x = XN J)  (3.69)

which in the same way as for Eq. (3.45) is the classical solution to the
field equation in Eq. (3.46) after the interaction.
In conclusion we have shown the following:

e quantum fields, including that of the single harmonic oscillator,
which are coupled to an external current contain excitations of a
Poissonian nature, the mean number of quanta being determined
from the Fourier components of the current;

e they also have vacuum expectation values that coincide with the
classical c-number solutions for the interaction;

e the phases of the states, called coherent states, are well defined by
the Fourier components of the external current.

3.3 Feynman’s time-ordering prescription

In this section we will generalise the expression we have derived for the
S-operator in Eqgs. (3.40) and (3.61) from the simple case when the current
j is an external c-number function to the general case when j is operator-
valued. This will lead us to ways to calculate high-energy multiparticle
production amplitudes in perturbation theory.

It is necessary to provide an ordering prescription for the S-operator in
Eq. (3.61) when the current j is operator-valued. The right prescription
(first introduced by Feynman and Dyson) is that all expressions should
be time-ordered. If we would like to express the S-operator solely in the
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initial-state fields then

S=9 {exp (i / d4x%1i)} =1+ é (;i!)" /g‘ {,_1:[1 dthli(tj)} (3.70)

with the time-ordering symbol 7 implying that all operators should be
written so that those with a later time are to the left of those with an
earlier time.

Intuitively the prescription is rather easy to understand. The free initial
quantum fields get distorted as time goes by. Each new distortion evidently
follows the earlier ones and must therefore be applied after one has applied
the previous interactions. (If we would like for some reason to write
everything in terms of the final-state fields then we must anti-time-order
everything, i.e. all operators should be arranged so that those with a later
time are to the right of the others.)

As an example of the time-ordering procedure consider the second-order
term in Eq. (3.70):

I {Hy(t1)Hu(t2)} = O(t1 — t2)Hu(t1)Hu(t2) + O(tr — t1)Hyi(t2)Hyi(ty)
3.71)

We have now defined two different ordering prescriptions, normal-ordering
where all annihilation operators a are to the right of all creation operators
a” and time-ordering where all earlier-time operators are to the right of all
the later-time operators. There is a mathematical manipulation theorem,
Wick’s theorem, which provides a connection between these orderings;
you will find it described in great detail in many text-books.

1 Time-ordered products and the Feynman propagator, causality and
locality

In order to understand some features of quantum fields we will show how
Wick’s theorem works in connection with the time-ordered product of a
free field ¢ at two different space-time points. Again using the notation
¢* from Eq. (3.68) we obtain

T {i(x1)i(x2)} = ¢ (x1)d; (x2) + 7 (x1)¢7 (x2)
+0(t1 — t2) {([#7 (x1), ;" (x2)]
¢ (x2)¢7 (x1) + ¢ (x1);7 (x2)}
+0(t2 — t1) {([#7 (x2), ¢ (x1)]
+¢ (x1)d7 (x2) + ¢ (x2)d7 (x1)} (3.72)
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We have thus item by item brought the time-ordered operators into nor-
malordering. The result is evidently

T {i(x1)i(x2)} = : Pi(x1)i(x2): +O(t1 — t2) [P; (x1), b5 (x2)]
+O(12 — t1) [d; (x2), ¢ (x1)]
= 1 ¢i(x1)i(x2): +AFr(x2 — x1, M) (3.73)

The function Ar (F stands for Feynman) could have been constructed
directly from the fact that the normal-ordered product : ¢i(x1)¢pi(x2): has
a vanishing vacuum expectation value. We then obtain

Ap(xy — x1, M) = {0ilT {$i(x1)¢i(x2)} |07) (3.74)

Using the result from Eq. (3.68) in Eq. (3.74) we may write the following
expression for Ap :

Ar(x2 —x1) = O(x1 — x2)A4(x2 — x1) + O(x2 — x1)AL(x1 —x2)  (3.75)

(Note the order of the arguments in the A, distributions. For each this is
related to the time dependence of the creation and annihilation operators.)

Before we construct an expression for Ar we note from the result in
Eq. (3.68) the following result for the general commutator:

[¢i(x1), Pi(x2)] = Ar(x2 — x1) — A_(x2 — x1) = —iA(x2 — x1) (3.76)

The notation is conventional and the factor i introduced to make A real.

The general commutator A, just like the Ay -distributions, can be com-
puted by straightforward means. We will give A in detail because it has
two properties of direct interest for what follows:

M
2/x
We have used the conventional sign-distribution e(x) = e(x¢) = O(x¢) —
®(—xp) and the Bessel function of the first rank J; in Eq. (3.77).

Firstly note that the commutator distribution A vanishes for spacelike
vectors x. This is our first encounter with practical causality. There is no
possible signal connecting two space-time points with a spacelike differ-
ence. Therefore two local field operators taken at two such points commute.
They are independent and a measurement of the observable correponding to
one of the operators at one point cannot influence a measurement of the
observable corresponding to the other operator at another point separated
from the first by a spacelike difference.

The word local is essential, however. All the field operators are singular
from a strict function-definition point of view (note the occurrence of
the J- and e-distributions in Eq. (3.77)). Mathematically such expressions

A(x) = _éx) 8(x%) —

> Ji(M/X2)0(x?)] . (3.77)
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should be defined by means of a test function f, [31]:
#() = [ dxpf(x) (378)

A local operator is such that if we choose the test function f to be strongly
localised around a point x (i.e. vanishing outside a suitably small region
around x) then also all the matrix elements of the operator ¢(f) should
have this property.

If we consider the definition of Ap from Eq. (3.73) we find that this
function can also be defined by means of commutators. But these are
commutators of field operators which are not local. None of the ¢¥ is local
because they contain only positive or negative frequencies, respectively.
There is no way to localise anything in time by means of a function
containing only frequencies of a definite sign.

The distribution Ay can instead, according to the result in Eq. (3.75),
be written e.g. as

Ap(x) = —i®(—x)A(x) + Ay (x) (3.79)

and only the first term on the right-hand side is local in the sense used
above.

Secondly we note from Eq. (3.77) that the commutator is highly singular
along the lightcones. Although the quanta have mass M and therefore
always move with a velocity below ¢ = 1 the corresponding quantum
fields can influence each other in principle at infinite distances along
the lightcones. It is also worthwhile to note that the principal singularity
(the second term inside the large parentheses of Eq. (3.77) approaches a
constant for x* — 0) is independent of the mass-value M.

2 The formula for the Feynman propagator, the lightcone singularities

We will next provide a formula for Ar using a distribution-valued integral
we have referred to in Eq. (3.43):
—idk;
= =1 0
B(x) = 6(x0) 51—1»1(1)/ 2n(ky — i€)
From Eq. (3.75) we may then use the result in Eq. (3.80) to obtain an
integral representation for Ap. We will subsequently not write out the limit
sign but we will keep ¢ as a small but arbitrary number.

exp(iki)xo) (3.80)

LN
A = | 2000 <k6+ie exp(i( +ko)xo — k%)

dk ) ,
—————expli(—w + kg)xo + k - X]
ky — ie
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i d’k - 1 1
= @nyt | 20 Hoexplikx) <k0—w+ie - k0+w—ie)
o dk exp(ikx)
CQn)t ) kK2 —M2+ie

(3.81)

Here we have introduced the result of Eq. (3.80) together with the corre-
sponding result for @(—x) and then changed the integration variable k;
to ko = ki + w (as well as replacing k by —k in the second term). In the
last line we have gathered the two denominators into one.

The final result corresponds to the limiting situation when the number
e approaches 0. This means that A is actually singular for all values of
the vector k which correspond to a ‘real’ particle with mass M.

When we want to consider a physical observable that is sensitive to the
limit then it is necessary to be more precise in the definition of the size of
€. An example of this is provided in Chapter 14.

From a mathematical point of view A is a distribution, which must be
defined by means of integration over suitable test functions, as mentioned
above. It is also the Fourier transform of the boundary value € — 0 of an
analytic function defined on complex-valued vectors k with Imk? > 0. In
that case it can be described as analytic and Lorentz-invariant with poles
whenever k? = M2,

In Chapter 6 we will provide a formula for the behaviour of the
Feynman propagator for spacelike arguments. That formula will be based
upon the property that Ar satisfies the Klein-Gordon equation

(O 4+ MH)Ap(x,M?*) =0 (3.82)

everywhere outside the origin, x = 0.

For the investigations in Chapter 19 it is also of interest to know
the space-time singularities of both the Feynman propagator Ar and the
function A,. We will not give the formulas for the general case but only
for the case when the mass M = 0 because just as for the function A in
Eq. (3.77) the main singularities of all the functions are independent of the
mass.

The following formal development may be used in such a derivation.

We firstly note that
LA / ” doexpliak?) (3.83)
kK2+ie  Jo P ’

(the integral on the right-hand side converges when we add a small positive
imaginary part to k2). If we introduce this result into the formula for the
Feynman propagator given in Eq. (3.81) we obtain gaussian integrals
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(which due to the imaginary parts are called Fresnel integrals):

Ar(x, M? = 0) = / do / dk expliok® + ikx)

@n)*

i do —lx2 1
= 4(2n)2/¥exp< » > = A2 7 (3.84)

In the second line we have made the change of integration variable
1/o — a; performing the integral shows that x? must contain a small
negative imaginary part, which ensures convergence.

If we perform the integrals for the function A, (x) with the mass M =0
(which is straightforward) we obtain the same result as in Eq. (3.84) but
with the boundary value x> — x2 + iexq. This means that the imaginary
part depends upon the sign of the time-component of the vector x.

At this point we will consider a particular distribution-valued boundary
value. Suppose that we have a (test)function, f(x), of a single real variable
x and that we consider the result of integrating it together with the
boundary value 1/(x — ie). We may then start by using the following
formal manipulation:

1 x + ie
= =R+il 3.85
x—ie x2+é€2 Tl (3:85)

If we start with the imaginary part then we obtain the result for I:

[assrzta = [ofeng - 10r= [dmee)
(3.86)

We have assumed that the function f vanishes sufficiently fast that we may
take the limit f(ye) — f(0) outside the integral; then as is well known,
Jay/(*+1) ==

We have in this way obtained a representation of the J-distribution
which is very useful. It is the difference between the boundary values:

1 1

x—ie x+ie

= 2ind(x) (3.87)

For the real part, R, in Eq. (3.85) we may use the trick of adding and
subtracting the quantity

f( )——— =0 (3.88)

x2+€2

This result is obviously Vahd for any (finite) positive number o because
the integrand is an odd function. For values outside —¢ < x < o we
now have no problem in taking the limit ¢ — 0 for R in Eq. (3.88) for a
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well-behaved function f (we again use the Heaviside function ®):

R(N = [ {062 = a)f(x) + 0" —x)[f () — SO} d;" (3.89)

If afterwards we let « — 0 we find that we always have a well-defined inte-
gral, called the principal part of f and defined so that in the neighborhood
of the singular point x = 0 we make the change f(x) — f(x) — f(0).

As a simple example for this limiting situation consider the relationship
between the commutator distribution A and A,. If we take the indicated
difference in Eq. (3.76) we obtain just the lightcone é-distribution in Eq.
(3.77) from the result in Eq. (3.87) and the limiting behaviour of Ay we
mentioned above.

We have in this section stressed the following facts:

e a local quantum field must contain both positive and negative fre-
quencies;

e the S-operator must be defined by means of time-ordering.

These are the origins of the Feynman propagator distribution.

It is, of course, possible to interpret the two parts of the time-ordering
process in Eq. (3.75) as respectively ‘forwards’ and ‘backwards’ transmis-
sion in time for the quanta involved (the former would be ‘particles’ and
the latter ‘antiparticles’). There is, however, no reason to inflict nonsense
upon one’s physical intuition and we prefer to consider the propagator as
a unity.

In the last section of this chapter we will show that in a lightcone
dynamical scenario it makes sense to talk about the propagator in terms
of old-fashioned energy denominators.

In the next subsection we will discuss the Fierz [61] interpretation
of the Feynman propagator, which is how the physicists working with
Stiickelberg thought about it. This is done in order to convince the
reader that the way in which it works is not only in accordance with the
Heisenberg indeterminacy principle. The Feynman propagator is actually
as causal as it can be when the principle is fulfilled.

3 An interpretation of the Feynman propagator

For a simple and intuitively useful example we will consider the case when
Hi = g¢(x):9?(x): (with ¢ and v free independent scalar quantum fields),
an interaction which we will discuss later in the book. This is meant to be
a simplified version of the current-vector-potential interaction in a gauge
theory.
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(@) ®)

Fig. 3.1. Two simple examples of Feynman graphs. The situation in (a) cor-
responds to the annihilation of two y-particles; the state then propagates as a
virtual ¢ and finally two outgoing particles appear. In (b) there is scattering with
the exchange of energy-momentum. The straight lines symbolise y-quanta and
the wavy lines the ¢-propagator.

For this case we will need the fact that Ry = (1/2)F {5 1:(x1)# 1:(x2)}
(cf. Eq. (3.71)) contains among many others the term

2
R, = % TP (x0)w7 (x2) : Ar(x2 — x1, M) (3.90)

The result in Eq. (3.90) corresponds to the scattering of two y-particles
which come in, interact at the point x; and are either annihilated into a
virtual ¢ (Fig. 3.1(a)) and afterwards reappear as outgoing y-particles at
X, or exchange energy-momentum between points x; and x; through a
virtual ¢ (Fig. 3.1(b)).

In this subsection we will simplify the working by assuming that there
are two kinds of wy-particle, which we call p- and e-flavored, which may
interact via the common ¢-field. This assumption does not change the
argument in the least but makes it easier to discuss.

Any kind of interpretation of a physical quantity is always defined by
means of a measurement that is at least theoretically possible. We will
show that a measurement made in accordance with quantum mechanical
requirements will preserve all causality and energy-momentum conserva-
tion properties and that this is due to the properties of the Feynman
propagator.

In order to further simplify the problem we will assume that there are
regions of space-time R; within which we can measure what is going on
in connection with the scattering. As always in a measurement process
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we expect these regions to be determined by some some size parameters.
We will solely be interested in the time slices of the regions, i.. the time
intervals they span; these we will call T;. Thus we assume that there is
in any one of the space-time regions an ideal detector (but working in
accordance with quantum mechanics, of course!) recording what is going
on as time passes.

We then consider the case when an ej-particle scatters against a p;-
particle and goes out after the process as an e3-particle while the p4-particle
recoils. This corresponds to the situation described diagrammatically in
Fig. 3.1(b). We assume that their energy-momenta are k; j = 1,...,4 and
we will now write the transition matrix element as

it = [ dxidxag® (ka |: w3ex0) | o) Area = x1) (ks [: w2Ge2) ). (B9D)

We then change the integral over all space-time into an integral over the
regions where we have the detectors:

dxidxy = / dx1 / dx> (3.92)
/ Jzk: R; R,

The only argument of which we are going to make use is related to the
energies so it is not necessary that we expand the Ap-function in plane
waves; energy harmonics exp(+iwxg) are sufficient. The next thing is to
go back to the definition of A, Eq. (3.75), and rewrite .# in Eq. (3.91) as
(note that we must include both time-orderings!)

g’ ]Zk /R,- dx; /Rk dx; <k4 ‘: wg(m) :’ k2> <k3 ‘: wf(xz)i k1>
X [@(x1 — x2)A+(x2 — x1) + O(x2 — x1)AL(x1 — x2)] (3.93)

If we write out the time dependence of the first term we will find for
regions R; and R; (spreading over the times T;, j = 1,2; note that ko must
be positive as it corresponds to the argument in the A -distribution)

exp[—i(wy — wg)x01 — i(w1 — w3)x02}O(x01 — X02)dko expliko(xo2 — xo1]
(3.94)

Now we gather the terms containing xo; and xg, respectively, and assume
that the time slices T; for the detector configuration are such that

T1|a)2 —(1)4| >1 and T2|a)1 - 603| >1 (3.95)

This is what Heisenberg would require in order that we should be able
to measure the energies in each of the detectors so precisely that we can
distinguish between the energies of p» and ps and between those of py
and p;. It is necessary to have sufficiently long times available for such
measurements, at least several frequency periods. But we note that there
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is then little to work on if we are to obtain a nonvanishing value for the
integrals. The only possibility is to choose the value of k¢ such that

ko >~ w4 — w72 >~ w1 — w3 (3.96)

This requirement is a direct result of the properties of the Fourier integrals,
for which it is necessary not to have strongly fluctuating integrands if we
want nonvanishing results.

We conclude that, as the time in region R is earlier than the time in
region Ry, according to the ®-distribution, and as kg is positive:

e the energy of the e-flavor particle decreases from w; to w3 by emission
of the (virtual) ¢-quantum in the region Ry;

e then the p-flavor particle absorbs the ¢-quantum in the region R;
and so increases its energy from ws to wq;

e in both cases it is necessary to have time slices T; large enough
to measure the energy loss and energy increase, respectively, with
sufficient precision.

In the other term in Eq. (3.93) the region R; is before the region
R; in time; this correponds to the opposite process. The basic point is
that the Feynman propagator describes emission and absorption (within the
requirements of Heisenberg) in a causal way.

3.4 The method for calculating the scattering cross sections

Here we consider the steps that are necessary to get from the transition
amplitude to the scattering cross section for a multiparticle interaction. The
reasons for doing this are two-fold. On the one hand we have introduced
a cutoff procedure with the box ¥V and we want to show why it does not
appear in our final formulas. On the other hand, in the last section, at
Eq. (3.90) and Fig. 3.1, we considered a particular scattering process. To
understand the physics of that process we will calculate its properties in
some detail. The result will serve as an example of other formulas that we
will meet later on.

We will consider the matrix element .# between two incoming -
particles (energy-momentum ki, kp) and two outgoing y-particles (k3 and
k4) interacting via the field ¢ according to the interaction term

/ Hy(t)dt = / dxg : p2(x) : b(x) (3.97)
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From Eq. (3.90) we know the term responsible for the transition and so
we obtain for the matrix element .#(ks, kq; k1, k)

/d4xd4x’ <k3,k4 l%gz cp2(x) () L Ap(x —x)|k1,k2>
2 2
— 4 44 1 g
/d xd'x 4V? [wiwrm3ma %
{explix(ks — k1) + ix'(ks — k2)] + explix(ks — k1) + ix(k3 — k2)]
+exp[—ix(k; + k2) + ix'(ks + ka)] } Ap(x" — x)

_ 2g° 8 i
=V o050, (2m)°0(ky +ky — k3 k4)(27)4
1 1 1
X + +
[(lﬂ — k3)? —Mfs (k1 — ka)? —M(% (k1 + k2)? —Mfs
= AB (3.98)

We have here introduced in the second line of the equation the wave func-
tions for the incoming and outgoing particles, ie. the factors multiplying
the necessary annihilation and creation operators in the representation of
the operators . In the third line we have, after the introduction of the
Fourier representation of the Feynman propagator, performed the space-
time integrals. In the last line we re-express the three terms inside the
square bracket as B and the remaining factors as A. We note in particular
that the energy-momentum conserving J-distribution appears in A.

The cross section, according to Fermi’s Golden Rule, is obtained by
multiplying the transition rate per unit time by the inverse of the incoming
particle flux and by the final-state density. We are going to introduce and
discuss these factors in turn.

The transition rate is obtained from the square of the matrix element .#
and we immediately encounter the difficulty of squaring a §-distribution
in the factor A. If we go back to Eq. (3.51) we note that the distribution
for a finite box V is, for the momentum part,

(2n)35(k — k') - Vépw (3.99)
Consequently the square of the space-momentum part is, formally,

4
2n)?
For the energy part we note that the d-distribution stems from an integral
sin(toAE)
" mAE

The last expression is a well-known representation of the J-distribution.
We always have in mind the physical picture that there should be a finite

[6(k — k)] — 5k —K) (3.100)

1
S(AE) = 51— [nm ' dtexp(itAE)] = lim [
0

T [to—o0 S tp—c0

] (3.101)
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time overlap for the interaction; this corresponds to a finite ‘effective’ value
of to. Therefore this representation is in accordance with our intuition. If
we formally square the last line and note the well-known relation
. [sin(x

lim [ﬁ] =y (3.102)

x—0 X

we find the following formal definition of the square of the energy part of
the o-distribution (with At = 2ty the ‘interaction time’):

[6(AE))?> — gcS(AE) (3.103)
2n

Thus the transition rate per unit time is

W (2g%)? Y
At (4V2)20)1a)2a)3w4 (27‘[)4

The incoming flux, ie. the number of states interacting per unit time
and unit transverse area, is v,/V, where v, is the relative velocity of the
particles. If we divide the formula in Eq. (3.104) by this flux factor we
notice that we obtain two factors V in the numerator, one from the (space-
momentum) J-distribution and one from the flux. These two compensate
the two factors V' in the denominator stemming from the two incoming
particle wave functions.

The remaining factors from the incoming wave functions, 4w;®,, com-
bine in the denominator with the velocity v, so that we have

S(ki +ky — ks — ka)|B)* (3.104)

41w, = dwiwa|vy — v2] = 4 ||k — |k2lo1]

— 4M M; [sinh(y; — y2)| = 4M; May/cosh(y; — y,) — 1

(3.105)
2\/(5 — M2 — M3 — 4AM}M3 = 2,/A(s, M2, M2) — 25

with s the squared cms energy s = (ki +k»)>. Here we have first introduced
the relative velocity and used that each particle velocity is v; = |kj|/w;
and that energies and momenta can be written in terms of rapidities
wj = Mjcoshyj, |k;| = M;sinhy;. The rest is simple manipulation and
we note that the function A(a, b, ¢) is totally symmetric:

Ma,b,c) = a* + b* + ¢* — 2ab — 2ac — 2bc (3.106)

The quantity A is very useful for quick calculations of Lorentz boosts.
Thus the cms momenta of two particles (indexed 1 and 2) with a common
cms energy \/E has the common cms momentum

VA M, M) Mi, M3) (3.107)

[kj,cmsl = 2\/5
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while in the rest frame of particle 1, particle 2 has momentum

\/ AUs, M3, M3) (3.108)

2M,

In the rest frame of 2 we simply exchange exchange the indices.

The third factor in the cross section, the final-state density is the number
of momentum states available and is given by Eq. (3.50). We note that
it will contain in the numerator as many V-factors as particles. This will
compensate the corresponding denominator V-factors from the final state
particle wave functions. All in all this final-state density therefore combines
with the wave function factors into

d3kj dkj; <42 2
Hijf(2n)3 = I];[ (2n)35 (kjf Mjf) (3.109)

Js

k2 1ap| =

where we have used Eq. (3.66).
The full cross section then will appear as (for ny final-state particles)
4
_ 2g B2
(2m) =), [3(s, M2, M2)

X Hdkjf5+(k}f — M} )3(ki + ks —ijf) (3.110)
Jr Jf

do

The general phase-space factors in Eq. (3.110) will always occur in two-
body to many-body processes but the factor 2g*|B|* (with the matrix
element B defined in Eq. (3.98)) is specific to the particular process we
have considered. We will meet the result repeatedly later in the book and
we note that it is manifestly Lorenz-invariant.

3.5 The propagators in lightcone physics in the infinite-momentum
frame

1 The formalism

We will in this section provide a different picture of the the Feynman rules
by exhibiting the properties of perturbation theory when lightcone coordi-
nates are used. The propagator in energy-momentum space will then have
strong similarities to the old-fashioned energy denominators occurring in
time-dependent perturbation theory in nonrelativistic dynamics.
Basically the scenario describes a two-dimensional field theory in trans-
verse dimensions with a varying mass parameter which corresponds to
one of the lightcone components. The whole idea stems from early in-
vestigations by Weinberg, [111], into the possibility of simplifying the
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Feynman rules by performing all the integrals in a frame moving very fast
in some direction. This has been called the ‘infinite-momentum frame’.
The discussion is based upon the development in [87].

The formalism is useful to understand intuitively some of the features
of the parton model which is discussed in Chapter 5. We will use some of
the results in connection with heavy quark fragmentation in Chapter 13.

We begin by defining the lightcone components n,H and t,{ of the
energy-momentum and space-time operators:

_P0+P3 T_t+X3
V2 V2 (3.111)
_P()——P3 _t—X3

, (==
NG NG
We will call the 1- and 2-components the transverse components of the
corresponding four-vector and denote these by p; and x.

According to the ordinary commutation relations we have

[n,71=[n,H] = [H,{] = [5,{]] =0

. (3.112)
[n.{]=[H,7] =i
and all these components commute with the transverse ones.
The mass-shell condition for a free particle means that
P
m =P} —P}—p} = sz—i—Vo (3.113)

where Vo = m?/2y is similar to a potential term. This is evidently a
reduction of the problem to the two transverse dimensions using the
variable ‘mass’-parameter #.

We next consider the Feynman propagator and rewrite it in terms of
the variables given above:

i dk exp(ikx)
(2n)* ) kT —M? +ie
i

= gt | P [ dnexpitic —p. %)

X / dH exp(iHT)2nH —p2 — M? +ie)~1  (3.114)

Afp(x) =

We note that by use of the results in Eq. (3.80) we may now write the
following formula for the Feynman propagator:

0
Ar(x) = 2(—217[)—3 [ [ L 10(0)exp(—ip) + O(—)exp(ip)
(3.115)
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Fig. 3.2. One of the possible Feynman diagrams in the process y; + y; —
3 + P4 + ¢s and the same diagram ordered according to one of the possible
orderings along the lightcone.

where px = Ht+n{ —p, -x, and H is defined by the mass-shell condition
above.

In order to obtain the result in Eq. (3.115) we have divided the integra-
tion region of 5 into positive and negative parts to obtain the sign of the
limiting imaginary part and then changed sign for the negative part. This
provides the signs in the complex exponents.

We have thus come back to expressions with the properties described
before. The ‘effective’ energy H is like a nonrelativistic kinetic energy term
related to the generalised ‘time’, i.e. the lightcone coordinate 7.

2 An example

We will next provide an example of how the Feynman rules work when
lightcone coordinates are used; we consider the Feynman diagram in Fig.
3.2(a). This corresponds to the g¢:yp?:-theory we have discussed before
and contains the scattering of two y-particles together with the emission
of a ¢-particle in a bremsstrahlung process. We note that there are several
more diagrams which will contribute to the process.

In Fig. 3.2(b) we have drawn a version of the diagram in which there
is a particular ordering of the t-variables. A little thought will convince
us that if we have n vertices in the primary Feynman diagram then there
are n! such ordered diagrams possible. That means six in this case and we
have considered the one corresponding to the ordering 71 < 75 < 73.

In the ordered diagram we must perform the z-integrals with this
ordering requirement, which means that only one of the ©®-terms in the
representation of Eq. (3.115) survives the requirement.

There are two propagator terms and three t-integrals. Note that all the
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transverse integrals and the {-integrals can easily be performed to give at
each vertex a J-distribution contribution

(21)*6(p1i — P17)S (i — ny) (3.116)

where the indices i, f correspond to the ‘in’- and ‘out’-contributions at that
vertex. Note that we have directed the vectors in Fig. 3.2(b).
The t-integrals are given by

I= / dTld‘Czd’C3®(’C3 — ‘Cz)@(’tz — rl)exp{—i[(Hl — H; — H6)171
+(Hg — Hy — H7)tz + (H7 4+ Hy — Hs)13]} (3.117)

If we introduce the natural variables To = 11, T1 =12 — 11, T2 = 13 — T2
then the integrals are transformed to give

I= /dT() €Xp {——i(%i — Jff)T()] /OOO dTy cXp [—i(%1 — fo)Td
X /0 " ATy exp [~i(#2 — # )T (3.118)

where we have introduced the notation
Hi=H),+Hy, #y=Hs+ Hs+ Hs

(3.119)
H1=H3+H¢+ Hy, #,=H,+H7+ Hy

Again the indices i, f correspond to the energies of the incoming and
outgoing states (this time for the whole diagram, with signs) and the two
indices 1 and 2 correspond to the intermediate states. If we consider Fig.
3.2(b) it is obvious what is meant by the intermediate states. They refer to
those particles which exist at a particular t-slice, for the index 1 the slice
between 7; and 75, for the index 2 the slice between 1, and 73.

The Ty-integral, which is taken over the whole lightcone time, provides
a o-distribution for overall energy conservation. The T;- and T»-integrals
only cover the positive regions and each give

i
H + ie
This means that the total result will contain, besides an overall energy-
momentum-conserving d-distribution, ‘mass’-conserving , i.e. #-conserving,
and transverse-momentum-conserving J-distributions at each vertex,
something very similar to old-fashioned energy denominators:

(1 — A ) (2= H ) (3.121)

one for each intermediate state. It is not difficult to see that this structure
survives for all the different contributions. Further, as one may guess, it
is possible to do the same for any kind of field theory, although there

/0 " AT exp(i#'T) = (3.120)
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are often more singular parts of the propagators (for QED cf. [87]) than
those we encountered in the simple scalar theory.

It is worthwhile to note that that the n-terms we find everywhere are
nothing other than the quantities

do _dy _ dn

2 2 2y
which we met before in the method of virtual quanta in Chapter 2, and
also will meet later as Feynman’s ‘wee spectrum’ of partons.

In this way each n-vertex Feynman graph can be reduced to n! old-
fashioned energy denominator integrals. This might not seem to be a
major achievement. But this formalism often makes it easier to perform
reasonable approximations among the many diagrammatic contributions
to a particular scattering situation or bound-state configuration. It also
provides an intuitively appealing picture of the difference between the
longitudinal and the transverse dynamics.

(3.122)
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4

The vacuum as a dielectric
medium; renormalisation

4.1 Introduction

In this chapter we will consider some major problems in quantum field
theory. They are related to the understanding of polarisation effects in
the vacuum state. Although this state in the mean is empty it nevertheless
embraces the continuous production and annihilation of virtual particle-
antiparticle pairs due to quantum fluctuations. All the real charges and
currents then behave as if they were moving in a dielectric medium. In
connection with QED this effect is small (although readily observable).
For QCD, on the other hand, it plays a major role.

The first kind of problem is mathematical, related to ill-defined series
expansions in perturbation theory and also to undefined integrals. The
second is general in physics: it is necessary to isolate the effective depen-
dence on the theoretical parameters in all the calculated expressions for
the observables (note that this dependence is in general complicated when
one deals with non-linear equations). This is the renormalisation procedure,
which always must be performed in order to relate the parameters in a
theoretical expression to the observables in an experiment.

It is true that physicists are, compared to most other scientists, privileged
because the components of many systems in physics can be isolated. In this
situation the properties of each component can be determined. Afterwards
the whole system can be brought back into interaction, with well-defined
values of the parameters which govern the behaviour of each subsystem.
For an interacting quantum field it is, however, not straight-forward
to isolate the ‘real’ quanta from the surrounding fields and the quantum
fluctuations. This was found for an electron in connection with the method
of virtual quanta in Chapter 2: the electron energy can only be isolated
from the surrounding field energy by means of an impact parameter
cutoff. Similarly the properties of a field quantum in an interacting-

57

https://doi.org/10.1017/9781009401296 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401296

58 Renormalisation

field theory cannot be described in terms of the corresponding free-field
behaviour without some limiting procedures and the introduction of cutoff
parameters.

It is a surprising and gratifying result that we are able to solve both
the above-mentioned problems at the same time. It turns out that all the
‘bad’ mathematical expressions occur, for a wide class of field theories,
just where we would anyhow have had to redefine these expressions in
order that the coupling constants and the masses should have the values
observed for the free initial- and and final-state quanta.

We will consider two different examples with some similarities. The first
one corresponds to the scalar field theory we exhibited before in Chapter
3, with two w-operators coupled to a single ¢-field. We will choose
the quanta of the ¢-field to be massless, My = 0, in order to connect
with the QED and QCD field theories. These will provide our second
example, with massless vector particles, photons and gluons, coupled
to spin 1/2 fermions corresponding to the scalar y-fields in the first
example.

We will find that, apart from mass renormalisation, the scalar field theory
is a finite field theory, called super-renormalisable. This feature is related
to the dimensions of the coupling constant. For a super-renormalisable
theory the coupling constant dimension is positive in terms of energy di-
mensions. Then the theory contains at most a finite number of undefined
diagrammatic contributions in perturbation theory and this can be under-
stood in the following way. Undefined, divergent, integrals in perturbation
theory stem from the fact that there are too many energy-momentum
integration variables as compared with the energy denominators (from
the propagators). Then the integrals are not sufficiently damped for large
values of the energy-momentum variables (and are therefore called ultra-
violet divergent). If we consider this phenomenon in space-time then the
divergences in the energy-momentum integrals correspond to singular
behaviour of the space-time integrals for small values of the relative coor-
dinates of the field operators. The singularities stem from the distribution
properties of the field operators, which we have already encountered in
Chapter 3. In general one is not allowed to multiply field operators at the
same space-time point (which we would like to do when we consider local
interactions between fields).

Let us consider a physical quantity # which by a suitable rescaling is
dimensionless. When it is defined in perturbation theory at the nth order
in the coupling constant g one obtains g"l, with I, some integral. The
integral I,, must then have the (energy) dimension diml, = —n x dimg.
Therefore in a super-renormalisable theory the (energy) dimension will
become more and more negative with n. This means that the number
of energy denominators must be increasing faster than the number of
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integration variables, which means that we obtain integrals which are
more and more damped for larger energies.

QED and QCD have dimensionless coupling constants and in these
cases the argument above does not work. They are nevertheless renormal-
isable in the following sense. One finds that in each order of perturbation
theory there will be logarithmically divergent integrals (which in prac-
tice stem from non-allowed changes of integration order and undefined
limits). It is then necessary to introduce in each order of perturbation
theory a method to make the results finite. For renormalisable theories
it turns out that all the undefined quantities can be incorporated as multi-
plicative constants in the field operators and in the coupling constants after
mass renormalisation has been performed. This means that the ‘new’
renormalised field theory contains just as many parameters as the origi-
nal one. When these parameters have been fixed by the observed values
then all the remaining observable quantities are finite and predicted by the
theory.

To be more precise we may imagine that we have a fixed external
electric charge (size go) and that we make use of it in order to measure
the properties of a quantum field coupled to the charge via QED. As
a thought experiment we will consider the scattering of a field quantum
with momentum transfer g? from this external source.

Now let us take into account the influence of the quantum fluctuations
in the state, i.e. what we have earlier referred to as the dielectric properties
of the surrounding vacuum state. All these properties can be calculated
in perturbation theory but (unless one is particularly careful about the
distribution properties of the fields) the expressions will correspond to ill-
defined integrals and series. The calculations can nevertheless be performed
with different degrees of sophistication. We will then obtain results which
can be expressed in terms of the original (unrenormalised) parameters
of the theory together with some suitable cutoff parameters to make the
mathematical expressions well defined.

In this way we will obtain an expression for the scattering amplitude
(cf. Eq. (3.98)) which should be of the generic shape

2
gog(zq ) k. (4.1)
q
where k.f. corresponds to the necessary kinematical factors and g(g?)
corresponds to the coupling constant at the ‘test frequency’, g2, at which
we perform the calculation (the theoretically evaluated quantity g(g?) also
depends upon the the cutoff parameters, of course). We may also calculate
other quantities, such as the value for which there will be a pole in the
field propagator. This obviously corresponds to the squared mass of the
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corresponding quanta (as seen by a probe with the frequency g?) and from
the size of the pole term we may calculate the number of quanta which
are available at the scale g2 in the field (the ‘“field strength’).

These calculations provide us with a value for the effective coupling
constant, g(g%), as well as values for the mass(es) and the normalisa-
tion(s) of the field(s) at the ‘frequency’ g2, and they are all expressed in
terms of the unrenormalised parameters and the cutoff parameters. We
may then choose these numbers to coincide with our expectations (giving
coupling constant, mass and wave function renormalisation, respectively).
But note that this free choice can in general only be made for a sin-
gle value of the frequency! For other frequencies there will be changes
but in a renormalisable theory all such changes are computable and finite
although all quantities will seemingly depend upon the value of ¢* for
which the original definition is made. There is, however, no reason to
prefer one value of g? to another and we may then freely move be-
tween different ‘normalisation points’. But the values of our parameters
at these different points are all related, i.e. for any given value ¢*> and
our choices of the parameters at that value we may compute the re-
sult for any other frequency value. And for any particular value qg we
will obtain the same observable results, independent of the normalisation
point!

This is the content of the renormalisation group theory. After we have
sketched the general behaviour of any renormalisable field theory we will
derive the Callan-Symanzik equations, [108], which relate the behaviour of
the matrix elements and the effective coupling constant g(g?) at different
values of the momentum transfer by means of differential equations. We
will use these equations again in Chapter 19 to derive the QCD predictions
for the scale breaking in the parton structure functions, which governs the
behaviour of the inelastic lepto-production cross sections.

We start by introducing the Kéllén-Lehmann representation as a con-
venient tool to perform the renormalisation procedure. This will also
provide an opportunity to show the occurrence of some of the phase
space factors we will meet further on. We also show how to calculate the
polarisation correlations which occur when one couples spin 1/2 (Dirac)
particles to spin 1 particles (photons or gluons) as is done in QED and
QCD. The particular polarisation properties of the QCD field theory
are treated in some detail and we will then also consider the relation-
ship between the weight function and the full polarisation function in a
Killen-Lehmann representation, ie. we will introduce the notion of ‘cut
diagrams’. We will finally show how to calculate the color factors which
occur in QCD.
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4.2 The Killen-Lehmann representation, the n-particle phase space

We start out with the following general expression for a propagator
Ara(x) = (0] 7 {A(0)A(x)} |0)
= O(x) (0] A(x)A4(0) |0) + O(—x) (0] 4(0)A(x) |0) (42)
where A is a local (for simplicity also self-adjoint, i.e. real) operator of any
kind expressed in terms of the in-fields (we omit all i-indices from now

on). We may introduce a complete set of states Y, |n) (n| = 1 in between
the operators. Further we note that (due to translation invariance)

(0] A(x) |n) = exp(—iknx) (0] A(0) n)
(n| A(x)|0) = exp(ikax) (n| A(0) |0)

with k, the total energy-momentum of the state n. We then rearrange the
expression for Apy into

Ara(x) = Y _[O(x) exp(—iknx) + O(—x) exp(iknx)]| Aon|

h

4.3)

= / (20qu)3 [®(x) exp(—igx) + O(—x) expligx)] dad T (q* — a)G4(a)

Galg?) = 2n)* ) 3(q — kn)lAonl?
n (4.4)
where we have used the shortened version Ay, = (0| A(0) |n).

The fact that G4 is a Lorentz invariant will be exhibited below. Then
the resulting expression for Agy is

Apq = / daAr(x,a)G 4(a) = (2;) . / dg q;’f’gq:)iedaGA(a) (4.5)
which is the Killéen-Lehmann representation for the general propagator.
The structure is a sum of ordinary Feynman propagators with contribu-
tions from the squared masses of all the possible intermediate states which
can be reached by A.

We note that the weight function G 4, if we use the distribution described
by Eq. (3.87), is essentially the real part of (the Fourier transform, i.e.
the energy-momentum space version, of) Ag4. This general feature is in
Chapter 2 referred to as the Kramers-Kronig relations: the imaginary
part of the dielectricity is determined by the real part. From Eq. (4.5) we
find the content of this statement, i.e. the total energy-momentum space
propagator is determined by its real part. We will elaborate this result
further on in this chapter.

In order to investigate the weight function G4 we start by considering
the case A(x) = :y?(x):. Then there is only a single intermediate state, a
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two-particle yp-quantum state, and we obtain for this situation
Gy = (2n)325(q —ka)l <Oyt |n) |?

2 3 3
_/deldkz ki —k) 1
(2m)3 4V2m1m;

ny
- w(Zn)3"f_3 / H1 dk;, 5% (k. — M3,) (q -3 k,-f) (4.6)
=

jr=1

where in the last line we have gone over to the result for A, 31_[;!;:1 Y
in order to show the general structure of any G4-expression containing
normal-ordered local-field operators. The main point is the occurrence of
the manifestly Lorentz-invariant ny-particle phase space .

For the scalar field theory case the probability of producing real states
with the mass square a is given simply by this phase space factor. We will
later find a difference when we have spin 1/2 particles coupled to a vector
field; then there is also a spin-correlation term.

We will now calculate the phase space integrals, I,,;, for the cases when
ny = 2,3 because we will need them later. We start with I5:

dlydk
(2m)?

Evidently g must be a timelike vector with /g2 > Jar + Jaz. In order
to simplify our formulas, we will make use of the Lorentz invariance
to choose the particular system where g is at rest (the cms of particles
1 and 2). Then g = (W,0). Performing the k;-integral by means of the
energy-momentum-conserving o-distribution we obtain in this frame

(g% a1, a2) = / 5k} — a)t (2 — ax)d(q — ki — k) (4.7)

I = / dky 6+ (k2 — a1} ((q — k1) — a2)

(2n)?

2
_ [ KdkdQ 36T (W? —20W + a1 — a) (4.8)
2w(21)3

with the notation k; = (w = v/k? + a1, k). We have chosen a spherical
coordinate system with d*k = k’dkdQ. We may then transform to the
integration variable @ and obtain

VAW, ar,az)

I
o (4n)2W?2

/ kdws QoW — (W2 + a1 — ay)) = (4.9)

(2n)?

where A 1s again the symmetrical function defined in Eq. (3.105). In
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particular the expression can be written as

2pCmS
(4n)2wW
Thus the two-particle phase space integral vanishes linearly when the
relative velocity vanishes and approaches the constant 1/(4n)? for large
W2-values. We note that the phase space for two particles is dimensionless
(with our conventions, 1.e. when ¢ =F = 1).

If we look back we notice that for n = 2 there are n x 4 integration vari-
ables with dimension mass. But there is a four-dimensional é-distribution,
with dimensions 4 x (—1), and » = 2 (mass-shell) d-distributions with
dimensions —2. This means that the n-particle phase space has the energy
dimension diml, =4n—4—2n=2n—4.

We note also that the number of degrees of freedom is 4n—4—n because
the mass-shell J-distributions fix only one of the four energy-momentum
variables describing each particle. There is, however, also the question
of orienting the event. It takes three Euler angles (cf. Goldstein) to fix
the coordinate system. If there is no outside direction to relate to, these
angles will always be integrated out. Thus for the internal dynamics of
the n-particle state there are effectively 3n — 7 degrees of freedom.

For the three-particle phase space we find an energy dimension 2 and
also that there are two internal degrees of freedom. This is a sign that it is
a density in two energy variables. We note that if we again go to the cms,
i.e. choose the vector g = (W,0), then the energy J-distribution requires
the three cms energies to satisfy

L= (4.10)

3
dwi=W (4.11)
j=1

We may then choose two of these to be independent variables, e.g. the
pair wi, wy. We will only calculate in detail the result when all the three
particles are massless; we then obtain

d’l4

3 3 2
o (2n)6 /d ki dkydks Hé(k 5 (q Zk)

o / d3k1d3k2H5(k2)(5 (W — o1 — 02 — (s +k2)?)

(e

(2 )Swla)z/sinOdHé <W2——2W(a)1+w2)+2a)1w2(1—-cos 0))

(4.12)

In the second line we have introduced k3 = (W —w; —w,, —(k; +k3)) and
then performed the integrals over everything besides the relative angle 6
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between the vectors k; and k;. The final step leads to the result
d*I; n?
dowida, (27:)6@(W @1 = @)
X0 (2w1 + w2) = W)W —201)(W —2m)) (4.13)

One way to make the whole thing symmetric is to introduce the new
dimensionless quantities x; = 2w;/W for j = 1,2,3 and to rewrite the
distribution as

3
d3I3 (4 )4 (ij ) de]'Q(Xj)@(l—Xj) (414)

j=1

The expressions for the higher-order phase space factors become more
and more complicated to handle. Van Hove [81] devised the idea of ‘lon-
gitudinal phase space’, which means that one projects the total n-particle
phase space onto a single direction. He was in that way rather successful
in obtaining low-energy dynamical information from the experimental dis-
tributions. But even in this simplified case one cannot make do with fewer
than n coordinates for n particles so this method fails to give information
as soon as we go away from the resonance region.

4.3 A scalar-field-theory propagator in the Killen-Lehmann
representation

In this section we will make use of the Killen-Lehmann representation

together with the structure of the perturbative expansion as given in

Dyson’s equation to study some very general properties of the propagator.
We will as an example consider the time-ordered product

Tprop = T {$s(x1)Ps(x2)} = T {8 dpi(x1)Pi(x2)S } (4.15)

for the simple g: ¢y :-theory. To second order in the coupling constant the
(in-)vacuum expectation value of the operator Ty, contains two terms:

(04| Tprop|0i) = Ap(x2 — x1, My) + 4g? / dx3dxsAp(xy — x3, M)
X Aj(x3 — X4, My)Ap(xq4 — x1, M) (4.16)

The result is presented in Feynman graph language in Fig. 4.1.

It is not too difficult to continue towards higher-order approximations
(although there are some problems with respect to counting the number
of contributions to each particular diagram in accordance with combina-
torics). In Fig. 4.2 we show the relevant contributions in the next order; it
is then possible to deduce the general structure.
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Fig. 4.1. The first two orders in the expansion of the ¢-propagator described by
Feynman diagrams in the simple g¢:y?:-theory. Solid (broken) lines correspond

to - (¢-)propagators.

Fig. 42. The next-order contributions to the propagatos in the g¢:y?:-theory.

There is a ‘master’ part, p, which is called the polarisation function. It
is the sum of all the contributions from diagrams (with one ¢-line in and
one out) with the following connection structure:

e they are everywhere two-line (at least) connected, ie. all parts are
connected to the rest by at least two lines (this is called one-particle
irreducible). It means that you cannot disconnect one part from the
others by cutting a single line (whether it is broken, corresponding
to a ¢-propagator, or solid, a y-propagator).

The contributions in Fig. 4.2 are one-particle irreducible for the first
three cases shown but the fourth contribution can be divided easily by
cutting the line in between the ‘blobs’.

We will assume that it is possible to sum up the contributions to p.
Unfortunately it can be proved that in a scalar field theory the contri-
butions are, at the 2nth approximation level, positive and the number of
contributions increases more than n! [82]. Therefore the power series in
the coupling constant g2 cannot converge in the usual sense.

This behaviour can be described in very sophisticated mathematical
ways but the major physical reason is that the interaction term is not
well-behaved, in this case the interaction term oc ¢:y?: is not positive
definite. Therefore it is possible to find state configurations with a positive
energy in the original free-field case (we may e.g. chose large negative ¢-
field contributions). For the total energy operator # such configurations
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Fig. 43. The result of summing all one-line irreducible diagrams into the
polarisation function p (denoted by a shaded oval) and then adding all these
one-particle reducible contributions.

will provide very large negative contributions. Then the Hilbert space of
the free-field configurations becomes different from the Hilbert space of
the interacting fields, ie. for some states of the free Hilbert space the
interaction term is not well defined.

(You can find a similar behaviour if you introduce e.g. a seemingly
small but singular perturbation oc e|x|~!~? into the one-dimensional
Schrodinger equation with a binding potential at the origin; for any
€,0 > 0 there is at least one state, the ground state g, which is not
allowed in the Hilbert space of states of the total hamiltonian because the
perturbation term is not defined on the state yy.)

In Fig. 42 we note in the fourth contribution the appearance of a
repeated part from Fig. 4.1. After a little thought we may conclude that
to all orders in the expansion the result can be described as a single (free)
¢-propagator connecting p’s in accordance with Fig. 4.3. This means that
if we introduce the Fourier transform p of p by

p(x) = (7;—)4 | dap@exstiax) 4.17)

then we obtain the total result after Fourier transformation (using A for
the full Feynman ¢-propagator in energy-momentum space and Agl(q) =
q* + ie for the corresponding free ¢-propagator):

A = Ao(q) — Ao(9)P(9)o(9) + Ao(9)P(9)Ao(@)p(9)Ao(q) + -+~
This can be expressed as an algebraic equation:
A = Ao(q) — Ao(9)B(9)A(g) (4.18)
with solution
A _ AO(q) _ 1
= = -
14+ Ao(q)p q”+plg)+ie
We have then in effect summed a geometrical series without worrying

(4.19)
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about convergence problems. This has at least a formal meaning in con-
nection with a perturbative expansion. Equation (4.18) was first derived
by Dyson and corresponds to his propagator equation. We conclude that
in order to learn about the general propagator it is enough to know the
polarisation function p in energy-momentum space.

Actually we have in the simple ¢:y?:-theory already calculated the
lowest-order contribution to p, ie. the contribution p‘!) corresponding to
the second term in Fig. 4.1. We note that this has exactly the structure of
the vacuum expectation value of a time-ordered product (cf. Eq. (4.16)):

4AF(xa —x3, M2) = (0|7 {9’(ea)w’(xa): [ 0) (420)

We may then use the Killen-Lehmann representation for such an expres-
sion and pick up the result directly from Egs. (4.5), (4.6), (4.9):

L 4M2
~(1 =

with M = M,,. The weight functlon in the mtegral is Just the size of the
intermediate two-particle phase space. The integral does not vanish for
g*> = 0; as a matter of fact it does not even converge! This is due to a
too-cavalier treatment of limits in the calculations. But even if the integral
were finite we would have to (re)define it so that p vanishes for g> = 0.
This is called mass renormalisation and corresponds to the requirement that
our physical ¢-field also should have massless quanta.
It can be done easily in this case:

e} ﬁ“ @) =10

4M? da
(47'5)2 /4M2 \/— a R ;]
7 4g* 4M2 s
(47-[ /MZ \/—— a(a — lf):| q ld; (q ) (422)

Then we obtain for the total propagator the expression

i expligx) 1
(2m)* /dq q? +ie L + l¢(412)] (4.23)

where the correction term [1 + 15(¢%)]™! ~ 1 — 15(¢?) is to lowest order
equal to a convergent integral:

(W 2y _ 4M2
W=t [ =B ] e

A very similar calculation can be done for the full p-propagator and in this
case we obtain as the lowest-order correction term the Kéllén-Lehmann

Af(x) =
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contribution, corresponding to Eq. (4.20):

T {:dp(3) :: ¢p(4):}10) = Ap(xs — x3, M3)Ao(x4 — x3)  (4.25)

which again leads to the necessity of defining the mass pole for the -
propagator. We end up with an expression for the propagator similar
to the one we obtained for the ¢-propagator in Eq. (4.23) and with a
denominator in the integral containing an (inverse) correction term 1+ i,,.

The quantities in Egs. (4.25) and (4.20) are usually referred to as ‘self-
energy contributions’, indicating that the w(¢)-particle may fluctuate into
a ¢yp(py)-state and back again, i.e. interact with ‘its own field’. Just as
for the electron in the method of virtual quanta, cf. Chapter 2, it is
then necessary to distinguish between the y(¢)-quantum itself and the
surrounding quantum field, ie. it is necessary to define the mass of the
quantum.

It turns out that in this field theory there are now no other undefined
Feynman diagram integrals. After mass renormalisation it contains in each
order of perturbation theory only well-defined expressions. As mentioned
above, the number of contributions increases very fast with perturbation
order and therefore the theory as a whole is not definable by means of
our present formulation of perturbation theory.

There is, however, one particular feature which is valid both for 1? and
1y they are both positive-definite functions for spacelike values of ¢
This can be traced back to the properties of the weight functions. It has the
evident consequence that there is a dielectricity function, & ~ 1 — (qz)
to the lowest order, which must be always smaller than 1 (to all orders if it
can be defined at all).

This is the most general feature we can prove for any renormalis-
able or super-renormalisable field theory in which the Killén-Lehmann
representation is valid in the form Eq. (4.5). The main point is that the
weight function G in the integral is positive-definite because we are in reality
calculating the phase space size of the real intermediate states.

Actually the weight function generally has the meaning of a production
rate, i.e. the probability of emitting a y-quantum pair from an external
(unit) ¢-source, ¢,, carrying energy-momentum P with P2 > 4M3. To see
this we note that the matrix element .# and the transition rate w will be

M= / dxo(x) exp [i(ka + k)x]

2VVE Es (4.26)

(2 PSE |Pe(P)PdPIy(P?, M2, M)

where ¢, is the Fourier transform of the external source ¢.(x) and I, is
the two-particle phase space in Eq. (4.8). With normalisation such that
[ 1¢e(P)?5F(P2—a)dP /(2n)* = 1 we obtain directly from the distribution-
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valued limit in Egs. (3.85), (3.87) that w agrees with the (negative) real
part of the first-order polarisation contribution in Eq. (4.21).

This is just the Kramers-Kronig result for this case: the absorption
cross section for the ¢-field, i.e. the rate of producing y-pairs, determines
the real part of the dielectricity function while the imaginary part stems
from an integral over that quantity, cf. Eq. (4.21).

4.4 The photon propagator in QED and the gluon propagator in QCD

1 Introduction

Before we consider the renormalisation process further we will discuss the
results for the propagators in QED and QCD corresponding to those in
the previous section. We will start with the properties of the polarisation
function and methods for calculating the spin-averaged current matrix
elements in QED and QCD.

We will use the results from this calculation repeatedly in the book. It
is possible to understand the simple structure without ever entering into
the complexities of the Dirac spinors if we use

1 helicity conservation,
2 Lorentz covariance,

3 common sense and simple algebra.

Of these only the first item has not been used before. It is a general
property, valid for all massless particles with spin, that the spin must
always be directed ecither along the direction of motion of the particle
(positive helicity) or in the opposite direction (negative helicity). This feature
was noticed by Wigner, [112], in his fundamental classification of the
Lorentz group. Actually we already know from Chapter 2 that a real
(massless) photon, which is a quantum of an electromagnetic radiation
field (&, 48) with its motion along the Poynting vector P = & x 4, has
its polarisation plane in a direction transverse to P (conventionally along
&). Its spin component is then either +1 or —1 along the Poynting vector
direction (remember how the spherical harmonics Y{" look for m = 0, £+1).

The same goes for a massless spin 1/2 particle and it is also a good
approximation when the particle’s rest mass can be neglected compared
to its energy (m < e). For a particle with energy of order its restmass
it is always possible to go to its restframe and prepare the spin in any
suitable direction and then (although some care is needed in the Lorentz
transformations of spins, c¢f. Chapter 14), it will have a definite direction
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in any other Lorentz frame. In particular a massive spin 1 particle will
have three possible values of its spin, +1,0, along any direction.

There is a precise statement that the electromagnetic current matrix
element between an incoming electron and an outgoing electron vanishes
(if we neglect the electron’s mass) unless they have the same helicity.
This is evidently also true for the massless g- and g-particles in QCD.
The implication is that QED and QCD interactions conserve the helicity of
massless charged particles or in other words the current only couples to
the transverse degrees of freedom of the vector potential.

2 The vector nature of the field theories QED and QCD

The two major differences between QED (QCD) and the simple scalar
version we discussed in section 4.3 are that QED and QCD are vector
theories, which means that all the operators carry Lorentz vector or tensor
indices and that they have different dimensional properties.

The fact that the currents are conserved also means restrictions on the
different operator matrix elements. In particular the polarisation distribu-
tion will in this connection be a tensor, p*’ = p*¥(x), where

P (x) = (01 7 {j*(x);"(0)} 0) (4.27)
which in space-time and energy-momentum space must fulfil
oupt" =0,p" =0 = qp" =q,p"" =0 (4.28)

because it is constructed from conserved currents.
There is only one Lorentz-covariant tensor fulfilling Eq. (4.28) that can
be built from a single vector q; its Fourier transform has the shape

P = (ng,uv - qit‘h)ﬁ(qz)a f)(qz) = O‘p/(qz) (4.29)

In this way we have defined the polarisation function p and in the second
equation indicated that it is proportional to the fine structure constant,
i.e. the squared electric coupling constant o = e?/4m. As well as having
tensor indices p,, must be expressible in a Killen-Lehmann representation
because it fulfils all the requirements needed to derive Eq. (4.4) (note in
particular that the current is a real operator). Therefore it should be
possible to write for the polarisation function
plg*) = / —da—q;fz)—. (4.30)
a—q>—ie
where the polarisation weight function o(a) stems from the sum over
intermediate states with squared mass a. (We note that it is in this case
also necessary to be able to sum over the spin of the quanta in these states
and we will devise methods for that in the next subsection.)
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Further the free photon propagator is

(017 {4,(0)4,(x)} [0)g = (2+)4 / dq exp(igx)Do(¢*)(gw + 1)  (431)

~ 1
Do(g?) =
O(q) q2+i€

The notation g.t. stands for gauge terms and we have used the conventional
notation Dy for the photon propagator in QED. We have already, in
Chapter 2, pointed out that owing to gauge invariance it is possible to
make the change 4, — A, + 0, A without changing the physical results in
any calculation. This is due to the fact that the interaction term can be
expressed as follows:

/ d*xg jH(x) A, (x) — / 0 xg j* () Aul(x) — / dxgAX) %) (432)

On the right-hand side we have performed a partial integration and
we find that the added gauge term vanishes owing to current conserva-
tion. Evidently gauge invariance and current conservation are intimately
connected! Depending upon the gauge choice there are different tensor-
indexed contributions to the gauge term g.t. in Eq. (4.31) but when the
field and its propagator are coupled to a conserved current we can ignore
these terms.

The second difference between the simple scalar version and the full
QED is the dimensions of the currents. For a scalar field we have already
noted that the field operator formally has (positive) energy dimension 1.
Therefore the term :y?:, which in the last subsection corresponds to the
current, has energy dimension 2. In order to obtain the right dimensions
for the interaction term it is necessary that the coupling constant, g,
multiplying ¢:4?: in the interaction term, also has energy dimension 1.
The theory is then super-renormalisable, according to the introduction to
this chapter.

For QED and QCD (fermion) currents, which are constructed from
Dirac operators, we have instead an energy dimension 3. This means that
the coupling constant in Eq. (4.32) is dimensionless and also that the
polarisation tensor has energy dimension 2 in this case. It corresponds to
the matrix element in Eq. (4.27). Comparing to Eq. (4.17) we note that the
(positive) energy dimension 6 of the coordinate space p*” is after Fourier
transform changed to 2, for p*'.

This means that the quantity § in Eq. (4.29) is dimensionless and it
is also obviously a Lorentz invariant and has a Kaillén-Lehmann rep-
resentation. We will now provide a more detailed expression for this
quantity.
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3 The current matrix elements

In order to obtain the correspondence to Eq. (4.21) for the quantity p in
Eq. (4.29) we need a method to sum over the spins in the intermediate
states. We start with the contribution to the polarisation tensor from the
lowest-mass state. We need the matrix element between the vacuum state
and any state containing an electron-positron pair, (ki,kz| j, |0). Then we
may define the sum over the spin states of the tensor y (we will only write
out tensor indices when it is necessary to avoid confusion):

o= {0 v ki, k2) (ki k2l j, 10) (4.33)

spin

It is useful to introduce the reduced matrix element, denoted by {}:

(k1,kal ju10) = {k1, k2, 10} (4.34)

1

2V Jkiokao
ie. we take out the ‘ordinary’ volume and energy factors from the matrix
element. This means that the energy dimension of the reduced matrix
element is 1. We obtain the corresponding tensor y" (which is Lorentz-
invariant due to our conventions in the definition of the weight function
in Eq. (4.4) and has energy dimension 2) in terms of these reduced matrix
elements:

1
o 4V 2ky0ka0 v

We note that, in order to keep the current conservation condition, y and
therefore also y" must fulfil

v =4"7,=0 (4.36)
with g = k; +k;. Further, due to the fact that electromagnetic interactions
are parity conserving it must be constructed directly from the vectors ki, k>
or from the g,,. This means that y" must be constructed from the two

tensors T;, j = 1,2 because these are the only independent combinations
that fulfil Eq. (4.36):

Tl,uv == gyqu — 4uqv, TZyv = (kl - k2),u(k1 - kZ)v (437)

In order to have the right energy dimension, y” must then be a linear
combination of the T’s with coefficients which are dimensionless:

PV =uTi +wT, (4.38)

If the coefficients u,w are to be Lorentz-invariant they can only depend
upon the available Lorentz invariants k?,k3,kik, and if they are to be
dimensionless then the dependence must be upon the ratios of these three
quantities. For massless particles they must then be plain numbers and,

¥y r (4.35)
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Fig. 44. The Breit frame and the cms description of an electron coming in
and bouncing back due to a momentum transfer ¢ and an electron-positron pair
going apart, respectively.

unless the theory is very singular when the mass approaches 0 (which it
is not in this connection), then u,w must be plain numbers in the general
case, too.

Before we continue we also consider the matrix element (k1] j, |k2), i.e.
the current matrix element between the electron energy-momentum states
ki and ky. This will be of interest in connection with lepton scattering,
cf. Chapter 5. In that case, in order to calculate the cross section we will
need the spin-summed matrix element combination

Dou = (kal ju k1) k1l jiu Ik2) (4.39)

spin

We may again introduce the corresponding reduced matrix element, de-
fined in an obvious way, and the corresponding Lorentz-covariant tensor
9". Current conservation again must hold but this time we must change the
definition of q to q = k1 — k.

The fact that with the reduced matrix elements and tensors we obtain
the same result for y" and %" with the exchange k» — —k» is obvious
for the scalar field theory we discussed in the earlier section. It is called
crossing symmetry. It takes a little effort to prove that it also works for the
vector theories QED and QCD but it is nevertheless true and it is one of
the few very general properties which is valid in any field theory.

To see that u and w must be equal we take recourse to helicity conser-
vation for a vanishing lepton mass. This means that the current matrix
elements only couple to the transverse degrees of freedom of the elec-
tromagnetic (four)-potential A. The transverse directions are well defined
when the electron and positron go out in opposite directions e.g. along
the 3-axis, as they do in the cms, for the tensor y". For the tensor " the
same is true in the so-called Breit frame (see Fig. 4.4). This is sometimes
called the ‘brick-wall frame’ for easily understood reasons, i.e. the electron
comes in and after the interaction bounces out again with the same energy
backwards along the 3-axis.
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Thus helicity conservation means that if ka- = 0 then the 00- and 33-
components of the tensors y" (in the cms) and " (in the Breit frame)
should vanish. We leave it to the reader to convince him-/herself that this
happens if and only if w = u.

The fact that the sum T; + T> = T, only has tensor components in the
directions transverse to the momentum transfer (lepton scattering in the
Breit frame) or the production axis (e*e™ annihilation in the cms) means
that all its time components vanish and its space part is proportional to
the tensor #(y) (using k as a vector along one of these directions):

k ik
K
This space tensor occurs when we use transverse wave solutions to describe
a photon (gluon in QCD) with energy-momentum k = (kg, k), i.e. A =

e exp(ikx), and would like to sum over the polarisation directions of the
square of the wave function:

Y e =t (4.41)

polarisation

()i = 9dji (4.40)

(note that ‘transverse’ means that k - ¢ = 0 and the normalisation comes
from the fact that there are two transverse directions). The tensor T, is a
continuation of ¢(y) to values of k outside the mass-shell k* = 0 for a real
photon (gluon). The result is a consequence of the relationship between
current conservation and gauge invariance, cf. Eq. (4.32).

We may now calculate the polarisation weight function o, occurring in
Eq. (4.30), to lowest order:

(@ g — 4uar)0 V(g = 2n) > 5(ky + ko — @)y

e 2 2 2 2
= oap /dkldkzé(kl — MY)5(k2 — M?)
X3k + k2 — )y (4.42)

The simplest way to obtain an expression for 6(1)(¢?) is to take the trace of
the tensors on both sides of the equation. We note that tr (ngz —quq9") =

3¢% and that try” = u(2¢g* + 4M?) (prove that with u = w!) and therefore
we obtain immediately

2¢%u 2M?
Mgy = 1

X / dkydkyd(k3 — M*)d(ks — M?)o(ky +ky —q)  (4.43)

We recognize in the integrand the expression for the polarisation function
of the simpler case in Eq. (4.21) (the two-particle phase space). It is multi-
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plied by a factor 14-2M?/g? from the tensor structure (the spin-correlation
factor) and a different factor 2e%u/[3(27)?] in front.

The (squared) scalar coupling constant (which due to combinatorics is
multiplied by the factor 2 in Eq. (4.21)) is exchanged for 2ue?/3. The factor
2/3 stem from the fact that massless fermions only couple to two (the
transverse ones) of the three vector degrees of freedom (cf. the discussion
of the tensor t(y) in Eq. (4.40)). Therefore the unknown quantity u should
equal unity, which is confirmed in more elaborate calculations with the
full Dirac formalism.

It is worthwhile to note that the spin-correlation factor, within the large
parentheses, contains a term proportional to M?/q?> which corresponds
to a correction for massive particles. Such terms occur frequently but
evidently vanish in the limit of large squared momentum transfer (or cms
energy) q°. They are known as ‘higher-twist corrections’.

In this way we obtain the result for the first-order perturbative correc-
tion to p:

da
PQED In AMz vl (1 + ) P — (4.44)

Before we end this subsection we note that the tensor T, defined above
can be written solely in terms of the initial electron energy-momentum k
(= k1) and the momentum transfer g = k» — k. Thus

ki +ky =2k + g = 2(k — (kq/q%)q) = 2k (4.45)
which is true for elastic scattering because of the identity
k5 =(q+k? =k +2gk+¢* = ¢* = —2kq (4.46)

when the lepton is on the mass shell before and after the interaction.
Note, however, that the vector k fulfils kq = 0 independently of the mass-
shell condition. We will meet this vector later in connection with inelastic
scattering situations.

4 Dyson’s equation for QED
Dyson’s equation, Eq. (4.18), is for the full photon propagator D
Dyv = Dguv +gt = DO(qz)gyv - DO(qz)pyiD& +gt (4.47)

From this expression we obtain, using the results of the earlier subsections,
the solution
~ oy

" (@ F i)l + 2 ()]

(4.48)

Ay
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The gauge terms, which do not contribute if the propagator is coupled to

a conserved current, may be neglected. We have explicitly exhibited the

dependence on the (unrenormalised) coupling a, according to Eq. (4.44).
There are two features of this result worth pondering:

e Owing to the tensor character and the (energy) dimensions of the
polarisation tensor we have in Eq. (4.48) obtained the mass-renorma-
lised photon propagator without the subtraction necessary in Eq.
(4.23). The photon must always be massless and this can be traced
back to gauge invariance and current conservation.

e The function p’ is defined by a non-convergent integral. This is
noticeable for the lowest-order term in Eq. (4.44). A few further
terms are known in the perturbation-theoretical expansion of p'.
They exhibit the same sign and scaling behaviour as the one written
out in Eq. (4.44). The sign of the correction term can again be traced
back to the positive-definiteness of the corresponding weight function
G in Eq. (4.5), ie. to the fact that we obtain positive contributions
from the real intermediate states in the weight function.

Before we perform the necessary renormalisations for QED we will con-
sider the differences for the equations derived above in QCD. In this case
the current coupling to the gluon propagator contains contributions both
from the quark-antiquark currents and from the field self-interaction, the
three-gluon vertex coupling (there is also a ‘local’ four-gluon vertex neces-
sary to keep to the symmetries of the theory but it does not change the
conclusions). This field self-interaction is different because it corresponds
to a coupling between three vector particles. We will find that this contri-
bution means a large difference between the polarisation function in QCD
and that in QED, where there is no such interaction possible between the
chargeless photons (although they also are vector particles).

The fermion contribution is the same as we have met before. Thus the gg
intermediate state will give a contribution per flavor (evidently each flavor
provides an independent contribution) equal to the result in Eq. (4.44)
with the exchange agrp — a5/2. The factor 2 is due to an unfortunate
convention in the normalisation of the QCD coupling constant and we
will meet it further on also.

For the gluonic contributions to the weight function we find the surprising
result that the total contribution is no longer positive, [68]. This is very
disturbing because we have repeatedly pointed out that the definite sign
in the Kallen-Lehmann description of the polarisation function stems from
the fact that we sum over positive contributions from the intermediate
physical states. Depending upon the gauge choice there are different ways
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to obtain the result but the gauge-independent result is a function with
the same properties as in Eq. (4.44) although with the opposite sign.

4.5 Two reasons why in QCD the polarisation tensor behaves
differently; the introduction of cut diagrams

In this subsection we will provide two ways of getting an intuitive under-
standing for the negative contributions to the polarisation weight function
for the gluons (in subsection 2 of the next section we will present a
third way to see the difference between QED and QCD bremsstrahlung
emission). At the same time it will provide us with the possibility of in-
troducing higher-order corrections, such as the vertex corrections (usually
termed ‘virtual corrections’), in a natural way. In order to clarify the
relationship between a Feynman diagram and the weight function of its
Killén-Lehmann representation we will define the notion of cut diagrams.

The first argument for the behaviour of ogcp in Eq. (4.29) is that the
negative contributions stem from a lack of phase space for the real emitted
gluons in the intermediate states. The second reason we provide is that
there is a difference between the states containing transversely polarised
gluons and those containing Coulomb interaction gluons.

According to the first argument, when we calculate to a certain order
of perturbation theory and two gluons are emitted too close in phase
space (i.e. too close in angle or rapidity) then they will be reabsorbed
into a single gluon again, at the next order. This is at the specified order
noticeable as an available phase space for real gluon emission and as
a larger phase space for the absorption, i.e. for the virtual corrections
to this emission process. This will result in a negative contribution to the
polarisation weight function ¢ in Eq. (4.30). (The implication is that the
theory should be formulated in terms of ‘effective gluons’, which are not
reabsorbed; we will do that in sections 18.5 and 18.6, where we introduce
an approximation method called discrete QCD.)

For the second argument we note that the Coulomb gluons are not
real degrees of freedom to be quantised in the QCD field (there is always
a Coulomb field around any gauge theory charge). If, nevertheless, the
interactions with the Coulomb fields are incorporated into the Feynman
diagrammatical description then the occurrence of Coulomb gluons in a
state provides negative contributions to the state sum (they have a negative
metric in the Hilbert space of the states, cf. the Gupta-Bleuler formalism
in e.g. [30]). Therefore the weight function ¢ in the Kéllén-Lehmann
representation does not need to provide positive contributions from the
states containing Coulomb gluons (needless to say the two descriptions of
the phenomena are equivalent!).
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Fig. 4.5. The diagrammatic description of the matrix elements between the
current and the two gluons: the contributions #,k = a,b, and the three contri-
butions to the polarisation function obtained by squaring the matrix element ¢
(note that there is a second symmetric vertex contribution in Cgp).

In order to relate to the QED calculations above we consider a current
emitting two gluons gi,g2. (Gluon bremsstrahlung emission is treated
in great detail in Chapters 16, 17 and 18.) We consider the process in
a transverse gauge, i.e. with the g;,j = 1,2 polarised e.g. transverse to
the current direction. This process can occur according to perturbative
QCD diagrams in two different ways. Either there is a “first’ emission of
a gluon: J — Jgo, with J the current. Afterwards the gluon decays via
the three-gluon vertex as go — g1g», see Fig. 4.5(a). This is similar to
the decay into a (fermionic) ete™-pair of a massive (i.e. off-shell) photon
stemming from the emission of a QED current. But this time we are
dealing with two vector particles in the final state and this makes a major
difference.

There is, to the same order in perturbation theory, a second way to emit
the gluons, ie. sequentially as J — Jg; — Jg1 @ g, see Fig. 4.5(b). The
total matrix element for the bremsstrahlung emission is therefore a sum
of two contributions, # = ¢, + #; (in easily understood notation). As
the contribution to the polarisation weight function contains the absolute
square | Z|> there will be in principle three contributions, two from real
gluon emission, Coq = | £4l?, Cpp = |#5|%, and a correction from the inter-
ference term C,, = 2Re( £, #p). A closer examination tells us, however,
that (see Figs. 4.5(aa), (bb), (ab) and (ba)) only C,, and Cg correspond to
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corrections to the polarisation function of second order in the coupling
constant.

To clarify this statement we note the simple relationship between the
weight function and the polarisation function in the Kéllén-Lehmann
representation. The weight function will contain the square of the matrix
elements (obtained in a certain perturbative order) between the initial state
and a state containing some particular on-the-mass-shell configuration,
e.g. the particles pj,...,p,. For the case discussed above the initial state
is a current in the vacuum and the intermediate state contains also a
two-particle state, which may be emitted from the current.

If the matrix element contains several terms, each leading to this state,
then we must consider the overlap of all the terms. To obtain the sum over
the intermediate state it is necessary to consider the product of one term,
say #,, and the complex conjugate of another term, say ¢}, etc. All these
overlap integral terms can be considered as diagrammatic contributions
as exhibited in Fig. 4.5. But we note that Cpp, in this way corresponds to
two-gluon exchange for the current, i.e. it is not part of the corrections to
single-gluon emission.

The difference between the weight function and the polarisation func-
tion is that the weight function is obtained by putting the intermediate
state on the mass shell, i.e. each line corresponds to 6 (p?> — m?), while
the polarisation function corresponds to using the corresponding Feyn-
man propagator (p> —m? — i), Actually we are again invoking the
distribution-valued relationship obtained in Egs. (3.85), (3.87). The op-
eration of introducing J-distribution(s) instead of propagator(s) is called
cutting the diagrams and we will meet this notion later on in the book.

We will now consider the contributions in more detail, using the trans-
verse gauge. We assume that the two gluons g; and g, are emitted with
compensating transverse momenta +k, with respect to the polarisation
direction. Further we assume that their combined squared mass a (cor-
responding to the ‘virtuality’ of go and to the a-variable in Eq. (4.44)) is
very large, a >> k}. Then the available rapidity region for the emission in
the contribution C,, is Ay = log(a/k%) — 11/6. The result (including the
peculiar number 11/6) is further clarified in section 18.5.

There are two comments on the result. The first is that this is evidently
a large rapidity region, growing logarithmically with a/k?, and secondly
it is a result typical of vector emission. If we consider the emission of
massless fermions, i.e. the contribution gy — qg, then there is no such
logarithmic contribution to the available rapidity region.

The difference is that if we emit two spin 1/2 particles from a vector then
helicity conservation (cf. section 4.4 above) implies that they would like to
be close together in phase space (to make 1/2+1/2 = 1 with respect to the
helicity states). Then the contribution to the weight function is constant
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for large values of a, as seen in Eq. (4.44) (the result «/37 means that the
effective rapidity difference will be 2/3 as we will see in detail in section
18.5). But for the vector emissions the final-state vector gluons must go in
different directions to conserve the helicity. Therefore vectors will tend to
spread apart in rapidity space. A more precise mathematical statement is
that the (relative) rapidity (y) dependence for a given k| is proportional
to dy for the vector (gg) emissions and to dy exp(—y) for the qg emission.

The vector emission contribution will therefore provide a factor pro-
portional to the available rapidity region, i.e. it grows logarithmically with
the integration variable a in the Kéllén-Lehmann representation. It is
not difficult to see that for states containing more gluons there will be
logarithmic factors with a power growing with the number of gluons in
the intermediate state.

It is nevertheless a fact that QCD is renormalisable (although t'Hooft,
who was first to provide the proof, had to work very hard!). The reason is
that the logarithmic rapidity-difference term from C,, is cancelled by the
Cgp corrections, the ‘vertex corrections’. If we calculate the interference
term C,, in the transverse gauge we find that, just as for the gluon
emission in Cy,, it depends upon the rapidity difference 6y = log(a/ ki). It
will provide a contribution 8y with the opposite sign to the contribution Ay
of the emission term C,,. Therefore to this order in the coupling constant
(and it can be shown to all orders, too, which actually is necessary for
the renormalisability property) there is no dy-dependence in the weight
function of the polarisation tensor in QCD.

There is, however, the term —11/6 left over from combining the vector
emission and vertex correction terms and this really has the meaning,
according to section 18.5, that there is a depletion of gluon emission
close to an already emitted gluon. Therefore the gluon contribution to
the polarisation weight function in QCD will for large a-values go to a
constant, just as do the fermionic contributions (N.o/2n)(—11/6), with
N. = 3 the number of colors, cf. section 18.6, subsection 1.

Another way to understand this result is to note that every charged
particle is surrounded by a Coulomb field and this also goes for the
gluonic (octet) charges. As soon as we produce a ‘physical transverse’
gluon then it is necessary to handle the interaction between this gluon
and its Coulomb field. Therefore gluons in QCD do not behave like the
photons described by the method of virtual quanta (MVQ) (cf. section
2.5). The gluons are not independent of the fields, i.e. they will reinteract
on the way out. Actually such Coulomb vector particle interactions do
not provide positive-definite contributions to the Killién-Lehmann weight
function because the wave functions are not positive-definite in the state
space. We may intuitively say that in order to be able to have room for
the vector Coulomb fields the two vectors must have an effective rapidity
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(@) (b) (©)

Fig. 4.6. (a) The diagrammatic description of a self-energy contribution, ie. in
QCD the (color-3) g-field propagator (full line) turns into a qg-state firstly emitting
and afterwards absorbing the color-8 g-quantum (broken line); (b) the color flow
in diagram (a); (c¢) the corresponding color flow in a g — gg intermediate state.

difference —11/6. In the last subsection of this chapter we provide one
further intuitive picture of the result, this time related to one of its major
implications, asymptotic freedom.

1 The color factors of QCD

In the last subsection we considered the emission of gluon states from a
QCD current but we did not specify the current in any detail. Suppose,
however, that the current is a quark current so that we consider the
emission of color-8 gluons from a color-3 current. Then there is a subtle
but necessary color factor correction in the sum over colors in the squared
matrix element. To see this we consider Fig. 4.6(a), which is a self-
energy correction corresponding to Eq. (4.25), i.e. a quark g (propagator)
fluctuates into a gg-state and back again.

We may compare that to the situation when a gluon decays into two
gluons and afterwards rearranges into a single gluon as in Fig. 4.5(aq). In
both cases we find that there is principally a new color produced, i.e. we
may draw the color lines as in Figs. 4.6(b) and (c) with a closed color ring
in the middle.

For the g-state we note that we start out and end in a coherent color-3
state, containing r, g and b. For the sake of argument we may project
e.g. onto the initial state color r. In the intermediate state this color-3 can
then turn into a g or b by the emission of a rg or a rb, which are both
true color-8 states, ie. they correspond to the gluon in the intermediate
state.

But if the gluon emission corresponds to r7 then there is a color-
coherence suppression factor because only two out of the three possible
states are really color octets. The third color combination is a color
singlet, i.e. not a gluon. Therefore only 2 4+ 2/3 of the possible 3 choices
are really gluons. We obtain a factor 3 — 1/3 — N, — 1/N, multiplying
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the kinematical matrix element instead of the expected factor N, from the
closed color ring, with N, the number of colors.

For the gluon propagator we are, however, reassured that due to the
coupling we always obtain a true gluon and therefore the relative color
weight between the two states is 1 — 1/N2 = 8/9. This is also the relative
coupling between the emission of gluons from g- or g-currents and the
emission from a g-current.

2 The operations in multiplicative renormalisation

We will in this subsection exhibit the way one can rearrange the propagator
equations by means of a multiplicative renormalisation scheme. One basic
assumption for what we are going to do is that we already have performed
mass renormalisation for the photon (gluon) propagator. We have seen
that within QED this is trivially possible by making explicit use of gauge
invariance and current conservation for the photon propagator in Eq.
(4.48), and there is a correspondence in QCD.

We will start with the result in Eq. (4.48) and note that we may rearrange
it in the following way:

3 1 1
oa,D = - — — —~ =
YU (@@ +ie) {[1 o + p(—p2)] + [P(gD) — P (—ud)]}
wb, = 1 -
FER T (@ +ie) {1/, + p/(g2 12)}
. 1 1
D, = A 4.49
" @ TR 0T b D) (449)
with
11
— = — 4+ (=)
Oy Oy
f)ﬂ == Z:;—’:zb
Zy poy = oy (4.50)

NP N N S dao(a)
P =+ | @t Pa—g i

2 2
o D(a) = Z4/1— aM* <1 + 2ﬂ>
3n a a

In Eq. (4.49) we have item by item rearranged the unrenormalised quan-
tities a,, D, '(¢?) so that only the renormalised correspondences (defined
at the effective frequency g = —u?) a,, Dy, p'(q%, u?) occur. In the last line
of Eq. (4.50) we have written out the lowest-order approximation to the
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weight function ¢ occurring in the Killén-Lehmann representation for the
polarisation function (cf. Eq. (4.30)).

What we have achieved by these operations can be formulated in the
following way:

R1 We have introduced a coupling constant o, renormalised at the scale
4%, by multiplying the unrenormalised coupling constant o, by the
quantity Zj3 2, which is formally defined by

Zs 2 =1—o,p (—1%) (4.51)

R2 We have introduced a propagator 15” renormalised at the scale W,
by multiplying the (unrenormalised) photon propagator D by the
inverse quantity Z 1112' This is equivalent to exchanging the unrenor-

malised photon-field operator for a new scaled operator, 41, the
renormalised photon operator:

AW 5 AW = 407 3123 (4.52)

Note that the ‘size’ of a field operator is not observable. The only
requirement is that the propagator, i.e. the expectation value of the
square of the field operator in the vacuum state, should correspond
to the contribution from a single massless quantum at the renormal-
isation scale g% = —p?.

R3 We have defined all the new renormalised quantities by a subtraction
at the arbitrary (negative) value g> = —u?. We could, of course, also
have done it at 4> = 0 or any other value ¢> < 4M? such that our
integrals converge. If we make the exchange u? — uf we can again do

all the changes in the same way and obtain a new set, ocm,Aiﬂ %)’23,11%’
which is related to the old one by the same equations. The fact
that we may do repeated changes of scale p3 — u3 — -+ — 2
and still end up with the same p2-dependent renormalised quantities
means that there is a group character to the procedure, that of the
renormalisation group.

R4 In particular, if we chose to define a at the point > = 0 we would
find for the fine structure constant the well-known value « = a(0) ~
1/137, which is observed for static interactions. It is of interest to
note that at LEP with a (cms-)energy value of the annihilating e*e™-
pair ~ 90 GeV one obtains an effective coupling «(90) ~ 1/128. This
is in accordance with this finite renormalisation group prediction of
a change in « of 0 — 90 GeV.
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In this way we have exhibited in some detail the procedure for redefining
the photon field, the photon propagator and the coupling constant in QED.
Both within QED and QCD there are other undefined quantities and also
other integrals which need a redefinition in the same way as the photon
operator in Eq. (4.52). In particular the fermion operators will need a

renormalisation such that p® — Z- le/ 2 with the conventional wave
1/2

function renormalisation constant Z, ,». The quantity Z,_ 2 is defined at
the same effective frequency g> = —pu? as that of the photon, Z3 2, and in

this way the renormalised operator w("z) will describe a single quantum
at this frequency. There is finally the vertex renormalisation constant,
conventionally called Z; ., which corresponds to a renormalisation I’ )

Z 1,#21““2 of every Feynman graph vertex, so that I'# =1 for the particular
momentum transfer g> = —u? at the vertex.

One essential result in QED, which also has a correspondence in QCD,
is called the Ward identity: Z, ,» = Z, ». This relation stems from the
current conservation and gauge invariance properties of the theory. The
consequence is that for every vertex in QED for which two fermion op-
erators and one photon operator are connected, one obtains the rescaling

Y2z /22 At the same time the vertex itself provides the

rescaling Z; and the coupling constant the rescaling Z31/ 2 according to
the third line in Eq. (4.50). In this way we obtain the result that at every
vertex there is a renormalised contribution Z; Y 2(Z2_ 1/ 2)2Z 1Z31 /2 = 1. The
result is that all the Feynman diagrams in the theory will have the same form
of expression as before but now in terms of renormalised propagators and
charges. And now everything is finite (although u?-dependent)!

Thus the result is that if we consider a scattering situation or a multipar-
ticle production diagram in QED containing n, in- or out-going photons
and n,, in- or out-going Dirac particles, which in the unrenormalised form
looks like

factor Z,

F (kty. o kn, 5Pt Py 0) (4.53)

Ty, My

it will after renormalisation look like (note that the ‘external’ renormali-
sations are not cancelled!)

Z" 2 2y (Kt K D1 s Py ) (4.54)
While the quantity in Eq. (4.53) is independent of the renormalisation
point, the one in Eq. (4.54) will contain a pu-dependence both in the
scaled out Z-factors, in the renormalised coupling constant and in all
the renormalised propagators. We will not in this book go into further
details of the renormalisation process because we do not need it here. The
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formalism can be found in any field theory text-book and does not provide
much more physical insight than the results we have already encountered.

4.6 The Callan-Symanzik equations for the renormalisation group

1 The equations and what they imply for QCD

There is evidently nothing sacred about the particular value y we have
chosen in connection with the renormalisation procedure described in the
last section. The quantity p can be varied at will (within the region of no
singularities). Therefore we can formulate the dependence upon yu easily.
The unrenormalised function F in Eq. (4.53) is independent of .

d F()
_—y

If we rewrite this in terms of the renormalised function we obtain imme-
diately a partial differential equation:

=0 (4.55)

0 0 ny7y nw?’w)
- ———tl . PV F =0 4.56
('uﬁu +5 ou 2 2 ( )
with
Ou dlogZs _ 0dlogZ,

B= u@, vy = U y Py =M (4.57)

ou ou
In the partial differentiations of Eq. (4.57) the unrenormalised coupling
constant o, and any cutoff parameters used in order to make the integrals
finite should be kept fixed. Equation (4.56) is the Callan-Symanzik equation,
[108] and it connects different possible renormalisation points (note that as
it may contain several related functions it may be of a matrix character).
The f-function in Eq. (4.57) for QED is thus, in the lowest order of
perturbation theory, given by differentiating the following expression (cf.
the first line of Eq. (4.50)),
JE— au
1+ aup'(—u?)

da
" 3 A V (1 " a > a+ u?
3 log ( ) (4.59)

where we have assumed that 4M?> < u?> < A? so that we may neglect
all the dependence upon the finite-mass parameters and only keep the
logarithmic singularity of the integral.

(4.58)

with
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It is then casy to see that

202
BQ ED = 3 (4.60)

In general it is evident that in the limit in which we only keep the
(logarithmically) divergent terms then all the functions  and 7y, defined in
Eq. (4.55), are solely functions of the renormalised coupling constant.

The B-function in QCD can also be calculated and one obtains to the
same order as in Eq. (4.60) the result, [68],

By = — (% - '6’—;;) (4.61)

We note the different signs in front of the squared coupling constants for
QED and for QCD (at least as long as there are less than 16 flavors!).

We will end this subsection by solving the Callan-Symanzik equations
for the two cases of QED and QCD. We will use the following notation
for the - and y-functions:

= b2, = —b.o?
BoED Bocp 462)

ve(d) =  deot, (o) = deo

where b,, b, are positive numbers. The choice for vy, that it is linear in
o, is the case we are going to use in Chapter 19 when we encounter the
following Callan-Symanzik equation:

0 0
(u@ YL v) Fllog(0?/4),2) = 0 (4.63)

We here assume that the distribution F depends (logarithmically) upon
a single scaled Lorentz invariant variable Q?/u*> and upon the coupling
constant o and we neglect all other dimensional scales in the problem, such
as e.g. mass thresholds etc. (cf. [102] where possible observables stemming
from the contributions from the mass thresholds are given).

The variable g°> we used before for the propagators is related to the
variable Q? = —¢?, i.e. we assume that the (Lorentz-invariant) function
F = F(q) is taken for large spacelike energy-momentum vectors,

The Callan-Symanzik equations are linear partial differential equations
of a kind which occurs very often both in physics and in other disciplines.
They are usually called gain-loss equations. They correspond to situations
when a distribution changes in ‘time’, which here corresponds to

by a gain term, in this case y times the value of the distribution, and by
a loss term, in this case f times the derivative of the distribution with
respect to some variable, here the coupling constant a.

https://doi.org/10.1017/9781009401296 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401296

4.6 The Callan-Symanzik equations 87

As an example, taken from Coleman’s Erice Lectures, [45], assume that
the distribution F corresponds to the density of a population of bacteria
moving with a fluid along a pipe. The fluid has velocity B(x) with « a
position coordinate along the pipe. As they move along there is a changing
illumination y, which determines their rate of reproduction.

We will later consider another example corresponding to the increase in
gluon multiplicity and phase space size due to the change in the resolution
scale of a parton cascade, cf. Chapter 18. There is a very simple way, called
the method of rays, by means of which we can solve this kind of equation.

We start by noting that if we define the effective coupling constant, o,
by means of the equation

dogy
L — Boy) (463)
in terms of the variable ¢ in Eq. (4.64) then Eq. (4.63) becomes
d
(E - y(cxeﬁf)) F(Lg —2t,05(t)) = 0 (4.66)

We have then used the notation Lg = log 0? and rearranged the depen-
dence upon « into a dependence upon the effective coupling constant. The
earlier partial differential equation is in this way changed into an ordinary
differential equation with a t-dependent o = a,z.

This means that the quantity & is a constant

F = F(Lg — 2t,05) €xp [— /t dt’y(oceﬁf(t/))] (4.67)

along all ‘rays’; those correspond to the solutions for Eq. (4.65).
For QCD and QED we may construct these rays from Eq. (4.62):

1 1
Co—bot’  RCD T Ty

where c,, ¢, are constants. The main property is that independently of the
value of the constant c. if we choose the scale u = expt sufficiently large
then for QCD the effective coupling constant will vanish but for QED the
effective coupling will instead increase with p (cf. the result in connection
with the LEP experiments in remark R4 above).

This means that the exponential factor in Eq. (4.67) is for QCD given
by (introducing the expression for y(xg(t)) from Eq. (4.62))

Oeff QED = (4.68)

exp [_ / t dt"}’(aeﬁ”(t’))] = (co + bet) %/be = [tegrocn(t)] de/be (4.69)

and for QED with obvious changes there is a corresponding result.
Now, let us assume that we would like to know the function F for some
scale corresponding to ui, where the coupling constant is «;. From Eq.
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(4.67) we may then immediately write for the QCD case
F(log(Q*/ i, ur)(aun) /"

= F(log(Q/ 1), ttegy 0cp (1)) [ttefr 0cn ()] /™ (4.70)

In particular there is nothing to stop us from choosing the scale t = Lg/2.
From this we conclude that

plim {Fog(@/ud )}

de/b;
= lim {F(o,aeﬂQCD(LQ/z)) {%@] } (4.71)

0?0

As the effective coupling constant for QCD vanishes in this limit we may
write in the second line F(0, a5 ocp(Lg/2)) ~ F(0,0). Thus we have found
a simple and powerful way to calculate the limiting behaviour of F as just
a power in the coupling constant times a number F(0,0) corresponding
to the behaviour of the function F for a free-field theory, for which the
coupling constant is 0!

2 The running coupling constant of QCD

The above procedure does not work at all for QED, nor as a matter
of fact for any other kind of theory known to date besides nonabelian
gauge theories. The positive-definiteness of the weight function in the
Killén-Lehmann representation of the polarisation function results for
other theories in a positive value of the f-function, which means that the
effective coupling increases with the scale.

The f-function may evidently turn over to negative values again for
larger-order terms in the perturbation series (although this would mean
that the theory contains states which effectively provide a negative phase
space contribution according to the Killéen-Lehmann representation!).
Such a behaviour would lead to an attractive fixed point for the coupling
at the value «* for which f(«*) = 0. This means that when the energy
increases the effective coupling constant will be attached to this value. We
will, however, not pursue this discussion any further because there is for
the cases of interest in this book no known example of such behaviour.

The very fact that the f-function goes from O for « = O to negative
values for a nonabelian gauge theory like QCD (and it is known to have
the same behaviour also for the next order in perturbation theory) means
that there is an attractive fixed point for a vanishing coupling constant.
And a vanishing coupling constant in principle means a free-field theory.

In reality, though, we find that the theory is not completely free. There
are evidently some logarithmic power corrections and we will see in
Chapter 19 that this means scale-breaking corrections to the parton model.
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The QCD effective coupling, usually referred to as the running coupling
of QCD, can be written (with the number of colors N, = 3)
2
Q) _ AR (4.72)
4n (11N — 2ny)1og(Q*/Ajep)
by a suitable redefinition of the constant ¢, in Eq. (4.69) and the intro-
duction of the value for b, given above.

We will end with a simple picture of why the coupling constants in
QED and QCD behave so differently. We consider an ordinary electric
charge in the vacuum and note that this will imply that the vacuum will
be polarised in the way described above. In particular there will be some
screening of the bare charge, because all the time it will be surrounded
by a (virtual) cloud of charged particle-antiparticle pairs. These pairs will
arrange themselves in a dipole-like manner so that viewed from afar we
will see a diminished charge.

Now suppose that we send a set of probes towards this (pointlike)
charge, corresponding to shorter and shorter wavelengths, ie. we will
observe the results from larger and larger values of the momentum trans-
fer Q%. The probes will evidently come closer and closer to the original
bare charge and therefore ‘see’ more and more of it without the charge
screening. Thus the effective charge will become larger with increasing Q2.
The main point in this argument is that the virtual pairs can in effect
move and spread freely around the original charge. But note that the field
quanta, i.e. the photons, are uncharged so that the charge is pointlike
inside the virtual cloud of dipole pairs.

Let us now consider the corresponding situation in QCD. In this case,
the field itself also contains charge, because the gluons are color-8’s. This
means that any original color charge will be smeared out over the region
where the field is. A long-wavelength probe will then not be affected, i.e.
it will see the whole, bare, charge. On the other hand, of course, as always
in quantum mechanics short-wavelength probes will either ‘see’ the whole
charge or nothing. But there will be a decreasing probability of finding the
charge the smaller the region that is probed. In this way the effective QCD
charge actually corresponds to a charge multiplied by a ‘form factor’. We
will show in Chapter 18 that the size and the behaviour of the f-function
in QCD do in fact correspond to an interval in rapidity space within
which we can expect modifications of the field.
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Deep inelastic scattering
and the parton model

In this chapter we will consider the notion of partons, in the way
Feynman introduced them. The parton model (PM) corresponds to a very
clever application of the concepts behind the method of virtual quanta,
which we described in Chapter 2. The theoretical reasons why the PM
provides a relevant description of the hadronic constituents are, however,
very complicated and this chapter only contains a first introduction.

The road to the PM goes through experiment. Over many years physicists
have performed in various contexts a type of experiment which can be
traced back to Rutherford. They have used a charged particle to extract
information on the charge and mass structure of smaller and smaller
constituents of matter. Rutherford made use of «-radiation on nuclear
targets and very quickly made two essential observations.

He and his assistant were able to detect the scattering of the a-particles
by direct observation of the flashes that they produced on a screen. They
found, firstly, that most of the beam particles simply continued through the
target as if it was empty of matter. But, secondly, every now and then they
found quite an appreciable deviation.

It was Rutherford’s genius that not only he did take his observations
seriously but also used them to provide a description of the atom. We are
going to consider his result, together with the necessary corrections due
to relativity, spin and the internal structure of the target.

He explained the source of the a-particle deviations by a classical
mechanics calculation of the orbits of charged particles in a Coulomb
field and he attributed this Coulomb field to a precise charge value placed
inside a very tiny region indeed, i.e. an atomic nucleus. He was pretty
lucky, however, that his classical mechanics calculation agreed with the
quantum mechanical results.

This is by no means trivial. In principle Nature could have chosen to
use something other than an inverse square law for the force between
electrically charged particles (although this would have been difficult

90

https://doi.org/10.1017/9781009401296 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401296

The parton model 91

to accommodate with many other phenomena, among them ourselves!).
Then Rutherford would have obtained a result which subsequent quantum
mechanical corrections would have made obsolete: he did not at that time
know anything about quantum mechanics and his beautiful atomic model
would have been irrelevant.

The Rutherford scattering cross section is also at the basis of high p | -
scattering among hadronic constituents. Therefore the results will occur
again in connection with deep inelastic scattering in the linked dipole
chain model, in section 20.7, when we consider the hadronic wave func-
tion in a Feynman diagrammatic description of perturbative QCD. The
(color-)charged constituents (the ‘partons’) will be sensitive to the strong
Coulomb fields between them (such fields are inherent properties of any
gauge field theory). In particular, when we use small wavelength probes,
Heisenberg’s indeterminacy principle implies that the observable partons
must have large energy-momenta, i.e. their interactions will correspond to
large momentum transfers.

After Rutherford, when more energetic beams of charged particles
became available, experiments were performed on nuclear targets directly.
A great amount of information was extracted about the charges inside (or
actually mostly on the surface of) the nucleus. Still later, people were able
to study scattering from the simplest nucleon, i.e. the proton itself and
for a long time there was a general understanding that the proton was a
complex charged object but that the charge seemed to be smeared out in
a continuous way. It was necessary, in order to describe the reaction of a
proton to an electromagnetic field pulse, to introduce a form factor. Such
a form factor corresponds classically to an extended charge distribution.

When I was a young student, my teacher Kallen referred to the next
possible observational tool, the Stanford linear accelerator (SLAC), as
the ‘Monster’. It was understood from the beginning that the Monster
might provide beams sufficiently high in energy to smash the proton but
there were few people around who believed that this would lead to a new
concept of constituents. The young Bjorken was around, however, and
based upon theoretical investigations in current algebra he predicted that
one should find a ‘scaling’ cross section.

Physicists have always used dimensional analysis to derive results of
the kind usually referred to as ‘back-of-an-envelope’ calculations. Thus
when one considers a particular dynamical situation there are always
dimensional parameters. The typical space size may in a quantum me-
chanical description of a particle either be the Compton wavelength 1/m,
the Bohr radius 1/ma or the ‘classical charge radius’ o/m (which occurs
in the Thompson cross section for long-wavelength radiation scattering
on a charged particle) with m the particle mass and « ~ 1/137 the fine
structure constant. Based upon such quantities it is in general easy to find
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the possible size of an effect, besides some plain (usually combinatorial)
numbers such as 3! = 6 and factors like 2/3 (from spin) or (multiple) 2x’s.
(Note that = is almost a dimensional number because high-energy physi-
cists generally obtain it either from the conversion of Planck’s constant
h — h = h/2n — the n’s in the conversion of the volume factors to cross
sections are generally of that kind — or from integrals over the azimuthal
angle.) We will use such considerations repeatedly in this book.

For the proton it was already known that there was a scale involved
in connection with the form factor. This length scale corresponds to the
extension of the proton charge distribution and it is of the same order as
the inverse proton mass. Bjorken’s statement can be rephrased to mean
that there should be no new length scales deeper inside the proton.

The process, which is called deep inelastic scattering (DIS), will be
discussed further within the Lund model in Chapter 20 and within the
conventional QCD scenario in Chapter 19. It contains three dimensional
numbers: the squared momentum transfer to the proton from the imping-
ing electron, conventionally called —Q?; the squared mass of the final-state
(smashed) system, conventionally called W?2; and then the squared mass
of the original system, i.e. the squared proton mass mg.

The reason why Killén and his contemporaries called the machine the
Monster was the fact that it would produce beams such that mlz, < 0?

and/or W?2. Bjorken’s suggestion was that the cross section should depend
(besides a trivial Q%-dependence) only on the ratio Q?/ W? of the two larger
dimensional numbers. This turned out to be essentially correct.

According to Dick Taylor, who was present at the time, Feynman used
to come over to SLAC to learn about the experimental results. One day
he presented the experimentalists with the PM as an explanation for the
scaling phenomena. Since Feynman’s proposal there have been few high-
energy theorists who have not produced some kind of work on the PM at
some time in their career. We who have worked on the Lund model were
very late arrivals on the scene.

In order to exhibit the PM we will provide a brief description of
Rutherford’s classical mechanics calculation and then show how to obtain
the same result in a potential scattering model in quantum mechanics.
This discussion is relevant to lepton-hadron scattering when the hadron
can be considered as very heavy, ie. its mass is much larger than any
parameter with energy dimension in the problem. We will after that turn
to the question of scattering on a composite system and introduce the
idea of a form factor. This will lead to the Rosenbluth formula, which
describes elastic scattering within the most general framework possible in
a Lorentz-covariant and parity-invariant setting.

We will finally consider inelastic scattering, in which the incident lepton
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Fig. 5.1. The inelastic scattering of an electron from the field quanta of a hadron
with notation described in the text.

produces field pulses, i.e. momentum transfers, which are so large that the
initial hadron disintegrates. We will start with an excursion into lightcone
physics and in particular indicate some of the steps that led Bjorken to
suggest scaling cross sections.

Finally, we will use the results to exhibit the PM. We will show how
parton flux factors arise and, in particular, the importance of spin and the
other quantum numbers of the quark-partons for the resulting description.

5.1 The parton model: Feynman’s proposal

Feynman used the results of the method of virtual quanta (MVQ), cf.
Chapter 2, in an ingenious way. He assumed that the interaction ability of
a hadron with respect to an electromagnetic field pulse is defined by a set
of quanta which he called partons. Partons are at this stage operationally
defined by the single property that they are able to scatter elastically with
an electron by absorbing a radiation quantum.

In order to give a precise description we will assume that an accelerator
provides us with electrons, of high energy E;, coming in along a well-
defined direction n;. We also assume that such an electron is scattered in
the field of the hadron so that afterwards we observe it to have energy
E; < E; moving outwards in a direction ns described by the angle 0 (ie.
n; ' n; = cos 0, see Fig. 5.1).

From this situation we conclude that the electron has been exposed to
a four-momentum transfer, conventionally called g:

q = (4o, —In) = (E; — Ey, pin; — psny) (5.1)

As we have seen in Chapter 2 this four-vector must be spacelike, i.e. g°
must be negative, g> = —Q2, in order that the incoming and outgoing

electrons stay on the mass shell Ef — p} = E} — p} = mZ.
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The momentum transfer corresponds (for large values of Q?) to a very
highly collimated electromagnetic field pulse with a space-time size of the
order of the wavelength, 1/1/02. We will use lightcone components along
the vector n in Eq. (5.1) to describe this field pulse and so define positive
Q4+ with Q. Q_ = Q? (note the definition of g in Eq. (5.1))

—Qr=qo—1, Q_=qo+I (5.2)

In Fig. 5.1 the hadron comes in as a cloud of (massless) partons together
having a large positive-lightcone component P.. The interaction between
the radiative pulse described by g and one of the partons with a positive-
lightcone component p,, corresponds to an absorption of this radiation
quantum. In order to stay on the mass shell the parton will have to
reverse direction so that after the collision it will have a negative-lightcone
component p_,. Note that, as the parton is massless and is assumed
to move along the direction +n, it will before and after have a single
nonvanishing lightcone component in this picture.

From energy-momentum conservation we conclude that all the kine-
matical properties of the interaction are fixed by

pip =0z (3.3)

There are two observable (large) Lorentz invariants, i.e. Q> = Q. 0_ and
2Pq ~ Q_P,. We have neglected the hadronic mass and we note that
in this approximation the final-state mass square of the smashed hadron
has increased to W2 = (P + q)* ~ 2Pq — Q°. Because the cross section
depends only upon the ratio of these Lorentz invariants it must therefore
depend only upon the fraction of the energy-momentum of the hadron,
which is carried by the scattered parton (the index refers to Bjorken)

—¢*> Q4+ pip
XB=3pg T Py Py (54
This sole dependence upon xg can be understood as follows: the interaction
depends only upon the number of partons with that particular value of the
fractional energy-momentum. Thus the hadron has been reduced to a flux
of partons with respect to the interaction, just as in the MVQ a charged
particle is described by the flux of photons.

This assumption of Feynman about the interaction between the field
pulse and the constituents implies the possibility of an experimental study
of the flux of the partons, ie. to decide upon the detailed structure
of the hadron under study. It is then only necessary to consider the
electron before and after the interaction. The probability of finding a
large momentum transfer is directly related to the amount of suitable
absorbers, i.¢. partons, in the hadron.
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Fig. 5.2. Particles moving in a central force field are deflected in a definite
direction characterised by the solid angle d€.

Large values of the fraction xp correspond to the partons which carry
a large part of the total energy-momentum of the hadron. Therefore they
should be major constituents of the hadronic wave function. For smaller
values of xp Feynman suggested that there should be a bremsstrahlung
spectrum like the one we found for the photons in a moving Coulomb
field according to the MVQ,

~ de/xB (5.5)

This is usually referred to as ‘Feynman’s wee parton spectrum’.
5.2 Rutherford’s formula from classical mechanics

A detailed derivation of the Rutherford formula is given in Goldstein’s
book and we will only provide a brief description. In classical mechanics
everything is completely determined by the force law and the initial con-
ditions on the particle(s) involved. Consequently there is always a definite
orbit along which every particle moves in space-time and a corresponding
trajectory in phase space.

We assume that a particle with mass m is approaching the force centre in
a field described by a potential V(r), see Fig. 5.2, which vanishes as r — co.
Thus the force is spherically symmetric, F = — [dV(r)/dr] e, where e, is a
unit vector pointing radially outwards. We also assume that the particle
has velocity v; far from the centre, impact parameter b; and orientation
along some azimuthal angle ¢;.

This means that we can define an incident flux Id¢;b;db; of such
particles. All these particles will move along the same orbit and after
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the encounter will end up moving outwards in a definite direction, which
we will characterise in terms of a solid angle dQ; = sin 0;d0d¢; = dQ.

RI The orbital angular momentum, L, is conserved and therefore the
particles will move in a plane perpendicular to L. This means that
the angles ¢; and ¢ coincide. The size of |L| = L is from the initial
conditions L = mu;b;. Further the energy is conserved, cf. RIV below.
Therefore the initial speed is equal to the final one and thus the same
is true for the impact parameters, b; = by = b.

RII The cross section for the scattering of these particles is the fraction
of particles scattered into the solid angle dQs per unit time, divided
by the incoming flux. It is then obtained by equating the outgoing
and the ingoing fluxes:

do

= 1dQ; = —Ibidbid¢; 6

i Qs bidb;d¢; (5.6)
The minus sign is introduced because the larger the value of b the
smaller the force and therefore the smaller the scattering. From this

equation we conclude that
do —b; db;
dQ ~ sin 0f E
Therefore we must calculate the relationship between the impact
parameter and the scattering angle.

(5.7)

RIII In order to calculate this orbit relation we use cylindrical coordinates
r(t), 6(t), so that the velocity is v = e, 4 rfeg (with dots indicating
time derivatives). We obtain for the Lagrangian

L =T—V({F)with T =mv*/2 =m(@i* + (r0)*)/2  (5.8)

As Z is independent of the angle 6 the corresponding angular
momentum component is conserved:

d<

T ap

This can be used to reorganise the time dependence of r(¢) and 68(¢)
and from this we obtain an equation for the orbit r = r(0):

dr  drdf L dr Ld /1
f=—=——=——=———| - 5.10

"T@ T d0d T mr2d0 T mdo (r) (510
Using u = 1/r and «' = du/df we can then write the kinetic energy
term T in Eq. (5.8) as

Do =mr?l =L (5.9)

L2

T—L—z( V= (5.11)
= om 2m '
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For an attractive Coulomb force between a charge —e and a charge
Ze we obtain for the potential term:

Zé?
4rr
(where we have introduced the fine structure constant ).

V=V@F=-— = —Zou (5.12)

RIV As the total energy is conserved and expressible in terms of T and
V we obtain
= —'tl—lﬁz— =T+V

2 (5.13)

L2 0 L 5 22
= 00 4] = Zow = [ + (= w)® = o]
where ug, the displacement of u, is given by
Zam
L2
Equation (5.13) is equivalent to the harmonic oscillator relationship

discussed in Chapter 3 and we can immediately write down the
solution:

o = (5.14)

1

u= = up(1 + ecos ) (5.15)

This is the equation for a hyperbola since ¢, the eccentricity, is larger

than 1:
/ 2Eb\?

RV There are then two values of 6 for which r — oo; these are given

by cos @ = —1/e and the angle between these directions is evidently
n — 0 (see Fig. 5.2). A little algebra then leads to the result that
_ . Zua 0r
bi=b= °E cot (-2—) (5.17)
The final result for the Rutherford cross section is from Eq. (5.6)
do Z%? 1
- = 5.18
@ (16E2> sin'(07/2) 19

We will meet the same expression when we do the calculations using
quantum mechanics. The energy E in Eq. (5.18) is given by the
nonrelativistic kinetic energy (mv?)/2.

The formula is singular for small scattering angles because the small-
angle region corresponds to large impact parameters b = b; according
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to Eq. (5.17). The particles come in far from the force centre and are
consequently deflected very little. The Coulomb force per se has infinite
range but it is evident that any charge centre in real life will be screened
by other charges (e.g. by its own electrons if it is an atomic nucleus).

In order to get an estimate of the cross section for a screened situa-
tion we will assume that the impact parameter is equal to w times the
corresponding Bohr radius, i.e.

w
b = e = VB (5.19)

Then from Eq. (5.16) the parameter € = /1 + (WE/Ey)? with Eg equal to
the corresponding Rydberg energy:

_m(Z a)?
2
We now consider a fixed energy E much larger than Ey. This means that
the velocity »; will be much greater than Zo ~ Z /(137), where we have
introduced the well-known value for the fine structure constant in QED.
This leaves, at least for small Z-values, a region where we may neglect
relativistic corrections and still fulfil the requirement. We then obtain
0; ~ 2Eo/(WE).

If we exchange the angular variation for one with respect to the param-
eter w we obtain a smooth behaviour,

do ~ 2wdwnr%; (5.21)

Eo

(5.20)

and the cross section is independent of the energy E as long as wE > Ey.

Note that the cross section only depends upon the square of the charge
combination Z«. Therefore we obtain the same formula if the two charges
have the same sign, i.e. if the attractive Coulomb potential in Eq. (5.12)
is exchanged for a repulsive one: —Z« — Za. The displacement uy will
in that case change sign, however. This means that the force centre will
no longer be the internal focus of the hyperbola but instead the external
one. Or, in other words, while the particle will go around the force centre
for an attractive force it will go in an outside hyperbola if the force is
repulsive. But the scattering angles are the same!

5.3 Rutherford’s formula in relativistic quantum mechanics

1 The calculation of the cross section

We will in this section again consider the scattering of a charged particle
from a Coulomb potential. This is a preliminary for treating the scattering
of two charged particles. We will again meet Rutherford’s result although
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this time in terms of the square of the Fourier transform of the potential.
We use the transition operator 7 = [ dxj,A* and assume that the external
potential 4* depends only upon the space coordinates. At the end we shall
specialise to the ordinary Coulomb shape A, = —6,0Ze/(4nr), which was
used in the previous section.

The transition matrix element between an incoming electron (energy-
momentum k) and an outgoing one (energy-momentum k') is

_ €
2vkokg

We have here introduced the reduced matrix elements of the current
operator, which we discussed in Chapter 4.

K| T k) / dx (K [JARK) exp [—ix(k —K)]  (522)

Time integration produces an energy-conserving J-distribution and
space integration leads to the Fourier transform of the vector potential:

K17 k) = %{k/lj&/@lk}fs(ko —K) (5.23)

2v Jkoky

with ¢ = k' — k. Momentum is not conserved in this case, because the
infinitely heavy potential takes up the recoil. To calculate the cross section
we use the techniques described in Chapter 3:

o= (2) () (1)
e

_ ¢ (1 /d3k’c5(k — k) {K i (@I}
@ \ akIK; PR

_ a0 % i 2
— ' {K 1 (@)} (5.24)

The first factor in the first line is the transition probability per unit time,
the second the (inverse) flux of incoming particles with v = |k|/k¢ and the
third the number of final states. In the second line we have rewritten the
whole expression and in the third gone over from the integration variable
|k’| to ky and performed the integral by means of the §-distribution.

We may now make use of the analysis presented in Chapter 4 for the
reduced matrix element combination summed over the spin states:

> K julk}Hkljy[K)} = (Tt + Ta)yrs

spins

Ty = g,uqu — quqv, Topy = (k + k,)u(k +Kk')y (5.25)
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2 The Mott cross section and the form factors

Gathering the different factors and assuming that the four-vector potential
only has a time component, Ay = V(r), we obtain the cross section

do o

dQ 2=

where 0 is the scattering angle. (We have neglected a few steps, leaving

it to the reader to obtain this result.) There are two terms multiplying

the squared Fourier transform of the potential. Depending upon whether

the lepton rest mass m or the momentum |k| dominates we obtain a
nonrelativistic or an extreme relativistic approximation.

For the Coulomb potential of a point particle with charge Ze we obtain
Ze [dx Ze

V(q) = ) & exp(—ix - q) = 7z (5.27)

[k2(1 +cos8) + 2m2] 17 (q)]* (5.26)

The simplest way to see this is to use the coordinate-space differential
equation for the Coulomb potential,

AV(X) = Zed(x) (5.28)

and perform the Fourier transform, thereby changing the Laplacian A to
—q? = ¢* (Note that Aexpliq - x] = —q® exp[iq - x]).

It is at this point that Rutherford was lucky in his classical mechan-
ics approach. The squared Fourier transform of the Coulomb potential
evidently contains an inverse power of the squared momentum transfer
(g%)? = (—|q*)? = 4k*(1 — cos0)? = 16k*sin*(8/2) (where k is the cms
conserved momentum of the particles), which is just what Rutherford ob-
tained from his calculation of the variation of the impact parameter with
angle. This relation between the Fourier transform of the potential and the
variation of the impact parameter is only true for a Coulomb potential.

This leads to the so-called Mott cross section in the limit where we may
neglect the electron mass:

do B Z2%a%\ cos*(0/2)
dQmo ~ \ 4E? | sin%(6/2)

There is a factor 4cos?(8/2) as compared to the Rutherford formula.
If we go back to Rutherford’s derivation we find that it is based upon
nonrelativistic kinematics. The projectile mass is assumed to be much
larger than its kinetic energy. This means according to Eq. (5.26) that
k? <« m? and we obtain in this limit

do

s ' Z%0? 1
i = mIr= (16(k2/2m)2) Sin(6/2) (5-30)

which is Rutherford’s result (with E = Ey;, = |k|2/2m).

(5.29)
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If the electron encounters not a point charge but a charge distribution
Zef(x) then on the right-hand side of Eq. (5.28) the exchange Zed(x) —
Zef(x) should be made; this evidently means that in place of Eq. (5.27)
we will have

vf(q)=—§—§f(q>, f@= [Eg@en-ix-g (53D

The normalisation condition [d3xf = 1 corresponds to f(|q> = 0) = 1.
We conclude that with the introduction of the charge distribution f the
Mott (or Rutherford) cross section is changed as follows:

do do ~ 9
EMott - EMOttlf(q)l (532)

Provided that the momentum transfer \/@ is smaller than the inverse
of any length scale in the charge distribution, or in other words provided
that the wavelength of the electromagnetic pulse cannot resolve the target
structures, then we have the same pointlike cross section. For larger
momentum transfers the scattering experiment can be used to measure
(the Fourier transform of) the charge distribution. The function f is known
as a form factor.

5.4 The target recoil and the general elastic cross section for the
scattering of spin 1/2 particles

The form factor introduced at the end of the last section is too simple
to describe scattering from a baryon target. Firstly, one cannot consider
baryons as merely charge distributions. They also have magnetic moments
and an electromagnetic pulse will influence that aspect of the baryon
structure, too. Secondly, they are not infinitely heavy and so we must
include also the recoil of the target, i.e. we must introduce not only energy
but also momentum conservation in the scattering.

We have already, in Chapter 3 on field theory, considered a simplified
model for this scattering situation, the scalar g:y?: ¢-model. From the
results in Egs. (3.104)—(3.110) we now generalise the situation to two
different yp-particles, y, indexed 1,3, and yp, indexed 2,4, with 1,2 the
incoming pair (Fig. 5.3). We have in mind particles such as electrons and
baryons and as they are both spin 1/2 particles the interaction is governed
by the four-vector currents j, oc :yp*y: and jp likewise expressed in terms
of Dirac spinors.

This means that the coupling constant factor 4g> in Eq. (3.110) should
be replaced by e? (this is plain combinatorics). Further the factor B in
Eq. (3.110) contains three pole terms. Due to the fact that the lepton
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—3

Fig. 5.3. The elastic scattering of an incoming electron (index 1) from a baryon
(2) to the final state (3,4) with the exchange of a virtual photon.

and baryon cannot mutually annihilate or be exchanged there is in the
present situation only one of the factors left, the momentum-transfer pole
1/(ky — k3)* = 1/(ky — kg)* (with My = 0 for the photon).

With these modifications we can use the result in Eq. (3.110):

o2

do = 1B|?

2(2m)24 ) A(s, M2, M3)

4
x [T dkj 6% (k5 — M3 )3k + ky — ks — ka) (5.33)
jr=3

this time with B expressed in terms of the reduced matrix elements

B {kselj"|kie}{kap|j* lkap}
5= (ks —ka)? )

spins
Comparing with the result in Eq. (5.24) we find that the Fourier transform
o/# of the four-vector potential A* has been replaced as follows:
ie  {kaplj*|kap}
ot
- 2V JE2E4 (ky —ka)?

This is exactly in accordance with our physical intuition that we should
now obtain the four-vector potential 4# from the baryon current, jg:

(5.34)

AR(x) > / dx' Do(x — x') (sl 1) ko) + gt (5.35)

where g.t. again stands for gauge-dependent terms of no interest because
of the coupling to the conserved (electron) current. The result in Eq.
(5.35) is, as easily seen, equal to the energy-momentum space result in
Eq. (5.34) and corresponds to a solution of Maxwell’s equations for the
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vector potential in terms of the (baryon) current ji (note that the Green’s
function ODgy(x) oc d(x) is chosen as the Feynman propagator).

If we sum over the final-state spins and average over the initial ones for
both the baryon and the electron we obtain two tensors (cf. Eq. (4.36)),
one for the electron (which we have already written out in Eq. (5.25)) and
one for the baryon, similarly with the two parts:

Tg = Tip + T2,
Tipw = g,uqu — qudv, (5.36)
Topyy = 4 {kz - Q(qkz)/qz]ﬂ [kz - Q(qkz)/qz]v
For T»p we have used the form explained in connection with Eq. (4.45).
Multiplying the electron and baryon tensors together we obtain the cross
section. It is at this point useful to write it in an invariant form because
we will need this later. To that end we introduce the two invariants

corresponding to the energy and the scattering angle, the cms squared
energy s and the squared momentum transfer g2 = —Q?:

§=s5— M? ~2kky ~ 2ksky,
0 = —¢* = 2kiky = 2(kokg — M)
Here we shall neglect the lepton mass and write M = Mp. Note that
in this case \//_1 ~ §. We obtain (note the factor (1/2)* from the initial
spin-averaging)

d_a _ 44°De

Q> — 304
1= [ dladkid ()60)3 (ks + ko — ks — k)3 (ks — ks + Q)

(5.37)

I, De=0Q*—2(5+ M>Q? + 2%
(5.38)

We have here used the same trick as before, introducing a derivative of a
function by means of a J-distribution, this time in Q2.

The integral I is more complicated (because of the d-distribution in Q2)
than the phase-space integrals we have encountered before. To calculate
it we introduce the vector P = ky + k», the total energy-momentum in the
cms where P = (W,0) and we place the vector k; along the 3-axis. For
simplicity we shall calculate the integral in detail for the case when we
can neglect the mass M, although we will at the end introduce it into the
result. We obtain

I= /dkgé(k% — E})S(W? — 2W E3)5(—2E1Es(1 — cos 6) + 02)

T T

= —- > —

2w 2%
We have here performed the Es-integral by means of the second d, the
|ks|-integral by the first 0 and then the dQ(= dOsin fd¢)-integrals by

(5.39)
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means of the last 6. The last line contains the generalisation to the case
when M # 0.
In this way we arrive at the following result for the invariant Rutherford
scattering cross section:
do  2mo?[Q* — 208 + M?)Q? + 28%)
ag* (0%)%2
(the factor 2n corresponds to the fact that in a spin-averaged cross section
there is no dependence upon the azimuthal angle).

We have obtained the cross section for the process e + p» — e3 + pa
by the use of the spin sums over the current matrix element in (5.33).
According to crossing symmetry (mentioned after Eq. (4.37)) we may
from this result easily obtain the result for the process ¢; + &3 — p2 + p4,
i.e. the annihilation of the pair e;e; into p», p4 by the exchanges p3 — —p3
and p, —» —p, in the matrix element. At the same time we note that
the (squared) cms energy is in this situation (p; + p3)> =~ 2p;ps while the
momentum transfer variable is Q> = —(p; — p2)* =~ 2pip», i.e. we obtain
the relevant cross section with s ~ § < Q? (neglecting the masses). We
will later only need the result for the case when all the particles are
massless and we obtain after some straightforward calculations the (spin-
and azimuthal angle-averaged) annihilation cross section

doy _ 2ma(s* — 2s0% +20%)
dQ? st

(5.40)

(5.41)

5.5 The extension to non-pointlike baryons, form factors

Written in this form it is easy to evaluate the above cross section in any
Lorentz frame. Conventionally we use the laboratory (lab) frame, in which
the baryon is initially at rest.

In the lab frame the electron energies before and after the interaction,
E and E’ respectively, are different and in particular fulfil the relations

E 1
E 14+ (E/M)(1 —cosb)
s = M?+2ME (5.42)

Q% = 2EE'(1 — cos 6)

We shall leave the reader to prove these and also to show that

sz 12
= 5.43
sin 640 ‘ 2E ( )
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Using these relations we obtain by straightforward means the cross section
in the lab frame from Eq. (5.40):

do de E' 0?
ad 142 44
Qb dQmou E l o (2)] (544)

There are two new factors: the electron energy is not the same before and
afterwards in the lab system; as a Dirac particle, the baryon also has a
magnetic moment.

We will not go into detail with respect to the electric and magnetic
interaction properties of a Dirac particle. Just as there are different electric
and magnetic fields in different Lorentz frames, these properties are also
frame dependent. It is useful to remember, however, that if we multiply
in the factor cos?(6/2) from the numerator in the Mott cross section then
the factor inside the brackets in Eq. (5.44) becomes

cos <2> + 2%;2 sin <2> (5.45)

Here we have two obviously independent terms stemming from the parts
—2(3 + M?)Q? and Q* of the factor De in Eq. (5.40).

We have up to now treated the baryon as a point Dirac particle;
however, according to experiment it is not. It turns out that there are two
independent form factors, just as we saw in Eq. (5.36) that the squared
current leads to two independent tensors, T;p and T»g. These form factors
can be introduced in different ways. The most symmetrical version involves
the so-called electric and magnetic form factors Gg and Gy,.

These play the roles of electric and magnetic couplings in the Breit
frame, [84]. But their main importance is that they can be shown to be
invariants, i.e. to depend only upon Q2, and that they occur in a simple
way. The bracketted terms in Eq. (5.44) are then exchanged as follows:

Q* i+ (QY/AMR)Gy, | @° 2
1+Wtan (2) — 1+(Q2/4M123) +2M2 tan? (2>G

(5.46)

With this exchange in Eq. (5.44) we obtain the general elastic cross
section formula for lepton-baryon scattering when parity is conserved. It
is called the Rosenbluth formula and has been thoroughly investigated
experimentally. One finds that both the electric and the magnetic form
factors behave in the same way:

Gg oc Gy o [1+ 0%/ (Mo)" ™!, My ~0.71GeV (5.47)

In the early days of investigation of the proton and neutron this result
lead to many speculations. Actually, the finding that the form factors
were pole-dominated even led to the prediction that there should be
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Fig. 54. The inelastic scattering of an electron from a baryon with one-photon
exchange (a single electromagnetic pulse ¢) leading to a final state in which the
baryon has fragmented into a complex system X.

(resonance) particles, [97], with the quantum numbers needed for the
form factors, i.e. spin 1 particles. The fact that the p- and w-particles fulfil
these requirements and also have masses close to My created particular
attention. It is, however, not possible to prove from first principles that
the elastic form factors should be analytic functions of g*> = —Q? in
the same way as we proved via the Kéllén-Lehman representation that
the propagator should be analytic; within the Kéllén-Lehman formalism
developed in Chapter 4 it would be natural to obtain a pole from an
intermediate state.

Depending upon temperament and taste one may consider Eq. (5.47)
as either a surprising finding or a reason for building a model. Such a
model, the vector dominance model for the evaluation of matrix elements
containing operators with the quantum numbers of the electromagnetic
currents, [60], has been extensively used but is outside the scope of this
book.

5.6 The inelastic scattering of electrons on baryons; lightcone physics

We will now consider the seemingly much more complex situation when
the electromagnetic pulse g from the electron towards the baryon is such
that the baryon breaks up into many final-state fragments (see Fig. 5.4).
The way in which we have introduced the elastic cross section makes
it, however, rather easy to extend the formalism to the inelastic case, at
least if we are only going to observe the electron before and after the
interaction. According to Egs. (5.34) and (5.35) the baryon is observable
only through its current. For the case at hand, with a final state (X| for
the baryon containing all kinds of fragment particles, we need only to
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make the exchange
(kal jp(0) tk2) — (X[ j5(0) [k2) (5.48)

We then obtain the same cross section but the baryon current parts are
then described by (after averaging over the initial baryon spin)

W = VE2 S 008500 + ks — k) (hal J4(0) 1X) (X1 730 k)
X

dazM

= g [ AP0 3 a9 1) (X130 e

v
4,5& / dx exp(igx) (p ji(x)jp(0) Ip) (5.49)

where in the last line, we have gone over to the conventional notation
p = (Ep,p) instead of the earlier k;. In the second line we have re-
defined the J-distribution as a Fourier transform using (p|j5(x)|X) =
(p| j5(0)|X) explix(p — kx)]. In the third line we have used the complete-
ness relation Yy |X) (X]| = 1 to arrange the result into a two-current
matrix element in the initial (spin-averaged) baryon state |p).

We evidently need the the factor 2VE, to cancel a volume factor and to
obtain the invariant combination E, k| — s — M 2. The same factors are
also needed in Eq. (5.49) to make the tensor W into an invariant according
to our conventions. The momentum transfer four-vector ¢ is defined in
terms of the initial- and final-state (observable) lepton energy-momenta:
q = k1 — k3. Finally, the factor 2M is introduced for conventional reasons.

It is useful at this point to note that

/ dx exp(igx) (p| j4(0)j(x) |p)

= Sn)*5(q +kx — p) (p| J4(0) | X') (X'| j5(0) [p) =0 (5.50)
X/
because in this case the masses of the states X’ must be smaller than
the baryon mass and there are no such states containing a baryon (the
electromagnetic interactions conserve baryon number). To see this we note
that the mass My of a state X occurring in Eq. (5.49) must fulfil

M2<M:=(p+qP=M>—Q*+v=v>0Q° (5.51)

where v = 2pg (note that different authors use somewhat different
definitions of v). Therefore the mass of X’ in Eq. (5.50) must fulfil
M% =(p—q)* < M? -20? < M2

We may use this fact to rewrite the tensor W in terms of a commutator
matrix element:

wh

Zj& / dx exp(igx) (p| [j5(x), jp(0)] [p) (5.52)
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In Chapter 3 we argued that due to causality the commutator of a local-
field operator at two different points vanishes if the points are spacelike
with respect to each other. This means that the integral in Eq. (5.52) is
actually not over all space-time but only over the lightcones and their
interior, i.e. x2 > 0. It turns out to be reasonable to make the case that
only the lightcone itself plays a role in the limit v — co with xg = Q%/v
nonvanishing. (Note that Eq. (5.51) implies the limit xg < 1).

We will present a few steps in connection with such an argument (which
is basically the scaling argument presented by Bjorken). We firstly choose
to make use of the baryon rest frame in which ¢ = (¢, 0,,—|q|) and note
that in this frame

[ v2 v
v=2Mgqgy, = |q|= m+Q22-2—]\—/I—+Mx3 (5.53)

so that the lightcone components of g along the 3-axis are approximately

v
q-=4qot14l = 7. g+ =do—Iql = —Mxp (5.54)
Then we consider a simplified model of the causal tensor function W# in
Eq. (5.52):
W(v,x5) = / dx expligx)F(x, px) (5.55)

where F = 0 if x> < 0. (Note that there are only three possible invariants
that the integrand F for a scalar W can depend upon, x?, px, p%, and that
the third of these is a constant, p> = M?2.)

The argument in the oscillating exponent is then igx = i(g_x4+ +
q+x-)/2 ~i(x4yv/M — x_Mxp)/2. According to the theory of the Fourier
transform the function W can then only obtain significant contributions
from the integration regions x+ < M /v and x_ < 1/Mxg. For the limit
v — oo this evidently means the region 0 < x> = x, x_—x3 < 1/(xpv)—x3.
Therefore the inverse of Q2 = xgv limits the transverse area inside which
the integral obtains significant contributions and we are then led towards
the lightcone itself when Q? — .

There are several pitfalls in this argument and it only works for suf-
ficiently well-behaved functions F in the integrand. If F is of that kind
we may continue the argument a little further and assume that the main
contribution to such an F constructed from scalar currents,

VE, (
2n

will be a singularity along the lightcone, similar to the one obtained in

F= pl Li(x), j(O)] Ip) (5.56)
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Eq. (3.77) for the ordinary commutator, multiplied by a function f(px):
ie(x)

5 [ / daexpliapx)f(a)+ -+ (5.57)

The dots indicate less singular terms and we have written f in terms of
its Fourier transform, f. If this is introduced into Eq. (5.55) we obtain,
neglecting the terms indicated by ellipses and using the Fourier transform
occurring in Eq. (3.77),

W = 2n / daf(a)e(q + ap}s((q + ap)’)

=2 [ daf@sa—xm) = o) (5.58)
v v

1

F =

This is apart from the dimensional factor v~ a result which only depends
upon the Bjorken scaling variable xpg through the Fourier transform of f.
It is of particular interest to note that the scaling variable xp in
this way occurs as the inverse Fourier transform variable (the ‘canonical
coordinate’) of the quantity px, which intuitively describes the variations of
the matrix elements along the lightcone x* = 0. The result stems from the
assumption that the (scalar) current commutator behaves as the free-field
commutator in Eq. (3.77). The argument can, however, be generalised to
include more complex situations where the lightcone singularity contains
derivatives of d-distributions. The main point throughout is that no new
scale is involved. The lightcone per se is evidently the same everywhere.

5.7 The parton model revisited

We have seen in the previous section how to make use of some simple
causality arguments, and some perhaps optimistic limits, to obtain the
scaling behaviour of the inelastic cross section. In this section we will
arrive at the same result by an analysis of the cross section we obtain
from the inelastic scattering situation. We obtain, by introducing the tensor
W into Eq. (5.33),

e2

~ 2(2n)2(s — M)t
The tensor W can be constructed from the two T-tensors we have used

before. In conventional notation we write (with two scalar form factors
W:).
j

do

Sdk3s ™ (k3)2M Ty W (5.59)

qud
Wyv = eZ |:W1 (_guv + %)

1 pq rq
W (=) (- Ha)] 60
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which leads to

Ty WH = &2 {2Q2W1 W, [g(i\;v) _ Q2}> (5.61)

using v = 2pq. Next, we introduce instead of the vector k3 the two
invariants Q2,v by means of the usual trick:

dQ*dv / dk36t (k3)8(Q? — 2k1k3)d(v — 2p(ky — k3)) = %szdv (5.62)

The cross section is then given by

2 2 2
o — mxA 2dQQ4 dv
§
According to Feynman’s suggestion this cross section should be expressible
in terms of a flux factor }_; e? fj(x)dx of partons, all massless and scattering
like point particles (with squared charge e3e?) from the electron. Their

cross section should then be given by the invariant cross section in Eq.
(5.40), so that

[2MQ2 Wy + %(@2 —%v — M?Q?) (5.63)

5 2ma?(Q* — 2507 + 25?)
Q4§2

If everywhere we replace the parton energy-momentum p by xp, this

implies the following changes:

do =dQ dvé(v — Q%) (5.64)

0*=—q>> Q% 5=2pk; > x5 v=2pq— xv (5.65)
We then obtain, by comparing coeffients,
W2 vW.
ST 2 Z e fi(x)xdxs(xv— Q%) <= EM% = Z e;fj(xp)xp (5.66)
j J

MW, = / S (x)Q%x/x(xv—QY) < 2MW; = e (xp)
j J

where xg = Q?/v is the Bjorken scaling variable. In this way we have
been able to give a precise relationship between Feynman’s parton flux
factors and the inelastic form factors Wy and W,.

We note that the fact that we have assumed the partons to be spin 1/2
particles provides a very precise relationship between the two structure
functions Wy and W, ie.

vW,

Tap = XMW = xfp(x) (5.67)

using the subscript B to denote a baryon target. There will be different
parton flux factors (or, as they are called, structure functions) for a proton
(p) and a neutron (n) as we will see below.
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If we had assumed that the partons were spin O particles the corre-
sponding analysis would have led to the result that W, still has the same
scaling shape but now W; = 0. Needless to say the original SLAC exper-
iments proved conclusively that W; fulfils the scaling laws in Eq. (5.66)
and therefore that the partons involved were, just as the quarks should
be, spin 1/2 particles.

It is instructive to compare these results with the case of elastic scattering
and the corresponding form factors from the Rosenbluth formula (Egs.
(5.44), (5.46). If we put Gg = Gy = G then we obtain the correspondences

2
Wi - 2 GO — Q) Wa— GO — Q) (568)
In this case there is another scale, My ~ 0.71 GeV, from the dipole formula
for the baryon elastic form factors. Therefore it is impossible to rearrange
these expressions into a scaling form.

We note, however that for xg = 1 we go from the inelastic to the elastic
contribution. In real-life experiments it is not actually a é-peak, although
it does stand out by several orders of magnitude (depending upon the way
one plots it) from the inelastic background. In the neighborhood xp ~ 1
there are also contributions from several nucleon resonances and it is
interesting that the inelastic cross section as described above takes over
in a very smooth way. If we take an average over these resonances then
we smoothly go over to the general inelastic cross section (the Drell-Yan-
West relations, [54]). This means that the nucleon splits up into partons
as smoothly as possible.

5.8 The partons as quarks

We will mention, just for completeness, a few properties of the structure
functions for baryons when the partons are identified as quarks, in ac-
cordance with Gell-Mann’s and Neeman’s suggestion. For more extensive
discussions we refer to [77].

With the wild proliferation of new particles, found in high-energy in-
teractions at the end of the 1950s and in the 1960s, it quickly became
clear that all these quantities could not be fundamental quanta. There-
fore several different classification schemes were suggested, all of them
building upon some idea of a basic symmetry in the interactions. The one
which was successful, the SU(3)-group classification, contains besides the
singlet, octet and higher representations a triplet also (corresponding to
the spin 1/2 representation in SU(2)). This triplet (which we from now
on will call 3¢, f for flavor) contains three ‘building blocks’, the u, d and
s quarks (g-particles, or g’s). Together with the corresponding antitriplet,
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3;, containing the antiquarks, the %, d and 5 (g-particles, or g’s), they
can be used to build up all known higher representations of the hadrons
without charm and bottom flavors. The quarks must have a set of internal
quantum numbers in order to be useful.

Q1 The quark electric charges are +2e/3 for the u and —e/3 for the d
and s, with e the fundamental electric charge. As it is the square
of the charges which occurs in the cross sections (the square of the
matrix elements) the u will couple four times as strongly as the d and
s to electromagnetic interactions.

This means that the effective flux factors for electromagnetic interac-
tions contain a different weighting between the quark species so that the
observed flux must be proportional to

£00) = § [u(x) + TE)] + § |dex) +d(x) +5(0) +5x)] (5.69)

when electromagnetic probes are used. We use the notation xp = x and
the quark names for the distributions.

Q2 The pairs u,d and ,d each form an isospin 1/2 doublet. The s and 5 do
not carry isospin but instead strangeness and antistrangeness). This
means that the SU(3) flavor-group contains fundamental building
blocks both in abstract isospin space (in both directions, u ‘up’ and
d ‘down’) and along the strangeness direction.

The strong interaction conserves these quantum numbers so that the
total isospin I and the strangeness content is conserved; further they do
not care about the directions in isospin space. This means that states with
the same I but different I3 (i.e. different steps in the u- or d-directions)
react in the same way to the strong interaction.

In particular the proton, p, and the neutron, n, form an isospin doublet
with I = 1/2; they contain uud and ddu respectively. Therefore a knowl-
edge of the u-content (u,) of the p is equivalent to a knowledge of the
d-content (d,) of the n. The same goes for d, = u,.

Q3 SU(3)-symmetry of the ‘ocean’. One usually assumes (for lack of
evidence to the contrary) that there are two particular kinds of
parton distributions, for valence constituents and for ‘ocean’ q- and
g-particles. Thus u, = uy, + up,, ie. the sum of the valence and the
ocean contributions and a similar relation holds for d,.

Further one often assumes that all the ocean parts are equal, ie.
Upo = Up = dp, = dp = s, = 5, = 0 (note that for a baryon all the
antiquarks then belong to the ocean).
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Then we can rewrite the relations for the effective structure functions
of the p,n, f, and f,, and their difference, as

Fo(x) = §(dupy + dpy) + 30(x)
fa(x) = §(4dpy + upr) + $0(x) (5.70)
fp(x) — fa(x) = %(upV - de)

Q4 The q- and g-partons carry spin 1/2, as we have shown above.

Taken together this means that (if property Q3 is fulfilled) that there
are three different structure functions for the quarks in the baryons. There
is also the gluon structure function g(x), which is often taken as closely
related to the ocean quark properties.

The experimental results provide both a direct measurement of some
combinations of the structure functions and also constraints on all of
them. We will end by pointing out that the original SLAC experiments
had already given constraints on the behaviour of g(x). It is evident that
the following integral will contain all the momentum carried by ¢ and g:

1 p—
/xdx(u+ﬂ+d+d+s+§)=l (5.71)
0

From their measurements on protons and neutrons the experimentalists
were able to determine that

1
/ xdxfp(x) ~ a1, + %Id ~ (.18
° (5.72)
/ xdxfy(x) = 3y + 41, ~ 012
0

with the approximation that one neglects the strange and antistrange
contributions.

From here we conclude that the fraction of the proton’s energy-momen-
tum carried by the u and @, I,, and the fraction carried by the d and
d, 1, are approximately 0.36 and 0.18, respectively. Therefore in this
approximation I for the proton is 0.54. This means that about 50% of the
proton momentum is carried by the field or, as we will in general say, the
field quanta, the gluons.
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6

The classical motion of the
massless relativistic string

6.1 Introduction

In this chapter we start to consider the properties of the massless relativistic
string (the MRS). We will begin with a simple situation in which the MRS
plays the role of a constant force field, acting upon a ‘charge’ and an
‘anticharge’ placed at the endpoints of an open MRS. This means that
the motion will be in one space dimension along the force direction. We
will refer to it as the yoyo-mode for reasons that will become clear when
it is exhibited.

In later chapters we will come back to more complex modes involving
several dimensions. All these modes are used in the Lund model as semi-
classical models for different high-energy interactions between hadrons.
The yoyo-mode is used both to describe an eTe™ annihilation event and
as a simple model for stable hadrons. In the last section of this chapter
we provide a possible dynamical analogy between the QCD vacuum and
superconductivity as a justification for using string dynamics to describe
hadronic states and interactions.

In the yoyo-mode the two charges at the endpoints of the string move
like point particles, i.e. the momentum of the state is localised in these
endpoint particles of the MRS force field. At any moment the total
energy of the state can be decomposed into the energy in the force field,
corresponding to a linearly rising potential, and the kinetic energies of the
particles at the endpoints. We will use the situation to exhibit in detail the
causality and the relativistic covariance properties of the MRS.

In the Lund model the endpoints of an open MRS are always identi-
fied with triplet, 3, or antitriplet, 3, color charges, ie. with quark, g, or
antiquark, g, properties. In connection with the description of baryonic
particles, cf. Chapter 13, we will consider more complex charge configu-
rations.

114
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6.2 The MRS as a constant force field

1 The equations of motion

The equations of motion in relativistic particle dynamics are, in general,
complex in a consistent theory. The finiteness of the maximal velocity, i.e.
that of light, implies a causality requirement. A message about changes
in the system, such as e.g. the change in the state of motion of a charge
somewhere, takes a finite time to be transmitted to any other part of the
system. Consequently, the reaction of the system to the change, ie. the
ensuing force action, is of a retarded character.

More precisely, some cause at the origin at time #p will affect what
happens at a point R only after a message has been able to reach that
far. If this moves with the velocity of light, ¢ = 1, in a straight line, it will
cause an effect at time t with t = to + |R|. The calculations including the
retarded times then become rather complicated.

There is one particular situation, that of a constant force, that is easy to
work with (because then the retardation effects are not noticeable). The
historical start of what is now known as the Lund string model was based
upon the consideration of such a force, [14]. We only later learned that
the ensuing motion is a simple variety of the modes of the MRS [24].

If we consider the motion of a relativistic particle in space-time (z, x),
with rest mass m, energy E and momentum p, under the influence of a
constant force —«k, we have the force equation

dp
ok 1
i K (6.1)
The solution is evidently

p = p(t) = po — Kt = K(to — 1) (6.2)
The velocity of the particle is

dx p dE
i~ E"dp VPP +m (6.3)

(The first equation of (6.3) corresponds to one of Hamilton’s equations,
the hamiltonian being given by the relativistic particle energy.)

From Egs. (6.1) and (6.3) it is possible to obtain an equation for the
variation of the energy with respect to the space coordinate, if we use the
chain rule for differentiation:

dE dE\ /dp\ dt dp

—=—)l-=)—=5=— 4

dx <dp> <dt) ax " 64
This equation has, similarly, a simple solution:

E = E(x(t)) = Eg — kx = x(x0 — X) (6.5)
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Fig. 6.1. The motion in space and time of a particle with mass m under the
influence of a constant force —k. The distance between the hyperbola and the
intersection (g, Xo) between the asymptotes is m/x.

From the relationship between energy, momentum and mass we conclude
that the orbit of the motion is

m? =E? —p? =? [(xo —x)? — (19— t)z} (6.6)

1.e. a hyperbola in space-time, centred at (tg, xo) and with a size parameter
m/x (see Fig. 6.1).

At large negative times the particle comes in from the region of large
negative space coordinates with its momentum pointing along the positive
coordinate axis. The momentum decreases and the particle is, at time
t = tp, momentarily at rest at the classical turning-point x — xo = —m/k.
Afterwards it moves with increasingly negative momentum back to large
negative space coordinates.

We note that if the mass vanishes then the particle will move along
the lightcones |t — ty| = xo — x throughout and it will look as though it
‘bounces’ back (changing from velocity +c¢ to —c with vanishing energy
and momentum at the origin (g, Xo)).

We will use massless particles from now on because of the simplifications
in the ensuing pictures of the motion. We would like to stress, however,
that the dynamics we are going to consider is basically independent of
this assumption (cf. the considerations in Chapter 12).
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2 The Schwinger model and confinement

A particularly interesting dynamical situation arises when there is a con-
stant force and a linearly rising potential; this occurs in one-spacedimen-
sional electrodynamics. There are also in three space dimensions situations
that can be approximated by one-dimensional dynamics, e.g. the field be-
tween two condensor plates.

Then the usual four-vector potential 4, = (Ao, A) can by a gauge choice
be arranged so that only the scalar potential 49 = V is nonvanishing. The
single component of the electric field § = —dV /dx will in a charge-free
region fulfil Gauss’s law, i.e.

4>V

dx?
which means exactly a linear potential. This constant force is approxi-
mately realised in a capacitor.

A quantised version of one-dimensional electrodynamics was investi-
gated by Schwinger, [101]. He was able to show that an electric field
coupled to massless fermion particles is (essentially, i.e. leaving aside some
peculiar modes) equivalent to a free, non-interacting, but massive, quantum
field theory.

The quanta of this field are massive and electrically neutral. Their mass
is a function of the electric charge, m> = g*/n. Note that the charge g, as
defined by a gaussian ‘integral’ (in a one-dimensional world there are no
transverse dimensions to integrate over)

g=& (6.8)

does not have the same dimensions as in the usual three-dimensional case.
The dimensions of the electric field & can be read out from the usual
energy density requirement, that half the square of the field strength is
equal to the energy density, dE/dx = &2/2. This means that the electric
field has (energy) dimensions dimé& equal to 1. Therefore g? has the
dimensions of a squared mass in this case.

The fact that the quanta are electrically neutral is very surprising
because it seems as if the original electric charges have vanished. It turns
out, however, that the resulting free-quantum field, ¢, corresponds to a
dipole density. The original massless fermions are arranged two by two
with a positive and a negative charge bound together as a dipole.

This is a realisation of confinement, i.e. the original massless fermions
are not observable by themselves but only in particular combinations.
In the Schwinger model the original fermions and antifermions can only
occur in pairs as bound states with one of each kind.

In this one-dimensional setting this means that one of the charges
must be to the left of the other, thereby producing a dipole moment.

=0 (6.7)
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We may compare this with with the case of colored quanta, where the
hadronic states are built from color combinations corresponding to no-
color singlets. In the Lund fragmentation model the hadrons are modelled
by the massless relativistic string, corresponding to a color field spanned
between two endpoints associated with quark (color-3) and antiquark
(color-3) charges (the ‘ultimate dipoles’ in Chapters 7-14).

We will also introduce this dipole character in the description of multi-
gluon bremsstrahlung in the dipole cascade model (Chapters 16—18). In
this case the emitting current has only a direction and a very small space
extension. Similarly in the linked dipole chain model, which describes the
properties of deep inelastic scattering (Chapter 20) we will again find the
same dipole structures, describing the (squared) wave functions of the
hadrons (the structure functions).

In the Schwinger-model case confinement is related to the infinitely
rising field energy necessary in order that a charge should be moved away
from all the other charges. In our calculations in subsection 1 we found a
constant energy density along the whole negative axis beyond where the
particle reaches its classical turning point.

We will carry the model on a little further to a simulated particle-produc-
tion situation, like the one described in [39]. These authors investigated
the situation where an external current is composed of a +g charged
pair. The charges set out at the time t = 0 in opposite directions along
the single space dimension, the 1-axis. We assume that they move with
velocity v = ¢ = 1. This means that there is a current (j§, ji**), where

-ext

& = ge(x1)d(e(x)x1 — 1), i = gd(e(x1)x1 — 1) (6.9)

(note the appearance of the sign function € = +1, depending upon the
sign of its argument, which describes the way the charges +g move). This
current corresponds to an external dipole density

w”=%®u+mwa—m) (6.10)

where the fields are normalised somewhat differently from that in {39]. Our
choice is in accordance with the one-dimensional equivalent to the fields
introduced in Chapter 3; thus the quantum field ¢ is, using w = w(k) =
k? +m? and L for the length of the one-dimensional ‘quantisation box’,

{aexpi(kx; — wt) + a” exp[—i(kx; — wt)]} (6.11)

1
d(x1,t) = Xk: \/ﬁ

Then we may write out the equations of motion for the fields, the Klein-
Gordon equation

(O +m?)p = m*p™ (6.12)
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perform all the operations for quantisation and solve the equations to
obtain as solution a coherent-state field like those of Chapter 3. Then the
quanta in every state will be distributed in a Poissonian manner with an
excitation probability described by the mean occupation number 7(k) (cf.
Eqgs. (3.25), (3.41)):

1 © 1 2g
h=————/ dt/dxm2 et expli(kx — ot =—(—>, 6.13
J2oL Jo e R AT A
4972 2n
5 B2 — g _
n=Ih 2wlm? oL

We have performed the integral in the first line by adding a small negative
imaginary part to @ (remember the three-act scenario described in the
first section of Chapter 3) and used the relationship between the mass and
the coupling constant in the second line.

This means that when we go to the limit L — oo we obtain for 7

iAn — ﬁdk£ = dk =dy (6.14)
2 o

in terms of the rapidity variable y. This is nothing other than the wee
parton spectrum of Feynman or, if you like, the distribution of photons
in the method of virtual quanta in Chapter 2.

Consequently, an external excitation in the Schwinger model tends to
spread as a Poissonian fluctuating production of dipole quanta of average
size one quantum per unit rapidity!

3 The yoyo-mode at rest

As a classical model corresponding to Schwinger’s dipole quanta we
consider the motion of a system of two massless particles, a g- and a
g-particle, which are acting upon each other with an attractive constant
force.

In Fig. 6.2 we consider the situation when the ¢ and § go apart with the
same energy E¢ from a common origin but in opposite directions. Such
a system evidently has a total energy E;,; = 2E¢. This coincides with the
system mass m as the total momentum vanishes.

According to the results in subsection 1 the particles will move along
the two different lightcones and each will lose energy-momentum x per
length and time unit. The starting situation corresponds to the g and g
each having lightcone energy-momentum 2Ej.

The ensuing motion can most easily be described in terms of a series
of fixed-time snapshots (the lines on the right-hand side of the figure,
although the space-time picture given on the left of Fig. 6.2 provides a
total view of the system):
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Fig. 6.2. On the left, a space-time diagram for the motion of a gg-state, in
which the particles always have the same energy, i.e. the yoyo-mode at rest. The
different times mentioned in the text are shown, with the length of the arrowed
lines corresponding to the energy of the particles and the length of the thicker
lines corresponding to their separation, ie. the field in between.

A After a time t4 (< Eg/k = tp) they will be a distance 2t4 apart, each
with energy Eg — kt4. The ‘lost’ energy has gone into the force field,
which now has energy x times its length, i.e. 2kt 4.

B At time ¢t = tg = Eo/x they have lost all their energy and they will
then turn back and move towards each other.

C At the time (2t >) tc > to they will be at a separation 4ty — 2t¢,
each with energy xtc — Eo. This energy has been obtained from the
force field, which now is dragging them towards each other.

D At time tp = 2ty they will meet again but this time they have
exchanged their modes of motion compared to the starting point.
The g moves along the original g-direction and vice versa.

As can be seen by a straightforward extrapolation of the argument,
after the time 4ty = 4Ey/x = 2E,;/x the g- and g-particles will come
back exactly to the starting position. Actually a little thought will tell
us that the system is always in the same mode of motion at the times ¢t
and t 4 2E;,;/x = t + tpe. This fact that the period of motion is equal to
tper = 2Eo1 /% is true for all modes of the MRS, as we will see later.

Another general property of the MRS is that the total area A spanned
by the force field in space-time during one period is related to the squared
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2t,coshy

Iy €Xp Yy

fo exp(-y)

i
X 2E,expy

Fig. 6.3. The yoyo-mode after a Lorentz boost along the positive direction; the
times and the lightcone energy-momenta from Fig. 6.2 are shown in the new
system.

/ 2E, exp(-y)

mass of the system. It is easy to see that the relationship is

- E}
KA = k28— =m? (6.15)
2K2
in our case; there are exactly eight identical triangles with side and height
lengths to = Ey/xk.

In this particular mode the ¢ and the g will continue to move in and
out along the lightcones and the name ‘yoyo-mode’ has a self-evident
meaning. The energy and momentum are at different times divided in
different ways between the endpoint particles and the force field. We note
for future reference that, averaged over a period, half of the energy is in
the endpoint particles and half of it is in the field. This is the same result
for energy sharing between the quarks and the gluons in a hadron that
we quoted in Chapter 5 from the experimental results.

4  Lorentz covariance and causality properties

The model is Lorentz-covariant; we will now demonstrate this by an
explicit calculation.

We will consider the situation after we have boosted the system (see
Fig. 6.3) longitudinally, i.e. along its axis, with the rapidity y. Then the
g-particle, which moves along the positive direction, will by the corre-
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sponding Lorentz transformation change its original (positive) lightcone
component 2Eg to 2Eq exp(—y) according to the results in Chapter 2. For
the § we obtain correspondingly for the negative lightcone component
that 2Ey — 2Egexpy.

Thus the total system energy, which at the origin is completely in the
qqg-pair, changes from E;, to E;; coshy = E,,,. The system is now moving
with a total momentum —E,, sinhy = P/,.

It is not obvious that the force equation, Eq. (6.1), is Lorentz-invariant.
But it is easy to show this property for our massless particles, which move
along the lightcones x = +t with energies and momenta E = +p; the plus
and minus signs are valid for particles moving to the right and the left,
respectively. In this case the time and the momentum component of such
a particle in a different frame are

t' =texp(xy), P =pexp(£y) (6.16)
and we immediately obtain that
dp’ _ dp
v (6.17)

A more general but also more complex argument could be based upon the
properties of the electromagnetic field and its interactions with particles;
then all dynamical variables evidently have simple covariance properties.
The constant force will occur in one-dimensional QED as mentioned in
connection with the discussion of the Schwinger model.

Thus, in the new frame the particles will also be acted upon by a
constant force of the same size. The main difference is that the g now
has a diminished, and the § an increased, original energy. Therefore, in
this case they will not stop at the same time. Again using the equal-time
snapshot technique we have, from Fig. 6.3,

A The g will stop and turn around at time ¢, = to exp(—y) (at the space
point tgoexp(—y)) and after that move behind the g at a distance

2to exp(—y).
During the ensuing motion the § is losing its energy to the field and the
q will be increasing its energy from the field, both of them at the same
rate. In somewhat vivid language the g ‘eats’, and the g ‘spits out’, the
field as they move along.

B At time 5 = toexpy (at the spot X' = —toexpy) the g has used up
its energy and turns around towards the q.

From Fig. 6.3 we also deduce the following three properties:
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C1 The two particles will meet again at time toexpy + toexp(—y) =
2tp cosh y.

C2 The meeting point has x'-coordinate given by —2t¢ sinh y.

C3 By the time they arrive at the meeting point the two particles have
exchanged their energies and momenta, i.e. the g has gained exactly
as much energy as the g has lost, and vice versa (although the gain
and loss have not occurred at the same times but rather through the
field).

After a second such yoyo ‘round’ the g- and g-particles will be back at
their original energy-momentum conditions.

The time it has taken is, however, longer than in the rest system, i.e.
instead of 4ty it is 4tg cosh y. But we note that the period is again given
by twice the total energy divided by «: 2E;,/x = 2E;,/xcoshy. This is
the MRS version of the time-dilation effect, described in Chapter 2.

The Lorentz-contraction phenomenon implies that the field sizes are
correspondingly always shorter. We note, however, that the Lorentz-con-
traction and the time-dilation effects combine in such a way that the space-
time size spanned by the field during the period will again satisfy Eq. (6.15).
We leave the proof of this statement to the reader.

Finally, we note from the above exercise that during such a full period
the system has moved a distance §x’ from the origin to the meeting point:

0x" = 2[tgexp(—y) — toexp y] = —dtysinhy = 2P, . /x. (6.18)

This is another general property of the MRS: during a period tyer = 2E0;/K
the system will be translated by the vector Xper = 2Py /.
There are two comments to add to this result:

e when the system is at rest as in the previous subsection then P,,, = 0
by definition of ‘at rest’;

e the system will move during a period as if it had a mean velocity
Xper /tper = Pior/Esor, Which is just the usual velocity for a particle
with energy-momentum (E;y, Psor).

This moving extended system contains three parts and behaves in a
surprising manner. The two particles are moving with the velocity of light
in the same or opposite directions and therefore contain both energy and
momentum. There is, further, the field, which throughout seems to be
longitudinally at rest, i.e. it contains only energy and no momentum. But
the field nevertheless does change its position because it only exists in the
region between the charges!
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Fig. 6.4. The yoyo-mode after a Lorentz boost transverse to the field direction.
The field is shown by the thick solid lines, the endpoints move with the velocity
of light ¢ = 1 along the thin solid lines and the field moves with velocity v along
the direction of the broken lines. The dotted lines are the continuations of the
motion of the endpoints.

With respect to causality we note that the two particles meet every half
period, but meanwhile are often at spacelike distances with respect to
each other. From Figs. 6.2 and 6.3 we note that each particle can while
in motion in principle send away lightlike and even timelike messages ‘via
the field’; these can be received by its partner during the second part of
the half-period. Thus the typical communication time can be short (when
the particles move together in a strongly Lorentz-contracted string field)
or long (when they move apart). It is necessary to introduce some kind of
measurement procedure to define the notion of ‘communication’ and we
will not speculate further on the subject at this point.

The result is, however, that there is always a finite delay time for any
message travelling through the system. If one of the endpoint particles were
acted upon by some outside agent then it would take some time before
the other one would ‘know’. This feature will be more noticeable when
we consider the reaction of the yoyo system to an external momentum
transfer, in Chapter 20.

5 A transverse boost of the yoyo-mode

It is instructive to consider the yoyo-state in a frame that is boosted
transversely to the directions of motion of the two endpoints. We will
then find that the field this time actually must contain also momentum.
The situation is shown in Fig. 6.4 for two different times.
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We are now going to analyse the situation using the following two rules.

1 The two endpoints always move with the velocity of light.

2 The energy-momentum is conserved throughout and we will see that
it is even locally conserved owing to causality.

The left-hand vertical line in Fig. 6.4 corresponds to a time when in its
rest frame the system is stretched out as far as possible, i.c. at a turning
time for the two endpoint charges. Then, in a frame where the string is
moving with velocity v with respect to the rest frame the field contains
both energy and momentum. If the field length is 2/ then its rest frame
energy is 2xl. In the moving frame that means (cf. Chapter 2):

E =2xkly(v), P = 2klvy(v) (6.19)

where y(v) = 1/4/1 —v2. Note that the force field does not change its
shape or size as it is boosted transversely. Equation (6.19) evidently gives
the total energy-momentum of the system.

After a time 6t (measured in the new frame) the endpoints have moved
the distance 6t and a point in the middle of the field has moved vdt. From
Fig. 6.4 we conclude that the velocity v is related to the angle 8 by

v =cosf (6.20)

The length of the force field is now 2(I — étsinf) and therefore the
energy-momentum of the field is proportionally smaller.
In particular the field energy has decreased by an amount

OE = 2kdtsin 0y (v) (6.21)
Using Eq. (6.20) we obtain

1
y(v) = prm (6.22)
which implies that
O0E = 2xot (6.23)

This field-energy loss is easy to understand from what we already know. It
means that each endpoint particle will obtain (from the field) an increased
energy de = kot while it moves the distance Jt.

Further, we note that the momentum of the field along the boost
direction has decreased by

0P = 2kotsin Gvy(v) = 2kt cos O (6.24)

(again using Egs. (6.20), (6.22)). This is the amount of momentum Jép cos 6
which the g- and G-particles have picked up along that direction.
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They have also (in order to fulfil the masslessness condition de = |5p|)
acquired two compensating components +4p sin 0 along the field direction.
In this way one can describe the force from the field on the particles

as txsinf = +x/(1 —v?) in the moving frame. We have seen before
that the force is not changed for Lorentz boosts along the string but,
owing to the time dilation effect, it is in this way affected by transverse
boosts.

Consequently the energy-momentum is redistributed between the end-
point particles and the field in a local way. Once again we can talk of
them as ‘eating’ or ‘spitting out’ the field in their neighborhoods.

From the two rules given above it is possible to trace any complicated
motion of the force field, as we will see in later sections. A useful exercise
at this point is to consider the necessary Lorentz transformations and the
ensuing motion if one were to boost the ‘flat” yoyo-mode in a direction
between the longitudinal (exhibited in the previous subsection) and the
transverse as discussed here.

You will then notice that it is only the transverse part of the field
velocity (transverse, of course, with respect to the field direction) that
plays a role for the field momentum. This means that the field only
contains momentum with respect to its transverse motion, i.e. longitudinal
momentum-carrying modes of the field do not exist for the MRS field (but
they do occur for the endpoints). This is once again quite in accordance
with good old classical string motion, where only transverse degrees of
freedom play a role.

6.3 The QCD vacuum as a color superconductor

Both the Schwinger model and QCD are confining in the sense that the
real charges (respectively electromagnetic and color) cannot be isolated
from each other and only occur in particular singlet combinations. Con-
finement is, however, also expected to lead to restrictions on the spatial
extension of the force fields between the charges. Calculations in the lattice
approximation of QCD tend to confirm this behaviour.

The MRS, as a model of a confining force field in which the charges
are identified as the endpoints, evidently has both these properties. In
this section we will provide a motivation for the use of the MRS in
hadron dynamics. We introduce a color superconductor as a simple model
for the QCD vacuum state. We will also briefly mention another well-
known model, the bag model for hadrons, and point out its relation to the
MRS.
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1 The London equations and types I and 1l superconductors

Electromagnetic superconductors have many wonderful properties and we
mention only a few here:

e According to condensed-matter physics there is a tiny attractive
interaction between two electrons close to the fermi surface, owing
to the exchange of phonons associated with the crystal lattice of the
material. Therefore there exists a (very) loosely bound state of two
electrons, a Cooper pair, with spin 0. The spatial extent of the state,
called ¢, is often in the um range, i.e. it may be of macroscopic size.
Due to this bosonic nature many such states may overlap in space
and behave as a degenerate (although charged) Bose gas. The pairs
move freely through the material and there is no resistance.

e According to Lenz’s law an applied magnetic field will produce a
(super) current of Cooper-pair states that will expel the applied
field. Thus a magnetic field will only have an exponentially falling
penetration depth (called 1) in a superconductor. If the temperature
or the field is increased beyond a critical size, the states will be
excited and break up and there is thus a phase transition from the
superconducting to the normal state.

Due to the relative sizes of ¢ and A, such ordinary superconductors have
one of two rather different behaviours at the critical point. We will now
consider the two cases, called types I and II superconductors. The shape
of the normal-state field regions depends upon the superconductor type.

If £ > 2 the boundary regions between the superconducting state and
the rest will be empty because neither the magnetic field nor the Cooper
pairs can spread there. These regions are then inactive from a dynamical
viewpoint. Nature will according to the gospel of thermodynamics then
try to minimise the boundaries of a type I superconductor.

At the opposite extreme, 4 > &, both the Cooper-pair density and
the magnetic fields can populate the boundary region and Nature will
consequently maximise the boundaries between the superconducting and
the normal state in a type I superconductor.

It is known, [98], that there are in QCD possible color magnetic field
configurations with energy below the no-particle state. In these states gluon
combinations take the place of the Cooper pairs in an electromagnetic
superconductor and the color electric field is in this case neutralised by
the vacuum fields. The sizes of the corresponding lengths £ and A are not
known from first principles. If the QCD vacuum corresponds to such a
state then the appearance of color charges and fields in between them
will correspond to regions with normal-state properties. Such regions will
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then be surrounded by such a vacuum color superconductor. In particular
the boundary regions between the superconducting and normal states are
interesting,

For the type I superconductor, the region where the (color) field expands
(the normal-state region) will have boundaries that are as small as possible.
For a localised excitation, the field will arrange itself as an (isolated)
‘resonant cavity field’, cf. Jackson, with standing waves inside this, in
general, spherical region. The total field energy is proportional to the
volume and we note that a sphere has the smallest boundary-to-volume
ratio possible.

If the field has a longitudinal extension then the whole field will stay
inside a cylindrical ‘wave guide’. Once again the field energy will be
proportional to the volume and if the longitudinal size is given then a
connected cylinder shape will have minimal surface area.

There are, in QCD, analogy models for the two cases. The first cor-
responds to an isolated hadronic state, containing valence-quark color
charges and color field energy organised into a spherical hag. The second
corresponds to the production of an outward-moving gg-state with its
field energy organised into a flux tube. We will not go into details here
but the basic idea involves introducing a ‘bag-pressure’ from the vacuum.
This is neutralised at the boundary by the pressure from the fields inside
so that there is a stable boundary.

To explain the different behaviour of a type 11 superconductor we con-
sider a slab of matter (width L) in an (electromagnetic) superconducting
state. Both for types I and II there is a minimal critical field, 4., for
which the superconducting state breaks down. We assume the field exists
inside a region of total area A. Outside A there is still a superconducting
state. For a type I superconductor the region will be homogeneous and
the boundary region will have area R; = 2./rAL. The whole field passes
through 4 and so the total energy deposited in the slab is E = %% AL
and the total flux is ® = #.1A4. For the type II case there is also a second
critical field strength, %., > %.1. For a field strength in between %, and
B>, the region will be penetrated by many thin vortex-line fields each of
a quantised size. The core size is typically ¢ and there is a weak repulsive
interaction which keeps the vortex lines apart so that the field strength
will vary inside A.

We may for simplicity consider the area A as divided into n circular
non-connected regions. You will then find the same flux and the same
energy deposit but the boundary region now has area Rj; ~ \/ERI. Thus
to maximise the boundary it is profitable to subdivide the region. When
the field strength is greater than %, the whole region becomes filled with
vortex lines and it will behave as for the type I case.
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We shall exhibit a few steps in the London theory of superconductivity,
[91], and in particular show the quantisation of the flux lines.

We consider a constant Cooper-pair density n(x,t) and a corresponding
current j(x,t) = —2env, with v the velocity field. The continuity equation
as well as the Lorentz force law will give (with a Cooper-pair mass m and
charge —2e) for the stable state

dv

Vi=Vv=0, o

= —gn;(ca@ +vXARB) (6.25)
The total change in time of the velocity field should be regarded as the
change in time for a fixed coordinate plus the change in the coordinate
for a fixed time; thus

dv  0Ov v2
';i‘;———a;‘f'V(?)—VX(VXV) (626)

Then the Lorentz force law is equivalent to

2
Q+%g+v<v_>=vx<s7xv—gf@> (6.27)
ot m 2 m

We may now apply the differential vector operator ‘curl’ (Vx) on both
sides of this equation and note that, according to Faraday’s induction
law (cf. Chapter 2), V x & = —048/0t and also that V x Va = 0 for any
function a.

Then one obtains the resulting equation for the vector &£

ia§=V><(v><$) where $=va—? (6.28)

When both fields and current vanish & = 0. The Londons, [91], made
the fundamental assumption that & should always vanish inside a super-
conductor. This implies immediately an equation for the magnetic field
because a vanishing £ means that

m . m m
B=—1 5 (Vx)=— 5 (VX (VXB)= A8 (629)

Equations (6.28), (6.29) are known as the London equations. To exhibit the
result in (6.29) we have used Ampere’s law (assuming a static situation,
0& /0t = 0) and also the absence of magnetic charges (cf. Chapter 2). The
solutions to Eq. (6.29) correspond to magnetic fields which are exponen-
tially falling with a rate equal to the parameter 4 mentioned above, which
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[ m

The inverse of this 4 is identical to the plasma frequency we met in the
discussion of the behaviour of the dielectricity in Chapter 2 (although
here, for the Cooper pairs, the charge is —2e).

fulfils:

2 Solutions of the differential equation

We will need a particular solution of Eq. (6.29), i.e. the one corresponding
to cylindrical symmetry around the 3-axis, with no variation along that
axis, # = He; with 0%/0x3 = 0. We will solve that equation at the
same time as we also exhibit the behaviour of the Feynman propagator
in spacelike regions (as promised in Chapter 3).

Let us consider symmetrical solutions f = f(x?) to the equation

V2s—43)f =0 (6.31)

(for x2 > 0) where 2d is the dimension of the space and Ay, is a positive
number. It is instructive to note that in both of the following cases,

D= FE xX*=3x} (6.32)
=1 9%j =1
2-1 a2 , 2d—1 .,
j=1 J Jj=1
we obtain directly the following equation in z = x?:
d? d
4 <zd—zﬁ + d;é—) — A3 f=0 (6.33)

Assuming that the solution is of the kind

f(z) = (©)*g(0) where { = /2> 0 (6.34)

the equation can be brought into the form (dots mean derivatives with
respect to ()

(g +Qd+ 40— 1){g+ [bad +a—1)—A3,{g =0 (635)

Then if we choose &« = (1 — d)/2 we obtain a modified Bessel differential
equation,

g +ls—[(1—dyP +43,%g=0 (6.36)
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For the case we started with, i.e. d = 1 with Ay; = 4 in Eq. (6.30), we have

f=%=CKop (ﬁ> (6.37)

A

where K is the modified Bessel function of rank 0, which is exponentially
falling and behaves for large values of its argument as follows:

Ko(x) >~ \/gexp(—x) (6.38)

In order that 2 should be a proper magnetic field the normalisation
constant C must have (energy) dimension 2.

For the Feynman propagator for spacelike values of x* we obtain (d = 2
and A,; = m) the same exponential falloff as in Eq. (6.38) but a power in
front:

Ar(x,m) oc %Kl(m\/ﬁ) (6.39)

N

3 The quantisation of the magnetic flux

The result in Eq. (6.37) has a logarithmic singularity for x*> = 0:

B ~ Clog(i//x?) (6.40)
The corresponding magnetic flux, @, through the 12-plane is

o0
O = /dxldngy — 27'cC/ xdxKo <5> —2nCi = (2—”> m 641)
0 A 2e) n

We note that the quantity Cm/n is a dimensionless number (n, being a
three-dimensional space density, then has energy dimension 3 using our
ordinary convention with ¢ = fi = 1).

We also note that the Cooper-pair (super)current j is given by

J=Vx B =—e, 2 (6.42)

dy/x?
where the derivative can be expressed in terms of the modified Bessel
function K and therefore again falls off exponentially in directions normal
to the 3-axis. It is, however, singular, like 1//x2, along the 3-axis.

We also note that the current flows around the origin, i.e. the 3-axis. (The
unit vector ey circulates around this axis in the direction of increasing
azimuthal angle ¢.) Thus the Cooper pairs circulate, thereby producing
a magnetic field similar to that in a solenoid. This is the reason for the
nonvanishing magnetic flux through the 12-plane and the singularity along
the 3-axis.
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In order to understand what is going on we go back to the London
condition for a superconducting state, & = (), which we write as

m¥ =V xmv—2eB =V X (mv—2eA)=0 (6.43)

where we have introduced the vector potential A. In Chapter 11 we will
study this expression further and show that the canonical momentum of a
particle with kinetic momentum mv and charge —2e is, in an electromag-
netic field,

p=mv—2eA (6.44)
We further note that the flux @ in Eq. (6.41) is given by

_2e® = / dxidxymP = ]{ ds - p (6.45)

Here we have used Stoke’s theorem. This result was noted by F. London
and he interpreted it correctly, along the lines of a Bohr-Sommerfeld
quantisation condition: the integral should be equal to an integer times
Planck’s constant h. In this way we obtain that the combination Cm/n in
Eq. (6.41) is an integer, N, and that the flux ® = —N/2e.

The result may at first sight seem like witchcraft. The vector & was
assumed to vanish, according to the London prescription, inside the su-
perconductor. The fact that its surface integral is nonvanishing and in
particular equal to an integer times a flux unit must then mean that the
whole surface is not inside the superconductor. We have already pointed
out that there is a singularity for the solution along the 3-axis. In other
words there is a thin ‘hole’ along the axis and we may conclude that it
should be of the order £ < 4 and correspond to a lack of Cooper pairs.
This is a vortex line.

F. London suggested on the basis of these results that it should be
possible to produce a magnetic flux trap. Suppose that we have a ring of
matter in a normal state inside a magnetic field and that we then bring
the ring into a superconducting state. This will produce a supercurrent
of Cooper pairs in the ring. Further suppose that after this we remove
the magnetic field and investigate the magnetic flux through the hole in
the ring, caused by the supercurrent (which must continue inside the
superconductor because there is no ‘stopping force’!). A set of clever
experiments, [49], were later performed, which justified both the flux
trapping and, in particular, the quantisation of the flux.

We conclude that the solution we have obtained, which corresponds to
a vortex line, penetrates the superconductor to a small depth and contains
a definite flux corresponding to an integer times the inverse charge of
a Cooper pair. This corresponds to the typical type Il superconductor
breakdown. The superconductor is penetrated by as many isolated vortex
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lines as the field flux permits and we now understand the subdivision of
the slab discussed above.

A dynamical vortex line, i.e. one connected to moving charges must have
a dynamics very similar to the MRS and therefore if the QCD vacuum
state has the properties of a superconductor type II our use of the MRS as
a model for the color electric force field is natural. We will later consider
the question of the width of the Lund string field, cf. Chapter 11, and will
find that its radius is typically 0.3-0.4 fm.
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The decay kinematics of the
massless relativistic string

7.1 Introduction

In this chapter we consider the situation when a gg-state is produced
with a large amount of energy at a single space-time point. It will be
called the original pair and we assume that ¢ and g interact through a
constant attractive force, k. The pair will then form a yoyo-hadron state
as described in the previous chapter and immediately start to separate.

The state composed of the two particles and the force field, if it contains
a larger mass than that of the stable hadrons, will decay into smaller-mass
particles. Such a decay process is of course of a quantum mechanical
nature.

Although we will at this point use semi-classical arguments, we will
later show that the resulting formulas fit into both a quantum mechanical
tunnelling process and a statistical mechanics scenario.

The major assumption will be that a string state may decay by the
production of new pairs of qq-particles along the force field. Using the
carlier interpretation that a g or § corresponds to the endpoint of a
string, the production process corresponds to creating new endpoints, i.e.
to breaking up the original string into smaller pieces.

The g- and g-particles will be treated as massless during the discus-
sion. This assumption is necessary in a semi-classical framework for the
conservation of energy-momentum. A massless pair produced at a single
space-time point does not take any energy from the field. A massive pair
(mass u) will, however, in classical physics need a field region dx = 2u/x.
We will later consider the quantum mechanical modifications which are
necessary in order to treat the production of massive pairs.

The production point of a new pair is called a vertex. Figure 7.1 shows
the development in space-time of parts of a gg-state, with some of the
vertices produced.

134
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.

Fig. 7.1. Space-time development in a breakup situation showing some of
the vertices produced together with the state S,p discussed in the text. The
rapidity y of the state S4p is the hyperbolical angle between the broken-line
directions.

We note that due to causality the two original endpoint particles will
know nothing about the breakup vertices ‘behind’ them, at least not for
some considerable time. As they are massless and move with the velocity
of light there is no possibility of reaching them with a signal until they
have turned around.

We further note that a produced pair will immediately start to sepa-
rate owing to the forces exerted by the two adjoining string pieces. The
new particles in that way use up the field energy between them, i.e. the
string field in between them vanishes. Their parting situation is actually
irrevocable — they will never meet again.

In this way the notion of confinement is smuggled in. A string force
field is always confining in the sense that the force field vanishes at the
endpoint ‘charges’. This is in contrast to the situation in electrodynamics,
where a newly produced electron-positron pair will continue to interact
even if pulled apart by external forces.

In our case, at every vertex there will be two independent string pieces
with endpoint particles moving away in opposite directions. There may
be several vertices along the string, as shown in Fig. 7.1. In this way
every vertex actually partitions the set of all vertices into two parts, those
belonging to the string piece moving to the left and those belonging to
the string piece moving to the right. This observation will later on provide
us with a convenient way to order the vertices.
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7.2 The kinematics of the decay and its implications

1 Preliminary remarks

We will now consider the energy-momentum properties of one of the
string pieces, the one ending in g4 and §z. We will call the state consisting
of the two particles and the force field between them S, and we note that
it is after formation isolated from the remaining system. The two particles
are produced at adjacent vertices, at the space-time points A = (x4,%4)
and B = (xp, tg), respectively. In order to compute the energy-momentum
of S4p we consider the space-time point O = (xo, tp). This is, according to
Fig. 7.1, the first meeting point of g4 and G and there is no field between
them when they are at this point.

According to the equations of motion given in Chapter 6 the energies
E; and momenta p; (j = A, B) at this point (note that momentum is
counted positive along the positive x-axis) are given by

E4 =x(xq4—x0), Ep=x(xo—xp)
(1.1)
pa =k(t4—to), pp=k(to—1p)

Therefore the state S4p will have a total energy-momentum depending only
upon the space-time difference between the production vertices A and B:

E=E +Ep=x(xq4—xB), p=pa+pp=r(ta—1tgp) (7.2)

For reference we note that there is a relationship between some of the
quantities in Eq. (7.1) because the positive (negative) lightcone component
of the point labelled O is equal to the corresponding component for the
vertex A (B):

to+x0=t4+x4, to—Xo=1p—Xp (7.3)

If the state S4p corresponds to a meson state with mass m then the vertices
A and B must lie on the two branches of the hyperbola

E2_ 2 m2
= (oa—xpP — (04— ta) (7.4)

12

Therefore there is a strong correlation between two vertices corresponding
to the production of a definite mass in between. One can, assuming that
one knows one of the vertices (e.g. A) draw the hyperbola branch along
which B must be found (see Fig. 7.2) and vice versa.

It is also useful to note that the velocity of the ‘particle’ produced
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Fig. 7.2. Two neighboring vertices 4 and B with the requirement that they
should each lie on a hyperbola. The hyperbolas are indicated for 4 and B.

between the vertices A and B is given by

. p_ At
bAB = E  Ax
where A indicates the differences between the 4 and B coordinates. We
remember from Chapter 2 that this result is to be expected in connection
with spacelike vectors. The system is evidently at rest when g4 and gp
are produced at the same time. The rapidity of the system is given by
the hyperbolic angle, y, shown in Fig. 7.1 and we note that the faster the
system, the more tilted towards the lightcone is its velocity direction:

_1 1+uv4p __1 Ax + At
yap = 7 log <1 —UAB> =y log (Ax—At> (7.6)

(1.5)

2 The consequences

The distance between the vertices A and B must be spacelike in order that the
mass should be real, according to Eq. (7.4). Thus the two production points
are not causally related and no signal can be sent between the vertices. This
has some interesting consequences, which we will now consider. According
to Fig. 7.1 vertex A appears earlier than vertex B in the ordinary time
sense. This is, however, a statement which depends upon the Lorentz
system if 4 and B are spacelike with respect to each other, since then
we can always, according to Chapter 2, find a Lorentz boost to another
frame such that the vertex B (in its new position B,) will seem to appear
earlier than vertex 4 (4,, see Fig. 7.3).
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Fig. 7.3. The situation in Fig. 7.1 after a Lorentz boost along the negative
direction. The points (A4,4,), (B,B,) and (0,0,) are shown together with the
hyperbolas on which they move during the Lorentz boost.

The same considerations also apply to every other pair of adjacent
vertices. We conclude that all the vertices must be spacelike with respect
to each other for the produced states to have positive masses. Therefore
no statement about (ordinary) time-ordering in the breakup process is
Lorentz-invariant. There is consequently no ‘first’ vertex in this sense; the
vertices all occur, in a relativistic setting, at the same time. We will later
see that there are other possible ways to order the process and also other
ways to define a useful time variable.

Thus, for the description of the decay process to be Lorentz-invariant
then there can be no vertex that is more significant than any other. Each
vertex has the same property, i.e. it divides the system into two parts, the
vertices to its left and those to its right. Evidently these parts can also be
described as two independent groups of particles moving apart. One often
uses the term ‘jet’ for such a connected group. (It may then happen that
a jet will contain only a single particle, viz. if we consider the outermost
vertex on one end.)

It is an important constraint, when we provide a probabilistic description
of the process, that all the vertices must be treated in the same way. This
is what causality and Lorentz invariance imply.

The fact that all the vertices occur at spacelike distances with respect to
each other also seems to be necessary from the point of view of ordinary
common sense. [t seems evident that the field cannot break up at a space
time point if such a breakup has already occurred earlier, ie. in the
backward lightcone with respect to the point. In accordance with what
has been said above there is then no longer any field left, and therefore
there is no energy left, and so on.
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7.3 Ordering of the decay process along the lightcones

Another property that we may deduce from the mass-shell condition (7.4)
is that for every yoyo meson there is only a single degree of freedom. We
may prescribe either the energy-momentum component p. = E 4 p or

the energy-momentum component p_ = E — p (the positive and negative
lightcone components) of the system S4p. They are linked by the mass-shell
condition

pip— =m’ (7.7)

(Let the reader be warned, as Carter Dickson or any other honest mystery
writer would say. A very sophisticated reader might note that we are
at this point introducing a slight mismatch between the ordinary space-
time coordinates and the lightcone coordinates. We have already shown
that the squared mass is given by the area spanned by the string during
a complete period and not by a half period as Eq. (7.7) implies. The
difference corresponds to using, instead of the normal metric dxdt, the
lightcone metric dx;+dx_ = 2dxdt. We will go on employing this mismatch
in order to avoid writing several factors of 2 or \/§ in our formulas.)

From the calculations in connection with Eq. (7.1) we note that for
the state Syp the positive lightcone component is actually carried by the
gp-particle and the negative one by the g4-particle at the time of their first
meeting to form the final-state yoyo-hadron. (It is necessary to make use
of Eq. (7.3) to prove this statement.) This property is in the same sense
valid for all the yoyo-hadrons, i.e. that the positive (negative) lightcone
energy-momentum is, at the meeting points, carried by the corresponding
g(q)-particle. The assignment to the particles of positive and negative
lightcones is of course related to the choice of directions of motion for
the original pair.

This observation provides a useful way of ordering the process. Consider
Fig. 7.4, which exhibits the decay of a whole string system stemming from
an original pair qg, o with lightcone energy-momenta pig, p—o into many
yoyo-hadrons, which go off in different directions (i.e. with different ve-
locities). From the remarks above we conclude that the production process
is easily ordered along one of the lightcones. Then the corresponding light-
cone energy-momentum of the yoyo-meson indexed j (composed of ¢q;,3;
from adjacent vertices) is given by the lightcone component of either the
q; (the p_; if we use the negative lightcone ordering) or the g; (the py; for
the positive lightcone ordering). The other component can be computed
from Eq. (7.7). We will normally choose to number the yoyo-hadrons
along the positive lightcone.

The sum of these components will, of course, add up to the light-
cone components of the original pair; this corresponds to total energy-
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Po) 9 9 (Po)

Fig. 7.4. A high-energy string breakup of a pair g, §o having lightcone energy-
momenta p.o, p—o.

momentum conservation:
n
D p+j=rp+o (7.8)
j=1

Thus the production process can be characterised as a set of choices for the
lightcone components of one set of constituents of the yoyo-hadrons, i.e. of
either the q; or the g;.

These lightcone components are evidently obtained from the field (re-
member that all the pairs are produced ‘at rest’). Therefore another way to
describe the energy-momentum of the final-state yoyo-hadrons is to state the
size of the space-time region within which the constituents have been acted
upon by the string force field. In order to state the energy-momentum of
the system Syp in Fig. 7.1 we may therefore prescribe a lightcone distance,
either At + Ax = Axy or At —Ax = Ax_ (At =t4 —tg, Ax = x4 — Xp).
The other of these is then given by Eq. (7.7) rewritten as

m2

AX+AX_ = -
K

(7.9)
In this way the production process can be considered as a series of ‘steps’
along the positive (negative) lightcone. Each step corresponds to the light-
cone distance between two adjacent vertices. Then energy-momentum con-
servation according to Eq. (7.8) corresponds to stepping all the way from
the turning point of the original go (go) back to the origin.

After each step it is necessary to go along the opposite lightcone a
distance Ax_; (Ax4;) in order to keep the yoyo-meson on the mass
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shell. In that way the string decay process corresponds to a Markovian
stochastic process, where each vertex in the process is determined solely
by the previous starting point, i.e. the vertex already reached, and by the
probability of taking a particular step along the lightcone.

It is convenient to define the scaled lightcone components z. and z_ by
means of the equations

p

Po
where poy are the corresponding lightcone components for the original g-
and g-particles. The quantitities z4 are Lorentz invariants, being the ratio
between two quantities which transform with the same factors exp(+y)
under a Lorentz boost along the x-axis.

The total production process may then be looked upon as a set of
steps {z;} along the positive lightcone (or equivalently {z_;} along the
negative lightcone). Energy-momentum conservation means that all the
steps add up to unity. Each step corresponds to the production of a new
meson containing a fraction of the original g- (or g-) particle’s energy-
momentum that corresponds to the step size.

H

(7.10)

i+ =

H

7.4 Iterative cascade fragmentation models

The above situation as viewed in a frame boosted along the positive x-axis
with a large velocity is shown in Fig. 7.5. We note that, while in Fig. 7.4 the
hadrons in the centre are the slowest and also the first to be produced in
time in that system, in Fig. 7.5 it is instead the hadrons which are furthest
out along the lightcone (usually the fastest in Fig. 7.4) that are the slowest
and the first to be produced (cf. the discussion of velocities and rapidities
in connection with Egs. (7.5), (7.6)). This is again a very general property
of all Lorentz-covariant production processes and we will return to this
observation in the next section.

Up to now we have not been concerned with the conservation of
internal quantum numbers, e.g. the flavor quantum numbers of the newly
produced gg-pairs. We will from now on assume that the pairs produced
are actually a quark and its antiparticle, an antiquark with the opposite
flavor, i.e. the pairs will together have the quantum numbers of the vacuum.

This means that it is possible to relate adjacently produced hadrons
also by means of their flavor quantum numbers. We will introduce the
notion of ‘rank’ in the following sense. The first-rank meson contains the
quantum number of the original g-particle together with the antiflavor of
the g-particle produced at the first vertex along the lightcone.

In the same way we define a second-rank particle as the particle com-
posed of the g-particle from the first vertex and the g-particle from the
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Fig. 7.5. The situation of Fig. 7.4 in a frame boosted along the positive lightcone
direction in such a way that the first-rank particle is at rest. For simplicity we
write z = z4y.

next, etc. It is evidently possible to introduce rank also by starting with
the original g-particle and the negative lightcone. Thus ordering by rank
and flavor corresponds, in this kind of model, to an ordering along the
lightcone(s).

From Fig. 7.5 we notice that the first vertex along the lightcone, Vi,
actually divides the decay event into a single first-rank particle moving to
the right and all the remaining ones as a combined jet moving to the left.

After the production of the first meson with lightcone fraction z,; the
remainder of the system will share the fraction 1 — z44. This means that
the remaining system will have a squared mass s; equal to (using for
simplicity z for z1;)

s1=(1—2)W, <W_—m—2> —(1—2) <s—m—2> (7.11)
zW. z

where we suppose the original system to have squared mass s = W, W_(=
P+op—o, due to Lorentz invariance).

The different parts of this formula have simple geometrical interpre-
tations. The first term, i.e. the scaled-down mass-square is immediately
recognised. For the second term it is easy to convince oneself that the
area of the region below the first vertex, Vi = x(x41,x—1), and above the
production point of the original pair, is

' = kxyxx—g (7.12)
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i1 12
4| C=2%(1-2))
flavor i flavor 1 flavor 2
1 -z (1-z)A-zy)

Fig. 7.6. An iterative cascade chain.

This is (apart from the factor x?) the squared proper time 17 = t3 — x}

of the vertex V. The positive lightcone component of the vertex V; (with
respect to the origin) is what is left of the original ¢’s energy-momentum,
kx+1 = (1 — z)W,. The negative lightcone component is similarly what
was taken by the first particle, i.e. kx_; = m?/zW,. Therefore the quantity
I'; is equal to minus the second term in Eq. (7.11):

2 m2

rh=q z)WjLZW+ =(1-2) o (7.13)
In the Lund model formulas both terms are taken into account and
the model therefore exhibits complete energy-momentum conservation,
i.e. every new particle takes away not only its forward lightcone energy-
momentum zW, but also the negative fraction needed to put it on the
mass shell.

We will later see that the proper times of the vertices are generally
of a limited size. For large values of s we may then neglect I';y and
approximate the remainder system as being the same as the original one
apart from a scaling down of the positive lightcone component by the
factor 1 —z=1—z;.

The basic idea of regarding particle production at high energies as
a scaling process was conceived many years ago, [90], to describe the
fragmentation regions in hadronic interactions. Later similar ideas were
used in partonic scenarios as iterative cascade fragmentation schemes, [13].
Then one assumes that there is a certain probability

fit(z1)dzy (7.14)

of producing the first-rank hadron (indexed by the original ¢’s flavor i
and the produced g;’s antiflavor) with fractional energy-momentum z,
leaving the system with a gq-particle at the endpoint and with a scaled
down energy-momentum 1 — z; (see Fig. 7.6).
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Then the process can be repeated, with a probability
f12(z2)dz; (7.15)

of producing a second-rank meson with flavors 12 (the second flavor-index
refers to a g-particle) and with energy-momentum fraction

{r = 22(1 —z1) (7.16)

After that the system is left with a g»-particle at the end and with a scaled
down energy-momentum equal to

l—z1=O=0-z)1-2) (7.17)

Thus at each step a new flavor is produced, a certain probability distribu-
tion is-applied to find the fraction z; and the remainder system is scaled
down by a further factor 1 — z;.

In this way the problem has been reduced to finding a set of probability
distributions f;;(z) and then repeatedly applying them to the situation at
hand. This is the basis of what is often referred to as the iterative cascade
jet or Feynman-Field model in honor of two of the main contributors. We
will consider some of their main features in section 9.4

In the next chapter we will see that there is a unique form for the
distribution(s) f in the Lund model. To prove that we will require that the
final-state meson production process should be statistically the same if
we describe it in terms of steps along the positive or along the negative
lightcones (left-right symmetry).

We will end this chapter with a few remarks on a possible problem, to
my knowledge first raised by Bjorken for the iterative cascade models, in
the well-known Landau-Pomeranchuk ‘formation time’ concept.

7.5 The formation time and iterative cascade jets

Landau and Pomeranchuk considered the notion of a formation time in
the context of QED bremsstrahlung. In its simplest setting the problem is
as follows:

e at what time can one distinguish between a state containing a single
charged particle and a state containing the particle accompanied by
a photon?

They pointed out that in a Lorentz frame where the particle moves
along one axis and the photon is moving transversely to this axis then
it it is necessary to wait at least a time corresponding to the photon’s
wavelength to make a measurement that can distinguish the photon. Since
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the wavelength is inversely proportional to the transverse momentum of
the photon k, it is thus necessary to wait a time

10 ~ kL. (7.18)

In a frame where the photon has energy E there will be a time-dilation
factor y(v) = E/k, and one obtains

__E _E
TR
With the wavelength exchanged for some rest frame typical production
time, i.e. with k| exchanged for some ‘virtuality’ Q (e.g. the transverse mass
of a hadron), this formation time should, in any relativistically covariant
and causal setting, provide a time-ordering of the process. Therefore it is
always the slowest particles which will be the first to be emitted while the
higher-energy particles will take a time proportional to their energy.

In the iterative cascade models the first-rank particle, according to the
considerations above, will take a fraction z; of its energy-momentum leav-
ing a fraction 1 — z; to the remaining ones. The second-rank particle then
takes zo(1 — z1), etc. The values z; are assumed to be given stochastically
by means of a distribution f(z)dz.

As we will later see, one basically obtains a geometrical series for the
final-state particle energy-momentum fractions. Therefore the first-rank
particle is generally faster than the rest, i.c. it will have a longer formation
time. Bjorken’s question was: ‘how can it then be the first to be produced
in the chain?

In the Lund model there is evidently a simple answer to this problem.
Rank-ordering, as we have seen, corresponds to an ordering along the
lightcone of the production vertices. There is no contradiction to an
ordinary time-ordering with respect to the original gg production point,
which is in accordance with the Landau-Pomeranchuk prescription. In any
frame it is always the slowest mesons which are the first to be produced,
according to the Lund model.

(7.19)
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A stochastic process for string decay

8.1 Introduction

In Chapter 7 we considered the kinematics of string decay. At the same
time we found and formulated a set of constraints stemming from causal-
ity, confinement and Lorentz covariance which are necessary for a consis-
tent description of the decay process.

The intention of this chapter is to show that there is only one stochastical
process for string decay which is consistent with the requirements derived in
Chapter 7 and it contains essentially two parameters. The discussion is
based upon results obtained in [19].

Once again only semi-classical physical arguments as well as probability
concepts will be used during the discussion. We begin by listing the basic
concepts which were derived in Chapter 7. They must all be incorporated
into the stochastical process for which we are looking.

A The process of string breakup corresponds to the production of a
set of yoyo-states with given masses. Each yoyo-hadron is composed
of a g-particle and a g-particle stemming from adjacent vertices (i.e.
string breakup points) together with the string piece between them.

B1 Each pair from a vertex is massless (local energy-momentum conser-
vation); the particles start to move apart after their production, due
to the force from the string field.

B2 There is no interaction between the g and g of such a vertex after
their production, i.e. the string force field ends on the endpoint
charges (this implies confinement).

C The separation of the vertices is spacelike with adjacent vertices,
in particular, on hyperbolas determined by the yoyo-hadron masses
(this implies causality conditions).

146
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D1 All vertices therefore are of the same dynamical status. There should
not be a different treatment of any one of these decay situations.

D2 Each vertex corresponds to the partitioning of the final state into one
left-moving and one right-moving set of final-state yoyo-hadrons.

E Each vertex pair contains the internal (flavor) quantum numbers of
the vacuum (local conservation of internal quantum numbers).

With regard to the ordering and the variables we have found:

F A convenient ordering of the process is rank-ordering. Two hadrons
of adjacent rank share a gg-pair produced at a vertex and therefore
(according to property E above) contain the corresponding internal
quantum numbers (e.g. flavors and antiflavors). Rank-ordering cor-
responds to an ordering along either the positive or the negative
lightcone. The process should be independent of which lightcone we
use.

G Rank ordering also implies that the process can be described as a
set of steps from one vertex to the next. The steps correspond to
choosing a partitioning of the energy-momentum of the original ¢g-
pair p+o, p—o (which at the time of the breakup goes into field energy
and is then given back to the produced particles). This implies total
energy-momentum conservation.

H1 A convenient Lorentz-invariant set of variables are the scaled light-
cone energy-momentum fractions p4;/p+o, with py; the positive or
negative lightcone energy-momentum of the rank-j yoyo-hadron.
The p4; are carried by the g- or g-particle, respectively, at the time
when they meet during the yoyo-cycle.

H2 The steps referred to under property G above correspond to the
space-time interval during which the particles have obtained that
energy-momentum, i.e. Ax4; = p4;/k where k is the string tension.

It is necessary to introduce a further assumption, which later we will
show to be consistent with the results.

J Even when the energy of the original pair becomes very large the
proper times of the vertices stay finite.

At the end of the chapter we will bring up a different approach, the
Artru-Menessier model, [26], which was further extended and improved
by Bowler, [32] (it is therefore known as the AMB model). This model
contains many similarities to the Lund model fragmentation formulas
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Fig. 8.1. The production of a hadron with mass m between two adjacent vertices
1 and 2 (the notation is explained in the text).

and it was conceived many years before we started our work. It was not
until Artru, [24], pointed out to us that our considerations of hadrons
produced in a linear potential (i.e. the yoyo string modes [14]) were similar
to his results that we realised that these states actually correspond to some
particular modes of the MRS. The two models, the Lund model and the
AMB model, nevertheless contain major differences which we will briefly
consider at the end of this chapter.

8.2 The unique breakup distribution for a single hadron

If the squared mass s = pgp—o of the original gg-pair is very large then
there will be many yoyo-hadrons produced, i.e. the process will contain
many steps. A hadron produced at the centre will be little affected by the
original pair and will be essentially independent of the many steps and
production points that occur before its own production (or ‘after’). We are
introducing the idea that the process leads to a steady-state fragmentation
behaviour. Property J, above, means that the density of hadrons will stay
finite in the centre, as we will see further on.

1 The distributions H and f

We now consider two adjacent vertices at the space-time points 1 and 2,
a hadron of mass m being produced in between (see Fig. 8.1).

We may describe this process as the result of taking many steps along
the positive lightcone to reach vertex 1 and then one further step to reach
vertex 2, thereby producing the hadron m. Another way would be to
consider vertex 2 as the result of many steps along the negative lightcone,
the production of m being one further step from 2 to 1.
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In the first description the positive-lightcone energy-momentum remain-
ing before the hadron m is produced is given by W, | = kx41. Similarly in
the second description the negative-lightcone energy-momentum remain-
ing is given by the corresponding 2-component W_; = xx_;. We are now
going to make use of assumption J above and conclude that there is a
finite probability of arriving at vertex 1 after many steps:

H/(l)dX+1dx_1 = H(l“l)dl“ldyl (81)

In this expression we have introduced hyperbolic coordinates I'y, y; instead
of the lightcone variables for the vertex 1:

1 X
M= Kxoxt, 1= 5 log (ﬁ) (8.2)

Owing to Lorentz invariance the distribution H can depend only upon I'y,
the only Lorentz invariant available. From its definition it is obvious that
I'; is essentially equal to the squared proper time of vertex 1, k2xy(x_j =
x?(t2 — x?) (cf. Chapter 2).

There is, of course, a corresponding probability of reaching vertex 2
after many steps along the negative lightcone:

H(T2)dT 2dy, (8.3)

Given that we have arrived at vertex 1 the production of the hadron
corresponds to taking a step to 2, with probability

flz4)dzy (8:4)

of taking a fraction z; of the remaining energy-momentum W,; defined
above. Note that z, is defined by a scaling with W, instead of with the
original energy-momentum p.o. This is a convenient quantity to use at
this point, its range 1 > z. > 0 being independent of the other variables.

The joint probability of being at vertex 1 and of producing the hadron
is then given by the product of the two probabilities in Eqgs. (8.1), (8.4).
The hadron is the result of the last in a long row of steps along the
positive axis. On the other hand it may also be considered as the result of
the final step of many along the negative axis. Then the joint probability
is

H(T2)dT2dy, f (z-)dz— (8.5)

where z_ is likewise scaled with respect to the energy-momentum remain-
der, in this case W_,.

We are now going to equate these two probabilities. Surprisingly enough
we will then be able to prove that there is a single (two-parameter)
solution for H and f. (To be more precise there will, in principle, be ny +1
parameters if there are n; different gg-flavors).
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2 The derivation of the distributions

We start by noting that the two quantities dy;» can evidently be taken
to be equal and that there is a set of relations between the remaining
variables I'1; and z;. From Fig. 8.1 we obtain the relations
i=0—-z)W_ W4y
[y =W_o(l —z4)Wiy (8.6)
m* = (z_W_3)(z4 Wa1)

Thus there are only two independent variables in the problem (assuming
m? as fixed), which we may take as e.g. z1. We obtain immediately

201 — 2(1 —
rp=m4=) p_mi-z) (8.7)
Z4Z 242
ar, % - ar, %=
Z4+ Z_

Therefore the requirement of equality introduced at the end of the last
subsection reduces to

H(Ty(z4,2-))z+f(24) = H(I'2(24, 2-))2-f(2-) (8.8)

where the zy-dependence has been explicitly written out.
Taking the logarithm of this equation we obtain with A(I') = log H(I')
and g(z) = log(zf(z))
h(I'1) + g(z4) = WI2) + g(z-) (89)
If this expression is differentiated first with respect to z4 and then with

respect to z_ (keeping the other one fixed, i.e. using partial differentiation)
then all the g-dependence vanishes. We will be left with only the variations

in h. The result is
dh(T'y) d*n(I'y)  dh(Ty) d*h(T5)
r = r 8.10
ar; T i, T arg (8.10)

To obtain this result a z4-dependent expression has been divided out from
both sides. Further the chain rule for differentiation has been used:

on(T1) _ dh(Ty) oy _ dh(Ty) {_m2(1 —z_)]

= 8.11
Bz+ dF1 6z+ drl Z_Z_z*_ ( )

An important property of the differential equation in Eq. (8.10) is that
the left-hand side only depends on I'y and the right-hand side only on I's.
The two I'-variables are just as independent of each other as the two
zy4-variables. The z4 can of course be expressed in terms of the I'’s by

the equations above. Since the I'’s are taken as independently varying
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quantities then the only way that the equation can be fulfilled is if both
sides are equal to the same constant, to be called —b.
Then the differential equation for h is

d dh

which implies
WI') = —bI' +alogl' +1logC (8.13)

In this way we obtain for H(I') (neglecting the indices 1 and 2 as the
equation works equally well for both)

H(T) = CT* exp(—bT) (8.14)

The parameters b, a and C are all constants of integration. While b (which
has the dimension of an inverse squared mass) must be the same for
all the vertices the (dimensionless) constants a and C may have different
values. They may e.g. depend upon the flavor quantum numbers of the
pair produced at a particular vertex. The constant C plays the role of
a normalisation constant for the distribution H. We will later show the
significance of a and b.

If we introduce the results for h into the original equation for 4 and g,
Eq. (8.9), it is possible to derive an expression for the original distribution
f(z). This can be arranged so that all the dependence on z; is on one side
of the equation and all the z_-dependence on the other:

bm? 2 1—
gi2(z1) + = — a; log (m_) —alog ( Z+> +log Gy
Z4 Z4 Zy4

- Z_ —

2 2 _
=gz )+ bzﬂ —aylog (m ) —aylog <IZ—Z_> +1logCy (8.15)

Then we use the same argument based upon independence to deduce that
both sides must be equal to the same constant. The result for f is

1 bm?

f(z)=N-(1—2z)%exp (———) (8.16)

V4 V4
if there is only a single value of the a-parameter for all vertices. The
quantity N is again a normalisation constant. When there are different
values a,,ag at two adjacent vertices then we obtain, with a labelling such
that the produced hadron stems from a step from vertex o to vertex S,

1 1—2z\% bm?
fdﬁ = Naﬂzzaa < 2 ) exp <7> (8.17)

From Eq. (8.15) we conclude that the normalisation constants Nj» and
N» are related to the normalisation of the distributions H;, j = 1,2, by a
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common factor N,:

N, N,

N12 = N5 N21 = A
C1m2a1 ? C2m2a2

(8.18)
The combined probability of being at vertex 1 and of taking the step z4
towards vertex 2, thereby producing the hadron m, is (for equal values of
a:

2
CN [T(1 — z,)]% exp [—b (r + m—)] ar¥
Zy Z4

a(l—z (= mrexp (_ bm? ) m2dzdz_

zZ_zy zez_ | (z4z-)?

=CN [ (8.19)
From the second line we find that the distribution is the same if we decide
to go ‘in the opposite direction’, i.e. express the distribution in terms of
the variables relevant for the negative lightcone description. We leave it to
the reader to derive the corresponding relations for the case when a and

C are different at neighboring vertices. In particular it is useful to note
that the product CNm?® becomes N, as defined in Eq. (8.18).

Phenomenologically it has not up to now been necessary in the Lund
model to use different a-values to describe the data from the experiments.
We will present an idea of Bowler, [32], in connection with the discussion
of heavy flavor fragmentation in Chapter 13 which fits very nicely into
the Lund model scenario and would require a different a-value for the
first-rank hadron in the fragmentation of a heavy quark jet.

If we should, nevertheless, require to use several a-values then it would
be necessary to normalise the distributions H; (j being an index cor-
responding to different flavor values) to the relative occurrence of the
different flavors in phase space and to choose the normalisation(s) of the
distributions fj in a similar way. We will come back to these normalisa-
tions in a later chapter.

Thus, using a remarkably simple assumption, we have obtained a very
precise result for the string-breaking process. For the Lund model to
work it is essential that the expressions we have obtained really do fit the
experimental data.

It is, however, necessary, before we can compare with data, to extend the
model. We need to remember that the hadronic momenta are measured in
a three-dimensional world: therefore the model must be extended outside
1 + 1 dimensions. We also need to prescribe a way of normalising our
distributions in the case where we would like to describe several different
flavors and different hadrons (and one should not forget that we should
also be able to account for baryon-antibaryon production!).
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Before doing all these things in later chapters we will provide an
interpretation of the results we have obtained.

3 The interpretation of the distributions H and f

We will start with the combined expressions occurring in the exponentials
of the distributions in Eq. (8.19). For the case when we have arrived at
vertex 1 and take a step z; we obtain the negative exponential of

b (1“1 + m—z) (8.20)

4

From Fig. 8.1 we find that the sum multiplying the parameter b is the area
which is spanned below the first meeting point of the two constituents
(the gi-particle from vertex 1 and the g,-particle from vertex 2) of the
hadron; it is evidently common to the two situations because it can just
as well be described as follows (if we are at the vertex 2 and take step
z_):

m? m?

I+ —=
- zyzo

= W Wy (8.21)

We leave it to the reader to prove the equality of the expressions in Egs.
(8.20) and (8.21).

Thus the exponential suppression is related to the size of an area charac-
teristic of the production process. We will come back to this property later
on in Chapter 11 when we provide a quantum mechanical interpretation
of the Lund fragmentation distributions.

For the remaining non-exponential factors obtained by multiplying f
and H in the two cases we obtain (for different a,, ag)

dziodz_ (1 —z \% /1 —z. \¥
T ( ) < +> (8.22)

ziz2 zZ_ zZ4

(besides some constant factors). This expression is evidently again sym-
metric between the two vertices and can also be interpreted as the size of
certain areas. For the case when a, = ag we obtain the symmetrical area
marked area in Fig. 8.1 as the common factor, i.e.

(area)’ (8.23)

From this result we conclude (parameter a being positive) that there is a
(power-)suppression if we take too large a step in the production process,
i.e. when any one of the variables zy is chosen to be close to unity.

We will later see that the appearance of the parameter a stems from
the requirement of not using up all the remaining energy-momentum.
The reason is, of course, that we are implicitly assuming in all our
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considerations that we are far from the end or the beginning of the process.
The distributions f and H are called inclusive distributions, i.e. they are
characteristic of a single-production event independent of anything else
that comes before or after. But there is, of course, a tacit assumption that
there are other particles produced, over which we are summing.

8.3 The production of a finite-energy cluster of hadrons

We will in this section derive the distribution for a finite number of
hadrons which are rank-ordered, for definiteness along the positive light-
cone. From the resulting formulas all other possible situations can be
deduced. Such a group of particles is often called a cluster or a single jet.
Together they will have a finite mass, conventionally called \/5

The first-rank particle will then contain the flavor fy of the original g
together with the antiflavor f; of the g; produced at the first vertex. The
second-rank particle will contain the flavor f; and antiflavor f, of the g
from the first vertex and the g, from the second, etc.

The probability of obtaining a first-rank meson with mass my; and with
a fractional lightcone component z; of the total energy-momentum py¢ of
the original gg is according to Eq. (8.17)

_ a 2
f(z1)dz; = @z;’(’(l Zl) exp (--@"ﬂ) (8.24)
21 Z z

1

In order to simplify the formulas we will from now on consider the case
when all the a-values as well as the masses are the same. At the end of
the derivation we will provide the formulas for the general case. We will
also use the convention of writing z,; for the lightcone energy-momentum
fraction of the hadron of rank j, scaled with respect to the original quark’s
energy-momentum p.o; we call z,; the ‘observable’ fraction.

Thus the variable z; in Eq. (8.24) equals z,; while for the second-rank
hadron, which takes a fraction z; of the remaining energy-momentum,
(1 — z51)p+0, We have

zop = 22(1 — 2o1) (8.25)

The variable z; is again distributed according to the function f (for equal
a-values cf. Eq. (8.16)). Therefore the combined distribution for produc-
ing first- and second-rank hadrons with observable fractional lightcone
components z,; and z,; is

f(z1)dz1f(z2)dz2 = f(zo1)dzo1f (1 i02201) 1 — 2z,

_ (Ndzm) (Nd202> (1= 241" <1 I >anp[—b(A1 +45)] (8.26)

Zpl 202 1—2z0

dz,)
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Fig. 8.2. The production of the first- and second-rank hadrons, with the areas
in the exponent of Eq. (8.26) indicated.

The a-dependent factors obviously combine to give
(1= zo1 — zp2)* (8.27)

and the fractional differentials can be reexpressed as follows:

dz, dz,
( z 1> ( Z 2) — d2p01d2p025+(p%1 _m2)5+(p(2)2 _m2) (8.28)

Zo1 Z02

Here d’p = dp,dp_. We consequently introduce two new variables, in this
case the negative-lightcone energy-momenta (note that pi,; = z,jp+0).
This is done by the introduction of two J-distributions which fix their
values. We have used the following properties of the d-distribution, which
was also used in Chapter 3 with the requirement that C = D/B:

dB

dBACH(BC —D) — — (8.29)

The arrow implies that the left- and right-hand sides are equal if we
actually perform the integral. We shall always use an equality sign even
if we do not perform the integrals. The right-hand side of Eq. (8.28)
explicitly exhibits the Lorentz invariance of the phase-space factors. The
factor A; + A, in the exponential in Eq. (8.26) corresponds to the two
regions indicated in Fig. 8.2 (the interpretation as an area size is given to
the exponential factor in the fragmentation function in Egs. (8.20), (8.21)).
From this result we may already guess what the result will be if we
produce n particles with energy-momenta {p1,;} = {2ojP+0, P—oj}

dP(pots.--sPon) = (1 — Zzoj) I Nd*pojo*(p2; — m?) exp(—bA;).
=1 j=1

(8.30)
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Fig. 8.3. An n-particle cluster with notation as explained in the text.

This formula is straightforward to prove; we will leave this to the
reader.

The situation after n steps is depicted in Fig. 8.3. We note firstly that
the total area in the exponent, Z;?ZI Aj = Ay, can be subdivided into two
parts,

Aror = Arest + T (8.31)

as shown in the figure. The quantity I" then corresponds to the proper
time (cf. Eq. (8.2)) of the ‘last’ vertex of the cluster.

Secondly we note that it seems as if the system of the n particles
could have been produced just as well by the original g-particle and an
antiparticle g,. This pair would then have started out at the point O, in
Fig. 8.3. We know in fact that the cluster is part of the system produced
from the force field of the original gg-pair which started at the point O
and produced the pair ¢,q, at the vertex V,. But we would not have that
knowledge unless we had been able to observe some parts of the system
outside the cluster!

The energy-momentum of the ‘new’ pair is then (W,,, W_,) where
Wiy =2zpio, 2z = Z;Ll Z,j and
m2
W_, = J (8.32)
Z0jP+0

j=1

The formulas for W4, are a somewhat complex way of writing the total
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energy-momenta of all the particles in the cluster: Wi, = 377 p1,;. We
conclude that the total squared mass of our n-particle system is

n 2
s=WW_ =Y 22 (8.33)
j=1 %oJ

The variable s is also the size of an area according to Fig. 8.3. Using this
fact it is easy to convince oneself that the area I' defined in Eq. (8.31) is
given by

s(1—2)

z

r:

(8.34)

which we again leave to the reader to prove.

Consequently all the interesting external properties of our n-particle
system (i.e. its properties with regard to the original origin O) are given by
the two Lorentz invariants s and z. It is useful to introduce these variables
into the formulas and define (using Eq. (8.30))

n n 2
dP(Z:S;pol,n—apon) =dzo (Z_ZZOJ) dso (S_Zm Z)
J

=1 =1 Zoj
XdP(pol,...,Pon). (835)

As z > 0 we may change the first §-distribution as follows:

dzd (z _ Zzoj) - (1 - Z Zz—f> (8.36)
j=1

Then the two new o-distributions (i.e. the s-definition and the above
reorganised z-definition) only depend upon the internal variables

_ Zoj D+oj
=20 _ 7o) 8.37
7y . W (8.37)

These would be the scaling variables if we consider the cluster as arising
from the ¢g,-pair produced at the space-time point O, in Fig. 8.3. We
then obtain for the expression in Eq. (8.35)

noo2
dP(Z,S;pola ,Pon)—dsd—(l—z)“exp (I—Zuj) ( Z’Z_)
=t

n
x [I Nd*pojot(ps; — m*) exp(—bAres:) (8.38)
j=1

By a further ‘division trick’ the two J-distributions can be written as
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follows:

0 (l—zn:uj) ) (S—ZH:YZ—Z)

n m2 n
=9 W+,,—W+nZuj o W—n_z W 252(Prest_‘Ljpoj)
=1 UjWtn j=1

j=1

(8.39)

where the quantity P, is the energy-momentum of the n-particle system
(Prest = (W4, W_,)). The superscript 2 on the é at the end of Eq. (8.39)
indicates that here we use (the lightcone-component version of) the two-
dimensional energy-momentum conservating d-distribution.

In this way we have been able to partition the formula for the production
probability of an n-particle cluster with a given endpoint (squared) proper
time I', Eq. (8.34), and a given total energy-momentum W, with a squared
mass s = W,,W_,, into two parts. These will be called, according to the
notions introduced above, the external part

APy = dsdz—z(l — 2)%exp(—bT) (8.40)

and the internal part:

n n
APy = H Nd2p0j5+(p§j - m2) eXp(_bArest)éz(Z Doj — Prest) (841)
j=1 j=1

The external part corresponds to the (non-normalised) probability that
the cluster as defined above will occur, while the internal part in the same
way corresponds to the probability that the cluster will decay into the
particular channel considered, containing the given n particles.

The general result for an n-particle cluster which starts at a vertex with
the parameter ap and ends at a vertex with a, is, for the external part,

z

1 —z\%
dPext=dst—Zz“°( - ) exp(—bT) (8.42)

The corresponding general formula for the internal part is

il du; Ci—a;
APy = H Nj 1 <u—]> u?’ =4
J

j=1

n n m2 ,
X eXp(—bAyest )0 (1 — Z uj) 0 (5 - Z Ju—.l,l
O

j=1

) (8.43)

where we have kept the scaling variable description. We leave it to the
reader to derive Egs. (8.42), (8.43).
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The result in Eq. (8.41) is evidently completely symmetric with respect to
the different particles and therefore it has an obvious left-right symmetry
with respect to the lightcones. This property is not so obvious in Eq. (8.43).
We note, however, that the negative-lightcone variables v; corresponding
to the u; obviously should fulfil

vjuj = ——4 (8.44)
(these are the mass-shell conditions). Therefore a change from the variables
u;j to v; can be carried through in a straightforward manner in Eq. (8.43).
We obtain for the terms in Eq. (8.43):
duj _ dv;
Uj vj
a

i—1—aj a;—a;j_
Nj_l,jujf Y —>N}_1,jvj’ - (8.45)

n "omd o "omd n
Sl1=Yu|o(s=3 L] wo(s=S T |s(1-y
=1 = W =1 Ui j=1

In the second line we have absorbed a (j, j — 1)-dependent mass factor
into the normalisation constant N’,_, ; and in the third line we have again
made use of a ‘division trick’ for the two -distributions.

Obviously the result in Eq. (8.43) is, after these operations, the same in
the u;-language as in the v;-language apart from the fact that we are now
ordering the vertices as j, j — 1,... along the negative lightcone.

In the following chapters we will investigate the internal- and external-
part formulas in great detail and also exhibit several different interpreta-
tions from both quantum field theory and statistical mechanics.

8.4 The Artru-Menessier-Bowler model

We will now briefly consider a different approach to the decay of a high-
mass string, the AMB model, [26], [32]. Here the idea is to take classical
probability arguments, which also occur in the Lund model derivation as
presented above, as far as they can go. There are two basic rules.

AMBI There is a constant probability £ per unit time and per unit
length in the string’s space-time history that it may break up by the
production of gg-pairs.

AMB2 The string cannot break up further in the forward lightcone with
respect to an ‘earlier’ vertex.
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The procedure can be visualised as the game of stochastic dart-throwing
on a target corresponding to the original string’s space-time history. The
landing of each dart then produces a possible vertex and one accepts those
vertices which have no other vertex in their prehistory.

A continuous mass spectrum will then be obtained for the produced
particles. There is then a third rule to interpret the result.

AMB3 Using AMB1 and AMB2 one obtains a first generation of breakups
producing a first generation of yoyo-hadrons. These states are then
considered as ‘resonances’ and will be allowed to decay again, inde-
pendently, according to the same rules.

If we go back to Fig. 8.1 then we conclude that one will obtain (just as
for a radiative decay) that the probability for an allowed vertex at a point

(T'y,y1) is
dPays(1) = bdT'ydy, exp(—bT) (8.46)

where b = 2/x*. We will consider this result in more detail below when
we compare to the Lund model results.

Similarly there is a joint probability of having two primary neighboring
AMB vertices at the two points 1 and 2 in Fig. 8.1. It is equal to

dPsmp(12) = dPsmp(1)dPapB(1 — 2)
dPamB(1 — 2) = b(W,idz (W_zdz_)exp [-b(W 1)(z_W_3)] (8.47)

with dP4pp(1 — 2) the conditional probability that given 1 we may also
obtain 2. We are using the notation of Fig. 8.1 and the Eqgs. (8.6). This
time there is no mass-shell condition to constrain the location of the
two vertices 1 and 2. Therefore we need all four (independent) quantities
I't, y1,24,z_. (Note that due to Lorentz covariance there is no dependence
on the rapidity variable y; in the formulas.)

The probability distribution dP4yp(1 — 2) contains the negative expo-
nential of the region (cf. Eq. (8.6))

m2
W+1 W_oz_ = — (8.48)
2+
with m the mass produced between the adjacent vertices 1 and 2; together
the exponentials of the two distributions dP(1)dP(1 — 2) contain the
symmetrical surface W, W_, from Egs. (8.20), (8.21). Therefore the joint
distribution dP(12) is symmetric with respect to vertices 1 and 2.

The distribution dP4p(12) can be reformulated into a distribution in
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z4 and the mass m as
2 2
dPyp(12) = 290 oo (-9’"—) (8.49)
Zy Zy

From this expression it is then possible to obtain the distribution in the
mass m by means of an integral over z :

1 2
ap / bdz+ xp (_l’zﬂ) — bE(bm?) (8.50)
0 +

dm2 Z4

where E; is the exponential integral of the first rank. This function is
singular when m?> — 0, which means that there is a large probability that
the string in the AMB model breaks up into very tiny pieces. It is then
necessary to introduce a lower cutoff in the mass spectrum. Such a cutoff
is difficult to introduce in a consistent way if one wants to keep to the
classical probability concepts which are at the basis of the model. It is
nevertheless possible to interpret the resulting spectrum in a way similar to
the resonance spectrum suggested by Hagedorn, [76] (although Hagedorn
obtained a linear dependence upon the masses in the exponent).

The results of the AMB model are evidently (apart from the continuous
mass spectrum) similar to the results of the Lund model. It contains an
iterative structure based upon an area suppression law. It is, however, not
possible to obtain the Lund model relations by the use of the probability
concepts in the AMB model.

To see this, suppose that we specialise the AMB model to particular
masses, €.g. a single mass with a width dm? around m?. This would mean
that a new vertex would only be allowed in a band along the mass
hyperbola corresponding to m. If we are at vertex V' and we are looking
for the next vertex H in that band we may subdivide the band into many
small boxes (see Fig. 8.4) and call them 1,2,...,n.... The boxes have areas
(6a); and the probability of finding a vertex in such a box is equal to
b(éa);.

Then the probability of not finding a vertex in the first n boxes will be

n

H[l — b(éa);] — exp [—/bd(éa)] (8.51)

j=1

Here the right-hand expression is the limit found when we subdivide the
band indefinitely, i.e. when n — 0. The expression for d(5a) is dm?dz, [z,
ie. the width times an infinitesimal angular segment along the hyper-
bola.

Therefore the probability of finding a vertex at the value z, without
having found it for any larger value of z, (ie. for any ‘earlier’ vertex,
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Fig. 84. The allowed region for finding the next vertex H, after the vertex
produced at V, is a band around a hyperbola. This region can be subdivided into
small boxes as discussed in the text.

closer to the origin, see Fig. 8.4) is
b5m2d2+

1 4.7
dz!,
Zy d

exp <—b5m2 ) = bomPdz, 220! (8.52)

zy 24
This corresponds to a power law in zy, owing to the fact that we no

longer have a two-dimensional surface on which to apply the probability
rule.
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9

The properties of the Lund
model fragmentation formulas;
the external-part formulas

9.1 Introduction

In the previous chapter we derived a stochastical process for string frag-
mentation. The result is a unique process which is at the basis of the Lund
model for the fragmentation of quark and gluon jets. We used only some
general properties of a kinematical nature together with the necessary
requirements of causality and relativistic covariance. The whole discussion
is based on (semi-)classical arguments (quantum mechanics does of course
enter into our assumptions on gg-pair production).

In particular the process led to precise formulas for the production
properties (we called these the external-part formulas) and the decay
properties (the corresponding internal-part formulas, see chapter 10) of a
finite-energy cluster of rank-connected hadrons.

The term ‘external-part’ is used to imply that the cluster is in general
part of a larger-energy (possibly infinitely-large-energy) cluster. Two inde-
pendent Lorentz invariants are necessary to specify the external properties
of the cluster; these may be taken as the squared mass s and the lightcone
fraction z used up by the cluster. They describe how the cluster starts
and ends on some (space-time or energy-momentum-space) points that
are inside (or on the border of) the larger external cluster.

In this chapter we will consider the external-part formulas in detail and
in particular show the following.

El In the Lund model the cluster will be produced in accordance with
the same formula as for a single particle (but with the squared
hadronic mass m? — s).

E2 The finite-energy version, H, of the space-time distribution of ver-
tices, H in Eq. (8.14), approaches H very fast when s is larger than
a few squared hadronic masses m?>.

163
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We next consider the two functions H and f in the Lund fragmentation
model in detail in order to understand some of their properties. After that
we will exhibit some general properties of all iterative cascade fragmen-
tation models of the Feynman-Field kind, [13]. We end the chapter with
a discussion of an interesting analogy (first pointed out by Artru, [25])
between the proper time of a vertex in space-time and the momentum
transfer between the group of particles produced to the left and those
produced to the right of that vertex in energy-momentum space.

9.2 The production properties of a cluster

We start with the results in Egs. (8.34), (8.40) and (8.42):

=7 4p, = dsfizizao (1Z;Z> " exp(—bT) (9.1)

Here I' corresponds to the squared proper time of the last vertex, which has
parameter a,, and s is the squared mass of the particle cluster stretching
between the vertex with parameter ayp to the vertex with a,. (Note that
the expressions do not contain any relation to the decay of the cluster; in
particular, the index » in this case does not indicate the multiplicity!)
These formulas can be rewritten in several different ways, each of which
exhibits some particular feature of the Lund model fragmentation process.

I'=s

1 The vertex distribution in proper time for a finite energy

If we use the first equation in (9.1) to solve for z in terms of I" and then
change the second equation into a distribution in s and I we obtain

Ay «A0—dn
(s + Iyao+l

For a fixed and finite value of s we can read off an expression for the
correspondence to the distribution H(I') in Eq. (8.14):

s n SOHs oon

~ Dy FPEPD = H R

In this way we have obtained the result we expected but multiplied by
a factor in s and T + s, the power depending upon the starting vertex.
(The indices on H in the final expression are meant to show that it is
s-independent and has the correct power a,.)

For any fixed value of s the function Hy, in Eq. (9.3) approaches 0
fast for large values of I' owing to the exponential decrease. This feature
is independent of s. A simple estimate implies for I' > I'y ~ (a, + 1)/b
that the exponential falloff dominates the distribution Hj,. Therefore for

APy = dsdD’ exp(—bTI) (9.2)

Hn(T') 9.3)
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s > Ty (from phenomenological investigations I'g correponds to a few
GeV?) a proper normalisation of Hg, will lead to an s-independent result.
Then it is a good approximation, when s > Iy, that

dP,,; ~ dss_(“"“)dl“%r) (9.4)

n

The constant C = C, in Eq. (9.3) is, of course, the normalisation constant
for H,. In this way dP,.; depends only upon the flavor n of the final
vertex. Actually this is just what we started with when we derived the
distributions H, and f,g: after many steps along a lightcone there is a
certain probability of finding a vertex of a particular kind independently
of where we started. We will come back to this saturation property later
when we consider the internal-part formulas for the decay of a cluster.

This serves as a confirmation for the consistency of the assumption J,
at the beginning of the last chapter, that there is, even in the limit s — oo,
a finite number of vertices at the centre of phase space.

2 The energy-momentum distribution of a finite-mass cluster

Another obvious way to use the formula (9.1) is to exhibit the probability
of obtaining a cluster with a given mass /s, thereby taking a fraction z
of the positive lightcone component of the original system:

AP, = ds exp(bs)d—zz“" (1 — Z) ' exp <—_bs) (9.5)
Z Z V4

We have then divided the expression for I' from Eq. (9.1) into one z-
dependent and one z-independent part in the exponential.

The remarkable feature of this result is that (besides the purely s-
dependent parts and the normalisation) we evidently recover the ‘old’
formula, which was derived for a single particle, with the mass m exchanged
for the mass of the cluster ,/s. Consequently, whether a single particle or a
large-mass cluster arises in going between two vertices with a-parameters
ap and a, the (mass-dependent) probability distribution for picking a
particular fraction of the energy-momentum is the same.

9.3 The properties of the distributions H and f

At this point it is worthwhile to consider the shape and the properties of
the unique Lund model distributions in more detail.

1 The properties of the proper time distribution H

The distribution in proper time H is the mathematically well-known I'-
distribution (this is not a misguided pun!) which occurs e.g. in connection

https://doi.org/10.1017/9781009401296 Published online by Cambridge University Press


https://doi.org/10.1017/9781009401296

166 The external-part formulas

with radiative processes. Depending upon the values of the parameters it
has a maximum at I = a/b, a mean value (I') = (a+ 1)/b and a variation
around the mean <(F — (F>)2> = (a+1)/b%

Typical phenomenological parametrisations for longitudinal jets (note
the dependence of a and b upon the gluon radiation to be discussed in
Chapter 17) would be a ~ 0.5,b ~ 0.75 GeV~2, We conclude that for these
values the typical proper time ‘before’ the string will break is somewhat
more than 1 fm/c but that the fluctuations around this value is of the
same order of magnitude.

2 The properties of the fragmentation distribution f

The distribution f is a more complex kind of function. We note that it
vanishes exponentially fast close to the origin (it has an essential singularity
there, considered as an analytical function) and that it vanishes according
to a power law for z — 1. In between there is evidently a maximum.

In order to investigate this maximum in more detail we rewrite the
distribution f as an exponential (considering only the case when all the
a-parameters are equal):

. bm?
f~exp® with ®=—— —Inz+aln(l —2) (9.6)
z

It is easy to prove that for a = 0.5 the quantity ® has a maximum for

z=1+4bm? — /1 + (bm?)? ~ bm®> — (bm*)*/2 9.7)

We conclude that the typical z-values will increase with bm? and that the
maximum of f will occur for a z-value around 0.3 using the value of b
quoted above and a mass-value close to the centre of the mesonic mass
spectrum, the p-mass m ~ 0.77 GeV/c>.

3 The typical hyperbola breakup

A useful exercise is to consider the relationship between the I'-parameters
of two adjacent vertices in the case where a hadron of mass m, taking a
fraction z of the remaining lightcone energy-momentum, is produced in
going from vertex 1 to vertex 2. It is left to the reader to prove that

2
I =(1—2) <r1 + m7> (9.8)

From Eq. (9.8) we deduce that if there is a fluctuation in the value of
z taken by the hadron the result will be a value of I’ that is much
larger (for z <« z;, where z; is a typical value of z) or much smaller (for
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Fig. 9.1. The typical breakup hyperbola divided into particle-mass pieces.

z > z;) than I'y. The first possibility is suppressed due to the area law (the
exponential area suppression) while the second one is power suppressed.

The final result is that the Lund model fragmentation functions tend
to produce vertices around a hyperbola (i.e. the locus of the points with
a fixed value of T = 12), albeit with some fluctuations. The distance from
the origin to the hyperbola, 7,, is related to the typical mass of the hadrons
in the cascade decay.

If we place all the vertices along this hyperbola the energy-momentum
fractions taken by the hadrons form a geometrical series:

Zt,Zt(l —Zt),...,Zt(l —Zt)n,... (99)

(note that the remainder fraction is given by (1 — z,)" after n steps).

When we move along the hyperbola the remainder fraction cannot be
too small. It must necessarily be larger than so/s with sy of order (I'").
Therefore we obtain a formula for the typical multiplicity, n,, in a Lund
model fragmentation event:

log(s/s0)
log[1/(1 — z)]
This result can be interpreted geometrically; see Fig. 9.1. The length of the
hyperbola is ~ 1;log(s/sg) with 7, the hyperbola parameter defined above.
(Note that the notion of length, of course, corresponds to the invariant
length in Minkovski space.)

If the hyperbola is cut up into pieces corresponding to particle masses
then each piece will cover a typical rapidity gap Ay. In Fig. 9.1 one hadron
at rest is shown. According to our findings in Chapter 7 the space size of
such a yoyo-state is given by its mass.

We conclude that with a hadron density 1/Ay along the hyperbola we
will obtain the same multiplicity formula as in Eq. (9.10) if we put

Ay =log[1/(1 — z,)] 9.11)

(I —z)* ~so/s = m ~

(9.10)
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9.4 The particle density in a general iterative cascade model

In order to understand the significance of the result in Eq. (9.11) we will
consider some properties of the iterative cascade fragmentation models,
which were mentioned in Chapter 7. For simplicity we consider the sit-
uation when there is only a single flavor and a single kind of meson.
The probability of obtaining the first-rank particle with a given energy-
momentum fraction z is f(z)dz. We note that f must be normalised to
unity:

/0 (@) =1 (9.12)

We now define the totally inclusive single-particle distribution F(z)dz as
the number of hadrons (irrespective of rank) with fractional energy-
momentum z. This function is not normalised to unity as is f in Eq. (9.12)
but, instead, to the total number of hadrons produced.

Inside the scaling cascade scheme this number is in general divergent. In
this subsection we will derive the behaviour of a general iterative cascade
model and in the next we will specialise to one particular shape of f and
perform some of the calculations in detail.

To investigate the properties of F we note that there is an integral
equation which relates F and f:

_ 1—z dC z
Fo =10+ [ 7ogOF (725 9.13)

The interpretation of the equation is that a hadron with z may be the
first-rank hadron in the jet (this is the first contribution f(z)dz on the right-
hand side of Eq. (9.13)). After the first-rank particle has left a fraction
1 — { (with probability f({)d{) the number of hadrons with z that occur
further down in the jet is F(z/(1 — {))dz/(1 —{). This gives the integrand
in the second term of Eq. (9.13) (after division dz). We must sum over all
values of { compatible with the requirement that the argument of F is
between 0 and 1.

The equation can be solved by means of the moments method. We
obtain from Eq. (9.13)

M(r) = / Rz C(r) = / (1= 2 f(o)z,
0 0 (9.14)

ot _ m(r)
mir) = /0 712z = M) = s

which we leave to the reader to prove.
The normalisation condition in Eq. (9.12) implies that C(0) = m(0) = 1.
This evidently means that M(r) diverges when r — 0, which corresponds
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to the normalisation equation for F. The reason for this divergence is that
in Eq. (9.13) no provision is made for ending the cascade: there is no
smallest value of z, or in other words the process is totally scaling. Instead
one obtains a rapidity plateau (note that y ~ logz implies dz/z = dy).
After a rapidity region in the forward direction, the fragmentation region
of the original quark, there will be a uniform distribution of hadrons
in rapidity space. In practice this fragmentation region is about 1.5-2
rapidity units. This means that a large part of the energy is inside the
fragmentation region. It is populated by the first few particles in rank but
the density of particles is strongly fluctuating and dependent upon the
flavor quantum number carried by the original color charge.

In the Lund model it is not sufficient to consider only the fractional
energy-momentum along the jet, i.e. in one of the lightcone directions,
as in iterative cascade models. There is also the energy-momentum along
the opposite lightcone direction, for which we must account. This is the
reason why in the last subsection we had to bring the plateau to an end
by the request that we can use up the fractional energy-momentum only
to the level so/s. In the integral equation in Eq. (9.13) the plateau will,
however, go on forever.

The height of the plateau, i.e. the density of hadrons in the centre,
can be calculated by simple means from Eq. (9.14). We may conclude, by
expanding for small values of the moment parameter r, that M(r) — R/r

where
_112 T (dcdir)>r=0 / log ( ) f(z)dz (9.15)

which we again leave for the reader to prove.

We conclude that F(z)dz behaves as Rdz/z = Rdy for small values of
z, i.e. for rapidities far from the ‘tip’ of the jet. Thus the result in Eq.
(9.11) is very general with Ay identified with 1/R, i.e. the mean value of
log[1/(1 — z)] as calculated from the fragmentation function f.

We may in an intuitive sense identify Ay with the mean loss of rapidity
per produced hadron. It is interesting to note that we again find a similar
scaling energy-momentum distribution as for the virtual quanta in the
MVQ and the partons in the PM in Chapters 2 and 5. In particular the
result obtained in the Schwinger model for excitations by means of an
external charged pair +g leads to the result R = 1; cf. Chapter 6.

A detailed calculation of the inclusive distribution using a simple model

The method of moments is a very powerful mathematical technique but
it may be difficult to understand the results on an intuitive level. We will
therefore show by explicit calculation how the central plateau is built up
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by the contributions from the hadrons of different rank. The results of
the calculation will also be useful further on, in Chapter 13.

We consider a very simple iterative cascade model with a constant
fragmentation function, f, which then in order to be normalised as in
Eq. (9.12) must equal unity. Although it is simple, it was used rather
successfully at the beginning of the Lund model, [13], assuming then that
all vector and pseudoscalar mesons were produced in accordance with
their statistical weights. We now know that this is not the case. Further
a constant distribution does not fulfil the requirements for a consistent
fragmentation process listed at the beginning of Chapter 8.

A detailed study of the model is, however, instructive because it is
straightforward to provide explicit results for the inclusive distributions of
the nth-rank particles for all values of n. The first-rank particle is evidently
distributed according to f. After it has taken z; (with the same probability
for all z{) the second-rank particle will take z = zp(1 — z;), with a flat
distribution for z; also.

This means that the inclusive distribution of the second-rank hadron is

pO(z) = / dzydzyd(z(1 — 21) — 2)

(1-z) 4 1 1
=/ 2 [, (-) (9.16)
0 11—z : X1 z

Using the same method we obtain for the nth rank hadron

n n—1
D(")(z):/ (Hdzj> 0 (Zn H(I—Zj)—2>
i 5

n—1 n—1
_ <Hl %) ® (HI X; _z) 9.17)
j= =

where O is the Heaviside function, equal to unity for a positive argument
and vanishing elsewhere. We have also defined the obvious new variables
xj =1—z;. In order to perform the integral we introduce y; = log(1/x;)
and write, exchanging the product of the x; for a sum of the rapidities y;
(the sum being introduced by means of a J-distribution, dyd(>_y; — y))

n—1
p(z) = /dy® exp(—y) — 7] /(de,) 5 (Zyj—y) (9.18)
=1

We obtain a symmetrical integral (for N = n — 1), which is most easily
solved by iteration:

1N=/ ﬁdy 5 §N:y-—y _ (9.19)
w0 \g (N —1)!
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We finally obtain by direct integration over y

1 n—1
(n—1)!
which is a nice and very satisfying result to derive! The following comments
may be made.

e All but the first-rank hadron have a distribution in z which vanishes
when z — 1. Since log(1/z) = log[l +(1—2z)/z)] ¥ 1—z whenz — 1
we find that the nth rank distribution will vanish like

(1—z)y" L. (9.21)

The reason is evidently that there have already been n— 1 earlier energy
‘handouts’. The above result is a very general property of all physical
systems, usually referred to as the spectator relation: if there are n basic
constituents sharing a common energy and you require the inclusive
distribution in energy for one of them its fraction usually behaves as in
Eq. (9.21).

e The result (9.20) can be described as a distribution in y = log(1/z):

n—1

D™(z)dz = dy——— exp(—y) (9.22)
(n—1)!
i.e. a Poisson distribution in rapidity. The distributions are evidently
all normalised. This is exactly what was obtained in the external
excitation model, derived from the Schwinger model in [39]; cf.
Chapter 6.

e From the sum over all ranks we obtain the totally inclusive distribu-
tion, which, according to the predictions from the integral equation
(9.13), corresponds to the particle density R = 1:

[v 8]
D(z)dz = D"(z)dz = dy = dz (9.23)
n=1 z

A useful exercise is to carry through the calculations above also for
the case when f is exchanged for f, = (a + 1)(1 — z)% Then one obtains
D,(z) = (a+ 1)(1 — z)?/z, i.e. a rapidity density equal to R, = a+ 1.

In this way we can see in detail how the rapidity plateau occurring
in the iterative cascade models is built up. From the properties of D
we conclude that the maximum of the distributions moves towards larger
values in rapidity with increasing n; this