A NOTE ON NORMAL MATRICES

R. C. THOMPSON

1. Introduction. Let U_{n} be an n-dimensional unitary space with inner product (u, v). For vectors $u_{1}, \ldots, u_{r} \in U_{n}, r \leqslant n$, let $u_{1} \wedge \ldots \wedge u_{r}$ denote the Grassmann exterior product (4) of the u_{i}; it is a vector in U_{m} where $m={ }_{n} C_{r}$. If also $v_{1}, \ldots, v_{\tau} \in U_{n}$, then ($u_{1} \wedge \ldots \wedge u_{\tau}, v_{1} \wedge \ldots \wedge v_{\tau}$) is the determinant of the $r \times r$ matrix $\left(\left(u_{i}, v_{j}\right)\right), 1 \leqslant i, j \leqslant r$. If A is a linear transformation of U_{n} to itself, the r th compound of A is defined by

$$
C_{r}(A) u_{1} \wedge \ldots \wedge u_{r}=\left(A u_{1}\right) \wedge \ldots \wedge\left(A u_{r}\right) .
$$

For $1 \leqslant r \leqslant k \leqslant n$, denote by $Q_{k, r}$ the set of all ${ }_{k} C_{r}$ sequences $\omega=\left\{i_{1}, \ldots, i_{r}\right\}$ such that $1 \leqslant i_{1}<\ldots<i_{r} \leqslant k$. For a set of vectors $x_{1}, \ldots, x_{k} \in U_{n}$ set

$$
\begin{gathered}
x_{\omega}=x_{i_{1}} \wedge \ldots \wedge x_{i_{r}} \\
g_{\tau}=g_{\tau}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\omega \in Q_{k}, r}\left(C_{\tau}(A) x_{\omega}, x_{\omega}\right)
\end{gathered}
$$

Let $E_{r}\left(a_{1}, \ldots, a_{k}\right)$ denote the elementary symmetric function of a_{1}, \ldots, a_{k} of degree r and let $\lambda_{1}, \ldots, \lambda_{n}$ denote the characteristic values of the linear transformation A. In (2) it was shown that if A is Hermitian, then

$$
\begin{aligned}
\max g_{\tau} & =E_{r}\left(\xi_{1}, \ldots, \xi_{k}\right) \\
\min g_{\tau} & =E_{r}\left(\eta_{1}, \ldots, \eta_{k}\right)
\end{aligned}
$$

where $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ and $\left\{\eta_{1}, \ldots, \eta_{k}\right\}$ are certain subsets of $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ and where the max and min are taken over all sets of k orthonormal vectors x_{1}, \ldots, x_{k} in U_{n}. In this note we offer the following generalization of this fact.

Theorem 1. If A is normal and if x_{1}, \ldots, x_{k} are orthonormal vectors in U_{n}, then $g_{r}\left(x_{1}, \ldots, x_{k}\right)$ lies in the convex hull H_{r} of all the complex numbers

$$
E_{r}\left(\lambda_{j_{1}}, \ldots, \lambda_{j_{k}}\right), \quad\left\{j_{1}, \ldots, j_{k}\right\} \in Q_{n, k}
$$

In Theorem 2 we identify the complex numbers which are of the form $g_{1}\left(x_{1}, \ldots, x_{k}\right)$ for orthonormal vectors $x_{1}, \ldots, x_{k} \in U_{n}$.

Theorem 2. If A is normal, the set of all sums $\left(A x_{1}, x_{1}\right)+\ldots+\left(A x_{k}, x_{k}\right)$ for orthonormal vectors $x_{1}, \ldots, x_{k} \in U_{n}$ is H_{1}.

Received January 19, 1962. This paper presents research completed while the author held a fellowship with the Summer Research Institute of the Canadian Mathematical Congress, 1961.

We shall give an example to show that the analogue of Theorem 2 for $r>1$ is, in general, false.
2. Proofs. Let $|X|$ and $\|X\|$ denote, respectively, the determinant and the absolute value of the determinant of the matrix X. If $\omega=\left\{i_{1}, \ldots, i_{r}\right\}$ and $\tau=\left\{j_{1}, \ldots, j_{r}\right\}$ are in $Q_{n, r}$, then $X[\omega \mid \tau]$ denotes the submatrix of X which lies in the intersection of rows i_{1}, \ldots, i_{r} and columns j_{1}, \ldots, j_{r} of X. Set $\sigma(\tau)=j_{1}+\ldots+j_{r}$ and let $Q_{n, s}-\tau$ denote the set of sequences $\left\{m_{1}, \ldots, m_{s}\right\} \in Q_{n, s}$ for which $\left\{m_{1}, \ldots, m_{s}\right\} \cap\left\{j_{1}, \ldots, j_{r}\right\}$ is empty. If $\omega \in Q_{n, s}$, then ω^{\prime} will denote the only element of $Q_{n, n-s}-\omega ; \omega^{\prime}$ contains the integers $1, \ldots, n$ which are not in ω.

Lemma. Let $B=\left(b_{i, j}\right), 1 \leqslant i, j \leqslant n$, be a unitary matrix. Let $\tau=\left\{j_{1}, \ldots, j_{r}\right\}$ be a fixed member of $Q_{n, r}$, and $\mu=\{k+1, \ldots, n\}$ be a fixed member of $Q_{n, n-k}$. Then, for $1 \leqslant r \leqslant k<n$,

$$
\begin{equation*}
\sum_{\omega \in Q_{k}, r}\|B[\omega \mid \tau]\|^{2}=\sum_{\rho \in Q_{n, n-k}-\tau}\|B[\mu \mid \rho]\|^{2} . \tag{1}
\end{equation*}
$$

Proof. For $1 \leqslant s<n$ let γ, δ be two elements of $Q_{n, s}$. Let $B_{i, j}$ denote the cofactor of $b_{i, j}$ in B and let ($B_{i, j}$) denote the $n \times n$ matrix with $B_{i, j}$ in row i and column $j, 1 \leqslant i, j \leqslant n$. For any matrix B (not necessarily unitary) the following identity is known (3, Eq. 8.6):

$$
\begin{equation*}
\left|\left(B_{i, j}\right)[\gamma \mid \delta]\right|=(-1)^{\sigma(\gamma)+\sigma(\delta)}\left|B\left[\gamma^{\prime} \mid \delta^{\prime}\right]\right||B|^{s-1} \tag{2}
\end{equation*}
$$

If B is unitary, then $B_{i, j}| | B \mid=\bar{b}_{i, j}$, the complex conjugate of $b_{i, j}$. Hence (2) becomes

$$
\begin{equation*}
|B||\bar{B}[\gamma \mid \delta]|=(-1)^{\sigma(\gamma)+\sigma(\delta)}\left|B\left[\gamma^{\prime} \mid \delta^{\prime}\right]\right| . \tag{3}
\end{equation*}
$$

Let $C=\left(c_{i, j}\right), 1 \leqslant i, j \leqslant n$, where

$$
c_{i, j}= \begin{cases}0 & \text { if } i \in \mu \text { and } j \in \tau \tag{4}\\ b_{i, j} & \text { otherwise }\end{cases}
$$

Then, using (3),

$$
\begin{aligned}
& \sum_{\omega \in Q_{k}, r} \|\left. B[\omega \mid \tau]\right|^{2}=\sum_{\omega \in Q_{k}, r}|B[\omega \mid \tau]||\bar{B}[\omega \mid \tau]| \\
&=|B|^{-1} \sum_{\omega \in Q_{k}, r}(-1)^{\sigma(\omega)+\sigma(\tau)}|B[\omega \mid \tau]|\left|B\left[\omega^{\prime} \mid \tau^{\prime}\right]\right| .
\end{aligned}
$$

But this expression, apart from the factor $|B|^{-1}$, is just the Laplace expansion of $|C|$ down columns j_{1}, \ldots, j_{r}; the other terms that would normally appear in this Laplace expansion are all zero because of (4). Hence the left member of (1) is just $|B|^{-1}|C|$.

On the other hand, if we expand $|C|$ across rows $k+1, \ldots, n$ and use (4) and (3),

$$
\begin{aligned}
|B|^{-1}|C| & =|B|^{-1} \sum_{\rho \in Q_{n, n-k}-\tau}(-1)^{\sigma(\mu)+\sigma(\rho)}|B[\mu \mid \rho]|\left|B\left[\mu^{\prime} \mid \rho^{\prime}\right]\right| \\
& =\sum_{\rho \in Q_{n, n-k^{-\tau}}}|B[\mu \mid \rho]||\bar{B}[\mu \mid \rho]| \\
& =\sum_{\rho \in Q_{n, n-k^{-}}-\tau} \|\left. B[\mu \mid \rho]\right|^{2} .
\end{aligned}
$$

Proof of Theorem 1. Throughout the rest of this paper e_{1}, \ldots, e_{n} denotes an orthonormal set of characteristic vectors of A belonging to the characteristic values $\lambda_{1}, \ldots, \lambda_{n}$, respectively. We are given orthonormal vectors $x_{1}, \ldots, x_{k} \in U_{n}$. If $k=n$, the result is clear since the vectors x_{ω} for $\omega \in Q_{n, r}$ form an orthonormal basis in U_{m} so that $g_{r}=\operatorname{trace} C_{r}(A)=E_{r}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Suppose $k<n$ and choose x_{k+1}, \ldots, x_{n} so that x_{1}, \ldots, x_{n} is an orthonormal basis for U_{n}. Let $B=\left(\left(x_{i}, e_{j}\right)\right), 1 \leqslant i, j \leqslant n$. Then B is a unitary matrix. Now

$$
\begin{aligned}
x_{i} & =\sum_{j=1}^{n}\left(x_{i}, e_{j}\right) e_{j}, & & 1 \leqslant i \leqslant k, \\
A x_{i} & =\sum_{j=1}^{n} \lambda_{j}\left(x_{i}, e_{j}\right) e_{j}, & & 1 \leqslant i \leqslant k .
\end{aligned}
$$

Hence, using the multilinear and alternating properties of the Grassmann product, it follows that if $\tau=\left\{j_{1}, \ldots, j_{7}\right\}$,

$$
\begin{aligned}
x_{\omega} & =\sum_{\tau \in Q_{n, r}}|B[\omega \mid \tau]| e_{\tau}, \\
C_{r}(A) x_{\omega} & =\sum_{\tau \in Q_{n}, r} \lambda_{j_{1}} \ldots \lambda_{j_{r} \mid}|B[\omega \mid \tau]| e_{\tau}
\end{aligned}
$$

so that

$$
\begin{align*}
g_{\tau} & =\sum_{\omega \in Q_{k, r}} \sum_{\tau \in Q_{n}, r} \lambda_{j_{1}} \ldots \lambda_{j_{r}}\|B[\omega \mid \tau]\|^{2} \\
& =\sum_{\tau \in Q_{n}, r} \lambda_{j_{1}} \ldots \lambda_{j_{r}} \sum_{\omega \in Q_{k}, r}\|B[\omega \mid \tau]\|^{2} . \tag{5}
\end{align*}
$$

For $\rho=\left\{m_{1}, \ldots, m_{k}\right\} \in Q_{n, k}$, let $h_{\rho}=\left|B\left[\mu \mid \rho^{\prime}\right]\right|$, where $\mu=\{k+1, \ldots, n\}$. Then we claim that

$$
\begin{equation*}
g_{T}=\sum_{\rho \in Q_{n}, k}\left|h_{\rho}\right|^{2} E_{\tau}\left(\lambda_{m_{1}}, \ldots, \lambda_{m_{k}}\right) . \tag{6}
\end{equation*}
$$

To see this, note that the coefficient of

$$
\begin{equation*}
\lambda_{j_{1}} \ldots \lambda_{j_{r}} \tag{7}
\end{equation*}
$$

in (6) is

$$
\sum_{\rho^{\prime} \in Q_{n, n-k^{-}}}\left\|B\left[\mu \mid \rho^{\prime}\right]\right\|^{2}
$$

By the Lemma, this is the same as the coefficient of (7) in (5).

The proof of Theorem 1 will now be complete if we can show that

$$
\sum_{\rho \in Q_{n}, k}\left|h_{\rho}\right|^{2}=1
$$

This is immediate since the $\left|B\left[\mu \mid \rho^{\prime}\right]\right|$ for $\rho^{\prime} \in Q_{n, n-k}$ are the co-ordinates of the unit vector $x_{k+1} \wedge \ldots \wedge x_{n}$ relative to the orthonormal basis $e_{\rho^{\prime}}$ in the space U_{t} with $t={ }_{n} C_{n-k}$.

Proof of Theorem 2. Since any point $P \in H_{1}$ may be written as a convex combination of three of the vertices of H_{1} and since the vertices of H_{1} lie among the numbers

$$
\begin{equation*}
\lambda_{j_{1}}+\ldots+\lambda_{j_{k}}, \quad\left\{j_{1}, \ldots, j_{k}\right\} \in Q_{n, k} \tag{8}
\end{equation*}
$$

it is enough to show that any point P in the convex hull of three of the numbers (8) is of the form $P=g_{1}\left(x_{1}, \ldots, x_{k}\right)$ for orthonormal vectors

$$
x_{1}, \ldots, x_{k} \in U_{n}
$$

Suppose we are given three sums (8), say S_{1}, S_{2}, S_{3}. With a proper choice of the notation we may assume that

$$
\begin{aligned}
S_{1}=\left(\lambda_{1}+\ldots+\lambda_{p}\right) & +\left(\lambda_{p+1}+\ldots+\lambda_{p+q}\right) \\
& +\left(\lambda_{p+q+1}+\ldots+\lambda_{p+q+\tau}\right)+\left(\lambda_{w+1}+\ldots+\lambda_{w+t}\right), \\
S_{2}=\left(\lambda_{1}+\ldots+\lambda_{p}\right) & +\left(\lambda_{p+1}+\ldots+\lambda_{p+q}\right) \\
& \quad+\left(\lambda_{p+q+r+1}+\ldots+\lambda_{p+q+\tau+s}\right)+\left(\lambda_{w+t+1}+\ldots+\lambda_{w+\ell+u}\right), \\
S_{3}= & \left(\lambda_{1}+\ldots+\lambda_{p}\right)+\left(\lambda_{p+q+1}+\ldots+\lambda_{p+q+\tau}\right) \\
& \quad+\left(\lambda_{p+q+\tau+1}+\ldots+\lambda_{p+q+\tau+s}\right)+\left(\lambda_{w+t+u+1}+\ldots+\lambda_{w+t+u+\tau}\right),
\end{aligned}
$$

where, for brevity, we have let $w=p+q+r+s$. Here some of p, q, r, s, t, u, v may be zero, in which case not all of the types of terms indicated need actually appear. We have

$$
\begin{align*}
p+q+r+t & =k \tag{9}\\
p+q+s+u & =k \tag{10}\\
p+r+s+v & =k \tag{11}
\end{align*}
$$

We may suppose that $t \geqslant u \geqslant v$. Let α, β, θ be three real numbers with $\alpha^{2}+\beta^{2}+\theta^{2}=1$. We have to find orthonormal vectors $x_{1}, \ldots, x_{k} \in U_{n}$ such that

$$
\left(A x_{1}, x_{1}\right)+\ldots+\left(A x_{k}, x_{k}\right)=\alpha^{2} S_{1}+\beta^{2} S_{2}+\theta^{2} S_{3}
$$

If $p>0$, set $x_{i}=e_{i}$ for $1 \leqslant i \leqslant p$. Then

$$
\left(A x_{1}, x_{1}\right)+\ldots+\left(A x_{p}, x_{p}\right)=\lambda_{1}+\ldots+\lambda_{p} .
$$

If $v>0$, set $x_{p+i}=\alpha e_{w+i}+\beta e_{w+t+i}+\theta e_{w+t+u+i}$ for $1 \leqslant i \leqslant v$. Then $\left(x_{p+i}, x_{p+i}\right)=1$ and

$$
\begin{aligned}
\left(A x_{p+1}, x_{p+1}\right) & +\ldots+\left(A x_{p+0}, x_{p++}\right)=\alpha^{2}\left(\lambda_{w+1}+\ldots+\lambda_{w+o}\right) \\
& +\beta^{2}\left(\lambda_{w+t+1}+\ldots+\lambda_{w+\ell+v}\right)+\theta^{2}\left(\lambda_{w+t+u+1}+\ldots+\lambda_{w+t+u+v}\right) .
\end{aligned}
$$

From (10) and (11) it follows that $r=q+(u-v)$; hence $r \geqslant u-v$. If $u>v$, let

$$
x_{p+v+i}=\beta e_{w+t+v+i}+\left(\alpha^{2}+\theta^{2}\right)^{\frac{1}{3}} e_{p+\alpha+i} \quad \text { for } 1 \leqslant i \leqslant u-v .
$$

Then $\left(x_{p+o+i}, x_{p+o+i}\right)=1$ and

$$
\begin{aligned}
& \left(A x_{p+o+1}, x_{p+0+1}\right)+\ldots+\left(A x_{p+u}, x_{p+u}\right) \\
& \quad=\beta^{2}\left(\lambda_{w+t+++1}+\ldots+\lambda_{w+t+u}\right)+\left(\alpha^{2}+\theta^{2}\right)\left(\lambda_{p+\alpha+1}+\ldots+\lambda_{p+q+u-v}\right) .
\end{aligned}
$$

It follows from (9) and (11) that $s=q+(t-v)$. If $t>v$, define

$$
x_{p+u+i}=\alpha e_{w+v+i}+\left(\beta^{2}+\theta^{2}\right)^{\frac{1}{2}} e_{p+\alpha+\tau+i} \quad \text { for } 1 \leqslant i \leqslant t-v .
$$

Then $\left(x_{p+u+i}, x_{p+u+i}\right)=1$ and

$$
\begin{aligned}
& \left(A x_{p+u+1}, x_{p+u+1}\right)+\ldots+\left(A x_{p+u+t-v}, x_{p+u+t-v}\right) \\
& \quad=\alpha^{2}\left(\lambda_{w+0+1}+\ldots+\lambda_{w+z}\right)+\left(\beta^{2}+\theta^{2}\right)\left(\lambda_{p+\alpha+r+1}+\ldots+\lambda_{p+\alpha+r+t-v}\right) .
\end{aligned}
$$

Up to this point $p+u+t-v$ vectors x_{i} have been constructed; these vectors are automatically orthogonal because, when expressed in terms of the e_{i}, no two x_{i} involve the same e_{i}. There remain $k-(p+u+t-v)=2 q$ vectors x_{i} to be constructed. Let G be the subspace of U_{n} spanned by

$$
\begin{gathered}
f_{1}=e_{p+1}, \ldots, f_{q}=e_{p+q}, f_{q+1}=e_{p+q+u-v+1}, \ldots, f_{2 q}=e_{p+q+r}, \\
f_{2 q+1}=e_{p+q+r+t-p+1}, \ldots, f_{3 q}=e_{p+q+++s} ;
\end{gathered}
$$

and let $\zeta_{1}, \ldots, \zeta_{3 q}$ be the λ_{i} belonging to $f_{1}, \ldots, f_{3 q}$. Let $y_{i}=\theta f_{i}+\beta f_{q+i}+\alpha f_{2 q+i}$ for $1 \leqslant i \leqslant q$. Choose $x_{k-2 q+1}, \ldots, x_{k}$ such that $y_{1}, \ldots, y_{q}, x_{k-2 q+1}, \ldots, x_{k}$ is an orthonormal basis of G. Then if we compute the trace of the restriction A_{G} of A to G we get:

$$
\begin{aligned}
\operatorname{trace} A_{G}= & \zeta_{1}+\ldots+\zeta_{3 q} \\
= & \left(A y_{1}, y_{1}\right)+\ldots+\left(A y_{q}, y_{q}\right)+\left(A x_{k-2 q+1}, x_{k-2 q+1}\right) \\
= & \theta^{2}\left(\zeta_{1}+\ldots+\zeta_{q}\right)+\beta^{2}\left(\zeta_{q+1}+\ldots+\zeta_{2 q}\right) \quad+\left(A x_{k}, x_{k}\right) \\
& +\alpha^{2}\left(\zeta_{2 q+1}+\ldots+\zeta_{3 q}\right)+\left(A x_{k-2 q+1}, x_{k-2 q+1}\right)+\ldots+\left(A x_{k}, x_{k}\right) .
\end{aligned}
$$

Hence we find that

$$
\begin{gathered}
\left(A x_{k-2 q+1}, x_{k-2 q+1}\right)+\ldots+\left(A x_{k}, x_{k}\right) \\
=\left(\alpha^{2}+\beta^{2}\right)\left(\lambda_{p+1}+\ldots+\lambda_{p+q}\right)+\left(\alpha^{2}+\theta^{2}\right)\left(\lambda_{p+\alpha+u-\alpha+1}+\ldots+\lambda_{p+q+\tau}\right) \\
\quad+\left(\beta^{2}+\theta^{2}\right)\left(\lambda_{p+q+\tau+t-v+1}+\ldots+\lambda_{p+q+++s}\right) .
\end{gathered}
$$

Then x_{1}, \ldots, x_{k} are orthonormal vectors in U_{n} such that

$$
\left(A x_{1}, x_{1}\right)+\ldots+\left(A x_{k}, x_{k}\right)=\alpha^{2} S_{1}+\beta^{2} S_{2}+\theta^{2} S_{3} .
$$

We now give an example to show that the set of all numbers $g_{r}\left(x_{1}, \ldots, x_{k}\right)$ for orthonormal x_{1}, \ldots, x_{k} need not be a convex set if $r>1$. Let $r=k=2$, $n=4$, and take $\lambda_{1}=\lambda_{2}=1, \lambda_{3}=\lambda_{4}=i=(-1)^{\frac{1}{2}}$. Let $p_{i, j}=|B[1,2 \mid i, j]|$, where B is the matrix $\left(\left(x_{i}, e_{j}\right)\right), 1 \leqslant i \leqslant 2,1 \leqslant j \leqslant 4$. Then, from (5),

$$
g_{2}\left(x_{1}, x_{2}\right)=\left|p_{1,2}\right|^{2}-\left|p_{3,4}\right|^{2}+i\left(\left|p_{1,3}\right|^{2}+\left|p_{1,4}\right|^{2}+\left|p_{2,3}\right|^{2}+\left|p_{2,4}\right|^{2}\right) .
$$

Now $g_{2}\left(e_{1}, e_{2}\right)=1$ and $g_{2}\left(e_{3}, e_{4}\right)=-1$. If $g_{2}\left(x_{1}, x_{2}\right)=0$, then we must have $\left|p_{1,2}\right|=\left|p_{3,4}\right|, p_{1,3}=p_{1,4}=p_{2,3}=p_{2,4}=0$. However, it is known (1) that $p_{1,2} p_{3,4}=p_{1,3} p_{2,4}-p_{1,4} p_{2,3}$. Combining these facts, it follows that also $p_{1,2}=p_{3,4}=0$. This is a contradiction, since

$$
\sum_{1<i<j<4}\left|p_{i, j}\right|^{2}=\left(x_{1} \wedge x_{2}, x_{1} \wedge x_{2}\right)=1
$$

if x_{1} and x_{2} are orthonormal.

References

1. W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, Vol. I (Cambridge, 1947), 309-315.
2. M. Marcus, B. N. Moyls, and R. Westwick, Extremal properties of Hermitian matrices: II, Can. J. Math., 11 (1959), 379-382.
3. G. B. Price, Some identities in the theory of determinants, Amer. Math. Monthly, 54 (1947), 75-90.
4. J. H. M. Wedderburn, Lectures on matrices, Amer. Math. Soc. Colloq. Pub., 17 (1934), Chap. 5.

University of British Columbia

