
A NOTE ON NORMAL MATRICES 

R. C. THOMPSON 

1. Introduction. Let Un be an ^-dimensional unitary space with inner 
product (w, v). For vectors ui, . . . , ur £ Unj r < n, let Ui A . . . A wr denote 
the Grassmann exterior product (4) of the ut; it is a vector in Um where 
m = nCr. If also vu . . . , vr G £4, then (ui A . . . A uT, Vi A . . . A vT) is the 
determinant of the r X r matrix {{uu Vj)), 1 < i, j < r. If 4̂ is a linear trans
formation of E/n to itself, the rth compound of A is defined by 

Cr(A)ui A . . . A «r = G4«i) A . . . A (^4«r). 

For 1 < r < k < w, denote by Qfc,r the set of all kCr sequences OJ = {ii, . . . , ir} 
such that 1 < ii < . . . < ir < k. For a set of vectors xi, . . . , xk £ £/n set 

Xft> * ^ i i / \ • • » / \ Xiry 

gr = gr(Xu . . . , Xfc) = 5 2 (Cr(^4)xw , *„)• 

Let ET(aiy . . . , afc) denote the elementary symmetric function of au . . . , ak 

of degree r and let Xi, . . . , Xn denote the characteristic values of the linear 
transformation A. In (2) it was shown that if A is Hermitian, then 

maxg r = Er(£i, . . . , £*), 

ming r = Er(rii, . . . , i;*), 

where {£i, . . . , f*} and {771, . . . , rjk] are certain subsets of {Xi, . . . , X»} and 
where the max and min are taken over all sets of k orthonormal vectors 
Xit . . . , Xjc in Un. In this note we offer the following generalization of this 
fact. 

THEOREM 1. If A is normal and if X\, . . . , xk are orthonormal vectors in Un, 
then gr(xi, . . . , xk) lies in the convex hull HT of all the complex numbers 

Er(Xyi, . . . , \jk), {jU • • • ,jk] G (?»,*• 

In Theorem 2 we identify the complex numbers which are of the form 
gi(xi, . . . , * * ) for orthonormal vectors X\j . . . , Xk \z Un. 

THEOREM 2. If A is normal, the set of all sums (Axu Xi) + . . . + (Axki xk) 
for orthonormal vectors Xu . . . , xk £ Un is Hi. 
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We shall give an example to show that the analogue of Theorem 2 for 
r > 1 is, in general, false. 

2. Proofs. Let \X\ and \\X\\ denote, respectively, the determinant and 
the absolute value of the determinant of the matrix X. If a? = {ii, . . . , iT) 
and r = {ji, . . . ,j r} are in QntTJ then X[co|r] denotes the submatrix of X 
which lies in the intersection of rows ii, . . . , iT and columns j u . . . , j r of X. 
Set <r(r) = ji + . . . + j r and let Qn,s — r denote the set of sequences 
{mu . . . , ms) 6 Qn,s for which {mly . . . , ms\ H {ji, . . . , j r} is empty. If 
co 6 Qn,s> then a/ will denote the only element of Qn,n-s — w; a/ contains the 
integers 1, . . . , n which are not in co. 

LEMMA. Let B — (bifj), 1 < i,j < n, be a unitary matrix. Lett = {ji, . . . , jr] 
be a fixed member of Qn>r, and /x = {k + 1, . . . , n\ be a fixed member of Qn,n-k-
Then, for 1 < r < k < n, 

(i) S l|5Mr]||2= £ ||S[MIP]||2. 

Proof. For 1 < 5 < w let 7, ô be two elements of QntS. Let J5i>y denote the 
cofactor of bitj in 5 and let (Bitj) denote the n X n matrix with Bitj in row 
i and column j , 1 < i, j < w. For any matrix B (not necessarily unitary) the 
following identity is known (3, Eq. 8.6): 

(2) \(Bt.,)[y\S]\ = (-1) '* ) + ' ( 5 > |5[7 ' |S '] | \B\-K 

If 5 is unitary, then Bitj/\B\ = bitj, the complex conjugate of bitj. Hence 
(2) becomes 

(3) | B | | 5 [ Y | S ] | = (-l)'^+'w \B[y'\8% 

Let C = (cij), 1 < i, j < w, where 

(4) Ci->= K, 
Then, using (3), 

£ p [ < « 2 = Z |5[W|T]| |5[«HI 

= I5I"1 E ( -1) ' ( " ) + ' ( T > |SMT] | |B[«'|r'l|. 

But this expression, apart from the factor |£ | _ 1 , is just the Laplace expansion 
of \C\ down columns j i , . . . , j r ; the other terms that would normally appear 
in this Laplace expansion are all zero because of (4). Hence the left member 
of (1) is just IBMCI. 

On the other hand, if we expand \C\ across rows k + 1, . . . , n and use 
(4) and (3), 

if i Ç M and .7 6 T, 

otherwise. 
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isr'id = isr1
 E (-D^)+'W|5[M|P]| I^VII 
P*Qn,n-k-T 

= E \Bb\p]\ \Bb\p]\ 
P*Qn,n-k-T 

= E PMP] | | 2 . 

Proof of Theorem 1. Throughou t the rest of this paper e\y . . . , en denotes 
an or thonormal set of characterist ic vectors of A belonging to the charac
teristic values Xi, . . . , Xn, respectively. We are given or thonormal vectors 
Xi, . . • , xk G Un. If k = n, the result is clear since the vectors xu for co G Qn>r 

form an or thonormal basis in Um so t h a t gT = trace Cr(^4) = £ r (Xi , . . . , Xn). 
Suppose k < n and choose xk+i, . . . , xn so t h a t x\, . . . , xn is an or thonormal 
basis for Un. Let 5 = ((xu ef)), 1 < i, j < w. Then £ is a uni ta ry matr ix . 
Now 

Xi = ^2 (xi> ei)eh 1 < i < &, 

^4#* = S ^j(xu ef)ej, 1 < i < k. 

Hence, using the multil inear and al ternat ing properties of the Grassmann 
product , it follows t ha t if r = {ji, . . . , j r j , 

Xu = X |̂ S[coJT]|eT, 

C r ( 4 ) x w = E \lx . . . \ir\B[u\r]\er, 

so t h a t 

«, = E E X;,...X„||5[W|r]||2 

(5) = E Xi....Xi, E PMr] | | 2 . 

For p = {mi, . . . , m*} G (?«,*, let Ap = | 5 [M|P ' ] | » where n = {k + 1, . . . , n\. 

Then we claim t h a t 

(6) gT = X) |/*p |2£ r(Xmi, . . . , Xmfc). 

T o see this, note t h a t the coefficient of 

(7) X,, . . . X,r 

in (6) is 

E WBWWt 
P'*Qn,n-k-T 

By the Lemma, this is the same as the coefficient of (7) in (5). 
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The proof of Theorem 1 will now be complete if we can show that 

E i*,r" = i. 
P*Qn,k 

This is immediate since the |5[ju|p']| for p Ç Qn,n-k are the co-ordinates of 
the unit vector xk+i A . . . A xn relative to the orthonormal basis ep/ in the 
space Ut with / = nCn-k. 

Proof of Theorem 2. Since any point P Ç Hi may be written as a convex 
combination of three of the vertices of Hi and since the vertices of Hi lie 
among the numbers 

(8) Xji + . . . + \iky {JU • • • ,jk] € Qn,k, 

it is enough to show that any point P in the convex hull of three of the num
bers (8) is of the form P = gi(xi, . . . , xk) for orthonormal vectors 

X\j . . • , Xk tz Un-

Suppose we are given three sums (8), say Si, S2, S3. With a proper choice 
of the notation we may assume that 

Si = (Xi + . . . + Xp) + (Ap+i + . . . + Xp+Q) 

+ 0^P+Q+I + . . . + xp+Q+T) + (xw+i + . . . + xw+t), 

52 = (Xi + . . . + Xp) + (Xp+i + • • • + Xp+q) 

+ \Xp+q+r+l " ! " • • • + \+q+T+s) + (X«,+ H-l + . . . + Xw+ t+u), 

53 = (Xi + . . . + Xp) + (Xp+q+i + . . . + \+Q+T) 

"J- (Xp+(Z_|_r_|_l + . . . + Xp+q+T+S) + (XW+t + U+l + . . . + Xt0+ t+U+V)y 

where, for brevity, we have let w = p + q + r + s. Here some of p} q, r, 
s, t, Uj v may be zero, in which case not all of the types of terms indicated 
need actually appear. We have 

(9) p + q + r + * = k, 

(10) p + q + s + u = k, 

(11) p + r + s + v = k. 

We may suppose that / > u > v. Let a, 0, 0 be three real numbers with 
a2 + /32 + 02 = 1. We have to find orthonormal vectors Xi, . . . , xk £ Z7n such 
that 

G4xi, xi) + . . . + (Axk, xk) = a2Si + 02S2 + 02S3. 

If £ > 0, set xt = et for 1 < i < p. Then 

(i4#i, xi) + . . . + (Axp, Xp) = Xi + . . . + Xp. 

If v > 0, set + fiew+t+i + 0£M,+ f+M+i for 1 < i < z/. Then 
OVM, Xp+i) = 1 and 
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(AXp+i, xP+i) + . . . + (Axp+V1 Xp+V) = a 2 ( W i + . . . + X«+,) 

+ fi ( X ^ + j + i + . . . + ^w+t+v) + 0 fyw+t+u+l + • • • + ^w+t+u+v)* 

From (10) and (11) it follows that r = q + (w — v); hence r > w — v. If 
w > v, let 

xp+v+i = jScw+t+H.* + (a2 + 02)*e,H.«+i for 1 < i < w — v. 

Then {xv+v+u Xp+04. «) = 1 and 

{AXp+Q+i, Xp+v-\-i) "T" • • • "T* V/*^ZH-M» %p+u) 

— P2V^w+t+v+l + . . . + ^w+t+u) ~\- {a -{- 6 ){\p+q+i + . . . + X p + ( ? + M _ p ) . 

It follows from (9) and (11) that 5 = q + (t - v). If t > v, define 

Xp+u+i = aew+v+i + (jft2 + 62)*ep+q+r+i for 1 < i < / — v. 

Then (xp+u+u xp+u+i) = 1 and 

(AXp+u+i, Xp+tt+i) + . . . + ( ^ 4 x p + w + i _ p , Xp-j-M+r_p) 

= a2(XM)+,+ i + . . . + \w+t) + (/32 + d2)(\p+q+r+l + . . . + \p+q+r+t-v)-

Up to this point p + u + t — v vectors xt have been constructed; these 
vectors are automatically orthogonal because, when expressed in terms of the 
eu no two x% involve the same et. There remain k — (p + u + t — v) = 2q 
vectors xt to be constructed. Let G be the subspace of Un spanned by 

Jl =z 6p+l> • • • ijq = &p+qi Jq+1 = = ep+q+u— v+li • • • » J2q = = 6p+q+rj 

J2q+1 = C p + g + r + t - ^ + i , . . . ,fzq = £ p + < z + r + s ; 

and let f i , . . . , f 8ff be the X, belonging to fu... JZq. Let y, = 0/, + 0/ff+< + a/2ff+< 

for 1 < i < q. Choose x*_2ff+i> • • • > ** s u c n that yu . . . , yfl, f̂c-2fl+i» •••>** 
is an orthonormal basis of G. Then if we compute the trace of the restriction 
A a of A to G we get: 

trace A G = f ! + . . . + f zQ 

= (i4yi, yi) + . . . + (Ayq} yq) + (Axk-.2q+i, xk-2q+i) 

+ . . . + (Axk1 xk) 
= ^2(fi + •. . + r,) + /32(fff+i + . . . + r«,) 

+ a2(f2(Z+i + . . . + faff) + (i4xjt-2<r+ii **-2ff+i) + . . . + C4**, **). 

Hence we find that 

(Axk-2q+U Xk-2q+l) + . . . + (Axkl Xk) 

= (a2 + 02)(XP+1 + . . . + \P+Q) + (a2 + 02)(Xp+5+w_„+1 + . . . + Xp+,+r) 
+ (/32 + 02)(Xp+5+ + . . . + Xp+ff+r+,). 

Then Xi, . . . , xk are orthonormal vectors in Un such that 

( 4 * i , Xi) + . . . + 04x*. x,) = a2Sx + £2S2 + 02S3. 
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We now give an example to show that the set of all numbers gr(#i, . . . , xk) 
for orthonormal xi, . . . , xk need not be a convex set if r > 1. Let r = k = 2, 
n = 4, and take Xi = X2 = 1, X3 = X4 = i = ( -1)*. Let pitj = |JB[1, 2\i,j]\, 
where B is the matrix ((#*, ej)), 1 < i < 2, 1 < j < 4. Then, from (5), 

**(*!, *t) = \piÀ2 - \P*A2 + HlPiÀ2 + \PiA2 + \P*A2 + \P*A2)-
Now g2(ei, e2) = 1 and #2(^3, 4̂) = — 1. If ^2(^1, #2) = 0, then we must have 
l^i.al = |/>3f4|, ^i,3 = pi,* — p2,z = p2,4 = 0. However, it is known (1) that 
pi,2pz,4 = pi,zp2,4 — Pitip2,s- Combining these facts, it follows that also 
pi,2 — pi,\ = 0. This is a contradiction, since 

23 \Pij\2 = (*i A x2txi A x2) = 1 
l<i<K4 

if JCI and #2 are orthonormal. 
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