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Abstract

We initiate the study of outer automorphism groups of special groups G, in the
Haglund–Wise sense. We show that Out(G) is infinite if and only if G splits over a
co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn
twist’. Similarly, the coarse-median preserving subgroup Outcmp(G) is infinite if and
only if G splits over an actual centraliser and there exists an infinite-order coarse-
median-preserving generalised Dehn twist. The proof is based on constructing and
analysing non-small, stable G-actions on R-trees whose arc-stabilisers are centralisers or
closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers,
and thus are large subgroups of G. As a result of independent interest, we determine
when generalised Dehn twists associated to splittings of G preserve the coarse median
structure.
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1. Introduction

It was first shown by Dehn in 1922 that mapping class groups of closed surfaces are generated
by finitely many Dehn twists around simple closed curves [Deh38]. Many decades later, one of
the successes of Rips–Sela theory was the extension of this result to outer automorphism groups
of all Gromov-hyperbolic groups [RS94].

More precisely, whenever a group G splits as an amalgamated product G = A ∗C B, we
can construct an automorphism ϕ ∈ Aut(G) by defining ϕ|A as the identity and ϕ|B as the
conjugation by an element of the centre of C. A similar construction can be applied to HNN
splittings G = A∗C . We refer to group automorphisms obtained in this way as algebraic Dehn
twists. Indeed, when G = π1Σ for a closed surface Σ and C � Z, algebraic Dehn twists are
precisely the action on π1Σ of the usual homeomorphisms of Σ known as Dehn twists.

When G is a one-ended Gromov-hyperbolic group (without torsion), Rips and Sela showed
that a finite index subgroup of Out(G) is generated by finitely many algebraic Dehn twists
arising from cyclic splittings of G [RS94]. An analogous result was obtained by Groves for toral
relatively hyperbolic groups G, where one must consider more generally all abelian splittings of
G [Gro09].

Both results are proved by first constructing an isometric G-action on an R-tree and then
applying the Rips machine. However, the trees involved have a very specific structure, they are
superstable and small (i.e. with abelian arc-stabilisers), and thus they do not require the full
power of Rips’ techniques, which can handle stable G-trees with arbitrary arc-stabilisers [BF95].

For this reason, it is natural to expect that the class of groups G for which Out(G) can be
understood through Rips–Sela theory should be broader. The difficulty to overcome is that, when
G lacks strong hyperbolic features (mostly Gromov-hyperbolicity or relative hyperbolicity), it is
generally hard to construct G-trees that simultaneously capture many significant features of the
geometry of G. Nevertheless, in certain contexts, acylindrical hyperbolicity has been shown to
suffice when addressing related questions, such as equational Noetherianity [GH19, GHL21] and
the existence of (higher-rank) Makanin–Razborov diagrams [Sel22].

It is worth remarking that the above results are no exception and, in fact, all classical appli-
cations of the Rips machine only require its most ‘basic’ form for small superstable G-trees: from
acylindrical accessibility [Sel97a] and JSJ decompositions for finitely presented groups [RS97],
to the Hopf property [Sel99] and the isomorphism problem for hyperbolic groups [Sel95, DG11],
to the elementary theory of free groups [Sel01, Sel06].
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In this paper, we seek to obtain an analogous relationship between the structure of Out(G)
and the splittings of G when G is not relatively hyperbolic.

We choose to focus on special groups G, in the sense of Haglund and Wise [HW08]. This is
the remarkably broad class of subgroups of right-angled Artin groups that are quasi-convex in
the standard word metric. Little seems to be known on Out(G) in this context, other than the
fact that it is always a residually finite group [AMS16].

Special groups are best known for their Gromov-hyperbolic examples: hyperbolic 3-manifold
groups [KM12, BW12, Ago13], hyperbolic free-by-cyclic groups [HW16, HW15], finitely presented
small cancellation groups [Wis04] among many others. Hyperbolic special groups also played
a central role in Agol and Wise’s resolution of Thurston’s virtual fibering and virtual Haken
conjectures [Ago14, Wis14].

However, special groups also admit many non-relatively-hyperbolic examples: for instance,
finite-index subgroups of right-angled Artin and Coxeter groups, most non-geometric 3-manifold
groups [PW14, HP15, PW18], graph braid groups [CW04], cocompact diagram groups [GS97,
Gen18, Gen17], and the examples from [KV21]. Various other non-hyperbolic groups are expected
to be special (for instance, among free-by-cyclic groups), but for the moment this runs into the
general difficulty of cocompactly cubulating groups without relying on Sageev’s criterion [Sag97,
Sag95].

The case when G is a right-angled Artin group AΓ already demonstrates that Out(G) can
well be infinite even when G does not split over an abelian subgroup [GH17], suggesting that we
will have to deal with non-small G-trees and automorphisms of G that are more general than
the algebraic Dehn twists defined above.

A particularly simple generating set for Out(AΓ) was given by Laurence and Servatius [Lau95,
Ser89]. With this in mind, it is natural to consider the following generalisation of algebraic Dehn
twists which provides a unified perspective on automorphisms of hyperbolic groups and right-
angled Artin groups. If G is a group, H ≤ G is a subgroup and K ⊆ G is a subset, we denote by
ZH(K) the centraliser of K in H.

Definition (DLS automorphisms). Let G be a group. A Dehn–Laurence–Servatius (DLS)
automorphism of G is any of the following two kinds of automorphisms of G.

• Suppose that G splits as an amalgamated product A ∗C B. Each element z ∈ ZA(C) defines
an automorphism σ ∈ Aut(G) with σ(a) = a for all a ∈ A and σ(b) = zbz−1 for all b ∈ B. We
refer to σ as a partial conjugation.

• Suppose that G splits as an HNN extension A∗C = 〈A, t | t−1ct = α(c), ∀c ∈ C〉. Each z ∈
ZA(C) defines an automorphism τ ∈ Aut(G) with τ(a) = a for all a ∈ A and τ(t) = zt. We
refer to τ as a transvection.

DLS automorphisms generate a finite index subgroup of Out(G) both when G is hyperbolic
(or toral relatively hyperbolic) and when G is a right-angled Artin or Coxeter group.

DLS automorphisms were previously introduced by Levitt [Lev05] and they appear in even
earlier work of Bass and Jiang [BJ96]. DLS automorphisms are often simply called ‘twists’ in
the literature, but this terminology would be rather confusing in the present paper since, in the
context of right-angled Artin groups, the word ‘twist’ has come to refer only to a very specific
type of DLS automorphism [CSV17]. We will stick to the latter convention and reserve the term
‘twist’ for transvections induced by elements of the centre of C (see below).

When G is a special group with a fixed embedding in a right-angled Artin group G ↪→ AΓ,
we can endow G with a natural coarse median structure [μ] [Bow13]. This provides us with a
notion of quasi-convexity for subgroups H ≤ G. In fact, a subgroup H ≤ G is quasi-convex with
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respect to [μ] if and only if its action on the universal cover of the Salvetti complex of AΓ is
convex-cocompact : H stabilises a convex subcomplex, acting cocompactly on it. For this reason,
we will speak interchangeably of ‘quasi-convex’ and ‘convex-cocompact’ subgroups of G.

The coarse median structure on G also gives us a notion of orthogonality between subgroups
(denoted ⊥, see Definition 2.23). Because of this, it is convenient to differentiate between two
types of transvections that always display quite different behaviours. This distinction was first
introduced for automorphisms of right-angled Artin groups in [CSV17].

Definition (Twists and folds). Let (G, [μ]) be a coarse median group. Suppose that G splits
as an HNN extension A∗C , where C is quasi-convex with respect to [μ]. Let τ ∈ Aut(G) be the
transvection determined by an element z ∈ ZA(C).

• If z lies in the centre of C, we say that τ is a twist.
• If instead 〈z〉 ⊥ C, we say that τ is a fold.

Fixing an embedding of G in AΓ and the corresponding coarse median structure [μ], it is
also interesting to study the subgroup Outcmp(G) ≤ Out(G) of coarse-median preserving auto-
morphisms. This was introduced in previous work of the author [Fio22] and often makes up a
significant portion of the whole automorphism group. For instance, Outcmp(G) = Out(G) when
G is either Gromov-hyperbolic or a right-angled Coxeter group, while Outcmp(G) is the group
of untwisted automorphisms when G is a right-angled Artin group (which was studied e.g. in
[CSV17, HK18]).

The results of [Fio22] show that, in various respects, Outcmp(G) displays a much closer simi-
larity to automorphisms of hyperbolic groups than the whole Out(G). This pattern is confirmed
in the present paper (compare Theorems A and B).

We are now ready to state our two main theorems. Previous results of this type for hyperbolic
and relatively hyperbolic groups include [Pau91, Lev05, DS08, GL15], among many others. The
correct extension to general special groups seems to require replacing abelian subgroups with
centralisers.

Theorem A. Let G be a special group. Then Outcmp(G) is infinite if and only if Outcmp(G)
contains an infinite-order DLS automorphism ϕ of one of the following forms:

(1) G splits as A ∗C B or A∗C , where C is the centraliser of a finite subset of G, and ϕ is a
partial conjugation or fold associated to this splitting;

(2) G splits as A∗C , where C = ZG(g) for an element g ∈ G such that 〈g〉 is convex-cocompact,
and ϕ is the twist determined by this splitting and the element g.

Theorem B. Let G be a special group. Then Out(G) is infinite if and only if Out(G) contains
an infinite-order DLS automorphism ϕ either as in types (1) and (2) of Theorem A, or of the
following form:

(3) ϕ is a twist associated to an HNN splitting G = A∗C , where C is the kernel of a non-
trivial homomorphism ZG(x) → Z for some x ∈ G. In addition, the stable letter of the
HNN splitting can be chosen within ZG(x).

Thinking of right-angled Artin groups AΓ, most of the Laurence–Servatius generators for
Out(AΓ) fall into types (1) and (3) of the previous theorems (for the experts, we are only
excluding graph automorphisms and inversions, which have finite order). Automorphisms of
type (2) never occur for AΓ, but many algebraic Dehn twists of hyperbolic groups are of this
form.
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Figure 1. A graph Γ such that Out(AΓ) is infinite, but AΓ does not split over any centralisers.

We emphasise that, in many cases, a general DLS automorphism can turn out to be an inner
automorphism of G, or to have an inner power. By contrast, Theorems A and B do provide
DLS automorphisms with infinite order in Out(G). In particular, this shows that Out(G) and
Outcmp(G) can never be infinite torsion groups.

An immediate consequence of the above two theorems is the following.

Corollary C. Let G be a special group.

(1) If Outcmp(G) is infinite, then G splits over the centraliser of a finite subset of G.
(2) If Out(G) is infinite, then G splits over the centraliser of a finite subset of G, or over the

kernel of a homomorphism ZG(x) → Z for some x ∈ G.

Note that all special groups split over ‘some’ convex-cocompact subgroup, simply because
they act properly on Salvetti complexes, hence on the associated products of trees. Such a
splitting does not tell us anything about Out(G) in general, so it is important that the splittings
provided by Corollary C are over centralisers, or subgroups thereof.

It seems that Corollary C(2) and part of Theorem B can also be deduced from the work of
Casals-Ruiz and Kazachkov [CRK11, CRK15]. Indeed, if Out(G) is infinite, the Bestvina–Paulin
construction yields a nice G-action on an asymptotic cone of a right-angled Artin group. By
[CRK15, Theorem 9.33], it follows that G can be embedded in a graph tower, in the sense of
[CRK15, § 5]. Every graph tower T admits particular splittings over centralisers of subsets of T .
With significant additional work, these splittings can be translated into splittings of G over the
required subgroups of centralisers of subsets of G (the main difficulty is passing from centralisers
of subsets of T to centralisers of subsets of G).

We emphasise that Corollary C(1) can fail if Out(G) is infinite, but Outcmp(G) is finite. The
simplest example is provided by the right-angled Artin group AΓ with Γ as in Figure 1. Note
that G = AΓ does not split over any centraliser of a subset, but it does split as an HNN extension
over the subgroup 〈b, c, f〉, which is the kernel of a homomorphism ZG(a) → Z.

With a bit more work, it is also possible to deduce from Theorems A and B the following
result, which I found rather unexpected.

Corollary D. Let G be a special group. Suppose that Out(G) is infinite, but Outcmp(G) is
finite. Then there exists x ∈ G such that theG-conjugacy class of the subgroup ZG(x) is preserved
by a finite-index subgroup of Out(G).

Theorems A and B (and their proof) provide significant evidence for the following conjecture,
which has so far resisted all our attempts at a proof. We briefly illustrate the issue at the end of
the introduction: it involves shortening the G-action on an R-tree (which we were able to do),
while not lengthening finitely many other G-trees (which appears to be quite delicate).

Conjecture. Let G be a special group.

(1) The DLS automorphisms appearing in Theorem A generate a finite-index subgroup of
Outcmp(G). Moreover, finitely many such automorphisms suffice.
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(2) The DLS automorphisms appearing in Theorems A and B generate a finite-index subgroup
of Out(G). Moreover, finitely many such automorphisms suffice.

In particular, Out(G) and Outcmp(G) are finitely generated.

For one-ended hyperbolic groups G, one can give a much more precise description of Out(G):
up to passing to finite index, it has a free abelian normal subgroup whose quotient is a finite
product of mapping class groups [Sel97b, Lev05]. A similar description also holds in the toral
relatively hyperbolic case [GL15].

The usual approach to these results relies heavily on the existence of JSJ decompositions.
For general special groups G, it appears that one would need to consider splittings over a class of
groups that is not closed under taking subgroups, so JSJ techniques seem rather hard to apply.

Finally, we would like to highlight the following result, which is required in the proof of
Theorem A. It characterises which DLS automorphisms of a special group preserve the coarse
median structure, provided that they originate from splittings over convex-cocompact subgroups.
For a more general statement on (possibly non-special) cocompactly cubulated groups, see
Theorem 7.1.

Theorem E. Let G be a special group with a splitting G = A ∗C B or G = A∗C . Suppose that
C is convex-cocompact in G. Then we have the following.

(1) All partial conjugations and folds determined by this splitting are coarse-median preserving.
(2) If G = A∗C and z ∈ ZC(C) is such that 〈z〉 is convex-cocompact in G and ZG(z) is contained

in a conjugate of A, then the twist determined by z is coarse-median preserving.
(3) More generally, if for every c ∈ ZC(C) \ {1} the centraliser ZG(c) is contained in a conjugate

of A, then all transvections determined by G = A∗C are coarse-median preserving.

For instance, all DLS automorphisms determined by acylindrical splittings of G (over convex-
cocompact subgroups) are coarse-median preserving. By contrast, the reader can easily check
that the twist of Z2 = 〈a, b〉 fixing a and mapping b �→ ab is not coarse-median preserving (here
A = C = 〈a〉).

Theorem E greatly expands the class of automorphisms to which the techniques of [Fio22]
can be applied. In particular, if ϕ is a product of DLS automorphisms as in Theorem E, then the
subgroup Fixϕ ≤ G is finitely generated, undistorted, and cocompactly cubulated (see [Fio22,
Theorem B]).

On the proof of Theorems A and B. Let G be a special group with an infinite sequence of
automorphisms φn ∈ Out(G). The core of the proof lies in the construction of a non-elliptic,
stable G-tree Tω with ‘nice’ arc-stabilisers. From there, the conclusion is technical, but relatively
straightforward given the work of Bestvina–Feighn [BF95] and Guirardel [Gui98, Gui08].

Arc-stabilisers of Tω will be centralisers when the φn are coarse-median preserving, and
kernels of homomorphisms from centralisers to R in the general case. Here the expression ‘cen-
traliser’ always refers to centralisers of finite subsets of G. These properties ensure that Tω is
stable, even though arc-stabilisers can be infinitely generated in general. In addition, Tω will not
normally be superstable, and tripod-stabilisers can always be non-trivial centralisers.

The mere construction of the tree Tω is straightforward (for instance, it already appears
in [Gen20]). What requires new ideas is analysing its arc-stabilisers, as we now discuss.

Fixing a convex-cocompact embedding in a right-angled Artin group G ↪→ AΓ, we obtain a
G-action on the universal cover XΓ of the Salvetti complex. It is known that XΓ equivariantly
embeds in a finite product of simplicial trees

∏
v∈Γ Tv, so we obtain a proper action of G on
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this product. It follows that there exists v ∈ Γ such that the twisted trees T φn
v diverge, and we

can define Tω as an ultralimit of these trees, suitably rescaled.
Arc-stabilisers for the actions G � Tv are quite nice: they are convex-cocompact in G, and

they are the intersection between G and the centraliser of a subset of AΓ. However, they are
usually not centralisers of subsets of G. As a consequence, the moment we start twisting by
automorphisms of G, we lose all control over their images, which can for instance stop being
convex-cocompact in G. This compromises the study of arc-stabilisers of Tω, since we cannot
control those of the trees T φn

v .
The key observation (Theorem 4.2) is that sufficiently long arcs of Tv can be perturbed so that

their G-stabiliser (and even their ‘almost-stabiliser’) becomes a centraliser in G. This rescues us,
as automorphisms of G will take centralisers to centralisers, and ω-intersections of centralisers
are again centralisers.

The main steps of the proof are taken in §§ 4–6. Section 4 proves Theorem 4.2 on perturbations
of arcs of Tv. Section 5 (and in particular § 5.4) uses this to obtain all necessary information on
arc-stabilisers of Tω. Finally, § 6 considers geometric trees approximating Tω, applies the Rips
machine (blackboxed), and draws the required conclusions.

On the conjecture. The classical Rips–Sela argument for hyperbolic groups is based on a well-
known shortening argument [RS94, WR19]. We would like to emphasise that the tree Tω
mentioned above can indeed always be shortened by a DLS automorphism of the form described
in the statement of the two theorems. This requires a significant amount of work, which we have
chosen to omit from this article, as it can be circumvented for a more direct proof of our main
results.

The reason why the Conjecture remains unproven is that shortening a single tree no longer
suffices in this context. Recall that G acts properly on the finite product of trees

∏
v∈Γ Tv. Each

Tv gives rise to a (possibly elliptic) tree Tω(v) as above. When we shorten some Tω(v) by a DLS
automorphism, it is possible that some other Tω(w) will ‘get longer’, which deals a serious blow
to this kind of approach.

Excluding this eventuality would require some compatibility conditions between the trees
Tω(v). For instance, if G is a surface group and the φn are powers of a pseudo-Anosov with stable
and unstable trees T±, it seems that we cannot hope to shorten T+ without lengthening T−.

Perhaps a more successful strategy would be based on a theory of cospecial actions on median
spaces, the first promising steps of which were taken in [CRK15, § 9.4].

Structure of the paper. Section 2 contains basic information on CAT(0) cube complexes, coarse
median groups and ultralimits. Within it, § 2.3 proves a few new results on convex-cocompactness
in cube complexes, though these will certainly not surprise experts. Section 3 studies centralisers
in special groups and the kernels of their homomorphisms to abelian groups.

As discussed above, the proof of Theorems A and B is spread out over §§ 4–6. The final
argument and the proof of Corollary D are given at the end of § 6.3.

Theorem E is proved in § 7. For the latter, an ingredient we find of particular interest is the
discussion of Guirardel cores of products of cube complexes in § 7.3.

2. Preliminaries

2.1 CAT(0) cube complexes
We refer the reader to [CS11, Sag14, CFI16, Fio20] for basic facts on CAT(0) cube complexes.
Here we simply fix terminology and notation, and recall a few standard results. Some of these
are relevant also in the one-dimensional case of simplicial trees.

238

https://doi.org/10.1112/S0010437X22007850 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007850


On automorphisms and splittings of special groups

Let X be a CAT(0) cube complex.

2.1.1 Halfspaces and hyperplanes. We denote by W (X) and H (X), respectively, the set of
hyperplanes and halfspaces of X. If h is a halfspace, h∗ denotes its complement. Two hyperplanes
are transverse if they are distinct and meet. Halfspaces h, k are transverse if they are bounded
by transverse hyperplanes; equivalently, all four intersections h ∩ k, h∗ ∩ k, h ∩ k∗, h∗ ∩ k∗ are
non-empty. We also say that a hyperplane is transverse to a halfspace if it is transverse to the
hyperplane bounding it. Subsets U ,V ⊆ W (X) are transverse if every element of U is transverse
to every element of V.

If A and B are sets of vertices, H (A|B) ⊆ H (X) is the subset of halfspaces h such that
A ⊆ h∗ and B ⊆ h. Similarly, W (A|B) ⊆ W (X) is the set of hyperplanes bounding the elements
of H (A|B). We say that the elements of W (A|B) separate A and B.

2.1.2 Metrics and geodesics. We always endow X with its 
1 metric (denoted by d), rather
than the CAT(0) metric. We will only be interested in distances between vertices of X (possibly
after passing to its cubical subdivision), in which case the 
1 metric coincides with the intrinsic
path metric of the 1-skeleton. The latter is also known as the combinatorial metric. If x and y
are vertices of X, we have d(x, y) = #W (x|y).

All geodesics in X are implicitly assumed to be combinatorial geodesics contained in the 1-
skeleton and with their endpoints at vertices. For such a geodesic α, we denote by W (α) ⊆ W (X)
the set of hyperplanes dual to the edges of α. We say that these are the hyperplanes crossed by
α. We write 
(α) for the length of α, which coincides with the cardinality of W (α).

2.1.3 Convexity. If Y ⊆ X is a convex subcomplex, we do not distinguish between hyper-
planes of Y and hyperplanes ofX separating vertices of Y . The set of such hyperplanes is denoted
W (Y ). If Y ⊆ X is a convex subcomplex, we denote its gate-projection by πY : X → Y . For every
vertex x ∈ X, the image πY (x) is a vertex of Y and it is the unique point of Y that is closest to
x. Gate-projections are 1-Lipschitz and satisfy W (x|πY (x)) = W (x|Y ).

If Y, Z ⊆ X are convex subcomplexes, we say that y ∈ Y and z ∈ Z form a pair of gates
if d(y, z) = d(Y, Z). Equivalently, πY (z) = y and πZ(y) = z, or again W (y|z) = W (Y |Z). The
projections πY (Z) and πZ(Y ) are also convex subcomplexes.

Note that all hyperplanes w ∈ W (X) are convex subcomplexes of the cubical subdivision of
X. For this reason, they have a cellular structure that makes them into lower-dimension CAT(0)
cube complexes. In addition, we can consider the gate-projections πw : X → w.

2.1.4 Isometries and actions. We denote by Aut(X) the group of automorphisms of X,
i.e. isometries that take vertices to vertices. All actions onX are assumed to be by automorphisms
without explicit mention.

If g ∈ Aut(X), we denote its translation length by 
X(g) = infx∈X d(x, gx). The minimal set
of g is the subset Min(g,X) ⊆ X (or just Min(g)) where 
X(g) is realised. We write Fix(g,X) ⊆ X
for the set of fixed points of g.

An action G � X is without inversions if there do not exist g ∈ G and h ∈ H (X) with
gh = h∗. Note that Aut(X) acts on the cubical subdivision of X without inversions. Given an
action without inversions G � X, every g ∈ G contains at least one vertex of X in its minimal
set. In particular, if g does not have fixed vertices, then it admits an axis: a 〈g〉-invariant geodesic
along which g translates non-trivially [Hag07].
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A hyperplane w ∈ W (X) is skewered by g ∈ Aut(X) if it bounds a halfspace h with gh � h.
Given an action G � X, we keep the notation from [Fio21] and write

W1(G,X) := {w ∈ W (X) | ∃g ∈ G skewering w},
W0(G,X) := {w ∈ W (X) | ∀g ∈ G, either gw = w, or gw is transverse to w}.

We write W1(G) and W0(G) when the ambient cube complex is clear, or W1(g) and W0(g) if
G = 〈g〉. Note that a hyperplane in W1(g) might only be skewered by a power of g.

Consider an action G � X. We say that X is G-essential if W1(G) = W (X). We say that
X is simply essential if no halfspace of X is at finite Hausdorff distance from the hyperplane
bounding it. When G acts cocompactly on X, these two notions of essentiality coincide.

We say that X is G-hyperplane-essential if every hyperplane w ∈ W (X) is Gw-essential with
its induced cubical structure. Here Gw denotes the subgroup of G leaving w invariant. Again, we
say that X is simply hyperplane-essential if every hyperplane of X is an essential cube complex
with its induced cubical structure. As before, X is G-hyperplane-essential if and only if X is
hyperplane-essential, provided that G acts cocompactly on X (see e.g. [FH21, Lemma 2.3]).

Given an action G � X and a hyperplane w lying neither in W1(G) nor in W0(G), exactly
one of the two halfspaces bounded by w contains an entire G-orbit in X. Taking the intersection
of all such halfspaces, we obtain a G-invariant convex subcomplex of X, which is non-empty
as soon as G satisfies weak assumptions. As a consequence, we obtain the following result (see
[Fio21, Remark 3.16, Theorem 3.17, Proposition 3.23(2) and Corollary 4.6] for more details).

Proposition 2.1. If G ≤ Aut(X) is finitely generated and acts on X without inversions, then
there exists a non-empty, G-invariant, convex subcomplex C(G,X) ⊆ X such that the following
hold.

(1) There is a G-invariant splitting C(G,X) = C0(G,X) × C1(G,X), where the sets of hyper-
planes dual to the two factors are precisely W0(G,X) and W1(G,X).

(2) The action G � C0(G,X) has fixed vertices, whereas C1(G,X) is G-essential.
(3) If h ∈ Aut(X) normalises G, then h preserves C(G,X) and leaves invariant its two factors.

Again, we simply write C(G) when the cube complex X is clear, and C(g) if G = 〈g〉.

2.1.5 Median subalgebras and median morphisms. A median algebra is a set M equipped
with a ternary operation m : M3 →M invariant under permutations and satisfying:

• m(a, a, b) = a for a, b ∈M ;
• m(m(a, x, b), x, c) = m(a, x,m(b, x, c)) for a, b, c, x ∈M .

A median subalgebra is a subset N ⊆M with m(N ×N ×N) ⊆ N . A subset C ⊆M is convex
if m(C × C ×M) ⊆ C. A subset h ⊆M is a halfspace if both h and its complement h∗ := M \ h

are convex and non-empty. A wall of M is an unordered pair {h, h∗}, where h is a halfspace. Let
W (M) and H (M) denote, respectively, the sets of walls and halfspaces of M .

If A ⊆M is a subset, we denote by 〈A〉 ⊆M the median subalgebra generated by A. This
is the intersection of all median subalgebras of M that contain A.

Every CAT(0) cube complex X has a natural structure of median algebra given by its median
operator m : X3 → X. If x, y, z ∈ X are vertices, m(x, y, z) is also a vertex and it is uniquely
determined by the following property: a halfspace ofX containsm(x, y, z) if and only if it contains
at least two among x, y, z. The definitions of convexity, halfspaces and hyperplanes/walls coincide
for a cube complex X and the median-algebra structure on its 0-skeleton. In addition, note that
the map m : X3 → X is 1-Lipschitz.
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A map f : M → N between median algebras is a median morphism if, for all x, y, z ∈M , we
have f(m(x, y, z)) = m(f(x), f(y), f(z)). If f is a median morphism, then preimages of convex
subsets are again convex. In particular, if f is onto, preimages of halfspaces are halfspaces. When
f is onto, it also takes convex subsets to convex subsets.

If X is a CAT(0) cube complex and C ⊆ X is a convex subcomplex, then the gate-projection
to C is a median morphism.

A median algebra is discrete if any two of its points are separated by only finitely many
walls. It was shown by Chepoi [Che00] and later by Roller [Rol98] that every discrete median
algebra is canonically isomorphic to the 0-skeleton of a unique CAT(0) cube complex. We will
rely on this fact repeatedly in § 7.3, referring to it as Chepoi–Roller duality.

2.1.6 Restriction quotients. Consider an action G � X and a G-invariant set of hyperplanes
U ⊆ W (X). Then there exists a unique action on a CAT(0) cube complex G � X(U) satisfying
the following properties.

• There is a G-equivariant, surjective, median morphism p : X → X(U).
• If h is a halfspace of X(U), then p−1(h) is a halfspace of X bounded by a hyperplane in U .
• This establishes a G-equivariant bijection between hyperplanes of X(U) and elements of U .

The cube complex X(U) is known as the restriction quotient of X associated to U . Restriction
quotients were introduced by Caprace and Sageev in [CS11, p. 860].

2.2 Euclidean factors
The goal of this subsection is to prove the following result, which will only be required in § 7.4
in order to prove Theorem E.

Proposition 2.2. Consider a product of CAT(0) cube complexes X × L, where L is a quasi-
line. If G acts properly, cocompactly and faithfully on X × L preserving the splitting, then G
has a finite-index subgroup of the form H × Z, where H acts trivially on L and the Z-factor acts
trivially on X.

This is similar to [NS13, Corollary 2.8], whose proof however relies on [NS13, Lemma 2.7],
which appears to be false (if ‘flat’ is to be interpreted in the CAT(0) sense). For instance, consider
the quasi-line obtained by stringing together countably many squares diagonally to form a chain,
whose automorphism group is not discrete (it contains a direct product of countably many copies
of Z/2Z).

For this reason, we give an alternative proof here, based on the following two lemmas. Note
that the first lemma can fail if we replace automorphisms of X with isometries (e.g. for X = R2).

Lemma 2.3. Let G ≤ Aut(X) act properly and cocompactly on the CAT(0) cube complex X.
Then G has finite index in its normaliser within Aut(X).

Proof. Let N be the normaliser of G in Aut(X). Fix a vertex p ∈ X and let Np be the subgroup
of N fixing it. Since N permutes the finitely many G-orbits of vertices, N has a finite index
subgroup of the form G ·Np. We will prove the lemma by showing that Np is finite.

If g ∈ G and n ∈ Np, then d(ngn−1p, p) = d(gp, p). Since G acts properly on X, all orbits of
the conjugation action of Np on G must be finite. Hence, since G is finitely generated by the
Milnor–Schwarz lemma, a finite-index subgroup of Np commutes with G.

Now, let F ⊆ X be a finite set of vertices meeting all G-orbits. Since X is locally finite and
Np takes vertices to vertices, a finite-index subgroup N0 ≤ Np fixes F pointwise. By the above
paragraph, we can choose N0 so that it commutes with G. Given f ∈ F , g ∈ G and n ∈ N0, we
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have n · gf = ngn−1 · nf = gf . This shows that N0 fixes the 0-skeleton of X pointwise, so it is
the trivial group. Since N0 has finite index in Np, this proves that Np is finite, as required. �

Lemma 2.4. Consider a product of CAT(0) cube complexes X × Y . Let G act properly, cocom-
pactly and faithfully on X × Y preserving the factors. If the image of G in Aut(Y ) is discrete,
then G has a finite-index subgroup of the form H ×K, where H acts trivially on Y and K acts
trivially on X.

Proof. Let ρX : G→ Aut(X) and ρY : G→ Aut(Y ) be the homomorphisms corresponding to
the actions on the two factors. Note that, since X × Y admits a proper cocompact action, it is
locally finite; in particular, Y is locally finite. Thus, since ρY (G) is discrete, it acts on Y with
finite vertex-stabilisers. This shows that ker ρY is commensurable to the G-stabiliser of a vertex
of Y , so ker ρY acts cocompactly on X. By Lemma 2.3, ρX(ker ρY ) has finite index in ρX(G).
This shows that the subgroup ρ−1

X ρX(ker ρY ) = ker ρX · ker ρY has finite index in G. Since both
kernels are normal in G and they have trivial intersection, this is a direct product. �

The first paragraph of the following proof was suggested to me by Michah Sageev, as it has
the advantage of only requiring basic CAT(0) geometry. Alternatively, one can also use panel
collapse [HT19, Theorem A] to find a subcomplex of L isomorphic to R.

Proof of Proposition 2.2. Let P ⊆ L be the union of all geodesic lines in L for the CAT(0) metric.
By [BH99, Theorem II.2.14], we have a G-invariant splitting P = P0 × R, where P0 is compact.
Thus, since G must fix a point of P0, there exists a G-invariant CAT(0)-line L0 ⊆ L. Note that
G acts on L0 with discrete orbits (e.g. because the projection to L0 of the set of vertices of L in
a bounded neighbourhood of L0 is G-invariant, and L is locally finite).

Now, since G acts discretely on L0 � R, we can apply Lemma 2.4 to the G-action on X × L0

(modulo its finite kernel). It follows that the image of G in AutX is discrete and so we can apply
Lemma 2.4 again, this time to the whole product X × L. This yields the required conclusion. �

2.3 Convex-cocompactness
Fix a proper cocompact action without inversions on a CAT(0) cube complex G � X throughout
this subsection.

Definition 2.5. A subgroup H ≤ G is convex-cocompact with respect to the action G � X (or
just in X) if there exists anH-invariant convex subcomplex Y ⊆ X on whichH acts cocompactly.

As observed in [Fio22, Lemma 3.2], H is convex-cocompact if and only if the action on
C1(H) is cocompact and H is finitely generated. Thus, we can always take Y to be H-essential
in Definition 2.5, using Proposition 2.1.

We will often need to quantify convex-cocompactness, hence the following definition.

Definition 2.6. A subgroup H ≤ G is q-convex-cocompact if there exists an H-invariant convex
subcomplex Y ⊆ X on which H acts with exactly q orbits of vertices.

Since the number of H-orbits is minimised by H-essential convex subcomplexes, we can
always take Y in Definition 2.6 to be H-essential.

Remark 2.7. Let H ≤ G be q-convex-cocompact and let N be the maximum cardinality of
the G-stabiliser of a vertex of X. Then H has index ≤ qN in all its finite-index overgroups
within G.

Indeed, suppose H has finite index d in a subgroup H ′ ≤ G. Note that a hyperplane of X is
skewered by an element of H if and only if it is skewered by an element of H ′, so C1(H) = C1(H ′).
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Since C1(H ′) equivariantly embeds in X, the H ′-stabiliser of any vertex of C1(H ′) has cardinality
≤ N . Now, if H ′ acts on C1(H ′) with k orbits of vertices, then H acts on C1(H) with at least
kd/N orbits of vertices, hence q ≥ kd/N ≥ d/N .

Lemma 2.8. Let H,K ≤ G be subgroups that leave invariant convex subcomplexes Y, Z ⊆ X,
respectively, and act cocompactly on them. Then H ∩K acts cocompactly on πY (Z).

Proof. We split the proof into the following three claims.

Claim 1. For every ball B ⊆ X, only finitely many distinct G-translates of Y and Z meet B.

Proof of Claim 1. Suppose this is not the case for a ball B ⊆ X. Then, since B contains only
finitely many vertices, there are infinitely many, pairwise distinct translates gnY all containing
the same vertex p ∈ B. Since H � Y is cocompact, there exists a compact subset Q ⊆ Y and
elements hn ∈ H with hng−1

n p ∈ Q. Since G � X is proper, the set F = {hng−1
n } is finite. Hence

g−1
n ∈ h−1

n F and gn ∈ F−1 ·H, contradicting the fact that the set {gnY } is infinite. �

Claim 2. For every ball B ⊆ X, only finitely many distinct G-translates of πY (Z) meet B.

Proof of Claim 2. Consider g ∈ G such that g · πY (Z) = πgY (gZ) intersects B. Then gY inter-
sects B, while gZ intersects the neighbourhood of B of radius d(Y, Z). By Claim 1, there are
only finitely many possibilities for the sets gY and gZ. It follows that only finitely many sets of
the form πgY (gZ) intersect B. �

Let L ≤ G be the G-stabiliser of πY (Z). Claim 2 and [HS20, Lemma 2.3] imply that
L � πY (Z) is cocompact.

Claim 3. A finite-index subgroup of L leaves Y and Z invariant.

Proof of Claim 3. By Claim 1, only finitely many distinct G-translates of Y contain πY (Z). By
the same argument, Z is among the finitely many G-translates of Z that contain πY (Z) in their
neighbourhood of radius d(Y, Z). Observing that L permutes these translates of Y and Z, we
conclude that a finite-index subgroup of L must preserve both Y and Z. �

Let GY , GZ ≤ G denote the G-stabilisers of Y and Z. Since H � Y is cocompact, H has
finite index in GY . Similarly, K has finite index in GZ . It follows that H ∩K has finite index in
GY ∩GZ , which has finite index in L by Claim 3. We have already observed that L � πY (Z) is
cocompact, so this implies that H ∩K � πY (Z) is cocompact. �

Given a subgroup H ≤ G, we denote by NG(H) ≤ G its normaliser.

Lemma 2.9. If H,K ≤ G are convex-cocompact in X, there exists a finite subset F ⊆ G such
that

{g ∈ G | gHg−1 ≤ K} = K · F ·NG(H).

Proof. Let C (q) be the collection of q-convex-cocompact subgroups of G.

Claim. For each q ≥ 1, only finitely many K-conjugacy classes of subgroups of K lie in C (q).

Proof of Claim. Let Y ⊆ X be a K-invariant, K-cocompact, convex subcomplex. Let Y0 ⊆ Y be
a finite set of vertices meeting every K-orbit.

Consider a subgroup L ≤ K lying in C (q). Then there exists an L-invariant convex subcom-
plex Z ⊆ X on which L acts with ≤ q orbits of vertices. Replacing Z with its gate-projection
to Y , we can assume that Z ⊆ Y . Conjugating L by an element of K, we can assume that Z
meets Y0.
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Now, the q-neighbourhood of Y0 in Y contains a set of vertices Z0 ⊆ Z meeting every L-orbit
in Z. By [BH99, Theorem I.8.10], L is generated by the elements {g ∈ L | d(gZ0, Z0) ≤ 1}.

Summing up, every subgroup of K lying in C (q) is K-conjugate to a subgroup generated by
a subset of the finite set {g ∈ G | d(gY0, Y0) ≤ 2q + 1}. This proves the claim. �

Choose q′ such that H ∈ C (q′). Then, for every g ∈ G, we have gHg−1 ∈ C (q′). The claim
implies that K contains only finitely many subgroups of this form up to K-conjugacy, and the
lemma follows. �
Definition 2.10. An action on a CAT(0) cube complex H � X is non-transverse if there do
not exist a hyperplane w ∈ W (X) and an element h ∈ H such that w and hw are transverse.

Recall from Proposition 2.1 that NG(H) leaves invariant the convex subcomplex C(H) and
its splitting C0(H) × C1(H).

Lemma 2.11. Let H ≤ G be convex-cocompact in X. Suppose that H acts non-transversely on
X. Then the action NG(H) � C0(H) is cocompact.

Proof. Let T (X) be the set of tuples (w1, . . . ,wk) of pairwise-transverse hyperplanes of X. Since
H acts non-transversely on X, each hyperplane of C0(H) is left invariant by H. Thus, maximal
cubes of C0(H) are in one-to-one correspondence with maximal H-fixed tuples in T (X).

Let us show that NG(H) acts cofinitely on the set of fixed points of H in T (X). By the
previous paragraph, this implies the lemma.

For every tuple (w1, . . . ,wk) in T (X), its stabiliser Gw1 ∩ · · · ∩Gwk
acts cocompactly on

the intersection w1 ∩ · · · ∩ wk (see e.g. [FH21, Lemma 2.3]), so it is convex-cocompact in X.
Lemma 2.9 implies that there exists a finite set F ⊆ G such that

{g ∈ G | H preserves gw1, . . . , gwk} = NG(H) · F · (Gw1 ∩ · · · ∩Gwk
).

It follows that every G-orbit in T (X) contains only finitely many NG(H)-orbits of elements
fixed by H. Since the action G � T (X) is cofinite, this shows that there are only finitely many
NG(H)-orbits of fixed points of H in T (X), as required. �
Example 2.12. Lemma 2.11 (and Corollary 2.13) can fail if H does not act non-transversely.

For instance, let G = Z2 � 〈h〉 act on the standard cubulation of R3, with Z2 generated by
unit translations in the x- and y-directions, respectively, and h(x, y, z) = (y, x, z + 1). Taking
H = 〈h〉, the space C0(H) is naturally identified with the xy-plane, but NG(H) is generated by
h and (x, y, z) �→ (x+ 1, y + 1, z).

Corollary 2.13. Let H ≤ G be convex-cocompact in X. If H � X is non-transverse, then the
following hold:

(1) NG(H) has a finite-index subgroup of the form H ·K, where H and K commute and H ∩K
is finite (thus, if G is virtually torsion-free, NG(H) is virtually a product H ×K);

(2) there exists a point p ∈ C(H) such that the fibre C0(H) × {∗} through p is K-invariant and
K-cocompact, while the fibre {∗} × C1(H) through p is H-invariant and H-cocompact;

(3) the action NG(H) � C(H) is cocompact, hence NG(H) is convex-cocompact in X.

Proof. Recall that both C(H) ⊆ X and its splitting C0(H) × C1(H) are preserved by NG(H). The
action H � C0(H) has a fixed point, so we have anH-invariant fibre {p0} × C1(H). The H-action
on this fibre is cocompact (see e.g. [Fio22, Lemma 3.2(3)]) and proper, since it equivariantly
embeds in X. Let p = (p0, p1) be any point in this fibre.

Consider the proper cocompact action H � C1(H). A finite index-subgroup N ≤ NG(H)
preserves theH-orbit of p1. IfN1 ≤ N is the subgroup fixing p1, thenN = H ·N1, the intersection
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H ∩N1 is finite, and a finite-index subgroup K ≤ N1 commutes with H. This can all be shown
exactly as in the proof of Lemma 2.3. Hence, part (1) follows.

By Lemma 2.11, NG(H) acts cocompactly on C0(H). The same holds for the finite-index
subgroup K ·H. Since H is elliptic in C0(H), a K-orbit coincides with a K ·H-orbit and so it
is coarsely dense in C0(H). Note that C0(H) is locally finite, since it embeds in X. Thus, K
acts cocompactly on C0(H), hence on the fibre C0(H) × {p1}. This proves part (2), and part (3)
follows immediately. �

2.4 Coarse medians
Coarse medians were introduced by Bowditch in [Bow13]. We present the following equivalent
definition from [NWZ19]. We write ‘x ≈C y’ with the meaning of ‘d(x, y) ≤ C’.

Definition 2.14. Let X be a metric space. A coarse median on X is a permutation-invariant
map μ : X3 → X for which there exists a constant C ≥ 0 such that, for all a, b, c, x ∈ X, we
have:

(1) μ(a, a, b) = a;
(2) μ(μ(a, x, b), x, c) ≈C μ(a, x, μ(b, x, c));
(3) d(μ(a, b, c), μ(x, b, c)) ≤ Cd(a, x) + C.

In accordance with [Fio22, § 2.6], we also introduce the following.

Definition 2.15. Two coarse medians μ1, μ2 are at bounded distance if μ1(x, y, z) ≈C μ2(x, y, z)
for some C ≥ 0 and all x, y, z ∈ X. A coarse median structure on X is the equivalence class [μ]
of coarse medians at bounded distance from μ. A coarse median space is a metric space with a
coarse median structure.

Definition 2.16. Let (X, [μ]) be a coarse median space. A coarsely Lipschitz map f : X →
X is coarse-median preserving if f(μ(x, y, z)) ≈C μ(f(x), f(y), f(z)) for some C ≥ 0 and all
x, y, z ∈ X.

Recall that CAT(0) cube complexes have a natural structure of median algebra, hence one
of coarse median space. The following is a simple observation.

Lemma 2.17. Let (X,m) be a CAT(0) cube complex. A map Φ: X(0) → X(0) is coarse-median
preserving if and only if there exists a constant C ≥ 0 such that, whenever x, y, p ∈ X are vertices
with p = m(x, y, p), the set W (Φ(p)|Φ(x),Φ(y)) contains at most C hyperplanes.

Proof. Suppose that Φ is coarse-median preserving and C is the constant in Definition 2.16.
Then, if p = m(x, y, p), we have Φ(p) ≈C m(Φ(p),Φ(x),Φ(y)). Hyperplanes separating these two
points are precisely those in the set W (Φ(p)|Φ(x),Φ(y)), which then has cardinality at most C.

Conversely, suppose that Φ is a map satisfying #W (Φ(p)|Φ(x),Φ(y)) ≤ C for all x, y, p ∈ X
with p = m(x, y, p). Consider arbitrary points x′, y′, z′ ∈ X and their median m′ = m(x′, y′, z′).
Then the set W (Φ(m′)|m(Φ(x′),Φ(y′),Φ(z′))) is contained in the union

W (Φ(m′)|Φ(x′),Φ(y′)) ∪ W (Φ(m′)|Φ(y′),Φ(z′)) ∪ W (Φ(m′)|Φ(z′),Φ(x′)),

where each of the three sets has cardinality at most C by our assumption on Φ. It follows that
Φ(m′) ≈3C m(Φ(x′),Φ(y′),Φ(z′)), showing that Φ is coarse-median preserving. �

Definition 2.18. A coarse median group is a pair (G, [μ]) where G is a finitely generated group
and [μ] is a coarse median structure with respect to the word metrics on G. Contrary to [Bow13],
we additionally require all left multiplications by elements of G to be coarse-median preserving.
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Let (G, [μ]) be a coarse median group. Note that all automorphisms of G are quasi-
isometries with respect to the word metrics on G. We denote the set of coarse-median preserving
automorphisms by Aut(G, [μ]), or simply Autcmp(G) when the coarse median structure is clear.

Note that Autcmp(G) ≤ Aut(G) is a subgroup containing all inner automorphisms, so it
descends to a subgroup Outcmp(G) ≤ Out(G).

All hyperbolic groups and mapping class groups are coarse median groups [Bow13]. However,
the main example of interest for this paper is provided by cocompactly cubulated groups, as this
provides structures of coarse median group on all special groups.

Example 2.19. Every proper cocompact action on a CAT(0) cube complex G � X induces a
canonical structure of coarse median group on G. It suffices to pull back to G the median
operator of X via any G-equivariant quasi-isometry G→ X. The result is independent of all
choices involved.

Note however that different actions on CAT(0) cube complexes can induce different coarse
median structures on G. This is particularly evident for free abelian groups Zn with n ≥ 2
(corresponding to changes of basis). An exception is provided by hyperbolic groups, as they
always admit a unique coarse median structure (see e.g. [NWZ19, Theorem 4.2]).

Definition 2.20. Let (X, [μ]) be a coarse median space. A subset A ⊆ X is quasi-convex if
there exists C ≥ 0 such that μ(A×A×X) is contained in the C-neighbourhood of A.

Remark 2.21. Let G � X be a proper cocompact action on a CAT(0) cube complex, and let
[μX ] be the induced coarse median structure on G. Then a subgroup H ≤ G is quasi-convex with
respect to [μX ] if and only if it is convex-cocompact in X. See for instance [Fio22, Lemma 3.2].

Remark 2.22. Let (G, [μ]) be a coarse median group. If H ≤ G is quasi-convex and ϕ is a coarse-
median preserving automorphism of G, then ϕ(H) is again quasi-convex.

In coarse median groups we also have the following notion of orthogonality of subgroups,
which was referenced in the definition of twists and folds in the Introduction.

Definition 2.23. Let (G, [μ]) be a coarse median group. Two subgroups H,K ≤ G are
orthogonal (written H ⊥ K or H ⊥[μ] K) if the set {μ(1, h, k) | h ∈ H, k ∈ K} is finite.

Remark 2.24. Orthogonal subgroups have finite intersection. The converse holds for quasi-convex
subgroups.

Lemma 2.25. Suppose that G admits a proper cocompact action on a CAT(0) cube
complex X. Let [μX ] be the induced coarse median structure.

(1) If H,K ≤ G commute and H ⊥ K, then W1(H) ⊆ W0(K) and W1(K) ⊆ W0(H).
(2) If H,K ≤ G are as in Corollary 2.13, then H ⊥ K.

Proof. Part (2) is immediate from Corollary 2.13(2) and the definition of orthogonality.
Regarding part (1), it suffices to show that, for every h ∈ H, we have W1(h) ⊆ W0(K).

Since h and K commute, we have kW1(h) = W1(h) for every k ∈ K. In addition, for every
w ∈ W1(h), each k ∈ K takes the side of w containing a positive semi-axis of h to the side of kw
containing a positive semi-axis of h. Thus, either kw and w intersect, or k skewers w.

If no element ofK skewers an element of W1(h), this shows that W1(h) ⊆ W0(K), as required.
If instead some k ∈ K skewers a hyperplane w ∈ W1(h), then 〈k〉 · w ⊆ W1(h) ∩W1(k). In this
case, W1(h) ∩W1(k) is infinite, so μ(1, hn, kn) diverges for n→ +∞, violating the fact that
H ⊥ K. �
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2.5 Ultralimits
For a detailed treatment of ultrafilters and ultralimits, the reader can consult [DK18, Ch. 10].
Here we briefly recall only one basic construction.

Fix a non-principal ultrafilter ω on N. Consider a sequence G � Xn of isometric actions on
metric spaces, with a sequence of basepoints on ∈ Xn. Let S ⊆ G be a finite generating set.

We say that the sequence (G � Xn, on) ω-converges if, for every generator s ∈ S, we have
limω d(on, son) < +∞. In this case, the ω-limit is the isometric action G � Xω constructed
as follows. Points of Xω are sequences (xn) with xn ∈ Xn and limω d(xn, on) < +∞, where we
identify sequences (xn) and (x′n) if limω d(xn, x′n) = 0. The G-action on Xω is defined by g(xn) :=
(gxn).

If a sequence of actions on R-trees G � Tn ω-converges to an action G � Tω (for some choice
of basepoints), then Tω is a complete R-tree. Note that the action G � Tω will almost always
fail to be minimal, even if all actions G � Tn are.

This construction will play a major role in §§ 5.2 and 5.4.

3. Special groups and right-angled Artin groups

A group is usually said to be special if it is the fundamental group of a compact special cube
complex [HW08, Sag14]. For our purposes, it is more convenient to use the following, entirely
equivalent characterisation.

Definition 3.1. A group G is special if and only if G is a convex-cocompact subgroup of a
right-angled Artin group AΓ with respect to the action on the universal cover of the Salvetti
complex.

Note that special groups are torsion-free.

3.1 Notation and basic properties
In the rest of the paper, we employ the following notation.

• We denote right-angled Artin groups by AΓ and universal covers of Salvetti complexes by XΓ.
As customary, we identify the 0-skeleton of XΓ with AΓ.

• We have a map γ : W (XΓ) → Γ(0) that pairs each hyperplane of XΓ with its label.
• For each v ∈ Γ(0), we denote by πv : XΓ → Tv the restriction quotient associated to the set of

hyperplanes γ−1(v) ⊆ W (XΓ). This is a simplicial tree with an AΓ-action.
• If g ∈ AΓ, we denote by Γ(g) ⊆ Γ the set of labels appearing on one (equivalently, all) axis of
g in XΓ. Equivalently, Γ(g) is the set of v ∈ Γ for which g is loxodromic in the tree Tv. Note
that Γ(g) ⊆ γ(W (1|g)), though this might not be an equality if g is not cyclically reduced.

• If K ≤ AΓ is a subgroup, we also write Γ(K) :=
⋃
g∈K Γ(g).

• We do not distinguish between subgraphs Δ ⊆ Γ and their 0-skeleton. If Δ ⊆ Γ, we write

Δ⊥ =
⋂
v∈Δ

lk v, Δ⊥ =
⋂
v∈Δ

st v.

Remark 3.2.

(1) For every Δ ⊆ Γ, the centraliser of AΔ in AΓ is AΔ⊥ .
(2) We have Δ⊥ = Δ⊥ � {c1, . . . , ck}, where the ci are those vertices of Δ such that Δ ⊆ st ci.

We record here a few basic lemmas for later use.
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Lemma 3.3. Consider a, b ∈ AΓ such that 1, a, ab lie on a geodesic of XΓ in this order. Then

γ(W (1|a)) ∩ γ(W (1|b)) ⊆ Γ(a) ∪ Γ(b) ∪ Γ(ab).

Proof. Consider v ∈ γ(W (1|a)) ∩ γ(W (1|b)) and suppose that v �∈ Γ(a) ∪ Γ(b). Write a = xa′x−1

and b = yb′y−1 as reduced words, with a′, b′ cyclically reduced. Since 1, a, ab lie on a geodesic,
the word xa′x−1yb′y−1 spells a geodesic in XΓ.

Since v �∈ Γ(a) ∪ Γ(b), we must have v ∈ γ(W (1|x)) ∩ γ(W (1|y)). Thus, there exist halfspaces:

h1 ∈ H (1|x), h2 ∈ H (xa′x−1yb′|xa′x−1yb′y−1),

bounded by hyperplanes labelled by v. Since xa′x−1yb′y−1 spells a geodesic, we have h2 � h1.
Note that ab · h1 lies in H (xa′x−1yb′y−1|xa′x−1yb′y−1x). In addition, since x−1y is a sub-path
of a geodesic, it is itself a geodesic, hence y−1x also spells a geodesic. This shows that ab · h1 �

h2 � h1. In conclusion, ab skewers a hyperplane labelled by v, so v ∈ Γ(ab). �

Lemma 3.4. Consider g, h ∈ AΓ and x ∈ XΓ. If h fixes W (x|gx) pointwise, then g and h
commute.

Proof. Recall that Min(g) ⊆ XΓ is convex. Replacing x with its gate-projection to Min(g) can
only shrink the set W (x|gx), so we can assume that x is on an axis of g. Conjugating g and h
by x, we can further assume that x = 1, i.e. that g is cyclically reduced. Now, the conclusion is
straightforward. �

Lemma 3.5. Consider g, h ∈ AΓ.

(1) There exists k ∈ 〈g, h〉 with Γ(g) ∪ Γ(h) ⊆ Γ(k).
(2) If g is cyclically reduced and h �∈ AΓ(g), then there exists k ∈ 〈g, h〉 with Γ(k) �⊆ Γ(g).

Proof. In order to prove part (1), note that an element x ∈ AΓ is loxodromic in the tree Tv if and
only if v ∈ Γ(x). Thus 〈g, h〉 acts without a global fixed point on all trees Tv with v ∈ Γ(g) ∪ Γ(h).
It follows (for instance, by [CU18, Theorem 5.1]) that there exists k ∈ 〈g, h〉 that is loxodromic
in all these trees, that is, Γ(g) ∪ Γ(h) ⊆ Γ(k).

We now prove part (2). We can assume that Γ(h) ⊆ Γ(g), otherwise we can take k = h. Since
g is cyclically reduced, the vertex set of Min(g) ⊆ XΓ is contained in AΓ(g) ×AΓ(g)⊥ .

Observe that Min(h) and AΓ(g) ×AΓ(g)⊥ are disjoint. Indeed, suppose that a vertex x ∈ XΓ

lies in their intersection. Since x ∈ Min(h), we have x−1hx ∈ AΓ(h) ≤ AΓ(g). Hence h lies in AΓ(g),
since x ∈ AΓ(g) ×AΓ(g)⊥ . This contradicts the assumption that h �∈ AΓ(g).

Now, since Min(h) and AΓ(g) ×AΓ(g)⊥ are disjoint and convex, there exists a hyperplane w

separating them. Choosing w closest to AΓ(g) ×AΓ(g)⊥ , we can assume that w := γ(w) does not
lie in Γ(g). It follows that, in the tree Tw, the elements g and h are both elliptic, with disjoint
sets of fixed points (which are just the projections to Tw of Min(g) and Min(h)). Thus, gh is
loxodromic in Tw, which implies that w ∈ Γ(gh). �

3.2 Label-irreducible elements
The following notion will play a fundamental role in the rest of the paper. We recall here a few
observations from [Fio22, § 3.2].

Definition 3.6. An element g ∈ AΓ \ {1} is label-irreducible if the subgraph Γ(g) ⊆ Γ does not
split as a non-trivial join.

Recall that, if G1 and G2 are graphs, then their join G1 ∗ G2 is the graph obtained by adding
to the disjoint union G1 � G2 edges between every vertex of G1 and every vertex of G2.
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Remark 3.7. The following are straightforward properties of label-irreducibles.

(1) An element g is label-irreducible if and only if the subgroup 〈g〉 is convex-cocompact in XΓ.
(2) Every g ∈ AΓ can be written as g = g1 · . . . · gk, where g1, . . . , gk are pairwise-commuting

label-irreducibles with 〈gi〉 ∩ 〈gj〉 = {1} for i �= j. This decomposition is unique up to per-
mutation, so we refer to the gi as the label-irreducible components of g. Here Γ(g) =
Γ(g1) � · · · � Γ(gk) is precisely the maximal join-decomposition of Γ(g).

(3) Elements g, h ∈ AΓ commute if and only if every label-irreducible component of g commutes
with every label-irreducible component of h.

(4) If two label-irreducible elements g, h ∈ AΓ commute, then either Γ(g) ⊆ Γ(h)⊥ or 〈g, h〉 � Z

(for instance, this follows from Remark 2.24 and Lemma 2.25(1)).
(5) If g = g1 · . . . · gk is the decomposition of g into label-irreducibles, then the centraliser of g

in AΓ splits as

C1 × · · · × Ck × P,

where Ci ≤ AΓ is the maximal cyclic subgroup containing gi, and P ≤ AΓ is parabolic. If g
is cyclically reduced, then P = AΓ(g)⊥ .

(6) Let G ≤ AΓ be convex-cocompact in XΓ. Consider an element g ∈ G and its decomposition
into label-irreducibles g = g1 · . . . · gk, where gi ∈ AΓ. Then G ∩ 〈gi〉 �= {1} for each 1 ≤ i ≤
k (see for instance [Fio22, Lemma 3.16]). In fact, ifG is q-convex-cocompact, thenG contains
a power of each gi with exponent ≤ q (see [Fio22, Remark 3.17]).

Lemma 3.8. Consider g, h ∈ AΓ and v ∈ Γ. Suppose that g is loxodromic in Tv with axis α. If
Min(h, Tv) intersects α in an arc of length > 4 dimXΓ · max{
Tv(g), 
Tv(h)}, then hα = α.

Proof. Note that exactly one of the label-irreducible components of g is loxodromic in Tv. In
addition, this component has the same axis and the same translation length as g. Thus, we
can assume that g is label-irreducible. In this case, [Fio22, Corollary 3.14] shows that g and h
commute, so it is clear that h preserves the axis of g. �

Recall that, given a group G, a subgroup H ≤ G and a subset K ⊆ G, we denote by ZH(K)
the centraliser of K in H, i.e. the subgroup of elements of H that commute with all elements
of K.

Remark 3.9. Let G ≤ AΓ be convex-cocompact and let g ∈ G be label-irreducible.

(1) If ϕ ∈ Aut(G) is coarse-median preserving (for the coarse median structure induced by AΓ),
then ϕ(g) is again label-irreducible. This follows from Remarks 3.7(1) and 2.21.

(2) We can define the straight projection πg : ZG(g) → Z as the only homomorphism that is
surjective, with convex-cocompact kernel, and with πg(g) > 0.

Recall that ZAΓ
(g) = C × P , where P ≤ AΓ is parabolic and C ≤ AΓ is the maximal

cyclic subgroup containing g. The subgroup ZG(g) ≤ ZAΓ
(g) is virtually 〈g〉 × (G ∩ P ).

Thus, πg is simply the restriction to ZG(g) of the coordinate projection C × P → C, suitably
shrinking the codomain to ensure that πg is surjective. In particular, we have kerπg = G ∩ P .

If ϕ ∈ Aut(G) is coarse-median preserving, note that πϕ(g) = πg ◦ ϕ−1.

We conclude this subsection with a couple of definitions that will be needed later on.

Definition 3.10. A subgroup H ≤ AΓ is full if it is closed under taking label-irreducible
components.

Remark 3.11. If H ≤ AΓ is full, then H is generated by the label-irreducibles that it contains.

249

https://doi.org/10.1112/S0010437X22007850 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007850


E. Fioravanti

Observe that, for every group G and every subset A ⊆ G, we have ZGZGZG(A) = ZG(A).

Definition 3.12. Let G be a group. We say that a subgroup H ≤ G is a centraliser in G if
H = ZGZG(H). Equivalently, there exists a subset A ⊆ G such that H = ZG(A).

Remark 3.13. Centralisers in AΓ are full, by Remark 3.7(3).

3.3 Parabolic subgroups
Recall the following standard terminology.

Definition 3.14. A subgroup P ≤ AΓ is parabolic if P = gAΛg
−1 for some Λ ⊆ Γ and g ∈ AΓ.

The following alternative characterisation of parabolic subgroups will be needed in § 3.5.

Proposition 3.15. A subgroup H ≤ AΓ is parabolic if and only if it satisfies the following
property. For every cyclically reduced element a ∈ AΓ, written as a reduced word a1 . . . an with
ai ∈ Γ±, and for every g ∈ AΓ with gag−1 ∈ H, we have gaig

−1 ∈ H for every i.

Proof. We first show that parabolics have this property. Since the property is invariant under
conjugation, it suffices to verify it for subgroups of the form AΛ with Λ ⊆ Γ. If gag−1 ∈ AΛ,
then Γ(a) = Γ(gag−1) ⊆ Λ and, since a is cyclically reduced, each ai must lie in Λ. Observing
that elements of AΛ are AΓ-conjugate if and only if they are AΛ-conjugate, we see that g ∈
AΛ · ZAΓ

(a). Since a is cyclically reduced, ZAΓ
(a) =

⋂
i ZAΓ

(ai), hence gaig−1 ∈ AΛ for every i.
Conversely, let H ≤ AΓ be a subgroup satisfying the property. By Lemma 3.5(1), there exists

x ∈ H with Γ(x) = Γ(H). Up to conjugating H, we can assume that x is cyclically reduced. Our
property then yields AΓ(H) ≤ H. If the reverse inclusion did not hold, Lemma 3.5(2) would yield
an element y ∈ H with Γ(y) �⊆ Γ(H), which is impossible. Thus H = AΓ(H). �
Definition 3.16. A parabolic stratum is a subset of XΓ of the form gAΔ for some Δ ⊆ Γ and
g ∈ AΓ (we identify as usual the 0-skeleton of XΓ with AΓ).

A parabolic stratum can equivalently be defined as the set of points of XΓ that one can reach
starting at a given vertex g ∈ XΓ and only crossing edges with label in a given subgraph Δ ⊆ Γ.

Remark 3.17. Here are a few straightforward properties of parabolic strata.

(1) Intersections of parabolic strata are parabolic strata. Gate-projections of parabolic strata
to parabolic strata are parabolic strata.

(2) If P is a parabolic stratum and g ∈ AΓ is an element with gP ∩ P �= ∅, then gP = P.
(3) Stabilisers of parabolic strata are parabolic subgroups of AΓ.
(4) For every g ∈ AΓ, there exists a parabolic stratum P such that the hyperplanes of P are

precisely the hyperplanes of XΓ that are preserved by g, namely the elements of W0(g,XΓ).
It follows that, for every subgroup H ≤ AΓ, there exists a parabolic stratum P whose
hyperplanes are precisely those in W0(H,XΓ).

Lemma 3.18. If H ≤ AΓ is convex-cocompact and gHg−1 ≤ H for some g ∈ AΓ, then
gHg−1 = H.

Proof. Let Z ⊆ XΓ be an H-essential convex subcomplex. Since g−1Z is g−1Hg-invariant and
H ≤ g−1Hg, the finite set W (Z|g−1Z) is H-invariant, hence it is contained in W0(H,XΓ).

By Remark 3.17(4), there exists a parabolic stratum P ⊆ XΓ such that the hyperplanes of
P are precisely those preserved by H. By the previous paragraph, we can choose P so that
it intersects both Z and g−1Z. Note that P is acted upon vertex-transitively by its stabiliser
P ≤ AΓ, so there exists x ∈ P such that xg−1Z ∩ Z �= ∅. By Lemma 3.4, x commutes with H.
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Thus, replacing g with gx−1, we can assume that g−1Z ∩ Z �= ∅ without altering gHg−1. Since
g−1Z ∩ Z is H-invariant and Z is H-essential, we deduce that Z ⊆ g−1Z. Hence gZ ⊆ Z.

Now, pick a vertex y ∈ Z. Since H is convex-cocompact, it acts cocompactly on Z, hence
there exist integers 1 ≤ m < n such that gmy and gny are in the same H-orbit. Since AΓ acts
freely on XΓ, this implies that gn−m ∈ H. In particular, gn−m normalises H, so we cannot have
gHg−1 � H. �

Definition 3.19. Let G ≤ AΓ be convex-cocompact. A subgroup of G is G-parabolic if it is of
the form G ∩ P with P ≤ AΓ parabolic. To avoid confusion, the prefix G- will never be omitted.

Lemma 3.20. LetG ≤ AΓ act cocompactly on a convex subcomplex Y ⊆ XΓ. For every parabolic
subgroup P ≤ AΓ, there exists a parabolic stratum P ′ stabilised by a parabolic subgroup P ′ ≤ P
such that G ∩ P ′ = G ∩ P and P ′ ∩ Y �= ∅.

Proof. Consider the gate-projection πY : XΓ → Y . Let P be a parabolic stratum stabilised by
P and pick a point p ∈ πY (P). Define P ′ as the parabolic stratum that contains p and satisfies
γ(W (P ′)) = γ(W (P)) ∩ γ(W (Y |P))⊥. It is easy to see that πY (P) = Y ∩ P ′.

Let P ′ ≤ AΓ be the parabolic subgroup associated to P ′. Since P ′ crosses the same hyper-
planes as a sub-stratum of P, we have P ′ ≤ P , hence G ∩ P ′ ≤ G ∩ P . By Lemma 2.8, G ∩ P ′

acts cocompactly on πY (P ′) = Y ∩ P ′. This set coincides with πY (P), so it is preserved by G ∩ P ,
hence G ∩ P ′ has finite index in G ∩ P . In particular, every element of G ∩ P has a power that
lies in P ′. Since P ′ is parabolic, this implies that G ∩ P ≤ P ′, and hence G ∩ P ′ = G ∩ P . �

Corollary 3.21. If G ≤ AΓ is convex-cocompact, there are only finitely many G-conjugacy
classes of G-parabolic subgroups.

Proof. Let Y ⊆ XΓ be a convex subcomplex on which G acts cocompactly. By Lemma 3.20, every
G-parabolic subgroup is of the form G ∩ P for a parabolic subgroup P ≤ AΓ whose parabolic
stratum P intersects Y . There are only finitely many G-orbits of such parabolic strata, hence
only finitely many G-conjugacy classes of such subgroups of AΓ. �

Lemma 3.22. Let G ≤ AΓ be a q-convex-cocompact subgroup for q ≥ 1. Let H ≤ G be an
arbitrary convex-cocompact subgroup. Then:

(1) NG(H) has a finite-index subgroup that splits as H ×K, where K ≤ G is G-parabolic;
(2) ZG(H) acts on the set W1(G) ∩W0(H) with at most 2q · #Γ(0) orbits;
(3) every G-parabolic subgroup of G is q-convex-cocompact in AΓ.

Proof. Choose convex subcomplexes Z ⊆ Y ⊆ XΓ, where Z is H-invariant and H-essential, while
Y is G-invariant and G-essential.

We prove part (3) first. Lemma 3.20 shows that G-parabolic subgroups of G are always of
the form G ∩ P , where P is the stabiliser of a stratum P that intersects Y . Observe that points
of P ∩ Y in the same G-orbit are also in the same (G ∩ P )-orbit. Indeed, if x and gx lie in P ∩ Y
for some g ∈ G, then gP ∩ P �= ∅, hence gP = P and g ∈ G ∩ P . This proves part (3).

We now discuss the rest of the lemma. Remark 3.17(4) provides a parabolic stratum P ⊆ XΓ

whose hyperplanes are precisely the elements of W0(H). We can choose P so that P ∩ Z �= ∅.
Then the elements of W1(G) ∩W0(H) are precisely the hyperplanes of the intersection P ∩ Y ,
so we have a splitting C(H,Y ) = Z × (P ∩ Y ). Recall that NG(H) preserves C(H,Y ) along with
its two factors.

Let P ≤ AΓ be the stabiliser of P. By part (3), the G-parabolic subgroup G ∩ P acts on
P ∩ Y with at most q orbits of vertices. In particular, since vertices of XΓ have degree 2#Γ(0),
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there are at most 2q · #Γ(0) orbits of hyperplanes of P ∩ Y . By Lemma 3.4, G ∩ P is contained
in ZG(H). This proves parts (1) and (2), taking K = G ∩ P . �

3.4 Semi-parabolic subgroups
Definition 3.23. A subgroup H ≤ AΓ is semi-parabolic if it is conjugate to a subgroup of the
form 〈a1, . . . , ak〉 × AΔ and the following hold.

• The ai are cyclically reduced, label-irreducible and not proper powers.
• We have Γ(ai) ⊆ Δ⊥ for all i, and Γ(ai) ⊆ Γ(aj)⊥ for all i �= j.

We can always assume that AΔ has trivial centre, as this can be added to the ai.

We say that a subgroup H ≤ AΓ is closed under taking roots if, whenever gn ∈ H for some
g ∈ AΓ and n ≥ 1, we actually have g ∈ H.

Semi-parabolic subgroups are always convex-cocompact, full and closed under taking roots.

Lemma 3.24. A subgroup H ≤ AΓ is semi-parabolic if and only if it splits as H = A× P , where
P is parabolic and A is abelian, full and closed under taking roots.

Proof. It is clear that semi-parabolic subgroups admit such a splitting. Conversely, suppose that
H ≤ AΓ is an arbitrary subgroup with a splitting A× P as in the statement.

Since A is full, it has a basis of label-irreducible elements g1, . . . , gk. The fact that A is closed
under taking roots implies that none of the gi can be a proper power. Since the gi commute, we
must have Γ(gi) ⊆ Γ(gj)⊥ for all i �= j, by Remark 3.7(4). Since P is parabolic, we can conjugate
H and assume that H = 〈g1, . . . , gk〉 × AΔ for some Δ ⊆ Γ. Since gi is label-irreducible and
commutes with AΔ, we have Γ(gi) ⊆ Δ⊥, again by Remark 3.7(4).

It remains to further conjugate H in order to ensure that the gi are all cyclically reduced.
Write gi = xiaix

−1
i as a reduced word with ai cyclically reduced. Since gi commutes with AΔ, we

have gi ∈ AΔ⊥ (Remark 3.2(1)). In particular, x1 ∈ AΔ⊥ commutes with AΔ and, conjugating
H by x1, we can assume that g1 = a1.

Now, since g1 is cyclically reduced and g2 is a label-irreducible commuting with g1,
Remark 3.7(5) shows that x2 commutes with g1. Thus, conjugating H by x2, we can assume
that g2 = a2 without affecting g1 = a1. Repeating this procedure, we can ensure that all gi are
cyclically reduced. �

Corollary 3.25. Intersections of semi-parabolic subgroups are again semi-parabolic.

Proof. Let H1, H2 ≤ AΓ be two semi-parabolic subgroups. Write Hi = Ai × Pi, with Pi parabolic
and Ai abelian, full and closed under taking roots.

Every label-irreducible element in Hi lies either in Ai or in Pi. Note that H1 and H2 are
full, so H1 ∩H2 is full. Remark 3.11 implies that H1 ∩H2 is generated by the label-irreducibles
that it contains. Hence H1 ∩H2 is generated by the four subgroups A1 ∩A2, A1 ∩ P2, A2 ∩ P1

and P1 ∩ P2. The first three subgroups generate a full abelian subgroup A ≤ H1 ∩H2 closed
under taking roots. Since H1 ∩H2 splits as A× (P1 ∩ P2), Lemma 3.24 shows that H1 ∩H2 is
semi-parabolic.

There is no need to consider intersections of infinitely many semi-parabolic subgroups because
of Remark 3.26 below. �

Remark 3.26. There is a uniform bound (depending only on Γ) on the length of any chain of
semi-parabolic subgroups of AΓ. Indeed, let H1 � H2 ≤ AΓ be two semi-parabolic subgroups and
write Hi = Ai × Pi so that the Pi have trivial centre. Then P1 ∩A2 = {1} and, since P1 is full,
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we must have P1 ≤ P2. In conclusion, either P1 � P2, or P1 = P2 and A1 � A2, since A1 is full.
In the latter case, we have rkA1 < rkA2, since A1 is closed under taking roots.

Remark 3.27. Consider a semi-parabolic subgroup H ≤ AΓ and a parabolic subgroup P ≤ AΓ

that does not split as a product. If H ≤ P and Γ(H) = Γ(P ), then either H is cyclic or H = P .

Lemma 3.28. Let H ≤ AΓ be semi-parabolic. Let K ≤ H be any subgroup with Γ(K) =
Γ(H).

(1) If gKg−1 ≤ H for some g ∈ AΓ, then gHg−1 = H.
(2) Suppose that some g ∈ AΓ commutes with K, but not with H. Then H admits a splitting

A× P1 × P2, where A is abelian, the Pi are parabolics with trivial centre (possibly with
P2 = {1}), and K is contained in A×A′ × P2 for some abelian subgroup A′ ≤ P1.

Proof. We begin with part (1). Consider a splitting H = A× P as in Lemma 3.24. Recall that
Γ(A) ∩ Γ(P ) = ∅ and that every label-irreducible element of H lies in A ∪ P . If g ∈ AΓ, the
intersection H ∩ g−1Hg is full, so Remark 3.11 gives

H ∩ g−1Hg = (A ∩ g−1Ag) × (P ∩ g−1Pg).

Now, if gKg−1 ≤ H, we have K ≤ H ∩ g−1Hg. Hence

Γ(H) = Γ(K) ⊆ Γ(H ∩ g−1Hg).

This implies that Γ(A) ⊆ Γ(A ∩ g−1Ag) and Γ(P ) ⊆ Γ(P ∩ g−1Pg), thus g must normalise both
A and P . It follows that gHg−1 = H, proving part (1).

We now prove part (2). Let g ∈ AΓ be an element that commutes with K, but not with H.
We can assume that the parabolic subgroup P , defined as above, has trivial centre.

By Lemma 3.5(1), K contains an element k with Γ(k) = Γ(K) = Γ(H). We can write k =
ap, where a ∈ A and p ∈ P satisfy Γ(a) = Γ(A) and Γ(p) = Γ(P ). Let p1, . . . , pn be the label-
irreducible components of p. Since g commutes with k, it must commute with A and with all
the pi. The intersection of the centralisers of the pi is the subgroup 〈p′1, . . . , p′n〉 × ZAΓ

(P ), where
〈p′i〉 is the maximal cyclic subgroup containing 〈pi〉.

Since g commutes with A, but not with H, it cannot commute with P , and so it must have
powers of some of the p′i among its label-irreducible components. Up to reordering, these are
powers of p′1, . . . , p

′
m for some 1 ≤ m ≤ n. We have a splitting P = P1 × P2 where the Pi are

parabolic and Γ(P1) = Γ(p1) � · · · � Γ(pm). Since P has trivial centre, so do the Pi. Finally, since
K commutes with g, it is contained in A× 〈p′1, . . . , p′m〉 × P2, as required. �

In the rest of the subsection, we fix a convex-cocompact subgroup G ≤ AΓ. By analogy with
Definition 3.19, we introduce the following.

Definition 3.29. A subgroup Q ≤ G is G-semi-parabolic if Q = G ∩H for a semi-parabolic
subgroup H ≤ AΓ. In order to avoid confusion, the prefix G- will never be omitted.

Our interest in this notion is due to the following remark.

Remark 3.30. Centralisers in G (in the sense of Definition 3.12) are G-semi-parabolic. This
follows from Remark 3.7(5) and Corollary 3.25.

Lemma 3.31. If Q ≤ G is G-semi-parabolic, there exists a unique minimal semi-parabolic
subgroup H ≤ AΓ such that Q = G ∩H. We can write H = 〈a1, . . . , ak〉 × P , where:

(1) the ai are pairwise-commuting label-irreducibles with 〈ai〉 ∩Q �= {1};
(2) P ≤ AΓ is parabolic and both P and G ∩ P have trivial centre;
(3) we have Γ(Q) = Γ(H).
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Proof. By Corollary 3.25, the intersection H of all semi-parabolic subgroups of AΓ containing
Q is the unique minimal semi-parabolic subgroup with Q = G ∩H.

We can write H = 〈a1, . . . , ak〉 × P , where the ai are pairwise-commuting label-irreducibles
and P ≤ AΓ is parabolic. Remark 3.7(6) shows that G (and hence Q) contains a power of each
ai. We can assume that P has trivial centre, as this can be incorporated in the ai.

Let us show that Γ(Q) = Γ(H). By Remark 3.7(6), the sets Γ(ai) are all contained in Γ(Q)
and we have Γ(Q ∩ P ) = Γ(Q) ∩ Γ(P ). By Lemma 3.5(1), there exists g ∈ Q ∩ P with Γ(g) =
Γ(Q ∩ P ). If this were a proper subset of Γ(P ), we would be able to find a parabolic subgroup
P ′ with g ∈ P ′ � P and Γ(g) = Γ(P ′). Lemma 3.5(2) would then guarantee that Q ∩ P ≤ P ′.
Remark 3.7(6) and the fact that P ′ is closed under taking roots would imply that Q is contained
in 〈a1, . . . , ak〉 × P ′, violating minimality of H. We conclude that Γ(Q ∩ P ) = Γ(P ), which shows
that Γ(Q) = Γ(H).

Finally, if G ∩ P contained a non-trivial element g in its centre, we would have G ∩ P ≤
ZP (g). As above, the subgroup Q = G ∩H would then be contained in 〈a1, . . . , ak〉 × ZP (g).
Since ZP (g) has non-trivial centre, it is a proper semi-parabolic subgroup of P , which violates
minimality of H. �

Remark 3.32. Consider a G-semi-parabolic subgroup Q ≤ G and a homomorphism ρ : Q→ R

with Γ(ker ρ) = Γ(Q). Then there exists a finitely generated subgroup K ≤ ker ρ such that any
G-semi-parabolic subgroup containing K will contain Q.

Indeed, write Q = G ∩H with H = 〈a1, . . . , ak〉 × P as in Lemma 3.31. Write P = P1 ×
· · · × Pm, where each Pi is a parabolic subgroup of AΓ that does not split as a product. By
Remark 3.7(6), we have Γ(G ∩ Pi) = Γ(Pi). In addition, since G ∩ P has trivial centre, the inter-
sectionG ∩ Pi is non-abelian. DefineK so that Γ(K) = Γ(Q) and so that it contains a non-abelian
subgroup of each G ∩ Pi. Remark 3.27 applied to each Pi implies that K satisfies the required
property.

In the rest of the subsection, we prove a couple of results aimed at classifying kernels of
homomorphisms Q→ R, where Q ≤ G is G-semi-parabolic.

Lemma 3.33. Let Q ≤ G be G-semi-parabolic. Let H = 〈a1, . . . , ak〉 × P be as in Lemma 3.31.
If ρ : Q→ R is a homomorphism, then ker ρ ⊆ G ∩H ′ for a subgroup H ′ ≤ H such that:

(1) H ′ = 〈a1, . . . , as〉 × P for some 0 ≤ s ≤ k, up to reordering the ai;
(2) Γ(ker ρ) = Γ(H ′) and ZG(ker ρ) = ZG(H ′).

Proof. Define H ′ = 〈a1, . . . , as〉 × P , where s is the smallest integer such that H ′ contains ker ρ
(up to reordering the ai). Minimality of s implies that Γ(ker ρ) contains Γ(a1), . . . ,Γ(as). In order
to complete the proof, we only need to show that Γ(P ) ⊆ Γ(ker ρ) and ZG(ker ρ) = ZG(H ′).

Since Γ(G ∩H) = Γ(H), Remark 3.7(6) implies that Γ(G ∩ P ) = Γ(P ). Thus, for every
v ∈ Γ(P ), the action G ∩ P � Tv is not elliptic. If G ∩ P � Tv had a fixed point at infinity,
then Lemma 3.8 would show that all loxodromics have the same axis in Tv and, by [Fio22,
Corollary 3.14], they would lie in the centre of G ∩ P . However, G ∩ P has trivial centre by our
choice of H.

We conclude that, for every v ∈ Γ(P ), the action G ∩ P � Tv is nonelementary. Now, we
can use [MT18, Theorem 1.4] and the argument in the proof of [Sis18, Corollary 1.7(2)] to
conclude that, for every v ∈ Γ(P ), the kernel of ρ|G∩P contains an element acting loxodromically
on Tv (random walks can be easily avoided when ker(ρ|G∩P ) is finitely generated). Hence Γ(P ) ⊆
Γ(ker ρ).
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Finally, let us show that the inclusion ZG(H ′) ≤ ZG(ker ρ) cannot be strict. If it were,
Lemma 3.28(2) would yield a splitting P = P1 × P2, where P1 is a non-abelian parabolic
and ker ρ|G∩P1 is abelian. Since P is chosen as in Lemma 3.31, the intersection G ∩ P1 is
a non-virtually-abelian special group (recall Lemma 2.8). However, the above shows that
G ∩ P1 is abelian–by–abelian, which contradicts the flat torus theorem (see e.g. [BH99,
Theorem II.7.1(5)]). �
Remark 3.34. Given a G-semi-parabolic subgroup Q ≤ G and a homomorphism ρ : Q→ R, the
centre of ker ρ is always contained in the centre of Q.

Indeed, let the subgroups H,H ′ and the integers s, k be as in Lemma 3.33. The lemma
shows that the centre of ker ρ commutes with H ′. Since ker ρ ≤ H ′, it is also clear that ker ρ
commutes with as+1, . . . , ak. Together with H ′, these elements generate H, hence the centre of
ker ρ commutes with H, as required.

When the homomorphism ρ is discrete, we have the following dichotomy.

Proposition 3.35. Let Q ≤ G be G-semi-parabolic. Let ρ : Q→ Z be a homomorphism.
Then:

• either Γ(ker ρ) = Γ(Q), and NG(ker ρ) is a finite-index subgroup of NG(Q);
• or ker ρ is G-semi-parabolic, and a finite-index subgroup of Q splits as Z × ker ρ.

Proof. Write Q = G ∩H and H = 〈a1, . . . , ak〉 × P as in Lemma 3.31. Let H ′ = 〈a1, . . . , as〉 × P
be the subgroup with ker ρ ⊆ G ∩H ′ and Γ(ker ρ) = Γ(H ′) provided by Lemma 3.33.

Suppose first that H = H ′. Then Γ(ker ρ) = Γ(H) = Γ(Q) and Lemma 3.28(1) implies that
NAΓ

(ker ρ) ≤ NAΓ
(H). In particular, NG(ker ρ) ≤ NG(Q). In addition, NG(ker ρ) contains the

subgroup 〈Q,ZG(Q)〉, which has finite index in NG(Q) by Lemma 3.22(1).
Suppose instead that H ′ � H. Since ρ takes values in Z and every homomorphism Z2 → Z

has non-trivial kernel, we must have s = k − 1. Let π : H → Z be a homomorphism with kerπ =
H ′. Since Γ(Q) = Γ(H), the restriction π|Q : Q→ Z is non-trivial and has kernel G ∩H ′. Since
ker ρ ⊆ G ∩H ′ = kerπ|Q, the homomorphism π|Q factors through ρ and, since Z is Hopfian, we
must have ker ρ = G ∩H ′. This shows that ker ρ is G-semi-parabolic.

By Remark 3.7(6), the intersection G ∩ 〈ak〉 has finite index in 〈ak〉. It follows that the
subgroup (G ∩H ′) × (G ∩ 〈ak〉) = ker ρ× Z has finite index in G ∩H = Q. This proves the
proposition. �

We will also need the following.

Lemma 3.36. Let K be the collection of all subgroups of G that are the kernel of a homo-
morphism Q→ R, where Q varies among G-semi-parabolic subgroups. Then there exists a
constant N , depending only on G, such that every chain of subgroups in K has length at
most N .

Proof. Choose q ≥ 1 such that G ≤ AΓ is q-convex-cocompact.

Claim 1. There exists N1 such that every chain of G-semi-parabolics has length at most N1.

Proof of Claim 1. Let H1, . . . , Hn be semi-parabolic subgroups of AΓ such that G ∩H1 � · · · �

G ∩Hn. If the Hi are chosen as in Lemma 3.31, then H1 � · · · � Hn. By Remark 3.26, the latter
chain has length bounded purely in terms of Γ, proving the claim. �
Claim 2. There exists N2 such that every G-semi-parabolic subgroup has a generating set with
at most N2 elements.
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Proof of Claim 2. We begin by showing that, if H = A× P is a semi-parabolic subgroup of AΓ,
then the subgroup (G ∩A) × (G ∩ P ) has index at most q in G ∩H.

Let pP : H → P be the factor projection. By Lemma 2.8, G ∩H is a convex-cocompact sub-
group of A× P , so G ∩ P has finite index in pP (G ∩H) (e.g. by Lemma 2.4). By Lemma 3.22(3)
and Remark 2.7, this index is at most q. Now, if g, g′ ∈ G ∩H are such that pP (g) and pP (g′)
are in the same coset of G ∩ P , then g and g′ are in the same coset of (G ∩A) × (G ∩ P ). It
follows that (G ∩A) × (G ∩ P ) has index at most q in G ∩H.

Now, by Lemma 3.22(3) and [BH99, Theorem I.8.10], there exists an integer N3 such that
every G-parabolic subgroup has a generating set with at most N3 elements. Abelian subgroups
of G have rank at most dimXΓ. Along with the above observation, this shows that every G-semi-
parabolic subgroup has a generating set with at most q + dimXΓ +N3 elements. �

Now, consider a sequence of homomorphisms ρi : Qi → R, where each Qi is G-semi-parabolic
and we have ker ρi � ker ρi+1 for each i. By Lemma 3.25, the group Qi ∩Qi+1 is again G-semi-
parabolic and it contains ker ρi. Thus, replacing Qi with Qi ∩Qi+1 and restricting ρi, we can
assume that Qi ≤ Qi+1. Repeating the procedure, we can ensure that the Qi form a chain without
altering the kernels.

By Claim 1, there are at most N1 distinct subgroups among the Qi. So it suffices to consider
the situation where all Qi are the same group Q. In this case, the ρi descend to the abelianisation
of Q, which has rank ≤ N2 by Claim 2. In conclusion, the chain of kernels has length at most
N1(N2 + 1). �

3.5 ω-intersections of subgroups
Let ω be a non-principal ultrafilter on N. Given a set A and a sequence of subsets Ai ⊆ A, we
denote their ω-intersection by⋂

ω

Ai = {a ∈ A | a ∈ Ai for ω-all i} =
⋃

ω(J)=1

⋂
i∈J

Ai.

Remark 3.37. Let G be a group and let Hi ≤ G be a sequence of subgroups. If
⋂
ωHi is finitely

generated, then there exists J ⊆ N with ω(J) = 1 such that
⋂
ωHi =

⋂
i∈J Hi.

Indeed, suppose that
⋂
ωHi is generated by elements h1, . . . , hk. There are subsets Js ⊆ N

with ω(Js) = 1 such that hs ∈ Hi for all i ∈ Js. Thus it suffices to take J := J1 ∩ · · · ∩ Jk.

Proposition 3.38. Let G ≤ AΓ be convex-cocompact. Let Ki ≤ G be a sequence of sub-
groups.

(1) If all Ki are G-semi-parabolic, then so is
⋂
ωKi.

(2) If all Ki are centralisers in G, then so is
⋂
ωKi.

Proof. We begin with part (1). Let Hi ≤ AΓ be semi-parabolic subgroups with Ki = G ∩Hi.
Write Hi = Ai × Pi with Pi parabolic and Ai abelian. Since the Hi are all full,

⋂
ωHi is full,

hence generated by the label-irreducibles that it contains. If h ∈
⋂
ωHi is label-irreducible, then

either h ∈ Ai for ω-all i, or h ∈ Pi for ω-all i. This shows that
⋂
ωHi is generated by

⋂
ω Ai

and
⋂
ω Pi. The former is clearly abelian, while the latter is parabolic by the characterisation in

Proposition 3.15.
We conclude that

⋂
ωHi is finitely generated. By Remark 3.37 and Lemma 3.25, this is a

semi-parabolic subgroup of AΓ. Since
⋂
ωKi = G ∩

⋂
ωHi, this proves part (1).

Regarding part (2), recall that centralisers in G are G-semi-parabolic by Remark 3.30. If the
Ki are centralisers in G, part (1) ensures that

⋂
ωKi is finitely generated and so we can appeal
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again to Remark 3.37. Intersections of centralisers are again centralisers, so this completes the
proof. �

4. Arc-stabilisers versus centralisers

Throughout this section, we fix the following setting.

Assumption 4.1. Let G ≤ AΓ be a q-convex-cocompact subgroup of a right-angled Artin group.
We fix a G-invariant, G-essential convex subcomplex Y ⊆ XΓ on which G acts with q orbits of
vertices O1, . . . ,Oq.

Recall from the beginning of § 3.1 that XΓ admits various trees as restriction quotients
πv : XΓ → Tv, one for every vertex v ∈ Γ. Note that πv(Y ) ⊆ Tv is either a single point fixed
by G, or it is the unique G-minimal subtree of Tv (independently of the choice of Y ).

As discussed in the introduction, we are interested in understanding limits of sequences
of G-trees consisting of Tv suitably rescaled and twisted by an automorphism of G. In order
to identify arc-stabilisers of the limit R-tree, it is necessary to gain a good understanding of
arc-(almost-)stabilisers for each of the simplicial trees in the sequence.

Arc-stabilisers of G � Tv are quite nice (they are G-parabolic) but this niceness will normally
be lost when we twist Tv by an automorphism of G: the image of a G-parabolic subgroup under
an automorphism of G is not even convex-cocompact in general. By contrast, centralisers (as in
Definition 3.12) are much better behaved subgroups of G: we know that all automorphisms of G
take centralisers to centralisers, and that centralisers are always convex-cocompact.

Luckily, arcs of Tv can be perturbed so that their G-(almost-)stabiliser becomes a cen-
traliser in G. The proof of this result is the main aim of this section. The precise statement
is Corollary 4.17, which we reproduce here as a theorem for the reader’s convenience.

We emphasise that, without perturbing, it is still true that arc-stabilisers for G � Tv are the
intersection between G and the centraliser of a subset of AΓ (see Remark 4.4). The point is that
only centralisers of subsets of G are well behaved with respect to automorphisms of G.

Theorem 4.2. There exists a constant L, depending on q and Γ, with the following property.
Every arc β ⊆ πv(Y ) ⊆ Tv with 
(β) > 2L contains a sub-arc β′ ⊆ β with 
(β′) ≥ 
(β) − 2L such
that:

(1) either the stabiliser Gβ′ is a centraliser in G, i.e. ZGZG(Gβ′) = Gβ′ ;
(2) or ZGZG(Gβ′) = ZG(g) for a label-irreducible element g ∈ ZG(Gβ′).

In the 2nd case, the element g is loxodromic in Tv and its axis η ⊆ Tv satisfies 
(η ∩ β′) ≥

(β′) − 4q. In addition, 
Y (g) ≤ q and ZG(g) contains 〈g〉 ×Gβ′ as a subgroup of index ≤ q.

4.1 Decent pairs of hyperplanes
In this subsection, we introduce decent pairs of hyperplanes of Y . Proposition 4.6 shows that
stabilisers of decent pairs are (close to) centralisers in G. In the following subsections, we will
see how to reduce general pairs of hyperplanes of Y to decent ones.

For the following discussion, it is convenient to introduce the following notation.

Definition 4.3. Given disjoint hyperplanes u,w ∈ W (XΓ), we write:

• W(u,w) = W (u|w) � {u,w} ⊆ W (XΓ);
• Δ(u,w) = γ(W(u,w)) ⊆ Γ.
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Remark 4.4. Let u and w be disjoint hyperplanes of XΓ. If Δ = Δ(u,w), then:

(1) the subgroup of AΓ that stabilises u and w is conjugate to AΔ⊥ ;
(2) Δ does not split as a non-trivial join.

Recall that, if α ⊆ Y is a geodesic, W (α) ⊆ W (Y ) is the set of hyperplanes that it crosses.

Definition 4.5.

(1) A geodesic α ⊆ Y is decent if, for every v ∈ γ(W (α)), there exist an element gv ∈ G and a
vertex xv ∈ α such that gvxv ∈ α and v ∈ Γ(gv).

(2) A pair of disjoint hyperplanes u,w ∈ W (Y ) is decent if there exists a decent geodesic α ⊆ Y
with W (α) = W(u,w).

Given a hyperplane w ∈ W (XΓ), we denote its G-stabiliser by Gw.

Proposition 4.6. Let u,w ∈ W (Y ) be a decent pair of hyperplanes. Set Δ = Δ(u,w). Then:

(1) either ZGZG(Gu ∩Gw) = Gu ∩Gw;
(2) or ZGZG(Gu ∩Gw) = ZG(g) for a label-irreducible element g ∈ ZG(Gu ∩Gw). In this case,

Γ(g) = Δ and g skewers all but at most 2q hyperplanes of W(u,w). In addition, 
Y (g) ≤ q
and the subgroup 〈g〉 × (Gu ∩Gw) has index ≤ q in ZG(g).

Proof. Let α ⊆ Y be a decent geodesic with W (α) = W(u,w). Replacing α, u,w with their trans-
lates by an element of AΓ and conjugating G ≤ AΓ accordingly, we can assume that the initial
vertex of α is 1 ∈ AΓ. In particular, Gu ∩Gw = G ∩ AΔ⊥ (see Remark 4.4).

For every v ∈ γ(W (α)) = Δ, consider an element gv ∈ G and a point xv ∈ α such that gvxv ∈
α and v ∈ Γ(gv), as in Definition 4.5.

Note that α ⊆ AΔ ⊆ XΓ, so both xv and gvxv lie in AΔ. It follows that gv ∈ AΔ, and we can
write gv = avhva

−1
v as a reduced word with hv cyclically reduced and av, hv ∈ AΔ. We further

separate hv = h′vh
′′
v , where h′v is the label-irreducible component of hv with v ∈ Γ(h′v), and h′′v is

the (possibly trivial) product of the remaining label-irreducible components of hv. Let C(h′v) be
the maximal cyclic subgroup of AΓ containing h′v.

Now, since Gu ∩Gw fixes the set W (α) pointwise, Lemma 3.4 implies that gv ∈ ZG(Gu ∩Gw)
for every v ∈ Δ. Thus,

ZGZG(Gu ∩Gw) ≤
⋂
v∈Δ

ZAΓ
(gv) =

⋂
v∈Δ

avZAΓ
(hv)a−1

v ≤
⋂
v∈Δ

avZAΓ
(h′v)a

−1
v

=
⋂
v∈Δ

av(C(h′v) ×AΓ(h′v)⊥)a−1
v =

⋂
v∈Δ

avC(h′v)a
−1
v ×

⋂
v∈Δ

avAΓ(h′v)⊥a
−1
v

≤
⋂
v∈Δ

avC(h′v)a
−1
v ×

⋂
v∈Δ

avAlk va
−1
v .

Here, the second equality in the second line follows from Remark 3.11: indeed, Remark 4.4(2)
guarantees that the two sides contain exactly the same label-irreducibles.

Observe that
⋂
v∈Δ avAlk va

−1
v = AΔ⊥ . Indeed, for every v ∈ Δ, we have Δ⊥ ⊆ lk v. Since av

lies in AΔ, it commutes with AΔ⊥ . This shows that AΔ⊥ is contained in P :=
⋂
v∈Δ avAlk va

−1
v .

Observing that P is parabolic and Γ(P ) ⊆
⋂
v∈Δ lk v = Δ⊥, we conclude that P = AΔ⊥ .

Summing up, we have shown that

G ∩ AΔ⊥ = Gu ∩Gw ≤ ZGZG(Gu ∩Gw) ≤
[⋂

avC(h′v)a
−1
v

]
×AΔ⊥ .
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If ZGZG(Gu ∩Gw) is contained in AΔ⊥ , then Gu ∩Gw = ZGZG(Gu ∩Gw), and we are in the
first case of the proposition.

Otherwise, ZGZG(Gu ∩Gw) intersects
⋂
avC(h′v)a

−1
v by Remark 3.7(6) (recall that centralis-

ers are convex-cocompact). Let h ∈ AΓ be an element with 〈h〉 =
⋂
avC(h′v)a

−1
v , and let g be

the smallest power of h that lies in G.
It is clear that g is label-irreducible and commutes with Gu ∩Gw ≤ AΔ⊥ . Since v ∈ Γ(h′v) ⊆

Δ for every v ∈ Δ, we must have Γ(g) = Δ. Remark 3.7(5) shows that ZG(g) = G ∩ (〈h〉 × AΔ⊥).
Since ZGZG(Gu ∩Gw) is convex-cocompact and closed under taking roots in G, we conclude
that

ZG(g) = ZGZG(Gu ∩Gw).

It remains to prove the additional statements in the second case of the proposition.
Since g lies in ZGZG(Gu ∩Gw), it commutes with every element of the set

A = {k ∈ G | ∃x ∈ α, s.t. kx ∈ α} ⊆ ZG(Gu ∩Gw).

In addition, for every k ∈ A, we have Γ(k) ⊆ γ(W (α)) = Δ = Γ(g). Thus, since g is label-
irreducible, Remark 3.7(4) applied to the label-irreducible components of k shows that all k ∈ A
satisfy 〈g, k〉 � Z. Since g is the smallest power of h that lies in G, we conclude that A ⊆ 〈g〉.

If O is a G-orbit with #(O ∩ α) ≥ 3, then, since A ⊆ 〈g〉, there exists an axis of g containing
O ∩ α. Let α0 ⊆ α be the smallest subsegment that contains all intersections Oi ∩ α, where Oi

varies among G-orbits with #(Oi ∩ α) ≥ 3. Since the union of all axes of g forms a convex
subcomplex Min(g) ⊆ XΓ, we have α0 ⊆ Min(g). Since Γ(g) = γ(W (α)), the geodesic α0 cannot
cross any hyperplanes separating distinct axes of g (whose label would lie in Γ(g)⊥). Hence α0 is
contained in the convex hull of a single axis of g, and every hyperplane crossed by α0 is skewered
by g.

At most 2q vertices of α (and, therefore, at most 2q edges) can lie outside α0. It follows that
g skewers all but at most 2q hyperplanes in W (α) = W(u,w).

Finally, note that A contains an element k with 
Y (k) ≤ q (for instance, consider q + 1
consecutive vertices on α). This implies that 
Y (g) ≤ q. Recall that

〈g〉 × (Gu ∩Gw) ≤ ZG(g) = G ∩
[
〈h〉 × AΔ⊥

]
.

Since 
Y (g) ≤ q, we must have g = hn with n ≤ q. Recalling thatGu ∩Gw = G ∩ AΔ⊥ , this shows
that 〈g〉 × (Gu ∩Gw) has index ≤ q in G ∩ [〈h〉 × AΔ⊥ ].

This completes the proof of the proposition. �

4.2 Decomposing geodesics in Y
In this subsection, we describe a procedure to decompose geodesics α ⊆ Y into a controlled
number of better-behaved subsegments. The end result to keep in mind is Corollary 4.13.

It is convenient to introduce the following (admittedly a bit heavy) terminology and notation.
Luckily, this will not be required outside of this subsection.

Definition 4.7. Consider a geodesic α ⊆ Y .

(1) We denote by 0 ≤ o(α) ≤ q the number of orbits Oi with α ∩ Oi �= ∅.
(2) For v ∈ Γ and 1 ≤ i ≤ q, look at the words (in the standard generators of AΓ and their

inverses) spelled by the subsegments of α between consecutive points of α ∩ Oi. We denote
by ρi,v(α) ≥ 0 the number of such segments spelling words containing the letters v±.

(3) Define n(α) :=
∑

i #{v ∈ Γ | ρi,v(α) �= 0}.
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Definition 4.8. Consider a geodesic α ⊆ Y .

(1) We say that α is almost i-excellent if the endpoints of α lie in the same Oi and #(α ∩ Oi) ≥
3. The geodesic α is i-excellent if, in addition, ρi,v(α) �= 1 for every v ∈ Γ. We simply speak
of (almost) excellent geodesics when they are (almost) i-excellent for some i.

(2) The geodesic α is almost good if it is a union of almost excellent subsegments (possibly with
large overlaps). Similarly, α is good if α is a union of excellent subsegments.

The following is the reason why we care about these properties.

Lemma 4.9. Good geodesics are decent.

Proof. Since good geodesics are unions of excellent subsegments, it is enough to show that
excellent geodesics are decent. So, consider an excellent geodesic α ⊆ Y and v ∈ γ(W (α)).

Let O be the G-orbit that contains the endpoints of α. Then we can write the points of
α ∩ O, in the order in which they appear along α, as

x, g1x, g1g2x, . . . , g1g2 . . . gkx,

with all gi ∈ G. Setting ai = x−1gix ∈ AΓ, the points 1, a1, a1a2, . . . , a1a2 . . . ak lie on the geodesic
x−1α ⊆ XΓ. Note that v ∈ γ(W (α)) = γ(W (x−1α)), so v ∈ γ(W (1|ai)) for some i.

Since α is excellent, there exists j �= i such that v ∈ γ(W (1|aj)). Without loss of generality,
we have i < j ≤ k. Lemma 3.3 guarantees that

v ∈ Γ(a1 . . . ai) ∪ Γ(a1 . . . aj) ∪ Γ(ai+1 . . . aj).

If v ∈ Γ(a1 . . . ai) = Γ(g1 . . . gi), we can take gv = g1 . . . gi and xv = x. If instead v ∈
Γ(ai+1 . . . aj) = Γ(gi+1 . . . gj), we set xv = g1 . . . gix and gv = (g1 . . . gi)(gi+1 . . . gj)(g1 . . . gi)−1.

�
In the rest of the subsection, we describe how to decompose general geodesics into good

subsegments. To be precise, we say that α ⊆ Y is decomposed into subsegments μ1, . . . , μr if
α = μ1 ∪ · · · ∪ μr and μi ∩ μj is non-empty if and only if |i− j| = 1, in which case μi ∩ μj is a
single vertex.

Lemma 4.10. If α ⊆ Y is not almost good, then α can be decomposed into at most
max{7, 2o(α)} subsegments μj such that each satisfies one of the following:

• μj is a single edge;
• o(μj) < o(α).

Proof. Set for simplicity k = o(α) and order the orbits so that O1, . . . ,Ok are precisely those
that intersect α non-trivially.

First, suppose that #(α ∩ Oi) ≤ 2 for some i ≤ k. Then we can decompose α into the ≤ 4
edges that intersect α ∩ Oi, plus the remaining ≤ 3 subsegments of α. Each of the latter intersects
≤ k − 1 orbits. In this case, we have decomposed α into ≤ 7 subsegments with the required
properties.

Thus, we can assume that #(α ∩ Oi) ≥ 3 for all i ≤ k. Let αi ⊆ α be the subsegment between
the first and last points of α ∩ Oi. Note that αi is almost i-excellent.

Let α′ ⊆ α be the union of all αi. If α′ were connected, then we would have α = α′ and α
would be almost good. Thus, α′ has between two and k connected components, with consecutive
ones separated by a single open edge. Each component intersects ≤ k − 1 orbits. Then it suffices
to decompose α into these components plus the remaining edges. These are ≤ 2k − 1 subsegments
with the required properties. �
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Lemma 4.11. If α ⊆ Y is not good, then α can be decomposed into at most max{7, 2o(α)}
subsegments μj such that each satisfies one of the following:

• μj is a single edge;
• o(μj) < o(α);
• o(μj) = o(α) and n(μj) < n(α).

Proof. Set again k = o(α) and let O1, . . . ,Ok be the orbits that intersect α in at least three
vertices. Let αi ⊆ α be the subsegment between the first and last points of α ∩ Oi.

If α is not almost good, we simply apply Lemma 4.10. Suppose instead that α is almost
good, so that α =

⋃
i αi. Since α is not good, one of the αi is not excellent, hence there exist

1 ≤ j ≤ q and w ∈ Γ such that ρj,w(αj) = 1.
Let I ⊆ αj be the only subsegment between consecutive points of αj ∩ Oj in which w appears.

If I is a single edge, we decompose α as the union of I and two segments α± . Otherwise, let p
be a vertex in the interior of I and define α± ⊆ α as the two subsegments meeting at p. Observe
that ρi,v(α±) ≤ ρi,v(α) for all i and v, and 0 = ρj,w(α±) < ρj,w(α) = 1. Thus n(α±) < n(α). �
Lemma 4.12. Every geodesic α ⊆ Y can be decomposed into at most q · (max{7, 2o(α)})n(α)

subsegments μj such that each satisfies one of the following:

• μj is a single edge;
• o(μj) < o(α);
• μj is good.

Proof. This follows from Lemma 4.11 proceeding by induction on n(α). Note that a geodesic μ
with n(μ) = 0 meets each Oi at most once and thus contains at most q − 1 edges. �
Corollary 4.13. Setting V := #Γ(0), every geodesic α ⊆ Y can be decomposed into at most
qq · (max{7, 2q})q2V subsegments μj such that each satisfies one of the following:

• μj is a single edge;
• μj is decent (in fact, good).

Proof. Note that n(α) ≤ qV . Thus, the number of subsegments in the decomposition provided
by Lemma 4.12 is at most q · (max{7, 2q})qV . Proceeding by induction on o(α) ≤ q, Lemmas 4.12
and 4.9 yield the required conclusion. �

4.3 Decomposing chains of hyperplanes
Let for simplicity Nq = qq · (max{7, 2q})q2V be the constant in Corollary 4.13. We say that
hyperplanes v1, . . . , vk form a chain if, for each i, we can pick a halfspace hi bounded by vi so
that h1 � · · · � hk.

Recall Definition 4.3. It is convenient to introduce the following additional notation for a
pair of disjoint hyperplanes u,w of XΓ:

• δ(u,w) = #Δ(u,w) ∈ N;
• dv(u,w) = #(γ−1(v) ∩ W (u|w)) ∈ N, where v ∈ Γ(0).

Recall that, for every vertex v ∈ Γ, we have a restriction quotient πv : XΓ → Tv. The next
lemma is saying that every geodesic in Tv can be decomposed into a bounded number of subpaths,
which are alternately short and lower-complexity.

Lemma 4.14. Let u,w ∈ W (Y ) be distinct hyperplanes with γ(u) = γ(w) = v. Suppose that
u,w are not a decent pair. Then there exists a chain of hyperplanes v0 = u, v1, . . . , v2s+1 = w,
where:
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• γ(vi) = v for 0 ≤ i ≤ 2s+ 1;
• δ(v2j−1, v2j) < δ(u,w) for 1 ≤ j ≤ s;
• dv(v2j , v2j+1) ≤ Nq for 0 ≤ j ≤ s;
• s ≤ Nq.

Proof. Let α ⊆ Y be a geodesic with W (α) = W(u,w). Since u,w are not a decent pair, α is not
decent. By Corollary 4.13, we can decompose α into at most Nq subsegments, each being either
decent or a single edge. Among these, call μ1, . . . , μs the decent subsegments that cross at least
two hyperplanes labelled by v, in the order in which they appear along α. Note that we must
have γ(W (μj)) � γ(W (α)), otherwise α would be decent.

Define v2j−1 (respectively v2j) as the first (respectively last) hyperplane labelled by v that
is crossed by μj . By the previous paragraph,

δ(v2j−1, v2j) ≤ #γ(W (μj)) < #γ(W (α)) = δ(u,w).

Note that μj and μj+1 are separated by ≤ Nq subsegments of α, each crossing at most one
hyperplane labelled by v. This shows that dv(v2j , v2j+1) ≤ Nq, concluding the proof. �
Corollary 4.15. Let u,w ∈ W (Y ) be distinct hyperplanes with γ(u) = γ(w) = v. Set V =
#Γ(0). Then there exists a chain of hyperplanes v0 = u, v1, . . . , v2s+1 = w, where

• γ(vi) = v for 0 ≤ i ≤ 2s+ 1;
• v2j−1 and v2j form a decent pair for 1 ≤ j ≤ s;
• dv(v2j , v2j+1) ≤ 2NqV for 0 ≤ j ≤ s;
• s ≤ NV

q .

Proof. This follows from Lemma 4.14 by induction on 1 ≤ δ(u,w) ≤ V . �
Corollary 4.15 immediately implies the following.

Corollary 4.16. There exists a constant L, depending only on q and Γ, such that the following
holds. Every arc β ⊆ πv(Y ) ⊆ Tv can be decomposed as a sequence of arcs μ0ν1μ1 . . . νsμs such
that consecutive arcs share exactly one vertex and:

• the first and last edge of each arc νi correspond to a decent pair of hyperplanes of Y ;
• 
(μi) ≤ L and 
(νi) > 2q for every i;
• s ≤ L.

Adding Proposition 4.6 to the above corollary, we obtain the desired result.

Corollary 4.17. Let L be the constant in Corollary 4.16. Every arc β ⊆ πv(Y ) ⊆ Tv with

(β) > 2L contains a sub-arc β′ ⊆ β with 
(β′) ≥ 
(β) − 2L such that:

(1) either Gβ′ is a centraliser, i.e. ZGZG(Gβ′) = Gβ′ ;
(2) or ZGZG(Gβ′) = ZG(g) for a label-irreducible element g ∈ ZG(Gβ′). The element g is loxo-

dromic in Tv and its axis η ⊆ Tv satisfies 
(η ∩ β′) ≥ 
(β′) − 4q. In addition, 
Y (g) ≤ q, and
the subgroup 〈g〉 ×Gβ′ has index ≤ q in ZG(g).

Proof. Decompose β = μ0ν1μ1 . . . νsμs as in Corollary 4.16. Define β′ as the sub-arc obtained by
removing μ0 and μs. It is clear that 
(β′) ≥ 
(β) − 2L.

Proposition 4.6 shows that, for i ∈ {1, s}, one of the following two cases occurs:

(1) either ZGZG(Gνi) = Gνi ;
(2) or ZGZG(Gνi) = ZG(gi) for a label-irreducible element gi ∈ ZG(Gνi).The element gi is lox-

odromic in Tv with axis ηi satisfying 
(ηi ∩ νi) ≥ 
(νi) − 2q > 0. In addition, 
Y (gi) ≤ q and
the subgroup 〈gi〉 ×Gνi has index ≤ q in ZG(gi).
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Based on this, there are three possibilities for Gβ′ = Gν1 ∩Gνs .

(a) Both i = 1 and i = s are of type (1). Then Gβ′ = ZG
(
ZG(Gν1) ∪ ZG(Gνs)

)
is a centraliser.

(b) Only one of them is of type (1). Without loss of generality,

ZGZG(Gν1) = ZG(g1) = G ∩
[
〈h1〉 × P1

]
, ZGZG(Gνs) = Gνs = G ∩ Ps,

where P1, Ps ≤ AΓ are parabolic, 〈h1〉 is the maximal cyclic subgroup of AΓ containing g1,
and Gν1 = G ∩ P1. Since g1 is loxodromic in Tv, it does not lie in Gνs , hence h1 �∈ Ps. It
follows from Remark 3.11 that [〈h1〉 × P1] ∩ Ps = P1 ∩ Ps.

This shows that ZG(g1) ∩ ZGZG(Gνs) = G ∩ P1 ∩ Ps = Gν1 ∩Gνs , so Gβ′ is again a
centraliser.

(c) Both i = 1 and i = s are of type (2). Write again

ZGZG(Gν1) = ZG(g1) = G ∩
[
〈h1〉 × P1

]
, ZGZG(Gνs) = ZG(gs) = G ∩

[
〈hs〉 × Ps

]
.

As in case (b), we have ZG(g1) ∩ ZG(gs) = G ∩ P1 ∩ Ps = Gν1 ∩Gνs , except when 〈h1〉 =
〈hs〉.

In this case, we can assume that g1 = gs and simply call this element g. Note that
P1 = Ps and G ∩ Pi = Gνi . In particular, Gβ′ = Gν1 = Gνs , hence ZGZG(Gβ′) = ZG(g).

Finally, if η ⊆ Tv is the axis of g, we have seen that η must intersect both ν1 and νs and
that, in both cases, 
(η ∩ νi) ≥ 
(νi) − 2q. This implies that 
(η ∩ β′) ≥ 
(β′) − 4q.

This completes the proof. �

4.4 Rotating actions
In this subsection, we record a consequence of Corollary 4.16 that will be needed in the proof of
Proposition 6.17.

Definition 4.18. Consider a group H and an action on a tree H � T .

(1) We denote by T(H,T ) ⊆ T the subtree Fix(H,T ) if this is non-empty, and the H-minimal
subtree otherwise.

(2) We say that the action H � T is c-rotating, for some c ≥ 0, if no element of H \ {1} fixes
an arc β ⊆ T that is disjoint from T(H,T ) and of length > c.

Recall that we are fixing a convex-cocompact subgroup G ≤ AΓ.

Lemma 4.19. There exists a constant c = c(G) such that the following holds. Consider v ∈ Γ
and a G-parabolic subgroup P ≤ G that is not elliptic in Tv. Then, for every free factor P0 ≤ P ,
the action P0 � T(P, Tv) is c-rotating.

Proof. By Corollary 3.21, there are only finitely many G-conjugacy classes of G-parabolic sub-
groups and they are all convex-cocompact in AΓ. Thus, it suffices to prove the lemma with
P = G.

Let L be the constant provided by Corollary 4.16. If β ⊆ T(G, Tv) is an arc with 
(β) > L,
then it contains edges e, e′ corresponding to a decent pair of hyperplanes w,w′ ∈ W (Y ). This
means that there exist an element g0 ∈ G such that v ∈ Γ(g0), and a point x ∈ Y such that
W (x|g0x) ⊆ W(w,w′). By Lemma 3.4, this implies that g0 commutes with the stabiliser Gβ ≤ G.
Also note that g0 is loxodromic in Tv and its axis shares at least one edge with β.

Now, consider a free factor G0 ≤ G. If an element of G0 \ {1} fixes β, then g0 commutes with
it and so we must have g0 ∈ G0. Thus, the axis of g0 is contained in T(G0, Tv) and β must share
a non-trivial arc with T(G0, Tv). This shows that the action G0 � T(G, Tv) is L-rotating. �

263

https://doi.org/10.1112/S0010437X22007850 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007850


E. Fioravanti

Corollary 4.20. Let c be as in Lemma 4.19. Let H ≤ G be a convex-cocompact subgroup.
Consider v ∈ Γ such that H is elliptic in Tv, but NG(H) is not. Then the action NG(H) �

T(NG(H), Tv) factors through an action of NG(H)/H and, for every free factor N0 ≤ NG(H)/H,
the action N0 � T(NG(H), Tv) is c-rotating.

Proof. Since H is elliptic, Fix(H, Tv) is non-empty and NG(H)-invariant, hence it must con-
tain the NG(H)-minimal subtree. Thus, the action NG(H) � T(NG(H), Tv) factors through
NG(H)/H.

By Lemma 3.22(1), NG(H) has a finite-index subgroup of the form H × P , where P
is G-parabolic. Thus, P projects injectively to a finite-index subgroup P ≤ NG(H)/H. Note
that

T(NG(H), Tv) = T(H × P, Tv) = T(P, Tv).

Let N0 ≤ NG(H)/H be a free factor. Then N0 ∩ P is a free factor of P and Lemma 4.19 shows
that the action N0 ∩ P � T(NG(H), Tv) is c-rotating.

Since N0 ∩ P has finite index in N0, we have T(N0, Tv) = T(N0 ∩ P , Tv). If N0 is not elliptic,
this is clear. If N0 is elliptic, this is because edge-stabilisers of Tv are closed under taking roots.

Thus, if β ⊆ T(NG(H), Tv) is an arc of length > c disjoint from T(N0, Tv), its (N0 ∩ P )-
stabiliser is trivial, hence its N0-stabiliser is finite. Again, since edge-stabilisers of Tv are closed
under taking roots, this implies that the N0-stabiliser of β is trivial, showing that the action
N0 � T(NG(H), Tv) is c-rotating. �

5. Passing to the limit

This section is devoted to studying the limit R-tree for a sequence G � T φn
v , where G ≤ AΓ is a

convex-cocompact subgroup, v ∈ Γ, and φn ∈ Out(G). This is carried out in § 5.4; in particular,
see Propositions 5.12, 5.13 and 5.15.

Before that, in §§ 5.1 and 5.2, we consider a more general setting: G is an arbitrary group
and we study limits of ‘tame’ actions on simplicial trees (Definition 5.4).

5.1 Almost-stabilisers
Let G be a group with an action G � T on an R-tree.

Definition 5.1. Consider an arc β ⊆ T with endpoints p, q.

• For 0 ≤ s < 
(β)/2, we define

D(β, s) = {g ∈ G | max{d(p, gp), d(q, gq)} ≤ s}.

We also consider the subgroup D(β, s) := 〈D(β, s)〉 ≤ G. We write DG(β, s) and DG(β, s)
when it is necessary to specify the group under consideration.

• For 0 ≤ t ≤ 
(β), we denote by β[t] ⊆ β the middle sub-arc of length t. We also set βt :=
β[
(β) − t]; this is the closed sub-arc obtained by removing the initial and terminal segments
of length t/2.

If β ⊆ T is an arc, recall that Gβ ≤ G denotes its stabiliser.

Lemma 5.2. Given an arc β ⊆ T and 0 ≤ s < 
(β)/2, the following hold.

(1) For every g ∈ D(β, s), we have βs ⊆ Min(g, T ).
(2) Either D(β, s) contains a loxodromic, or D(β, s) = Gβs .
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Proof. We first prove part (1). Let x, y be the endpoints of β. For every g ∈ G, the midpoints of
the arcs [x, gx] and [y, gy] lie in Min(g). If s < 
(β)/2 and g ∈ D(β, s), these two arcs are sepa-
rated by the midpoint of β, and so are their midpoints. Since Min(g) is convex, it must contain
the midpoint of β. Hence Min(g) ∩ β is a sub-arc of β. Observing that d(x, gx) ≥ 2d(x,Min(g)),
we deduce that x and y are at distance ≤ s/2 from Min(g). Hence βs ⊆ Min(g).

Regarding part (2), suppose that every element of D(β, s) is elliptic. Then part (1) shows
that D(β, s) ≤ Gβs . The reverse inclusion is clear. �

Remark 5.3. Consider points x, y ∈ T and g ∈ G. Since the metric of T is convex, we have
d(z, gz) ≤ max{d(x, gx), d(y, gy)} for every z ∈ [x, y].

In particular, given δ > 0, an arc β ⊆ T and 0 < t1 ≤ t2 ≤ 
(β), we have D(β[t2], δ) ⊆
D(β[t1], δ) and D(β[t2], δ) ≤ D(β[t1], δ).

5.2 Tame actions
This subsection introduces the notion of tame action on a tree. For sequences of tame actions,
Proposition 5.6 allows us to understand arc-stabilisers of the limit in terms of those of the
converging actions. In the next subsection, Corollary 5.9 shows that tameness is satisfied by
convex-cocompact subgroups of right-angled Artin groups acting on the simplicial trees Tv.

Let G be any group.

Definition 5.4. An action on an R-tree G � T is (ε,N)-tame, for some 0 < ε < 1/2 and N ≥
1, if the following conditions are satisfied. Let S be the collection of subgroups of G of the
form D(β, δ), where β ⊆ T varies among non-trivial arcs and δ varies in the closed interval
[0, ε · 
(β)].

(1) Every chain in S has length ≤ N .
(2) For every 0 ≤ δ ≤ ε · 
(β) and every non-trivial arc β ⊆ T :

• either D(β, δ) = D(β, δ) = Gβδ ;
• or D(β, δ) contains a loxodromic whose axis is D(β, δ)-invariant.
We refer to the two cases as D(β, δ) being elliptic and non-elliptic, respectively.

(3) If H1, H2 ∈ S and H1 � H2, then H1 is elliptic.

Definition 5.5. Let T be an R-tree. We identify arcs in T with points in T × T by taking
endpoints.

(1) A collection of arcs P ⊆ T × T is δ-dense for some δ > 0 if, for every x, y ∈ T satisfying
d(x, y) > 2δ, there exists (x′, y′) ∈ P with [x′, y′] ⊆ [x, y] and max{d(x, x′), d(y, y′)} ≤ δ.

(2) Let Tn be a sequence of R-trees. A sequence of collections of arcs Pn ⊆ Tn × Tn is eventually
dense if there exist δn > 0 such that each Pn is δn-dense and δn → 0.

Fix a non-principal ultrafilter ω on N and recall the terminology from § 2.5.

Proposition 5.6. Let G � Tn be a sequence of (ε,N)-tame actions ω-converging to G � Tω.

(1) Let β ⊆ Tω be an arc. Then we can choose a sequence of arcs βn ⊆ Tn converging to β so
that the following dichotomy holds.
(a) Either there exists 0 < δ < ε · 
(β) such that D(βn, δ) = Gβn for ω-all n, and we have

Gβ =
⋂
ω Gβn .

(b) Or, for every 0 < δ < ε · 
(β), the subgroup D(βn, δ) is non-elliptic for ω-all n.
In this case, Gβ leaves invariant a line α ⊆ Tω containing β. The G-stabiliser of

α equals
⋂
ω D(βn, δ) (independently of the choice of δ), and Gβ is the kernel of
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the (possibly trivial) homomorphism
⋂
ω D(βn, δ) → R given by translation lengths

along α.
(2) Let γ ⊆ Tω be a line. Then we can choose a sequence of arcs βn ⊆ Tn converging to γ so

that, for every sufficiently large δ > 0, the G-stabiliser of γ equals
⋂
ω D(βn, δ).

Moreover, if Pn ⊆ Tn × Tn is an eventually dense sequence of collections of arcs, then the
approximations βn in (1) and (2) can be chosen within Pn.
Proof. We will initially deal with both parts of the proposition simultaneously: set η := β in
part (1) and η := γ in part (2). Let ηn ⊆ Tn be a sequence of arcs converging to η. Recall that
ηn[s] is the middle segment of ηn of length s.

Consider 0 < δ < ε · 
(η). If there exists δ/ε ≤ s ≤ 
(ηn) such that D(ηn[s], δ) is non-elliptic,
let δ/ε ≤ tn,δ ≤ 
(ηn) be the largest such s (the maximum exists e.g. by (3) in Definition 5.4 and
Remark 5.3). Otherwise, set tn,δ = 0. Let tδ be the ω-limit of tn,δ.

If δ1 < δ2, we have tn,δ1 ≤ tn,δ2 for every n, hence tδ1 ≤ tδ2 . We will need the following
observation.

Claim. Suppose that, for some δ and n, we have tn,δ �= 0. Then there exists a subgroup Hn ≤
G such that Hn = D(ηn[s], δ′) for all δ ≤ δ′ ≤ εtn,δ and δ′/ε ≤ s ≤ tn,δ. There is a unique Hn-
invariant line αn ⊆ Tn and it contains ηn[tn,δ − δ].

Proof of Claim. Fix for a moment δ′ ≥ δ and recall that tn,δ′ ≥ tn,δ. By (3) in Definition 5.4 and
Remark 5.3, the subgroup D(ηn[s], δ′) is non-elliptic and constant as s varies in [δ′/ε, tn,δ]. Let
us call it Hn,δ′ for short. By (2) in Definition 5.4, Hn,δ′ leaves invariant a line αn,δ′ ⊆ Tn, which
must contain the arc ηn[tn,δ − δ′] by Lemma 5.2.

Taking s = tn,δ, the fact that δ ≤ δ′ implies that Hn,δ ≤ Hn,δ′ . Applying again (3) in
Definition 5.4, we deduce that Hn,δ = Hn,δ′ , so this subgroup is independent of the specific
value of δ′ and we can call it Hn. The lines αn,δ′ are also independent of δ′, since they are the
axis of all loxodromics in Hn,δ′ = Hn. This proves the claim. �

Now, we distinguish three cases.

Case A: η = γ and there exists δ0 > 0 with tδ0 = +∞. We must have tn,δ0 > 0 for ω-all n, so
the claim provides subgroups Hn ≤ G and lines αn ⊆ Tn. Since αn contains ηn[tn,δ0 − δ0] and
tn,δ0 diverges, the lines αn converge to γ. Since αn is Hn-invariant, it is clear that the subgroup
H :=

⋂
ωHn leaves γ invariant.

Let us show that H coincides with the G-stabiliser of γ. Consider g ∈ G with gγ = γ. Let
αn[s] denote the sub-arc of αn of length s that has the same midpoint as ηn. Choosing s so
that 
Tω(g) < εs, we have g ∈

⋂
ωD(αn[s], εs). If s is large enough, we have δ0 < εs and, since

D(ηn[tn,δ0 ], δ0) leaves αn invariant, it follows that D(αn[s], εs) ⊇ D(ηn[tn,δ0 ], δ0). Thus, by (3) in
Definition 5.4, we have D(αn[s], εs) = D(ηn[tn,δ0 ], δ0) = Hn. This shows that g ∈

⋂
ωHn = H, as

required.
Taking for instance βn = ηn[tn,δ0 ] (or slightly smaller arcs lying in Pn), this proves part (2)

of the proposition in this case. Note that the other possibility for part (2) is easier. If tδ < +∞
for every δ > 0, then the stabiliser of γ actually fixes γ pointwise, and it is easy to see that it
coincides with

⋂
ω D(βn, δ) =

⋂
ω Gβn for every δ > 0.

We continue with part (1) of the proposition.

Case B: η = β and tδ = 
(β) for every 0 < δ < ε · 
(β). As in the previous case, the claim provides
subgroups Hn ≤ G and Hn-invariant lines αn ⊆ Tn. Set H :=

⋂
ωHn. For every δ > 0, the line

αn contains the arc ηn[tn,δ − δ] for ω-all n. It follows that the αn converge to an H-invariant line
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α ⊆ Tω containing β. Exactly as in the previous case, one shows that H is actually the entire
G-stabiliser of α.

We can define βn := αn[
(β)] (or take a slightly smaller arc lying in Pn). It is clear that βn
converges to β and, for each choice of δ, we have D(βn, δ) = Hn for ω-all n.

Since the βn approximate β and δ > 0, we have Gβ ⊆
⋂
ωD(βn, δ) ⊆ H. Let τn : Hn → R be

the homomorphism given by translation lengths along αn. The limit τω : H =
⋂
ωHn → R gives

translation lengths along α ⊆ Tω. Since Gβ ≤ H, it is clear that Gβ is the kernel of τω.
Thus, this case corresponds to case (b) of part (1) of the proposition. It remains to consider

one last situation.

Case C: η = β and there exists δ0 > 0 such that tδ0 < 
(β). By Definition 5.4, for each n there
exist k ≤ N and values 
(ηn) = s0,n > s1,n > · · · > sk,n > 0 such that the G-stabiliser of ηn[s] is
constant as s varies in each interval s ∈ (si+1,n, si,n]. As n varies, k is ω-constant and the si,n
converge to a sequence 
(β) = s0 ≥ s1 ≥ · · · ≥ sk ≥ 0.

Let j be the largest index with sj = 
(β). Up to shrinking the approximation ηn, we can
assume that j = 0 (and that ηn lies within Pn). Then, for every s1 < s ≤ 
(β), the G-stabilisers
of ηn[s] and ηn coincide for ω-all n.

Consider δ > 0 and g ∈ G with gβ = β. If s ≤ 
(β), we have g ∈
⋂
ωD(ηn[s], δ) ⊆⋂

ω D(ηn[s], δ). If δ < δ0 we have tδ ≤ tδ0 . Thus, if s > tδ0 , the subgroup D(ηn[s], δ) is elliptic
for ω-all n, and so it coincides with the G-stabiliser of ηn[s− δ] by (2) in Definition 5.4. If
s > δ + s1, the latter equals Gηn . In conclusion, when δ is small enough and s is large enough,
we have shown that the G-stabiliser of η is contained in

⋂
ω Gηn , hence it coincides with it.

Taking βn := ηn, this corresponds to case (a) of part (1). This completes the proof of the
proposition. �

5.3 Almost-stabilisers in special groups
Consider a right-angled Artin group AΓ and set r := dimXΓ. Recall that, for every v ∈ Γ, we
have an action AΓ � Tv coming from a restriction quotient of XΓ. As usual, the stabiliser of an
arc β ⊆ Tv is denoted (AΓ)β .

Lemma 5.7. Consider an arc β ⊆ Tv and 0 ≤ δ ≤ 
(β)/(4r + 2). Then:

(1) either DAΓ
(β, δ) = (AΓ)βδ ;

(2) or (AΓ)βδ � DAΓ
(β, δ) ⊆ 〈h〉 × (AΓ)βδ = ZAΓ

(h) for a label-irreducible element h ∈ AΓ that

is not a proper power. Moreover, 0 < 
Tv(h) ≤ δ and the axis of h in Tv contains βδ.

Proof. Let p, q be the endpoints of β and let p′, q′ be those of βδ. SetD = DAΓ
(β, δ) for simplicity.

Let D0 ⊆ D be the subset of elliptic elements. By Lemma 5.2, we have D0 = (AΓ)βδ . Let D1 ⊆ D
be the subset of loxodromic elements that, in addition, are label-irreducible.

Claim 1. Every g ∈ D can be decomposed as a product h1h0 with h1 ∈ D1 � {1} and h0 ∈ D0,
where h0 commutes with h1. If h1 �= 1, it has the same axis and translation length in Tv as g.

Proof of Claim 1. Consider g ∈ D. If g is elliptic, we can take h1 = 1 and h0 = g. Suppose instead
that g is loxodromic, and let g = g1 · . . . · gk be its decomposition into label-irreducibles.

Since the gi commute pairwise, at least one of them must be loxodromic in Tv, or g would
be elliptic. Since the sets Γ(gi) are pairwise disjoint, at most one gi is loxodromic in Tv. Say g1
is the loxodromic component. Then its axis is fixed pointwise by g2, . . . , gk, so g has the same
axis and the same translation length in Tv as g1. We can then set h1 = g1 and h2 = g2 · . . . · gk.

We are only left to check that h1, h0 lie inD. Since h1 and g have the same axis and translation
length, they displace all points of Tv by the same amount. Hence h1 ∈ D. By Lemma 5.2, the
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axis of g contains βδ. This coincides with the axis of h1, which is fixed pointwise by h0. So h0

fixes βδ pointwise, hence h0 ∈ D. �
If D1 = ∅, then we are in the first case of the lemma and we are done.

Claim 2. If D1 �= ∅, there exists h ∈ D1 such that h is not a proper power in AΓ and D1 ⊆ 〈h〉.
Proof of Claim 2. Recall that d(p′, q′) = 
(β) − δ. If h ∈ D1, the points p′ and q′ lie on the axis
of h by Lemma 5.2. Hence d(p′, hp′) ≤ d(p, hp) ≤ δ. By our choice of δ, we have

d(p′, h4r+1p′) ≤ (4r + 1)δ ≤ 
(β) − δ = d(p′, q′),

so the point h4r+1p′ lies between p′ and q′ (up to replacing h with h−1). In conjunction with
[Fio22, Lemma 3.13], this shows that the subgroup of AΓ generated by any two elements of D1

is cyclic. Finally, it is clear that D1 is closed under taking roots. The claim follows. �
In conclusion, we have shown that DAΓ

(β, δ) ⊆ 〈h〉 × (AΓ)βδ ⊆ ZAΓ
(h). Since h ∈ D, it is

clear that 
Tv(h) ≤ δ and the axis of h in Tv contains βδ. We are only left to prove that ZAΓ
(h) ⊆

〈h〉 × (AΓ)βδ .
Since h is label-irreducible, Remark 3.7(5) shows that ZAΓ

(h) = 〈h〉 × P for some parabolic
subgroup P . For every g ∈ P , we have Γ(g) ⊆ Γ(h)⊥, so v �∈ Γ(g). It follows that P is elliptic in
Tv. Since P commutes with h, it must fix the axis of h, which, in turn, contains βδ. Hence P is
contained in (AΓ)βδ , which completes the proof. �
Corollary 5.8. Let β and δ be as in Lemma 5.7. Let G ≤ AΓ be q-convex-cocompact. Then:

(1) either DG(β, δ) = Gβδ ;
(2) or DG(β, δ) = ZG(g), for a label-irreducible element g ∈ G. In this case, 0 < 
Tv(g) ≤ δq and

the axis of g in Tv contains βδ.

Proof. If we are in case (1) of Lemma 5.7, it is clear that G ∩DAΓ
(β, δ) ⊆ Gβδ , hence DG(β, δ) =

Gβδ . So, let us suppose that we are in case (2) of Lemma 5.7 and DAΓ
(β, δ) ⊆ 〈h〉 × (AΓ)βδ =

ZAΓ
(h) for a label-irreducible element h ∈ AΓ. If G ∩DAΓ

(β, δ) is contained in {1} × (AΓ)βδ , we
again obtain G ∩DAΓ

(β, δ) ⊆ Gβδ and DG(β, δ) = Gβδ .
Otherwise, an element of G ∩DAΓ

(β, δ) has a label-irreducible component that is a power
of h. Remark 3.7(6) shows that there exists 1 ≤ k ≤ q such that hk ∈ G. Let g be the smallest
such power of h. Note that 
Tv(g) ≤ q
Tv(h) ≤ δq. The axis of g in Tv coincides with that of h,
so it contains βδ. It is clear that

DG(β, δ) = 〈G ∩DAΓ
(β, δ)〉 ≤ G ∩ ZAΓ

(h) = ZG(g).

Finally, if this inclusion were strict, then ZG(g) \ DG(β, δ) would contain an element of 〈h〉 ×
(AΓ)βδ with the same axis as g and strictly smaller translation length, which contradicts our
supposition. �
Corollary 5.9. If G ≤ AΓ is convex-cocompact, then G � Tv is (1/(4r + 2), N)-tame for some
N ≥ 1.

Proof. We verify the three conditions in Definition 5.4. Condition (2) is immediate from
Corollary 5.8 (note that the loxodromic required by the condition might not be the element g
from Corollary 5.8, but rather any shortest loxodromic in G ∩DAΓ

(β, δ)). Condition (1) follows
from (a special case of) Lemma 3.36, since stabilisers of arcs of Tv are G-parabolic and cen-
tralisers are G-semi-parabolic. Finally, let g1, g2 ∈ G be label-irreducibles with ZG(g1) � ZG(g2).
Then 〈g1〉 �= 〈g2〉, hence Γ(g1) ⊆ Γ(g2)⊥ by Remark 3.7(4). This shows that g1, g2 cannot both
be loxodromic in Tv, which implies condition (3). �
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5.4 Arc-stabilisers in the limit
Let G ≤ AΓ be convex-cocompact and let Y ⊆ XΓ be a convex subcomplex on which G acts
essentially and cocompactly. Let S ⊆ G be a finite generating set. For every vertex v ∈ Γ, consider
the restriction quotient πv : XΓ → Tv.

Let ϕn ∈ Aut(G) be a sequence of automorphisms projecting to an infinite sequence in
Out(G). The standard Bestvina–Paulin argument [Bes88, Pau88] (see in particular [Pau91, § 2,
p. 338, Case 1]) guarantees that the quantity

τn := inf
x∈XΓ

max
s∈S

d(x, ϕn(s)x)

diverges for n→ +∞. Let on ∈ Y ⊆ XΓ be points realising these infima. For any G-metric space
Z, we let Zϕn represent Z with the twisted G-action g · x := ϕn(g)x.

Fix a non-principal ultrafilter ω. Let (G � Xω, o) be the ω-limit of the sequence (G �

(1/τn)Xϕn

Γ , on). Note that the action G � Xω does not have a global fixed point: because of
our choice of τn, every point of Xω is displaced by at least one element of S. It follows that
the action G � Xω has unbounded orbits, for instance because Xω has a bi-Lipschitz equivalent
G-invariant CAT(0) metric (the limit of the CAT(0) metric on XΓ).

Since XΓ embeds isometrically and AΓ-equivariantly in the finite product
∏
v∈Γ Tv, the limit

Xω embeds isometrically and G-equivariantly in
∏
v∈Γ T ω

v , where Tωv is the ω-limit of the sequence
(G � (1/τn)T

ϕn
v , πv(on)). Since G � Xω has unbounded orbits, there exists a vertex v ∈ Γ such

that the action G � T ω
v is not elliptic.

Remark 5.10. It is not hard to show that there exists a vertex v ∈ Γ such that

inf
x∈Tv

max
s∈S

d(x, ϕn(s)x) ≥ c(Γ) · τn,

where c(Γ) is a constant depending only on Γ. Without this inequality, it might happen
(a priori) that the non-elliptic limit tree T ω

v has a G-fixed point at infinity. Indeed, πv(on)
might be far from the point realising infx∈Tv maxs∈S d(x, ϕn(s)x), as Y is not convex in the
product

∏
v∈Γ πv(Y ). In any case, there is no need to rule out this possibility, as it is irrelevant

to the following discussion.

In the rest of the subsection, we consider the following setting.

Assumption 5.11. Fix a vertex v ∈ Γ such that G � T ω
v is not elliptic. For simplicity, we set

TG := πv(Y ), which is the G-minimal subtree of Tv. Denote by G � Tn the action on Tϕn

G with
its metric rescaled by τn. We also set Tω := T ω

v , which is the ω-limit of (Tn, πv(on)).

We emphasise that the G-action on Tω will not be minimal in general (Tω is the universal
R-tree as soon as it is not a line).

The following characterises arc-stabilisers for the action G � Tω. Recall Definition 3.12.

Proposition 5.12. For every arc β ⊆ Tω, at least one of the following two options occurs:

(1) Gβ is a centraliser in G and Gβ is elliptic in ω-all Tn;
(2) Gβ is the kernel of a (possibly trivial) homomorphism ρ : Z → R, where Z ≤ G is a cen-

traliser. In addition, Z is the G-stabiliser of a line α ⊆ Tω containing β, and ρ gives
translation lengths along α. The Z-minimal subtree of Tn is a line for ω-all n (hence Z
is non-elliptic in Tn) and we have NG(Z) = Z.

Proof. Recall that the trees Tn and TG = πv(Y ) coincide up to rescaling, but are endowed with
different G-actions. It is therefore convenient to adopt the following convention: if η is an arc in
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Tn, we denote by η̃ the corresponding arc of TG. We will always write either DTn(·, ·) or DTG
(·, ·)

in order to emphasise the G-action under consideration.
Since twisting and rescaling preserve tameness (and its parameters), Corollary 5.9 shows that

the actions G � Tn are all (ε,N)-tame for ε = 1/(4r + 2) and some fixed N . It follows that we
can approximate β by a sequence of arcs βn ⊆ Tn as in Proposition 5.6(1).

In addition, we can assume that the arcs β̃n ⊆ TG satisfy the dichotomy in Corollary 4.17.
Indeed, since L/τn → 0, Corollary 4.17 shows that such arcs form an eventually dense family.

Note that, for every 0 ≤ δ < 
(β), we have

DTn(βn, δ) = ϕ−1
n

(
DTG

(β̃n, δτn)
)
, Gβn = ϕ−1

n

(
G
β̃n

)
.

We distinguish two cases, corresponding to cases (1a) and (1b) of Proposition 5.6.

Case A: There exists 0 < δ < ε · 
(β) such that DTn(βn, δ) = Gβn for ω-all n. In this case, Gβ =⋂
ω Gβn . Thus, it suffices to show that Gβn is a centraliser for ω-all n. Then Proposition 3.38(2)

guarantees that Gβ is itself a centraliser. In particular Gβ is finitely generated, so Gβ ≤ Gβn for
ω-all n and Gβ is elliptic in ω-all Tn. This is case (1) of our proposition.

Since automorphisms of G take centralisers to centralisers, it suffices to show that the sub-
groups G

β̃n
are centralisers. These must fall into one of the two cases of Corollary 4.17. In the

first case, it is clear that G
β̃n

is a centraliser. The other case can be ruled out as follows.
There would exist elements gn ∈ G that are loxodromic in TG with 0 < 
TG

(gn) ≤ 
Y (gn) ≤ q,
and whose axes ηn ⊆ TG satisfy 
(ηn ∩ β̃n) ≥ 
(β̃n) − 4q. In particular, gn ∈ DTG

(β̃n, 9q) and, for
large n, we have

ϕ−1
n (gn) ∈ ϕ−1

n

(
DTG

(β̃n, 9q)
)

= DTn(βn, 9q/τn) ⊆ DTn(βn, δ) = Gβn .

This contradicts the fact that the elements ϕ−1
n (gn) are loxodromic in Tn.

Case B: for each 0 < δ < ε · 
(β), the subgroup DTn(βn, δ) is non-elliptic for ω-all n. In this
case, Gβ leaves invariant a line α ⊆ Tω containing β. The stabiliser of α is

⋂
ω DTn(βn, δ) for

some choice of δ, and Gβ is the kernel of the homomorphism giving translation lengths along α.
Since DTn(βn, δ) is non-elliptic, Corollary 5.8 shows that DTG

(β̃n, δτn) = ZG(gn) for a label-
irreducible element gn ∈ G that is loxodromic in TG. Again by Proposition 3.38, the subgroup

Z :=
⋂
ω

DTn(βn, δ) =
⋂
ω

ZG(ϕ−1
n (gn))

is a centraliser. Summing up, Z is the entire G-stabiliser of the line α and Gβ = ker ρ, where
ρ : Z → R gives translation lengths along α.

Note that ZG(gn) leaves invariant the axis α̃n ⊆ TG of gn, and translation lengths along it
are given by a homomorphism ηn : ZG(gn) → R. The lines α̃n ⊆ TG correspond to lines αn ⊆ Tn
converging to α, and the homomorphism ρ : Z → R is the ω-limit of the restrictions to Z of the
compositions ρn := ηn ◦ ϕn rescaled by τn.

If ρn vanishes on Z for ω-all n, then ρ vanishes on Z, so Z = Gβ and Gβ is elliptic in
ω-all Tn. In this case, we fall again in case (1) of our proposition.

Otherwise ρn is nonzero on Z for ω-all n, hence the Z-minimal subtree of Tn is the line αn.
If g ∈ G normalises Z, then we have gαn = αn for ω-all n. Since αn converge to α, we then have
gα = α and, since Z is the entire G-stabiliser of α, we have g ∈ Z. In conclusion NG(Z) = Z.

This yields case (2) of our proposition and completes the proof. �
An infinite tripod in an R-tree is the union of three rays pairwise intersecting at a single

point.
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Proposition 5.13. All line- and (infinite tripod)-stabilisers for G � Tω are centralisers.

Proof. The stabiliser of an infinite tripod is the intersection of two line-stabilisers, so it suffices
to show that line-stabilisers are centralisers. The latter follows from part (2) of Proposition 5.6,
retracing the proof of Proposition 5.12. �

Remark 5.14. Proposition 5.12 shows in particular that arc-stabilisers are closed under taking
roots in G. Thus, the stabiliser of a line in Tω can never swap its two ends.

The following expands on case (2) of Proposition 5.12.

Proposition 5.15. Let α ⊆ Tω be a line acted upon by its stabiliser Gα via a (possibly trivial)
homomorphism ρ : Gα → R. Suppose that Gα is non-elliptic in Tn for ω-all n.

(a) There exists x ∈ G such that Gα = ZG(x) and we have NG(Gα) = Gα.
(b) Assuming that ρ is discrete and ker ρ is finitely generated, the following hold.

• If ker ρ is elliptic in ω-all Tn, then ker ρ is G-semi-parabolic and Gα � NG(ker ρ).
• If ker ρ is non-elliptic in ω-all Tn, then the centre of ker ρ contains an element h that is

loxodromic in ω-all Tn. If ker ρ = Gα, then h can be chosen to be label-irreducible.
(c) Suppose that:

(c1) either the automorphisms ϕn are coarse-median preserving;
(c2) or there does not exist an element x ∈ G such that ϕn(ZG(x)) lies in a single G-

conjugacy class of subgroups for ω-all n.
Then ρ is discrete, ker ρ is a centraliser, and Gα is a proper subgroup of G. In addition, if
ker ρ �= Gα, then ker ρ is elliptic in ω-all Tn.

(d) Suppose that either ρ is not discrete, or ker ρ is not G-semi-parabolic. Then either the centre
of Z has rank ≥ 2, or it is infinite cyclic and contained in ker ρ.

(e) If ρ is not discrete, then, for every arc β ⊆ α, we have Gβ ≤ Gα.

Proof. We begin with some preliminary remarks.
By Proposition 5.13, we know that Gα is a centraliser, so let us write Z := Gα for short.

Since Z is finitely generated, and we are assuming that it is non-elliptic in ω-all Tn, there
are loxodromics for its action on Tn for ω-all n. Thus, retracing one last time the proof of
Proposition 5.12 using part (2) of Proposition 5.6, we are necessarily in Case B, and we obtain
a sequence of label-irreducible elements gn ∈ G (without loss of generality, not proper powers of
elements of G) such that Z =

⋂
ω ZG(ϕ−1

n (gn)). In addition, the Z-minimal subtree of Tn is a
line for ω-all n, and we have NG(Z) = Z.

The homomorphism ρ : Z → R is obtained as the limit of the homomorphisms ρn : Z → R

giving translation lengths along the Z-invariant line in Tn. Each ρn is the restriction to Z of the
composition ηn ◦ ϕn, where ηn : ZG(gn) → R is the homomorphism giving translation lengths in
Tv, rescaled by τn. Note that ηn has the same kernel as the straight projection πgn : ZG(gn) → Z

introduced in Remark 3.9(2). Recall that kerπgn is G-parabolic.

Proof of part (a). We have already observed that NG(Z) = Z and Z =
⋂
ω ZG(ϕ−1

n (gn)). Let us
show that we actually have Z = ZG(ϕ−1

n (gn)) for ω-all n.
Since Z is finitely generated, we have Z ≤ ZG(ϕ−1

n (gn)) for ω-all n, so Z commutes with
ϕ−1
n (gn). Since NG(Z) = Z, the elements ϕ−1

n (gn) lie in the centre of Z for ω-all n. Thus, the
ϕ−1
n (gn) pairwise commute, hence the maximal cyclic groups containing their label-irreducible

components are ω-constant. This shows that ZG(ϕ−1
n (gn)) is ω-constant, hence it coincides with

Z, as required. �
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Proof of part (b). First, suppose that ker ρ is elliptic in ω-all Tn. We will show that Z is a
proper subgroup of NG(ker ρ). Since Z is G-semi-parabolic and NG(Z) = Z, we can then use
Proposition 3.35 to deduce that ker ρ is G-semi-parabolic, as required.

Since ker ρ is finitely generated and elliptic in Tn, we have ker ρ ≤ ker ρn for ω-all n. Since ρ is
discrete, we have Z/ ker ρ � Z (recall that Z is non-elliptic in Tn, so ker ρ is a proper subgroup).
Since we also have Z/ ker ρn � Z, this implies that ker ρn = ker ρ for ω-all n (Z is Hopfian).
Recalling from part (a) that Z = ϕ−1

n (ZG(gn)), it follows that

Z ≤ NG(ker ρ) = NG(ker ρn) = ϕ−1
n NG(ker ηn) = ϕ−1

n NG(kerπgn).

Suppose for the sake of contradiction that we have Z = NG(ker ρ). Then NG(kerπgn) = ϕn(Z) =
ZG(gn). Since kerπgn is G-parabolic, Corollary 3.21 shows that the centralisers ZG(gn) are chosen
from finitely many G-conjugacy classes of subgroups. Since the gn are all label-irreducible, it
follows that there is a conjugacy class C ⊆ G such that gn ∈ C for ω-all n. This implies that the
translation length of gn in Tv is uniformly bounded, so inf(ρn(Z) ∩ R>0) converges to zero. Since
ρn converges to ρ and ker ρn = ker ρ for ω-all n, we conclude that ρ is trivial and Z = ker ρ =
ker ρn. This contradicts our assumption that Z be non-elliptic in ω-all Tn.

In order to complete the proof of part (b), suppose now that ker ρ is non-elliptic for ω-all
Tn. Let h1, . . . , hk be a finite generating set for ker ρ. The elements hi and hihj cannot all be
elliptic in Tn or ker ρ would also be elliptic in Tn by Serre’s lemma. This shows that there exists
an element h′ ∈ ker ρ such that ρn(h′) > 0 for ω-all n. Hence inf(ρn(Z) ∩ R>0) → 0.

Now, let Z0 denote the centre of Z. Recall that, if G is, say, q-convex-cocompact, then ZG(gn)
has a subgroup of index ≤ q that splits as 〈gn〉 × kerπgn (e.g. by Remark 3.7(6)). Thus, since we
have seen in the proof of part (a) that ϕ−1

n (gn) ∈ Z0 for ω-all n, we have

inf(ρn(Z0) ∩ R>0) ≤ ηn(gn) ≤ q · inf(ηn(ZG(gn)) ∩ R>0) = q · inf(ρn(Z) ∩ R>0) → 0.

The subgroup Z0 is free abelian, non-trivial and convex-cocompact (note that Z0 is itself
a centraliser). Thus, Z0 admits a basis of label-irreducible elements x1, . . . , xm with m ≥ 1.
Since Z0 contains ϕ−1

n (gn), on which ρn does not vanish, we can assume that ρn(x1) > 0 for
ω-all n. If x1 ∈ ker ρ, we can take h = x1 and we are done. Note that this is always the case if
ker ρ = Z = Gα.

Otherwise ρ(x1) �= 0, hence ρ(Z0) �= {0}. Modifying the basis of Z0 if necessary (which can kill
label-irreducibility of its elements), we can assume that ρ(x1) generates ρ(Z0), and xi ∈ ker ρ for
all i ≥ 2. If ρn vanished on all xi �= x1 for ω-all n, we would have inf(ρn(Z0) ∩ R>0) = ρn(x1) →
ρ(x1) �= 0, contradicting the fact that inf(ρn(Z0) ∩ R>0) → 0. Thus, there exists i ≥ 2 such that
ρn(xi) > 0 for ω-all n, and xi lies in the centre of ker ρ as required. This proves part (b). �
Proof of part (c). If ker ρ = Z, then all statements are immediate. Indeed, ρ is trivial (hence
discrete), its kernel is the centraliser Z, and we cannot have G = Z, as G would act elliptically
on Tω. Thus, we assume in the rest of the proof that ker ρ �= Z.

Recall that there exist label-irreducible elements gn ∈ G such that Z = ϕ−1
n (ZG(gn)) for

ω-all n. Also recall the notion of straight projection from Remark 3.9(2). �
Claim. The subgroup ϕn(Z) = ZG(gn) does not lie in a single G-conjugacy class for ω-all n.

Proof of Claim. Under assumption (c2), this is immediate from part (a). Suppose instead that
the automorphisms ϕn are coarse-median preserving. Then Remark 3.9 shows that we have
g = ϕ−1

n (gn) for a fixed label-irreducible g ∈ G and ω-all n. In addition, ker ρn = ϕ−1
n (kerπgn) =

kerπg, so kerπg is contained in ker ρ. Since Z/ kerπg � Z and ker ρ �= Z, this implies that ker ρ =
kerπg.
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If the ϕn(Z) = ZG(gn) lied in a single conjugacy class of subgroups, then the elements ϕn(g) =
gn would lie in a single conjugacy class, since they are all label-irreducible. As in the proof of
part (b), this would imply that g is elliptic in Tω. In this case g ∈ ker ρ \ kerπg, contradicting
the fact that ker ρ = kerπg. �

The claim immediately implies that Gα = Z is a proper subgroup of G. We now prove the
remaining statements.

Since gn ∈ ZG(kerπgn), we have kerπgn ≤ ZGZG(kerπgn) ≤ ZG(gn). Being a centraliser,
ZGZG(kerπgn) is convex-cocompact and closed under taking roots. Thus, since ZG(gn) virtu-
ally splits as 〈gn〉 × kerπgn , we must have either ZGZG(kerπgn) = kerπgn or ZGZG(kerπgn) =
ZG(gn).

Suppose first that ZGZG(kerπgn) = ZG(gn) for ω-all n. Recall from Remark 3.9(2) that
kerπgn is G-parabolic. Thus, Corollary 3.21 implies that the subgroups ZG(gn) lie in finitely
many G-conjugacy classes. It follows that ϕn(Z) = ZG(gn) lies in a single G-conjugacy class for
ω-all n. This is ruled out by the claim.

Thus, we must have ZGZG(kerπgn) = kerπgn for ω-all n. In this case, kerπgn is a centraliser,
so ker ρn = ϕ−1

n (kerπgn) is a centraliser, and it is a convex-cocompact. Since Z virtually splits
as ker ρn × Z, we conclude that the subgroup ker ρn is ω-constant. It follows that ker ρn ≤ ker ρ
for ω-all n. Since Z/ ker ρn � Z and we assumed that ker ρ �= Z, it follows that ker ρn = ker ρ for
ω-all n. This shows that ρ is discrete and ker ρ is a centraliser elliptic in ω-all Tn.

Proof of part (d). Recall from the proof of part (a) that the elements ϕ−1
n (gn) all lie in the centre

of Z. Thus, the latter always has rank at least 1. Suppose that the centre of Z has rank 1 and
intersects ker ρ trivially. We will show that ρ is discrete with G-semi-parabolic kernel.

Since the centre of Z is cyclic, there exists an element g ∈ G (now not necessarily label-
irreducible) such that g = ϕ−1

n (gn) for ω-all n. Thus ρn(g) = ηn(gn) ∈ R generates the image of
ρn. If we had ρn(g) → 0, then the centre of Z would be elliptic in Tω, hence contained in ker ρ.
Thus, ρn(g) must stay bounded away from zero, and the image of ρ is discrete and generated by
ρ(g).

Now, Z virtually splits as 〈g〉 × P for some subgroup P ≤ Z, which is necessarily finitely
generated. Since ρ(g) is non-trivial and generates the image of ρ, we deduce that ker ρ intersects
〈g〉 × P in a subgroup that projects isomorphically onto P . In particular, ker ρ is finitely gener-
ated. Since the images of the ρn stay bounded away from zero and ker ρ is finitely generated, we
conclude that ker ρ is elliptic in ω-all Tn. Finally, by part (b), ker ρ is G-semi-parabolic. �
Proof of part (e). Since ρ is non-discrete, there exists a loxodromic element g ∈ Z with trans-
lation length small enough that there exists a point x ∈ β such that gNx ∈ β, where N =
4 dimXΓ + 1. If h ∈ Gβ, Lemma 3.8 shows that h preserves the axis of g in Tn for ω-all n.
Thus, h preserves the axis of g in Tω, hence h ∈ Gα as required. �

This completes the proof of Proposition 5.15. �

Parts (c1) and (c2) of Proposition 5.15 are the key to Theorem A and Corollary D, respec-
tively. The differences in the assumptions of Proposition 5.15(c2) and Corollary D can be
reconciled using the following consequence of a providential result of B. H. Neumann.

Lemma 5.16. Let G be a group with a countable collection H of G-conjugacy classes of sub-
groups. Suppose that, for every class H ∈ H , the Out(G)-orbit of H is infinite. Then there exists
a sequence φn ∈ Out(G) such that, for every H ∈ H , the sequence φn(H) eventually consists of
pairwise distinct classes.
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Proof. Let · · · ⊆ Hn ⊆ Hn+1 ⊆ . . . be an exhaustion of H by finite subsets. We define φn induc-
tively, starting with an arbitrary automorphism φ1. Suppose that φ1, . . . , φn have been defined.
We would like to choose φn+1 so that, for every H ∈ Hn, we have φn+1(H) �∈ {φ1(H), . . . , φn(H)}.
If this is possible for every n, then we obtain the required sequence of automorphisms.

Suppose instead that for some n, we cannot choose φn+1 with this property. Then, for every
φ ∈ Out(G), there exists H ∈ Hn such that φ(H) ∈ {φ1(H), . . . , φn(H)}. Denoting by OutH(G)
the stabiliser of H within Out(G), this means that Out(G) is covered by finitely many cosets of the
infinite-index subgroups OutH(G) with H ∈ Hn. By [Neu54, Lemma 4.1], this is impossible. �

Finally, we record here the following result, which will be repeatedly needed in § 6.3.

Lemma 5.17. Let β ⊆ Tω be an arc such that Gβ is finitely generated and elliptic in ω-all Tn. If
β falls in case (2) of Proposition 5.12, assume in addition that ρ has discrete image. Then there
exists a sequence εn → 0 such that ZG(Gβ) acts on Fix(Gβ , Tn) with εn-dense orbits.

Proof. Observe first that ϕn(Gβ) is G-semi-parabolic for every n. Indeed, this is clear if β falls
in case (1) of Proposition 5.12, since then Gβ is a centraliser. Otherwise, Proposition 5.15(b)
shows that Gβ is the kernel of a homomorphism Z → Z, where Z is a centraliser and Z is a
proper subgroup of NG(Gβ). In this case, the group ϕn(Gβ) is of the same form for every n, and
Proposition 3.35 ensures that ϕn(Gβ) is G-semi-parabolic.

Now, a consequence is that ϕn(Gβ) is convex-cocompact in G for all n. Recall that TG ⊆ Tv
is the G-minimal subtree. Thus, Lemma 3.22(2) shows that ϕn(ZG(Gβ)) = ZG(ϕn(Gβ)) acts on
Fix(ϕn(Gβ), TG) with ≤ c orbits of edges, where c only depends on G and its embedding in AΓ.

Since Tn is a copy of TG, twisted by ϕn and rescaled by τn → +∞, it follows that ZG(Gβ)
acts on Fix(Gβ , Tn) with εn-dense orbits, where εn := c/τn → 0. �

6. From R-trees to DLS automorphisms

In this section, we use the description of the limit tree Tω obtained in § 5.4 to prove Theorems A
and B and Corollary D.

First, in § 6.1, we review various standard results originating from ideas of Rips, Sela,
Bestvina, Feighn and Guirardel. Then, in § 6.2, we briefly discuss how to ensure that DLS
automorphisms are not inner. Finally, § 6.3 contains the core argument.

6.1 Actions on R-trees
In this subsection, we review a few classical facts on actions on R-trees.

A subtree of an R-tree is non-degenerate if it is not a single point. Arcs are always assumed
to be non-degenerate. A finite subtree is the convex hull of a finite set of points.

If G is a group, we refer to R-trees equipped with an isometric G-action simply as G-trees.
A G-tree T is minimal if it does not contain any proper G-invariant subtrees. A non-degenerate
subtree U ⊆ T is stable if all its arcs have the same G-stabiliser. We say that T is BF-stable
(after [BF95]) if every arc of T contains a stable sub-arc.

If T1 and T2 are G-trees, a morphism is a G-equivariant map f : T1 → T2 with the property
that every arc of T1 can be covered by finitely many arcs on which f is isometric.

A G-tree is said to be geometric if it originates from a finite foliated 2-complex X with
fundamental group G. The precise definition will not be relevant to us and is omitted. We
instead refer the reader to [LP97] or [Gui08, § 1.7] for additional details.

Remark 6.1. Let T be a geometric G-tree. If N is the kernel of the G-action, then T is geometric
also as a G/N -tree.
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The following can be deduced for instance from [LP97, Theorem 2.2] or [Gui98, § 2].

Proposition 6.2. Let T be a minimal G-tree with G finitely presented. To every finite subtree
K ⊆ T , we can associate a geometric G-tree GK and a morphism fK : GK → T so that the
following hold.

• There exists a finite subtree K̃ ⊆ GK such that fK is isometric on K̃ and fK(K̃) = K.
• If K ⊆ K ′, then there exists a morphism fK

′
K : GK → GK′ such that fK = fK′ ◦ fK′

K and

fK
′

K (K̃) ⊆ K̃ ′.

• If H ≤ G is finitely generated and fixes K, there exists K ′ ⊇ K such that H fixes fK
′

K (K̃).

We will refer to the morphisms f : GK → T provided by the previous proposition as geometric
approximations of T .

Definition 6.3 [Gui08, Definition 1.4]. A transverse covering of a G-tree T is a G-invariant
family U = {Ui}i∈I of closed subtrees of T that cover T and satisfy the following.

• If i �= j, the intersection Ui ∩ Uj is empty or a singleton.
• Every arc of T can be covered by finitely many elements of U .

A transverse covering U of a G-tree T always gives rise to a splitting of G. Indeed, we can
construct an action without inversions on a simplicial treeG � SU as follows [Gui04, Lemma 4.7].

The vertex set of SU is a disjoint union V0(SU ) � V1(SU ), where V1(SU ) is identified with
U and V0(SU ) is the set of points appearing as the intersection of two elements of U . The tree
SU is bipartite, with edges joining each point of V0(SU ) to all elements of U = V1(SU ) that
contain it.

Note that, if T is G-minimal, then so is SU .

Definition 6.4 [Gui08, Definition 1.17]. Consider a G-tree T and a subgroup H ≤ G. A non-
degenerate subtree U ⊆ T isH-indecomposable if, for any two arcs β, β′ ⊆ U , there exist elements
h1, . . . , hn ∈ H such that β′ ⊆ h1β ∪ · · · ∪ hnβ and hiβ ∩ hi+1β is an arc for each 1 ≤ i < n.

Note that U is not required to be H-invariant and the arcs hiβ ∩ hi+1β can be disjoint
from U .

The terminology is motivated by the fact that, if U is a transverse covering of T , then
every G-indecomposable subtree of T must be contained in one of the elements of U [Gui08,
Lemma 1.18].

We also record here part of Lemmas 1.19 and 1.20 in [Gui08].

Lemma 6.5. Let T be a G-tree with a G-indecomposable subtree U ⊆ T .

(1) If f : T → T ′ is morphism, then f(U) is G-indecomposable.
(2) If G � T is BF–stable, then U is a stable subtree.
(3) If T is itself G-indecomposable, then it is G-minimal.

The following is a version of Imanishi’s theorem [Ima79] due to Guirardel.

Proposition 6.6. Let T be a geometric G-tree with G finitely presented. Then T admits a
unique transverse covering U = {Ui}i∈I where, for each i:

• either Ui is a non-degenerate arc containing no branch points of T in its interior;
• or Gi � Ui is indecomposable and geometric, where Gi ≤ G the stabiliser of Ui.

Proof. Existence follows from Proposition 1.25 and Remark 1.29 in [Gui08]. The addi-
tional hypothesis required for Guirardel’s result is always satisfied for geometric actions of
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finitely presented groups (for instance, combining [LP97, Remark 2.3] with [LP97,
Theorem 0.2(2)]). Uniqueness is due to [Gui08, Lemma 1.18]. �

Definition 6.7. We refer to the elements of the transverse covering U provided by
Proposition 6.6 as the components of T (this is justified by uniqueness of U).

The following classification result is due to Rips, and Bestvina and Feighn [BF95]. This
formulation is taken from [Gui08, Proposition A.6].

Proposition 6.8. Let T be a geometric G-tree with G finitely presented and torsion-free.
Suppose that T has trivial arc-stabilisers and is G-indecomposable. Then T is of one of the
following types:

• axial: T is a line and G is a free abelian group acting on T with dense orbits;
• surface: G is the fundamental group of a compact surface with boundary supporting an

arational measured foliation that gives rise to T ;
• exotic: neither of the above.

We acknowledge that, with no requirement on exotic components, the previous proposition
seems trivially satisfied. What we will actually need about these three types of G-trees is that
they can be approximated by simplicial G-trees in a controlled way, as shown in [Gui98]. We will
refer the reader to precise statements when these will become necessary later in this section.

The following observation will allow us to apply Proposition 6.8 even though our actions
normally have large arc-stabilisers.

Lemma 6.9. Let T be a BF-stable G-tree, with G finitely presented. Suppose that a geometric
approximation f : G → T admits an indecomposable component U ⊆ G. Let β ⊆ f(U) be an arc
with finitely generated stabiliser Gβ . Then there exists a geometric approximation G′ → T with
an indecomposable component U ′ ⊆ G′ such that:

(1) U ′ is invariant under the G-stabiliser of U ;
(2) the G-stabiliser of every arc of U ′ coincides with Gβ .

Proof. By Proposition 6.2, there exists a geometric approximation f ′ : G′ → T such that Gβ is
elliptic in G′ and such that f factors as the composition of f ′ and a morphism p : G → G′. Let
GU be the G-stabiliser of U ⊆ G. By Lemma 6.5(1), the image p(U) ⊆ G′ is GU -indecomposable,
hence contained in an indecomposable component U ′ ⊆ G′. Since distinct indecomposable
components share at most one point, U ′ must be GU -invariant.

By Lemma 6.5, the image f ′(U ′) is G-indecomposable, hence a stable subtree of T . Since
f ′(U ′) contains f(U), which in turn contains β, we see that the stabiliser of every arc of f ′(U ′)
is equal to Gβ . In particular, since f ′(U ′) is GU ′-invariant and not a single point, the subgroup
Gβ is normalised by GU ′ .

Now, the subtree Fix(Gβ ,G′) is non-empty and GU ′-invariant, thus it contains the GU ′-
minimal subtree of G′. By Lemma 6.5(3), the latter is U ′. This shows that Gβ is contained in
the stabiliser of every arc of U ′. On the other hand, the G-stabiliser of an arc of U ′ is contained
in the G-stabiliser of an arc of f ′(U ′), since f ′ is a morphism, hence it is contained in Gβ. This
shows that the G-stabiliser of every arc of U ′ is exactly Gβ, as required. �

Finally, we record the following standard fact on refining simplicial splittings. We say that
G splits over a subgroup C if it is an amalgamated product G = A ∗C B or an HNN extension
G = A∗C .
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Lemma 6.10. Let G � T be a minimal action without inversions on a simplicial tree. Suppose
that, for a vertex v ∈ T , the stabiliser Gv splits over a subgroup C ≤ Gv, with Bass–Serre tree
Gv � T ′. Suppose in addition that, for every edge e ⊆ T incident to v, the stabiliser Ge is elliptic
in T ′. Then G splits over C. In addition, if the splitting of Gv is HNN, then so is the one of G.

6.2 Outer DLS automorphisms
As mentioned in the Introduction, there are various situations in which a DLS automorphism
turns out to be an inner automorphism in a non-obvious way. In this subsection, we provide two
simple criteria to ensure that this does not happen.

Lemma 6.11. Consider a group G with an HNN splitting G = A∗C . Suppose that ZC(C) com-
mutes with the chosen stable letter t ∈ G. If the twist τ ∈ Aut(G) induced by an element
c ∈ ZC(C) \ {1} is an inner automorphism of G, then c has finite order in G and C = A.

Proof. Consider c ∈ ZC(C) \ {1} and the twist τ ∈ Aut(G) with τ(t) = ct and τ(a) = a for every
a ∈ A. Let G � T be the Bass–Serre tree of the HNN extension. Let α and α′ be the axes of
t and ct, respectively. There exists a point x0 ∈ α such that the stabiliser of x0 is A and the
stabiliser of the edge [x0, tx0] is C. Note that [x0, tx0] is contained in the intersection α ∩ α′.

Suppose τ is inner. Thus, there exists g ∈ ZG(A) such that gtg−1 = ct. In particular gα = α′,
preserving the orientation induced by t and ct. We distinguish three cases.

If x0 is the only point of T that is fixed by A, then g must fix x0. Since gα = α′, the edge
[x0, tx0] is also fixed by g, hence g ∈ C. Since g ∈ ZG(A), we have g ∈ ZC(C). By our assumptions,
this implies that g commutes with t, contradicting the fact that gtg−1 = ct.

If A has more than one fixed point in T , then either tAt−1 ≥ A or tAt−1 ≤ A. Suppose first
that one of these inclusions is strict. Since gα = α′, there exists n ∈ Z such that gtn fixes the edge
[x0, tx0], hence g = c′t−n for some c′ ∈ C. This implies that either gAg−1 � A or gAg−1 � A,
contradicting the fact that g ∈ ZG(A).

Finally, suppose that tAt−1 = A. In this case, C = A and G = A�ψ 〈t〉 for some ψ ∈ Aut(A).
Since g ∈ ZG(A), a standard computation shows that g = xtn for some x ∈ A and n ∈ Z such
that ψn(a) = x−1ax for all a ∈ A. It follows that g commutes with tn. Since C = A, the centre
of A commutes with t, so g �∈ ZA(A), hence n �= 0. Observing that τ(tn) = cntn = gtng−1, we
conclude that cn = 1. �

Lemma 6.12. Let a special group G act on a simplicial tree S with a single orbit of edges and
no inversions. Suppose that the stabiliser C of an edge of S satisfies the following:

• C is convex-cocompact and closed under taking roots in G;
• NG(C) is not elliptic in S;
• NG(C)/C is not cyclic, nor a free product of two virtually abelian groups elliptic in Fix(C,S).

Then this splitting of G gives rise to a partial conjugation or a fold that has infinite order in
Out(G).

Proof. Lemma 3.18 ensures that C does not properly contain any of its conjugates, so the G-
stabiliser of every edge of Fix(C,S) is equal to C. Since G acts edge-transitively on S, it follows
that NG(C) acts edge-transitively on Fix(C,S). Thus, the induced action NG(C)/C � Fix(C,S)
gives a 1-edge free splitting of NG(C)/C.

Let A and B be G-stabilisers of adjacent vertices of Fix(C,S). Set A := NA(C)/C and
B := NB(C)/C. Depending on the number of orbits of vertices, we have NG(C)/C = A ∗B or
NG(C)/C = A ∗ Z, where A and B are elliptic in Fix(C,S), while the Z-factor is loxodromic.
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By our third assumption, A is not virtually abelian in the former case (up to swapping A and B),
and A is non-trivial in the latter.

By Corollary 2.13, NG(C)/C is virtually special, hence so is A. In particular, the centre of
A virtually splits as a direct factor. In addition, since C is closed under taking roots, NG(C)/C
is torsion-free. Thus, if NG(C)/C = A ∗B, there exists a ∈ A such that a projects to an infinite
order element of A modulo its centre. If instead NG(C)/C = A ∗ Z, there exists a ∈ A simply of
infinite order in A.

Let ϕ be the DLS automorphism of NG(C)/C induced by the above free splitting and the
element a. Recall that ϕ is the identity on A and the conjugation by a on B. Since the splitting
of NG(C)/C is free, and because of our choice of a, it is straightforward to see that ϕ has infinite
order in the outer automorphism group of NG(C)/C.

Possibly replacing a with a power, Corollary 2.13 shows that there exists an element a ∈
ZA(C) projecting to a. Let ϕ be the DLS automorphism of G induced by its splitting and the
element a. Note that part (2) of Lemma 2.25 ensures that we can take 〈a〉 ⊥ C, so that, in the
HNN case, ϕ is indeed a fold.

Since ϕ|C = idC , the automorphism ϕ leavesNG(C) invariant and projects to ϕ onNG(C)/C.
Also note that ϕ is the identity on A. Thus, if a power of ϕ were an inner automorphism of G,
it would be the conjugation by an element of ZG(A) ≤ NG(C). This would contradict the fact
that ϕ is an infinite-order outer automorphism of NG(C)/C. This proves the lemma. �

6.3 Proof of Theorems A and B
As discussed at the beginning of § 5.4, infinite sequences in Out(G) give rise to non-elliptic G-
actions on R-trees G � Tω. In this subsection, we show how to use such actions to obtain the
required simplicial splittings of G, along with DLS automorphisms with infinite order in Out(G).

Throughout, we consider the setup of § 5.4. In particular, we use the notation ϕn, Tn and Tω
with the same meaning as Assumption 5.11.

Having introduced BF-stability in § 6.1, we can now record the following immediate
consequence of Proposition 5.12 and Lemma 3.36.

Corollary 6.13. The action G � Tω is BF-stable.

Recall that the action G � Tω is non-elliptic by construction, so the following makes sense.

Definition 6.14. We denote by T ⊆ Tω the G-minimal subtree.

We now prove three long, technical propositions that make up the core of the proof of
Theorems A and B. Each of them exploits certain features of the action G � T to construct
a splitting of G and (possibly) a DLS automorphism. It is useful to recall Propositions 5.12
and 5.15 to better understand their relevance.

Proposition 6.15. Let α ⊆ T be a line acted upon by its stabiliser Z via a non-trivial
homomorphism ρ : Z → R. Then one of the following happens:

(1) ρ is discrete with G-semi-parabolic kernel;
(2) G admits a splitting where Z is a vertex group and each incident edge group is contained

in ker ρ (we include here also the ‘trivial’ case when G = Z and T = α);
(3) there exists a geometric approximation G → T and an indecomposable component U ⊆

G such that U �� R and the stabiliser of every arc of U coincides with ker ρ, which is a
centraliser.
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Proof. Assume throughout the proof that ρ is not discrete with G-semi-parabolic kernel. We will
either construct a splitting as in option (2) or find a component of a geometric approximation
as in option (3). We remind the reader that ker ρ can be infinitely generated.

Observe that, by Lemma 3.33, either Γ(ker ρ) = Γ(Z), or an element of the centre of Z lies
outside ker ρ. In addition, if Γ(ker ρ) �= Γ(Z) then ρ cannot be discrete, otherwise Proposition 3.35
would imply that ker ρ is G-semi-parabolic, violating our initial assumption.

Thus, it suffices to consider the following two cases, which we will treat by rather different
arguments. Fix a finite generating set Z0 ⊆ Z with Z0 = Z−1

0 and 1 ∈ Z0.

Case (a): ρ is not discrete and there exists an element z ∈ ZZ(Z) \ ker ρ. Since mor-
phisms are 1-Lipschitz, we have 
G(g) ≥ 
T (g) for every geometric approximation G → T and
every element g ∈ G. Proposition 6.2 ensures that we can choose a geometric approxima-
tion f : G → T such that each element of Z0 ∪ {z} has the same translation length in G
and T .

Now, since z is loxodromic in G and commutes with Z, its axis is Z-invariant. This shows
that the Z-minimal subtree of G is a line α̃ with f(α̃) = α. In addition, Z translates along α̃ ⊆ G
and α ⊆ T according to the same homomorphism ρ : Z → R, since the elements of the generating
set Z0 have the same translation length in G and T .

Let U be the transverse covering of G provided by Proposition 6.6. Let U ∈ U be a component
that shares an arc with α̃.

If U is not indecomposable, then U is an arc containing no branch points of G in its interior.
In this case, we have U ⊆ α̃. Since ρ is not discrete, there exist elements of Z that translate
arbitrarily little along α̃. It follows that α̃ contains no branch points of G, hence G = α̃ and
T = α. Thus G = Z and we are in the ‘trivial’ case of option (2).

Suppose instead that U is indecomposable and let GU ≤ G be its stabiliser. Since ρ is not
discrete, for every ε > 0, the group Z is generated by its elements with translation length < ε.
Thus, Z is generated by elements g ∈ Z such that gU ∩ U contains an arc, since U and α̃ share
an arc. Since U is part of a transverse covering, these generators preserve U , hence Z ≤ GU . In
particular, we have α̃ ⊆ U .

If the image f(U) is a line, then f(U) = α, hence GU = Z. Recall from the discussion after
Definition 6.3 that GU is a vertex group in the splitting of G given by the action G � SU . All
stabilisers of incident edges are subgroups of GU = Z that are elliptic in G, hence in T . This
shows that they are contained in ker ρ. Thus, this splitting is as required in option (2) of the
proposition.

Finally, suppose that f(U) is not a line. By Lemma 6.5, the action GU � f(U) is minimal.
Since α ⊆ f(U), it follows that f(U) contains an infinite tripod τ containing α. Lemma 6.5 also
shows that f(U) is stable, so Gτ coincides with the G-stabiliser of any arc of α. By Proposi-
tion 5.15(e), the latter is exactly ker ρ, so Gτ = ker ρ. Proposition 5.13 now implies that ker ρ is a
centraliser. In particular, ker ρ is finitely generated and, up to changing geometric approximation
and indecomposable component, Lemma 6.9 allows us to assume that ker ρ is the stabiliser of
every arc of U . This is the situation described in option (3) of the statement, so this completes
the discussion of Case (a).

Case (b): we have Γ(ker ρ) = Γ(Z). In this case, we will show that we always fall in option (2)
of the proposition. Let K ≤ ker ρ be a finitely generated subgroup such that any centraliser
containing K contains Z, as provided by Remark 3.32.

Claim 1. We have Fix(K,T ) = α and the stabiliser of every arc of α is exactly ker ρ.
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Proof of Claim 1. It is clear that α ⊆ Fix(K,T ). Consider an arc η ⊆ Fix(K,T ).
Observe that η cannot fall in case (1) of Proposition 5.12. Indeed, Gη would be a centraliser

and, since K is provided by Remark 3.32, it would follow that Z ≤ Gη. However, this would
contradict the fact that Z is not elliptic in T (since ρ is non-trivial).

Thus, η must fall in case (2) of Proposition 5.12. In particular, Gη is the kernel of a homo-
morphism ρ′ : Z ′ → R, where Z ′ is a centraliser stabilising a line α′ ⊆ T containing η. Again,
we must have Z ≤ Z ′, so Z stabilises α′. Since Z translates non-trivially along α, we must have
α = α′, hence Z = Z ′. This shows that η ⊆ α and Gη = ker ρ, thus proving the claim. �

Fix a point p ∈ α and let β ⊆ α be the convex hull of the set Z0 · p. Proposition 6.2 allows
us to choose a geometric approximation f : G → T so that β lifts isometrically to a K-fixed arc
β̃ ⊆ G.

Since ρ is non-trivial, Z is not elliptic in T , nor can it be elliptic in G. Let SZ ⊆ G be the
Z-minimal subtree. Let U be the transverse covering of G provided by Proposition 6.6.

Claim 2. If gSZ ∩ SZ contains an arc, for some g ∈ G, then g ∈ Z. In addition, if some U ∈ U
shares an arc with SZ , then U ⊆ SZ .

Proof of Claim 2. If p̃ ∈ β̃ is the lift of p, the arc β̃ contains Z0 · p̃. Recalling that Z0 generates
Z and that 1 ∈ Z0 = Z−1

0 , we deduce that the Z-minimal subtree SZ is contained in Z · β̃. In
particular, every arc of SZ contains a sub-arc that is fixed by a Z-conjugate of K.

Suppose that gSZ ∩ SZ contains a non-trivial arc η for some g ∈ G. By the previous para-
graph, we can choose η so that it is simultaneously fixed by z1Kz−1

1 and (gz2)K(gz2)−1, for some
z1, z2 ∈ Z. Up to shrinking η, the morphism f is isometric on it, and f(η) is an arc of T fixed
by z1Kz−1

1 and (gz2)K(gz2)−1.
The first half of Claim 1 implies that f(η) ⊆ α ∩ gα. In particular, α and gα share an arc, so

the second half of Claim 1 implies that g(ker ρ)g−1 = ker ρ. Since Γ(ker ρ) = Γ(Z), Lemma 3.28(1)
implies that NG(ker ρ) ≤ NG(Z) = Z. In conclusion, g ∈ Z as required.

Now, suppose that a component U ∈ U shares an arc with SZ . If U is not indecomposable,
then U is an arc containing no branch points of G in its interior, so it is clear that U ⊆ SZ .

Suppose instead that U is indecomposable. As above, f(U ∩ SZ) contains an arc fixed by a
Z-conjugate of K. Lemma 6.5 shows that f(U) is a stable subtree of T , so f(U) is fixed pointwise
by a Z-conjugate of K. Claim 1 implies that f(U) ⊆ α. Since f is a morphism, f(U) is not a
single point and, by Lemma 6.5, it is GU -minimal. We conclude that f(U) = α, hence GU ≤ Z.
Since U is the GU -minimal subtree of G, it follows that U ⊆ SZ . �

Note that SZ is closed in G. Indeed, every point x ∈ SZ is the missing endpoint of a half-open
arc σ ⊆ SZ . By Definition 6.3, σ is covered by finitely many elements of U , so one of these must
intersect σ in an arc containing x. By Claim 2, this element of U is contained in SZ , hence
x ∈ SZ .

Now, consider the covering V of G whose elements are either G-translates of SZ , or elements
of U that are not contained in any G-translate of SZ . By Claim 2, V is a transverse covering
of G. Let G � SV be the minimal action on a bipartite simplicial tree constructed as described
after Definition 6.3.

By Claim 2, Z is the G-stabiliser of SZ , which corresponds to a vertex of SV . Stabilisers of
incident edges are Z-stabilisers of points of SZ . In particular, they are elliptic in G, hence in T ,
so they must be contained in ker ρ. In conclusion, we have realised the situation in option (2) of
the proposition. This completes the proof. �
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In option (2) of Proposition 6.15 we will be able to obtain an HNN splitting of G by applying
Lemma 6.10 to the natural HNN splittings of Z induced by ρ. The next result shows how to
handle option (3) instead.

Proposition 6.16. Consider a geometric approximation f : G → T . Let U ⊆ G be an indecom-
posable component with U �� R such that every arc of U has the same stabiliser H ≤ G. Also
suppose that H is convex-cocompact and closed under taking roots in G. Then one of the
following happens:

(a) G splits over H, giving rise to a fold or partial conjugation with infinite order in Out(G);
(b) G splits over a centraliser ZG(k), where k ∈ G is label-irreducible and H � ZG(k) with

ZG(k)/H � Z. In addition, the twist ψ ∈ Aut(G) determined by k and this splitting has
infinite order in Out(G).

Proof. Let GU ≤ G be the stabiliser of U . Clearly, H is the kernel of the action GU � U and the
induced action GU/H � U has trivial arc-stabilisers. The latter action is still indecomposable,
and geometric by Remark 6.1. Note that GU/H is finitely presented, since H is finitely generated,
and torsion-free, since H is closed under taking roots. Thus, we can invoke Proposition 6.8. The
‘axial’ case does not occur since U is not a line. The two cases of the current proposition will
correspond, respectively, to the ‘exotic’ and ‘surface’ cases.

Let G � SU be the simplicial tree provided by Proposition 6.6 and the discussion after
Definition 6.3. The subgroup GU is the stabiliser of a vertex u ∈ SU . Let E be the collection of
stabilisers of edges of SU incident to u. Note that E is a union of finitely many GU -conjugacy
classes of subgroups of GU , and each element of E is the GU -stabiliser of a point of U .

In view of Lemma 6.10, our goal is to construct a 1-edge splitting of GU in which all elements
of E are elliptic. For this purpose, it suffices to construct a 1-edge splitting of GU/H in which
all elements of the collection E of projections of elements of E are elliptic. We treat the exotic
and surface cases separately.

Case (a): the action GU/H � U is of exotic type. By Proposition 7.2 and Theorem 6.2 in [Gui98],
the action GU/H � U is a limit (in the length function topology) of actions on simplicial trees
GU/H � Sn where all edge stabilisers are trivial and all elements of E are elliptic.

Picking any Sn and collapsing all orbits of edges but one, we obtain an action on a simplicial
tree GU/H � S with a single orbit of edges. This corresponds to a splitting of GU/H as A ∗B
or A ∗ Z, where every element of E is conjugate into either A or B, and the possible Z-factor is
loxodromic in S. Via Lemma 6.10, this induces a 1-edge splitting of G over H.

Since NG(H)/H contains GU/H, it is clear that NG(H)/H is not cyclic and that NG(H) is
not elliptic in the Bass–Serre tree of the splitting of G. We would like to obtain a fold or partial
conjugation with infinite order in Out(G) by applying Lemma 6.12. For this, it remains to ensure
that NG(H)/H is not a free product of two virtually abelian groups elliptic in the Bass–Serre
tree. In fact, it suffices to choose S so that GU/H is not a free product of two virtually abelian
groups elliptic in S.

Suppose that GU/H = V1 ∗ V2, where the Vi are non-trivial virtually abelian groups (other-
wise any choice of S will do). If neither V1 nor V2 is isomorphic to Z, then they are both elliptic
in all the Sn, hence they are elliptic in U . Since GU/H acts on U with trivial arc-stabilisers, we
obtain a GU -invariant simplicial subtree of U , contradicting the fact that U is indecomposable.

Thus, suppose that V2 � Z. If again V1 �� Z, then V1 is elliptic in all Sn and the same argument
shows that V2 must be loxodromic for large n. In this case, every element of E is conjugate into
V1, so we can simply take S = Sn.
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Finally, suppose that GU/H � F2. Note that, for each n, every subgroup in E is contained
in a free factor of F2 that is elliptic in Sn. Since distinct free factors of F2 intersect trivially, if
a free factor contains a non-trivial element of E , then it must be elliptic in all Sn, hence also
in U . We conclude that there is at most one conjugacy class of free factors of F2 that contains
non-trivial elements of E . If 〈x〉 is one such free factor, it suffices to take S to be the HNN
splitting F2 = 〈x〉∗{1}.
Case (b): the action GU/H � U is of surface type. In this case, we have GU/H = π1Σ for
a compact surface with boundary Σ. The action π1Σ � U is dual to an arational measured
foliation on Σ. Since the subgroups E are elliptic in U , they are contained in the fundamental
groups of the boundary components of Σ.

Let γ be an essential simple closed curve on Σ representing a nonzero homology class in
H1(Σ,Z). In particular, γ is two-sided in Σ, and 〈γ〉 is a maximal cyclic subgroup of π1Σ. Dual
to γ, we have a simplicial π1Σ-tree with edge-stabilisers conjugate to 〈γ〉, in which all elements
of E are elliptic.

Let g ∈ GU be a lift of γ. Note that g is loxodromic in U , since the foliation on Σ is arational.
Lemma 6.10 gives a 1-edge splitting of G over the subgroup C = H � 〈g〉.

Claim. There exists a label-irreducible element k ∈ C such that C = ZG(k).

Proof of Claim. Recall that NG(H) virtually splits as H ×K with K convex-cocompact in G.
Thus, for some n ≥ 1, we can write gn = hk with h ∈ H and k ∈ K. Since H and g commute
with k, we have C ≤ ZG(k). Conversely, note that g and k are loxodromic in G with the same
axis, which is contained in U . This axis is preserved by ZG(k), so ZG(k) ≤ GU . Since GU/H
is hyperbolic and 〈g〉 projects to a maximal cyclic subgroup of GU/H, which also contains the
projection of k, we conclude that ZG(k) ≤ H � 〈g〉 = C. This shows that C = ZG(k).

In particular, C is convex-cocompact in G and it has a finite-index subgroup of the form
H × 〈k〉. Recalling that K is convex-cocompact in G and K ∩H = {1}, this shows that 〈k〉 =
C ∩K is convex-cocompact. Hence k is label-irreducible, proving the claim. �

Finally, let ψ ∈ Aut(G) be the twist determined by k and our splitting of G. Observe that
ψ|H = idH and that ψ(GU ) = GU , with the restriction to GU/H = π1Σ being the (conven-
tional) Dehn twist around γ in the mapping class group of Σ. In particular, ψ restricts to
an automorphism of GU/H with infinite order in Out(GU/H).

Also note that ψ is the identity on ZG(k). Thus, if ψ were an inner automorphism of G, then
it would have to be the conjugation by an element of ZGZG(k) ≤ ZG(k) ≤ GU . Hence ψ would
restrict to an inner automorphism of GU/H, contradicting the previous paragraph. The same
argument applies to powers of ψ, so ψ has infinite order in Out(G), as required. �

Finally, the next result covers the situation where every line in T falls in option (1) of
Proposition 6.15 and we are also unable to apply Proposition 6.16.

Proposition 6.17. Suppose that the following hold:

• every geometric approximation G → T is simplicial;
• every line of T is acted upon discretely by its G-stabiliser;
• the G-stabiliser of every stable arc of T is G-semi-parabolic;
• T is not a line.

Then one of the following happens:
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(1) G splits over the stabiliser of a stable arc of T , giving rise to a fold or partial conjugation
with infinite order in Out(G);

(2) G splits over some ZG(g), where g ∈ G is label-irreducible and determines a twist with
infinite order in Out(G);

(3) T contains a line α falling in option (2) of Proposition 6.15.

Proof. Let β ⊆ T be an arc such that Gβ is maximal among all stabilisers of arcs of T (such an
arc exists by Lemma 3.36). Note that β is a stable arc and set H := Gβ for simplicity.

By Proposition 6.2, we can choose a geometric approximation f : G → T with an H-fixed
edge e ⊆ G such that f is isometric on e and β ⊆ f(e) (up to shrinking β).

Let G � S be the 1-edge splitting obtained by collapsing all edges of G outside the orbit
G · e. Let e ⊆ S be the projection of e, and let A and B be the G-stabilisers of its two vertices.
Note that the stabilisers of e and e coincide with H.

We divide the proof into three cases, depending on the behaviour of H and its normaliser.

Case (a): H is non-elliptic in ω-all Tn. Then we are in case (2) of Proposition 5.12, so H = ker ρ
for a homomorphism ρ : Z → R, where Z is the stabiliser of a line α ⊆ Tω containing β.

Claim 1. We have NG(H) = Z.

Proof of Claim 1. Recall from Proposition 5.12 that the Z-minimal subtree of Tn is a line αn
and that the lines αn converge to α. Since H is non-elliptic in ω-all Tn, its minimal subtree
coincides with αn. Thus, if g ∈ NG(H), we must have gαn = αn for ω-all Tn, hence gα = α. This
shows that NG(H) ≤ Z, while the other inclusion is immediate. �

Suppose first that ρ is trivial, so that H = Z. In this case, Proposition 5.15(b) yields a
label-irreducible element h ∈ ZH(H) that is loxodromic in ω-all Tn with 
Tn(h) → 0. If g ∈ G
commutes with h, the argument in the proof of Claim 1 shows that g ∈ Z. In particular, we have
ZG(h) = H.

Let ψ ∈ Aut(G) be the twist or partial conjugation determined by h and the splitting G � S.
In order to show that we fall in options (1) or (2) of the proposition, we only need to prove that
ψ has infinite order in Out(G).

Note that the standard argument from [RS94, § 6] applies in this case, yielding a sequence
kn → +∞ such that, for every finite generating set F ⊆ G, we have, for ω-all n,

lim
n→+∞

inf
x∈Tn

max
f∈F

d(x, ψkn(f)x) < inf
x∈T

max
f∈F

d(x, fx), inf
x∈T

max
f∈F

d(x, ψ(f)x) = inf
x∈T

max
f∈F

d(x, fx).

This shows that no power of ψ can be an inner automorphism of G, as required.
Suppose now instead that H = ker ρ is a proper subgroup of Z. Recall that we are assuming

that ρ has discrete image and that H = ker ρ is G-semi-parabolic, hence convex-cocompact.
Thus, we can write Z = H � 〈z〉 for some z ∈ Z. Corollary 2.13(1) guarantees that hzk com-

mutes with H for some h ∈ H and k ≥ 1. This element commutes with a finite-index subgroup
of Z, hence with the entire Z, because G is a subgroup of AΓ. This shows that the centre of Z
contains an element outside ker ρ.

Proceeding as in Case (a) of the proof of Proposition 6.15, we can ensure that the chosen
geometric approximation G contains a Z-invariant line α̃ on which Z acts via the homomorphism
ρ. Note that f(α̃) = α, so the G-stabiliser of α̃ must coincide with Z.

Note that distinct G-translates of α̃ can share at most one point. Indeed, if gα̃ and α̃ share
an edge, then gHg−1 fixes an arc of α̃, hence an arc of α. Since we chose H so that it is maximal
among stabilisers of arcs of T , the stabiliser of every arc of α is equal to H. In conclusion, we
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have gHg−1 ≤ H, and the symmetric argument yields gHg−1 = H. By Claim 1, we obtain g ∈ Z,
hence gα̃ = α̃.

Since G is simplicial, we obtain a transverse covering of G made up of the G-translates of α̃
and all edges of G that are not contained in any G-translate of α̃. Proceeding as at the end of
Case (b) of Proposition 6.15, we end up in the situation of option (2) of Proposition 6.15 (which
is option (3) of the current proposition).

This completes the discussion of Case (a). In the remaining two cases, we will always construct
folds or partial conjugations arising from G � S, thus ending up in option (1) of the proposition.

Before we proceed, recall that A and B are the stabilisers of the two vertices of e ⊆ S. The
stabiliser of e is H. We make the following observations.

Claim 2. The sets A \H and B \H are both non-empty.

Proof of Claim 2. This is clear if S gives an amalgamated product splitting of G. If it gives
an HNN splitting with stable letter t, we are also fine unless A = H and either tHt−1 ≥ H
or tHt−1 ≤ H. Since H is convex-cocompact, this can only occur if t ∈ NG(H), because of
Lemma 3.18. But then Corollary 2.13(1) implies that htk commutes with H for some h ∈ H and
k ≥ 1, so the axis of htk in T is 〈H, tk〉-invariant, hence G-invariant. This implies that T is a
line, contradicting our assumptions. �
Claim 3. If H is elliptic in ω-all Tn, then NG(H) is non-elliptic in ω-all Tn and the NG(H)-
minimal subtree of ω-all Tn is not a line.

Proof of Claim 3. By Lemma 5.17, there exists a sequence εn → 0 such that NG(H) acts with εn-
dense orbits on Fix(H,Tn). Since β can be approximated by a sequence of arcs βn ⊆ Fix(H,Tn),
which have length bounded away from zero, this shows that NG(H) is non-elliptic in ω-all Tn.

Since Fix(H,Tn) is NG(H)-invariant, it contains the NG(H)-minimal subtree as an εn-dense
subset. If the latter is a line αn ⊆ Tn for ω-all n, then these lines converge to an NG(H)-invariant
line α ⊆ Tω. Again, since β is approximated by arcs in Fix(H,Tn), we have β ⊆ α.

Since NG(H) is not elliptic in Tn, we have NG(H) �= H. Thus, since H = Gβ , the normaliser
NG(H) must translate non-trivially along α. This shows that α is contained in the G-minimal
subtree T ⊆ Tω, so our assumptions guarantee that NG(H) acts discretely on α. Since the kernel
of the action on α is exactly H, it follows that NG(H)/H � Z.

Now, let g ∈ NG(H) be an element generating this quotient. By the above discussion, we
must have 
Tn(g) ≤ εn → 0, contradicting the fact that g is not elliptic in T . �

Case (b): H is elliptic in ω-all Tn and NG(H) is elliptic in T . Since NG(H) is finitely generated
(e.g. by Corollary 2.13(3)), we can choose the geometric approximation f : G → T so that NG(H)
is elliptic in G, hence in S. Up to replacing A,B,H with G-conjugates and swapping A and B,
we can assume that NG(H) ≤ A. In particular, ZG(H) = ZA(H).

By Claim 2, we can pick elements a ∈ A \H and b ∈ B \H.

Claim 4. There exist n and z ∈ ZG(H) such that z is loxodromic in Tn with axis that has bounded
(or empty) intersection with both Min(a, Tn) and Min(b, Tn).

Proof of Claim 4. Recall that 〈H,ZG(H)〉 has finite index in NG(H) by Corollary 2.13(1). Thus,
ZG(H) and NG(H) have the same minimal subtree in ω-all Tn, since H is elliptic. By Claim 3,
this minimal subtree is well defined and its boundary is a Cantor set. On the other hand, if a is
loxodromic in Tn, then the boundary of its axis consists of only two points.

Approximate β by a sequence of arcs βn ⊆ Fix(H,Tn). If a is elliptic in Tn, then the length
of Fix(a, Tn) ∩ βn must go to zero, since a does not fix any portion of the stable arc β. The
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same holds for b. Note that, for ω-all n, the arc βn contains several branch points of Fix(H,Tn)
because of Lemma 5.17.

We conclude that Fix(H,Tn) \ (Min(a, Tn) ∪ Min(b, Tn)) contains at least two disjoint
rays, and the same holds for the ZG(H)-minimal subtree. This yields the required element
z ∈ ZG(H). �

By Corollary 2.13(1) and Lemma 2.25(2), ZG(H) virtually splits as ZH(H) ×K with K ⊥ H.
SinceH is elliptic in Tn, we can assume that the element z provided by Claim 4 lies inK (possibly
replacing z with a proper power and projecting it to K, which does not alter its axis in Tn).
Also recall that ZG(H) = ZA(H). Thus, z and S determine a DLS automorphism ψ ∈ Aut(G),
which is necessarily a fold or partial conjugation.

Note that ψk(a) = a, while ψk(b) = zkbz−k for all k ≥ 1. Since Min(a, Tn) and Min(b, Tn)
have bounded projection to the axis of z in Tn, the distance between Min(ψk(a), Tn) and
Min(ψk(b), Tn) diverges for k → +∞. It follows that 
Tn(ψk(ab)) diverges for k → +∞, showing
that ψ has infinite order in Out(G), as required.

Case (c): H is elliptic in ω-all Tn and NG(H) is non-elliptic in T . Making sure that the chosen
stable arc β is contained in the axis of an element of NG(H), we can ensure that NG(H) remains
non-elliptic in S. Claim 3 guarantees that NG(H)/H is not cyclic.

Given Lemma 6.12, we are only left to consider the case when NG(H)/H is a free product
of virtually abelian groups V1 ∗ V2. Recall that β ⊆ T has been chosen so that its stabiliser is
maximal among stabilisers of arcs of T (at the beginning of the proof). This guarantees that
the action NG(H)/H � Fix(H,G) gives a free splitting of NG(H)/H. The only situation where
Lemma 6.12 cannot be applied is if both V1 and V2 are elliptic in G (and hence in T ).

Let us show that V1 and V2 cannot both be elliptic in T . Suppose for the sake of contradiction
that they are. Recall that T(Vi, Tn) denotes Fix(Vi, Tn) if this is non-empty, and the Vi-minimal
subtree of Tn otherwise, which is necessarily a line. Since NG(H) is not elliptic in T , the fixed sets
of V1 and V2 in T have positive distance, say D > 0. Thus, the subtrees T(V1, Tn) and T(V2, Tn)
are at distance at least D/2 for ω-all n.

Recall that Lemma 5.17 yields a sequence εn → 0 such that V1 ∗ V2 acts with εn-dense orbits
on Fix(H,Tn). In particular, note that Fix(H,Tn) and the NG(H)-minimal subtree of Tn are at
Hausdorff distance ≤ εn. Thus, Corollary 4.20 shows that there exists a sequence ε′n → 0 such
that the actions of V1 and V2 on Fix(H,Tn) are both ε′n-rotating, in the sense of Definition 4.18.

Now, a straightforward ping-pong argument implies that an NG(H)-orbit misses the ball of
radius D/4 centred at the midpoint of the arc joining T(V1, Tn) and T(V2, Tn). For large n, we
have εn < D/4, so this is the required contradiction. �

Remark 6.18. In Case (a) of the proof of Proposition 6.17, we have constructed a shortening
automorphism in the sense of [RS94]. However, in Case (b), we have made the rather unusual
choice of constructing a ‘lengthening automorphism’, and in Case (c) we have not described the
resulting automorphism at all.

We followed this path in order to give a more direct proof of Proposition 6.17. Nevertheless,
we want to emphasise that a shortening automorphism can indeed be constructed in each of the
three cases of the proof of Proposition 6.17. This requires some more work, as one cannot simply
‘contract one edge’ as in [RS94, § 6], but rather needs to perform a folding procedure.

We are only left to record the following simple observation before we can begin with the
proof of the main theorems.
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Lemma 6.19. Suppose that T � R and that G � T has discrete orbits. If the kernel of the
G-action is G-semi-parabolic, then it has non-trivial centre.

Proof. Let H be the kernel of the G-action. Since G acts discretely, there exists a loxodromic
element g ∈ G such that G = H � 〈g〉. Since H is G-semi-parabolic, and in particular convex-
cocompact, Corollary 2.13(1) shows that hgk commutes with H for some h ∈ H and k ≥ 1.

If the centre ofH were trivial, then the centre ofG would be isomorphic to Z and it would con-
tain the element hgk. In particular, ω-all automorphisms ϕn would fix hgk, hence 
Tn(hgk) → 0.
This would contradict the fact that hgk is loxodromic in T and Tω. �

We are finally ready to prove Theorems A and B and Corollary D.

Proof of Theorem A. The fact that the DLS automorphisms appearing in the statement of the
theorem are coarse-median preserving follows from Theorem E, which will be proved in § 7. Here
we only show that such automorphisms exist and have infinite order in Out(G).

Let G be a special group with Outcmp(G) infinite. Choose a sequence ϕn ∈ Autcmp(G) pro-
jecting to an infinite sequence in Outcmp(G). We can apply the construction at the beginning of
§ 5.4 to obtain an action on an R-tree G � Tω. Let T ⊆ Tω be the G-minimal subtree.

By Propositions 5.12 and Proposition 5.15(c1), the G-stabiliser of every arc of T is a cen-
traliser, and every line of T is acted upon discretely by its G-stabiliser. In addition, T is not
itself a line.

Suppose first that no geometric approximation G → T admits indecomposable components
in the transverse covering provided by Proposition 6.6, i.e. that all geometric approximations
of T are simplicial. Then we can apply Proposition 6.17. Note that option (3) never occurs: in
the notation of the proof of Proposition 6.17, it corresponds to Case (a), when ker ρ is a proper
subgroup of Z and is non-elliptic in ω-all Tn. This is ruled out by Proposition 5.15(c1).

In conclusion, we are in options (1) or (2) of Proposition 6.17, so G splits over a centraliser,
giving rise to a DLS automorphism that conforms to the requirements in the statement of
Theorem A.

To complete the proof, it remains to consider the case when some geometric approximation
f : G → T admits an indecomposable component U . Up to replacing G and U , Lemma 6.9 allows
us to assume that all arcs of U have the same stabiliser H, which is also the stabiliser of a stable
arc of T . In addition, U is not a line, otherwise f(U) ⊆ T would be a line with a non-discrete
action by its stabiliser. Thus, we can apply Proposition 6.16, which shows that G splits over a
centraliser and admits a fold, partial conjugation or twist with infinite order in Out(G). Twists
only occur in the ‘surface case’ and they satisfy the requirements of Theorem A.

This completes the proof. �
Proof of Theorem B. Let G be a special group with Out(G) infinite. Any infinite sequence in
Out(G) yields a G-tree G � Tω as in § 5.4. Let T ⊆ Tω be the G-minimal subtree.

Suppose first that one of the following happens:

(i) a line α ⊆ T is acted upon non-discretely by its G-stabiliser;
(ii) the G-stabiliser of an arc β ⊆ T is not G-semi-parabolic;
(iii) T is a line.

In case (ii), β necessarily falls into option (2) of Proposition 5.12 and we denote by α the line
that it provides. In case (iii), we simply set α := T . In each of the three cases, we obtain a line
α that is acted upon non-trivially by its G-stabiliser.

Now, we apply Proposition 6.15 to the line α. Observe that, we can assume that we are in
option (2) of Proposition 6.15. Indeed, this is clear in case (iii), since α = T . Regarding instead
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cases (i) and (ii), we clearly cannot fall into option (1) of Proposition 6.15, whereas option (3)
can be handled using Proposition 6.16, resulting in a DLS automorphism as in Theorem A.

In conclusion, suppose that we have a line α ⊆ T falling into option (2) of Proposition 6.15.
Let Z be the stabiliser of α and let ρ : Z → R be the homomorphism giving translation lengths,
which is non-trivial. Since Z/ ker ρ is free abelian, there exists a homomorphism ρ : Z → Z such
that ker ρ ≤ ker ρ. Note that ρ gives an HNN splitting of Z over ker ρ, with stable letter in Z.
Appealing to Lemma 6.10, this results in an HNN splitting of G over ker ρ with the same stable
letter.

By Proposition 5.15(a), we have Z = ZG(x) for some x ∈ G. By Proposition 5.15(d) and
Lemma 6.19, the centre of ker ρ is non-trivial. By Remark 3.34, the centre of ker ρ is contained
in the centre of Z, so it commutes with the stable letter of the HNN splitting of G. Any element
in the centre of ker ρ gives a twist with infinite order in Out(G) by Lemma 6.11. In conclusion,
we have constructed an automorphism as in type (3) in the statement of Theorem B.

By the above discussion, we can assume in the rest of the proof that cases (i)–(iii) do not
occur, i.e. that T is not a line, that all arc-stabilisers are G-semi-parabolic, and that every line
in T is acted upon discretely by its stabiliser. Note however that not all arc-stabilisers might be
centralisers.

Now, we can conclude via Propositions 6.16 and 6.17 as in the proof of Theorem A. If
option (3) of Proposition 6.17 presents itself, then we obtain an automorphism as in type (3)
of Theorem B as above. In all other cases, we obtain a DLS automorphism that has infinite
order in Out(G) and is coarse-median preserving by Theorem E. Thus, Outcmp(G) is infinite
and, appealing to Theorem A, we obtain a DLS automorphism of the required form.

This completes the proof. �

Proof of Corollary D. Let H be the collection of subgroups of G of the form ZG(x) with x ∈ G.
Suppose that, for every H ∈ H , the Out(G)-orbit of H is infinite. We will show that Outcmp(G)
is infinite.

By Lemma 5.16, there exist automorphisms φn ∈ Out(G) such that, for every H ∈ H , the
sequence φn(H) eventually consists of pairwise distinct classes. Let us run the proof of Theorem A
for this sequence of automorphisms. The only place where we used that the automorphisms were
coarse-median preserving was when applying Proposition 5.15(c1), which we can now replace
by Proposition 5.15(c2). Thus, we obtain a coarse-median preserving DLS automorphism with
infinite order in Out(G), as required. �

7. Coarse-median preserving DLS automorphisms

The goal of this section is the following result. The UCP (uniformly cocompact projections)
condition is introduced in § 7.1.

Theorem 7.1. Let G � X be a proper, cocompact, non-transverse action on a CAT(0) cube
complex. Suppose that G splits as G = A ∗C B or G = A∗C , where C is convex-cocompact,
satisfies the UCP condition in X and does not have any non-trivial finite normal subgroups.
Then we have the following.

(1) All partial conjugations and folds determined by this splitting are coarse-median preserving.
(2) If z ∈ ZC(C) is such that 〈z〉 is convex-cocompact inX and ZG(c) is contained in a conjugate

of A for every c ∈ C such that 〈c〉 ∩ 〈z〉 �= {1}, then the twist determined by z is coarse-
median preserving.
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(3) More generally, if, for every infinite-order element c ∈ C commuting with a finite-index
subgroup of C, the centraliser ZG(c) is contained in a conjugate of A, then all transvections
determined by the splitting G = A∗C are coarse-median preserving.

The proof of Theorem 7.1 is simpler if the cube complex X contains a collection of pairwise
disjoint hyperplanes such that their dual tree is precisely the Bass–Serre tree T of the splitting
of G. This is the situation that we consider in § 7.4.

The previous subsections reduce the proof to this setting. The main idea is to ‘inflate’ a con-
vex, C-invariant subcomplex of X to a hyperplane. This is achieved by considering the G-action
on the product X × T , and recovering cocompactness by restricting to its ‘cubical Guirardel
core’. This is a generalisation of the Guirardel core of a product of two trees [Gui05] that we
introduce in § 7.3. Our construction can also be viewed as a broad generalisation of the idea of
Salvetti blowups from [CSV17].

7.1 Uniformly cocompact projections
Let G � X be a proper cocompact action on a CAT(0) cube complex. We denote Hausdorff
distances by dHaus(·, ·).

Lemma 7.2. Consider a subgroupH ≤ G andH-invariant, convex subcomplexes Z,W ⊆ X with
dHaus(Z,W ) = D. Then dHaus(πZ(gZ), πW (gW )) ≤ 3D for all g ∈ G.

Proof. Since πZ is 1-Lipschitz, we have dHaus(πZ(gZ), πZ(gW )) ≤ D. In addition, for every
x ∈ X

W (πZ(x)|πW (x)) = W (x, πZ(x)|πW (x)) ∪ W (πZ(x)|x, πW (x)) ⊆ W (πZ(x)|W ) ∪ W (Z|πW (x)),

and hence d(πZ(x), πW (x)) ≤ 2D. It follows that dHaus(πZ(gZ), πW (gW )) ≤ 3D. �

Definition 7.3 (Uniformly cocompact projections). Let H ≤ G be convex-cocompact in X.
Let Z ⊆ X be any H-invariant, H-cocompact convex subcomplex. We say that H satis-
fies the UCP condition in X if there exists N ≥ 1 such that, for every g ∈ G, the action
H ∩ gHg−1 � πZ(gZ) has at most N orbits of vertices.

Since X is uniformly locally finite, Lemma 7.2 shows that this property only depends on the
subgroup H ≤ G and the action G � X, and not on the specific choice of Z.

Our interest in the UCP condition is exclusively related to Lemma 7.4 below. In Lemma 7.5,
we will show that convex-cocompact subgroups of special groups satisfy the UCP condition in
any cospecial cubulation. However, even when restricting to special groups G, we will need this
property within non-cospecial cubulations of G (see § 7.4).

Recall that a sequence of hyperplanes u1, . . . , uk is said to be a chain of hyperplanes if, for
each 2 ≤ i ≤ k − 1, the hyperplane ui separates ui−1 from ui+1.

Lemma 7.4. Let w ∈ W (X) be a hyperplane. Let H be its G-stabiliser and suppose that H
satisfies the UCP condition and acts non-transversely on X. Then there exists K ≥ 1 such that,
for every chain w, g1w, . . . , gkw of G-translates of w such that πw(g1w) � · · · � πw(gkw), we
have k ≤ K.

Proof. Since H satisfies the UCP condition, there exists N ≥ 1 such that, for every g ∈ G, the
subgroup H ∩ gHg−1 acts on πw(gw) with at most N orbits of vertices. As in the claim during
the proof of Lemma 2.9, there exists N ′ ≥ 1 such that, for every p ∈ X, there are at most N ′

subgroups ofG that act with at mostN orbits of vertices on a convex subcomplex ofX containing
p. We will show that k ≤ N ·N ′.
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Since the hyperplanes w, g1w, . . . , gkw form a chain and H acts non-transversely on X, we
have g1Hg−1

1 ∩H ≥ · · · ≥ gkHg
−1
k ∩H. By the previous paragraph, there are at most N ′ distinct

subgroups of G among the giHg−1
i ∩H. Thus, it suffices to assume that giHg−1

i ∩H is constant
and show that k ≤ N . The latter follows from the observation that, in this situation, the number
of orbits in πw(giw) is bounded above by N and must strictly decrease as i increases. �

The following implies that convex-cocompact subgroups of special groups satisfy the UCP
condition in any cospecial cubulation.

Lemma 7.5. Convex-cocompact subgroups of AΓ satisfy the UCP condition in XΓ.

Proof. Let H ≤ AΓ be a convex-cocompact subgroup. Let Z ⊆ XΓ be an H-invariant, H-
cocompact, convex subcomplex. Let Z0 ⊆ Z be a finite subset meeting every H-orbit.

Let P be the set of parabolic subgroups of AΓ whose parabolic stratum meets Z0. Note that
P is finite. If P ∈ P, recall that W1(P ) ⊆ W (XΓ) are the hyperplanes skewered by elements
of P .

Claim. If g ∈ AΓ and πZ(gZ) ∩ Z0 �= ∅, then there exist g ∈ AΓ and P ∈ P such that:

(1) gZ ∩ Z0 �= ∅ and W (πZ(gZ)) = W (Z) ∩ W (gZ) ∩W1(P );
(2) H ∩ gHg−1 = H ∩ gHg−1 ∩ P .

Proof of Claim. If gZ ∩ Z �= ∅, then gZ meets Z0, and we can take g = g and P = AΓ.
Otherwise, W (Z|gZ) is non-empty and we define P ≤ AΓ as the largest parabolic subgroup

fixing W (Z|gZ) pointwise. Since πZ(gZ) meets Z0, we have P ∈ P. Note that W1(P ) ⊆ W (XΓ)
coincides with the set of all hyperplanes transverse to W (Z|gZ).

Choose a pair of gates z ∈ Z, z′ ∈ gZ for Z and gZ, with z ∈ Z0. Choose g′ ∈ AΓ with
g′z′ = z. Observing that H ∩ gHg−1 ≤ P and that g′ commutes with P (e.g. by Lemma 3.4), we
deduce that

H ∩ gHg−1 = H ∩ gHg−1 ∩ P = H ∩ (g′g)H(g′g)−1 ∩ P.

Setting g := g′g, condition (2) is satisfied. We also have z ∈ gZ ∩ Z0, hence gZ ∩ Z0 �= ∅.
Since g′ fixes W1(P ) pointwise and g = g′g, we have W (gZ) ∩W1(P ) = W (gZ) ∩W1(P ).

Recalling that W1(P ) is the set of hyperplanes transverse to W (Z|gZ), we obtain

W (πZ(gZ)) = W (Z) ∩ W (gZ) = W (Z) ∩ W (gZ) ∩W1(P ) = W (Z) ∩ W (gZ) ∩W1(P ),

which completes the proof of the claim. �
Since the action H � Z is cocompact, each point of XΓ lies in only finitely many pairwise-

distinct AΓ-translates of Z (see Claim 1 in the proof of Lemma 2.8). Moreover, H has finite
index in the AΓ-stabiliser of Z. It follows that the set of elements g ∈ AΓ such that gZ ∩ Z0 �= ∅
is a finite union of left cosets of H.

Note that, in order to prove the lemma, it suffices to show that the actions H ∩ gHg−1 �

πZ(gZ) are uniformly cocompact when πZ(gZ) ∩ Z0 �= ∅. By the claim and the previous para-
graph, there are only finitely many options for such subgroups H ∩ gHg−1 and sets πZ(gZ).
So it suffices to show that each action H ∩ gHg−1 � πZ(gZ) is cocompact, which follows from
Lemma 2.8. �
Proof of Theorem E. Since G is special, it admits a cospecial cubulation G � X. By Lemma 7.5,
we can apply Theorem 7.1 to this action. To reconcile the differences in parts (2) and (3) between
Theorems E and 7.1, it suffices to recall that G is torsion-free and that elements of G with
commuting powers must themselves commute. �
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7.2 Panel collapse
Here, we record the following special case of the panel collapse procedure of Hagen and
Touikan [HT19], restricting ourselves to non-transverse actions. Under this assumption, panel
collapse, normally a fairly violent procedure, does not alter the coarse median structure.

Proposition 7.6. Let G � X be a cocompact, non-transverse action on a CAT(0) cube com-
plex without inversions. Suppose that there exists a halfspace h ∈ H (X) that is minimal (under
inclusion) among halfspaces transverse to a hyperplane w ∈ W (X). Then there exists Y such
that:

(1) Y is a G-invariant subcomplex of X with Y (0) = X(0);
(2) Y is a CAT(0) cube complex (though not convex, nor a median subalgebra in X);
(3) Y has strictly fewer G-orbits of edges than X;
(4) the identity map X(0) → Y (0) is coarse-median preserving;
(5) the intersection w ∩ Y is non-empty and connected.

Proof. Say that an edge e ⊆ X is bad if there exists g ∈ G such that e is contained in gh and
crosses gw. Let G ⊆ X(1) be the subgraph obtained by removing interiors of bad edges. Since
the action G � X is non-transverse and without inversions, then, for every cube c ⊆ X with
dim c ≥ 2, the intersection between G and the 1-skeleton of c is connected.

We define Y as the full subcomplex of X with Y (1) = G. Parts (1), (3) and (5) are immediate.
Part (2) is proved in [HT19] (of which we are considering the simplest possible case, since G has
connected intersection with 1-skeletons of cubes of X).

It remains to prove part (4). We will speak of X-geodesics and Y -geodesics, depending on
which of the two metrics we are considering. Let mX and mY be the median operators on
X(0) = Y (0) induced by X and Y , respectively. If α and β are paths in X(1) (possibly containing
edges outside Y ), we write δY (α, β) for the Hausdorff distance in the metric of Y between the
two intersections α ∩X(0) and β ∩X(0).

Claim. For every X-geodesic α ⊆ X(1), there exists a Y -geodesic β ⊆ Y (1) with the same
endpoints and with δY (α, β) ≤ 2.

Assuming the claim, we prove part (4). Consider three points x, y, z ∈ X(0). By the claim,
the point mX(x, y, z) is at distance ≤ 2 in Y from a Y -geodesic between any two of these three
points. Thus, at most two hyperplanes of Y separate mX(x, y, z) from any two among x, y, z.
Hence at most six hyperplanes of Y separate mX(x, y, z) and mY (x, y, z), which shows part (4).

Now, in order to prove the claim, let α ⊆ X(1) be an X-geodesic. Consider a bad edge e ⊆ α,
and let g ∈ G be an element such that e crosses gw and is contained in gh. We say that e is
avoidable if gh contains exactly one of the endpoints of α.

Sub-claim. There exists an X-geodesic α′ ⊆ X(1), with the same endpoints as α, such that
δY (α, α′) ≤ 1 and α′ contains no avoidable bad edges.

Proof of Sub-claim. Let e ⊆ α be an avoidable bad edge, crossing a hyperplane gw and contained
in a halfspace gh. Let αe ⊆ α be the subsegment lying in the carrier of the hyperplane bounding
gh. Let α′

e be the X-geodesic, with the same endpoints as αe, that is entirely contained in gh∗

except for its initial or terminal edge. Then δY (αe, α′
e) = 1 and, by minimality of h, no edge of

α′
e is bad.

Replacing the segment αe ⊆ α with α′
e, then repeating the procedure for the two geodesics

forming α \ αe yields the sub-claim. �
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Proof of Claim. Now, let e1, . . . , ek be the bad edges on α′, in order of appearance along it.
Let gi ∈ G be elements such that ei crosses giw and is contained in gih. Since none of the ei is
avoidable, we must have α′ ⊆ gih for every i.

We define a new path β ⊆ X(1) as follows. Let s be the highest index with gsh = g1h. Let
γ1 ⊆ α′ be the segment starting with e1 and ending with es. We replace γ1 with the path that
immediately crosses into g1h∗, then crosses the same hyperplanes as γ1, and finally crosses back
into g1h = gsh. We deal in a similar way with all other halfspaces gih in order to avoid all bad
edges on α′.

Now, the path β contains no bad edges. It is not an X-geodesic, but it is straightforward to
check that it is a Y -geodesic. In addition, δY (α′, β) ≤ 1, hence δY (α, β) ≤ 2. �

This completes the proof of the proposition. �

Note that, by part (5), the intersection w ∩ Y is a hyperplane of Y . We can only apply
Proposition 7.6 a finite number of times because of part (3). Eventually, we obtain the following.

Corollary 7.7. Let G � X be a cocompact, non-transverse action on a CAT(0) cube complex
without inversions. Then there exists Y ⊆ X such that:

(1) Y is a G-invariant subcomplex with Y (0) = X(0);
(2) Y is a CAT(0) cube complex (though not convex, nor a median subalgebra in X);
(3) the action G � Y is hyperplane-essential;
(4) the identity map X(0) → Y (0) is coarse-median preserving.

In certain situations, it is convenient to prioritise connectedness of a certain hyperplane over
essentiality of all other hyperplanes. This can be similarly achieved with a repeated application
of Proposition 7.6.

Corollary 7.8. Given w ∈ W (X), property (3) in Corollary 7.7 can be replaced with:

(3′) the intersection w ∩ Y is connected and the action Gw � w ∩ Y is essential.

7.3 Cubical Guirardel cores
Guirardel’s notion of core for a product of actions on R-trees G � T1 × T2 [Gui05] can be
rephrased purely in median-algebra terms: it is (closely related to) the median subalgebra of
T1 × T2 generated by a G-orbit. As such, this notion can be naturally extended to products of
CAT(0) cube complexes.

In this subsection, we are concerned with cocompactness of this notion of core. The main
result is Proposition 7.9, which we will only require in the special case of Corollary 7.14.

We remark that cocompactness of the core can be achieved more generally, but one must
allow the core to be a non-CAT(0) cube complex, and thus abandon the setting of median
algebras. This insight is explored in forthcoming work of Hagen and Wilton.

Proposition 7.9. Let G act on CAT(0) cube complexes X and Y . Suppose that G � X is
proper and cocompact, while G � Y is essential and has only finitely many orbits of hyperplanes.
Then the following are equivalent.

(1) Every G-orbit in the 0-skeleton of X × Y generates a G-cofinite median subalgebra.
(2) Some G-orbit in the 0-skeleton of X × Y generates a G-cofinite median subalgebra.
(3) The stabiliser of every hyperplane of Y is convex-cocompact in X.

Before proving the proposition, we need to record a couple of observations.
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Definition 7.10. Consider a group Γ, a subgroup H ≤ Γ, and the action H � Γ by left
multiplication. An H-AIS (Almost Invariant Set) is a subset A ⊆ Γ such that:

(1) A is H-invariant;
(2) both A and its complement Γ \A contain infinitely many H-orbits;
(3) for every g ∈ Γ, the symmetric difference Ag�A is H-cofinite.

If A is an H-AIS, then the set A∗ := Γ \A is another H-AIS.

Lemma 7.11. Let G � X be a proper cocompact action on a CAT(0) cube complex. Let H ≤ G
be a convex-cocompact subgroup. Let A ⊆ G be an H-AIS. Then, for every vertex x0 ∈ X, there
exists a partition X = C− � C0 � C+ such that:

(1) C0 is an H-invariant convex subcomplex of X on which H acts cocompactly;
(2) C− and C+ are H-invariant unions of connected components of X \ C0;
(3) A · x0 ⊆ C0 ∪ C+ and A∗ · x0 ⊆ C0 ∪ C−.

Proof. Choose R ≥ 0 such that G · x0 is R-dense in X. Observing that G is finitely generated, we
can fix a word metric (G, d). Choose r ≥ 0 so that d(g, h) ≤ r for all g, h ∈ G with d(gx0, hx0) ≤
2R. Let Δ ⊆ G be the intersection between A∗ ⊆ G and the r-neighbourhood of A in G. Since
A is an H-AIS, Δ is H-cofinite.

Since H is convex-cocompact, there exists an H-invariant convex subcomplex K ⊆ X on
which H acts cocompactly. Since Δ is H-cofinite, there exists L ≥ 0 such that the neighbourhood
NL(K) contains the R-neighbourhood of Δ · x0. We define C0 as the convex hull of NL(K). This
is clearly an H-invariant convex subcomplex of X. By [Bow13, Lemma 6.4], C0 is at finite
Hausdorff distance from K, so the action H � C0 is again cocompact.

Now, define C+ as the union of the connected components of X \ C0 that intersect A · x0.
Since A · x0 is H-invariant, so is C+. The set C− is defined analogously using A∗ · x0. We are
only left to show that a single connected component of X \ C0 cannot intersect both A · x0 and
A∗ · x0.

Suppose for the sake of contradiction that there exists a path α ⊆ X \ C0 joining a point
of A · x0 to a point of A∗ · x0. Since every point of α is at distance ≤ R from the orbit G · x0,
there exist a point y ∈ α and elements a ∈ A, a′ ∈ A∗ with d(y, ax0) ≤ R and d(y, a′x0) ≤ R.
In particular, d(ax0, a

′x0) ≤ 2R, hence d(a, a′) ≤ r. It follows that a′ ∈ Δ, so d(y,Δ · x0) ≤ R.
Since y ∈ X \ C0, this contradicts the fact that C0 contains the R-neighbourhood of Δ · x0. �
Remark 7.12. Let G � Y be an action on a CAT(0) cube complex. Consider a basepoint y0 ∈ Y ,
a halfspace h bounded by a hyperplane skewered by an element of G, and the subgroup H ≤ G
stabilising h. Then the set {g ∈ G | gy0 ∈ h} is an H-AIS.

Proof of Proposition 7.9. It is clear that (1)⇒(2). Let us show that (2)⇒(3). Assuming (2), let
M be a G-invariant, G-cofinite median subalgebra of the 0-skeleton of X × Y . Every hyperplane
w ∈ W (Y ) gives a hyperplane ofX × Y skewered by some element ofG, hence a wall w′ ∈ W (M).
By Chepoi–Roller duality, M is the 0-skeleton of a CAT(0) cube complex Z with a cocompact G-
action. The stabiliser Gw acts cocompactly on the carrier of w′ in Z, hence it is convex-cocompact
in Z. The argument in the proof of Corollary 7.13(1) below implies that Gw is convex-cocompact
in X, as required.

We now prove the implication (3)⇒(1), which is the main content of the proposition. Consider
a vertex p = (x0, y0) and let M ⊆ X × Y be the median algebra generated by the orbit G · p.

By Lemma 7.11, to every hyperplane w ∈ W (Y ) bounding halfspaces h and h∗, we can
associate a partition X = C(h∗) � C(w) � C(h) with the following properties:
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• C(w) is a Gh-invariant, Gh-cocompact, convex subcomplex of X;
• C(h) and C(h∗) are Gh-invariant unions of connected components of X \ C(w);
• if g ∈ G and gy0 ∈ h, then gx0 ∈ C(w) ∪ C(h); if gy0 ∈ h∗, then gx0 ∈ C(w) ∪ C(h∗);
• if g ∈ G, we have C(gw) = gC(w) and C(gh) = gC(h).

These properties imply the following.

Claim. Consider hyperplanes v ∈ W (X) � W (Y ) and w ∈ W (Y ) inducing transverse walls
of M . Then v ∩ C(w) �= ∅ if v ∈ W (X), and C(v) ∩ C(w) �= ∅ if v ∈ W (Y ).

Proof of Claim. We only consider the situation with v ∈ W (Y ), as the argument for the case
when v ∈ W (X) is entirely analogous.

Let v±,w± ∈ H (Y ) be the halfspaces bounded by v and w. Suppose for the sake of contra-
diction that C(v) and C(w) are disjoint. Then C(w), being connected, is contained in a single
connected component of X \ C(v). Without loss of generality, C(w) ⊆ C(v+). It follows that the
connected set C(v−) ∪ C(v) is disjoint from C(w), hence contained in a single connected compo-
nent of X \ C(w). Thus, again without loss of generality, we have C(v−) ∪ C(v) ⊆ C(w+), hence
the sets C(v) ∪ C(v−) and C(w) ∪ C(w−) are disjoint.

However, since v and w induce transverse walls of M = 〈G · p〉, there exists g ∈ G such that
gp ∈ v− ∩ w−. Equivalently, gy0 ∈ v− ∩ w−, hence gx0 ∈ (C(v) ∪ C(v−)) ∩ (C(w) ∪ C(w−)). �

Now, let T (M) be the set of tuples of pairwise-transverse walls of M . Consider an element
of T (M), say induced by tuples of hyperplanes u1, . . . , uk ∈ W (X) and v1, . . . , vh ∈ W (Y ). By
the claim, the collection of all carriers of the ui and all sets C(vi) consists of pairwise intersecting
convex subsets of X. By Helly’s lemma, the intersection of these convex sets is non-empty.

Fix a compact fundamental domain K ⊆ X for the G-action. By the previous paragraph,
there exists g ∈ G such that the carrier of each gui and every set gC(vi) meets K. Note that only
finitely many hyperplanes of X have carrier meeting the compact set K. Similarly, only finitely
many hyperplanes v ∈ W (Y ) satisfy C(v) ∩K �= ∅. This follows by combining the fact that the
action G � W (Y ) is cofinite with Claim 1 in the proof of Lemma 2.8.

The above discussion shows that the action G � T (M) has only finitely many orbits. By
Chepoi–Roller duality, M is the 0-skeleton of a CAT(0) cube complex with finitely many G-orbits
of maximal cubes. This shows that the action G � M is cofinite, as required. �

For the next result, note that we can naturally extend the UCP property (Definition 7.3) to
actions on discrete median algebras M . This is entirely equivalent to the UCP property for the
action on the CAT(0) cube complex associated with M by Chepoi–Roller duality.

We will also speak of carriers and cubes in M , always referring to (vertex sets of) carriers
and cubes in the associated CAT(0) cube complex.

Corollary 7.13. Let G act on X and Y satisfying both the assumptions and the equivalent
conditions in Proposition 7.9. Let M ⊆ X × Y be the median subalgebra generated by a G-
orbit.

(1) A subgroup H ≤ G is convex-cocompact in X if and only if H is convex-cocompact in M .
(2) If, in addition, H satisfies the UCP condition in X, then it also satisfies it in M .

Proof. Let pX : M → X be the restriction of the factor projection. Since G acts properly and
cocompactly on both M and X, and pX is a 1-Lipschitz median morphism, we see that M and
X induce the same coarse median structure on G. Along with Remark 2.21, this implies part (1).
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Let us prove part (2). If w ∈ W (M), we denote by C(w) ⊆ X the convex hull of the image
under pX of the carrier of w in M . Since Gw is convex-cocompact in X by part (1), and C(w)
is the convex hull of a Gw-cocompact subset of X, we conclude that the action Gw � C(w) is
cocompact. Since G � W (M) is cofinite, there exists N ≥ 1 such that every point of X lies in
C(w) for at most N walls w ∈ W (M) (see Claim 1 in the proof of Lemma 2.8).

Let Z ⊆M be an H-invariant, H-cofinite, convex subset. As above, there exists an H-
cocompact convex subcomplex C(H) ⊆ X containing the projection pX(Z). Given g ∈ G, we
denote by Πg the gate-projection of gC(H) to C(H). Since H is UCP in X, there exists N ′ ≥ 1
such that, for every g ∈ G, the group H ∩ gHg−1 acts on Πg with at most N ′ orbits. Let Pg ⊆ Πg

be a subset of cardinality ≤ N ′ meeting all these orbits.
Let T (g) be the set of tuples of pairwise-transverse walls of M that cross both Z and gZ.

We need to show that the number of orbits of H ∩ gHg−1 � T (g) is bounded independently of
g ∈ G. This gives a uniform bound on the number of orbits of maximal cubes in πZ(gZ), hence
on the number of vertices.

Consider u = (u1, . . . , uk) ∈ T (g). The convex subcomplexes C(u1), . . . , C(uk) ⊆ X pairwise
intersect and they all meet both C(H) and gC(H). It follows that C(u1), . . . , C(uk),Πg pairwise
intersect and, by Helly’s lemma, their intersection contains a point p ∈ Πg.

Up to translating u by an element ofH ∩ gHg−1, we can assume that p ∈ Pg. Each point of Pg
lies in the set C(w) for at most N walls w ∈ W (M). Thus, for each k, there are at most Nk ·N ′

orbits of k-tuples for the action of (H ∩ gHg−1) on T (g). Observing that T (g) contains k-tuples
only for finitely many integers k, since M is finite-dimensional, this completes the proof. �
Corollary 7.14. Let G � X be a non-transverse, proper, cocompact action on a CAT(0) cube
complex. Let G � T be a minimal action on a simplicial tree such that all edge-stabilisers are
convex-cocompact in X. Then there exists an action on a CAT(0) cube complex G � Z such
that:

(1) G � Z is non-transverse, proper, cocompact and without inversions;
(2) G � Z and G � X induce the same coarse median structure on G;
(3) there exists a G-equivariant, surjective median morphism Z → T ;
(4) for every hyperplane w ∈ W (Z) obtained as preimage of the midpoint of an edge of T , the

action Gw � w is essential;
(5) if G-stabilisers of edges of T satisfy the UCP condition in X, they also do in Z.

Proof. Choose a basepoint p ∈ X × T and let M be the median algebra generated by the orbit
G · p. Since the action G � X × T is proper and non-transverse, so is the action G � M . In
addition, G � M is cofinite by Proposition 7.9. Thus, by Chepoi–Roller duality, there exists
a non-transverse, proper, cocompact action on a CAT(0) cube complex G � Y such that the
0-skeleton of Y is G-equivariantly isomorphic to M as a median algebra.

The factor projection X × T → T gives the required G-equivariant median morphism
M → T . The projection, X × T → X, gives another G-equivariant median morphism M → X;
this ensures that Y and X induce the same coarse median structure on G. Condition (5) follows
from Corollary 7.13. Up to subdividing, we can assume that G � Y is without inversions.

We are only left to ensure that condition (4) is satisfied. By Corollary 7.8, it suffices to pass
to a G-invariant (non-convex) CAT(0) subcomplex Z ⊆ Y inducing the same coarse median
structure on G. It is immediate to check that the action G � Z is again non-transverse, proper,
cocompact and without inversions.

Let v ∈ W (Y ) be the preimage of the midpoint of an edge of T . Since the intersection v ∩ Z
is connected, condition (3) is not affected by passing to the subcomplex Z.
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Finally, the G-stabiliser of v ∩ Z coincides with the stabiliser of v. The set of vertices in
Z(0) = Y (0) that are adjacent to a hyperplane of Z transverse to both gv ∩ Z and v ∩ Z is
clearly a subset of the set of vertices adjacent to a hyperplane of Y transverse to both gv and v.
Thus, condition (5) remains satisfied in Z. This completes the proof of the corollary. �

7.4 Earthquake maps
In this subsection, we prove Theorem 7.1. By Corollary 7.14, we can assume that we are in the
following setting:

(1) G � X is a proper cocompact action on a CAT(0) cube complex without inversions;
(2) G � X is also non-transverse;
(3) G � T is the action on a tree obtained as restriction quotient of X associated to an orbit

of hyperplanes G · w ⊆ W (X);
(4) A and B are the two connected components of X \G · w adjacent to w, the subgroups

A,B ≤ G are their stabilisers, and C = A ∩B is the stabiliser of w;
(5) C acts essentially on w, satisfies the UCP condition in X, and has no non-trivial finite

normal subgroups;
(6) we fix an element z ∈ ZA(C);
(7) depending on whether there are one or two G-orbits of vertices in T , we denote by τ and

σ, respectively, the transvection and the partial conjugation induced by z, as defined in the
Introduction (in the definition of τ , we fix as stable letter an element t ∈ G with tA = B).

We emphasise that the element z does not preserve the hyperplane w in general.
Though they will not be part of our standing assumptions, it is convenient to give a name

to the conditions in parts (2) and (3) of Theorem 7.1:

(∗) z lies in ZC(C), the subgroup 〈z〉 is convex-cocompact in X, and ZG(c) fixes a point of T
for every c ∈ C with 〈c〉 ∩ 〈z〉 �= {1};

(∗∗) For every infinite-order element c ∈ C commuting with a finite-index subgroup of C, the
centraliser ZG(c) fixes a point of T .

We begin with a few lemmas. If u is a hyperplane of X, we denote by T (u) ⊆ W (X) the
subset of hyperplanes transverse to u. Recall that u has itself a structure of CAT(0) cube complex
whose hyperplanes are identified with hyperplanes of X lying in T (u).

Since z acts non-transversely on X, note that every hyperplane in W1(z) is skewered by z.

Lemma 7.15. The hyperplane w splits as a product of cube complexes w0 × L1 × · · · × Lm,
where m ≥ 0 and each Li is a quasi-line. All hyperplanes of X corresponding to the factor w0

are preserved by z. All hyperplanes of X corresponding to the factors Li are skewered by z.

Proof. Since z commutes with C, the convex subcomplex C(z) introduced in Proposition 2.1 is
C-invariant. It follows that every hyperplane in W1(C) crosses C(z), hence W1(C) ⊆ W0(z) �
W1(z). Since G acts non-transversely and without inversions on X, every element of W1(C) is
either skewered or preserved by z. Since C acts essentially on w, we have T (w) = W1(C).

Since W0(z) is transverse to W1(z), we have a transverse partition

T (w) = (T (w) ∩W0(z)) � (T (w) ∩W1(z)),

which gives rise to a splitting w = w0 × w1 (see [CS11, Lemma 2.5]). Every hyperplane of the
factor w0 is preserved by z, and every hyperplane of the factor w1 is skewered by z. The cube
complex w1 is a restriction quotient of the convex hull in X of any axis of z in X. By [WW17,
Theorem 3.6], the latter splits as a product of quasi-lines. It follows that w1 is a product of
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quasi-lines and bounded cube complexes. However, since C acts essentially on w, there can be
no bounded factors. �

The previous lemma yields a partition:

T (w) = Ω0 � Ω1 � · · · � Ωm.

The sets Ωi are transverse to each other and, since z acts non-transversely, they are all 〈z〉-
invariant. In addition, z fixes Ω0 pointwise and it skewers all other elements of T (w).

Let wA,wB ∈ H (X) be the halfspaces bounded by w containing A and B, respectively.

Lemma 7.16. There exists a constant D ≥ 0 such that:

(1) for every y ∈ w, we have d(y, zy) ≤ D;
(2) for every x ∈ X, we have d(πw(x), πw(zx)) ≤ D and Ω0 ∩ W (x|zx) = ∅.
Proof. Part (1) is immediate from the fact that C acts cocompactly on w and commutes with
z. Regarding part (2), we need to bound uniformly the number of hyperplanes in T (w) that
separate x ∈ X from zx.

Recall that T (w) =
⋃
j≥0 Ωj , where z fixes Ω0 pointwise. Since G acts on X without inver-

sions, every halfspace bounded by a hyperplane in Ω0 is left invariant by z. It follows that no
element of Ω0 can separate x and zx.

Let H ⊆ X be the convex hull of an axis of z. Every hyperplane in T (w) \ Ω0 lies in W1(z),
hence it crosses H. Denoting by πH the gate-projection to H, we conclude that

d(πw(x), πw(zx)) ≤ d(πH(x), πH(zx)) = d(πH(x), zπH(x)),

since H is 〈z〉-invariant. Since G acts non-transversely, we have d(y, zy) = 
X(z) for every y ∈ H
(for instance by [FFT19, Proposition 3.17] or [Fio21, Proposition 3.35]). This proves part (2)
with D = 
X(z). �
Lemma 7.17. Consider x ∈ wB and a ∈ A.

(1) The projections πw(ax) and πw(zaz−1 · x) are at distance at most 2D.
(2) If u ∈ W (X) is transverse to aw and separates πw(ax) from πw(zaz−1 · x), then there exists

an index j �= 0 such that u ∈ Ωj ∩ aΩj and Ωj ∩ aΩj �= Ωj .

Proof. We begin with part (1). Set y := πw(x). Observing that the halfspaces wB and awB are
either equal or disjoint, we deduce that πw(ax) = πwπaw(ax) = πw(ay). Similarly, πw(az−1x) =
πw(az−1y). Thus, Lemma 7.16 and the fact that gate-projections are 1-Lipschitz yield

d(πw(ax), πw(zaz−1 · x)) ≤ D + d(πw(ax), πw(az−1x)) = D + d(πw(ay), πw(az−1y))

≤ D + d(ay, az−1y) = D + d(y, z−1y) ≤ 2D.

We now prove part (2). Since u separates two points of w, it lies in T (w), hence u ∈ Ωj for
some 0 ≤ j ≤ m. Similarly, since u is transverse to aw, we have u ∈ aΩj′ for some 0 ≤ j′ ≤ m.
Since G acts non-transversely on X, we must have j = j′.

If we had j = 0, then u would be preserved by both z and aza−1. Since G acts without
inversions, these elements would also leave invariant the two halfspaces bounded by u. This
contradicts the fact that u must separate the points ax and zaz−1 · x = z · az−1a−1 · ax.

Thus u ∈ Ωj ∩ aΩj for some j ≥ 1. Suppose for the sake of contradiction that Ωj ∩ aΩj = Ωj .
Consider the restriction quotient of X determined by the orbit G · u. This is a tree where z and
aza−1 are loxodromics with the same translation length. Since z acts non-transversely, we have
(G · u) ∩W1(z) ⊆ Ωj and (G · u) ∩W1(aza−1) ⊆ aΩj . Thus, the fact that Ωj ⊆ aΩj implies that
z and aza−1 have the same axis in the tree.
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It follows that, for every point y in this tree, the points y and z · az−1a−1 · y have the same
projection to the shared axis of z and aza−1. Since u projects to the midpoint of an edge of
this axis, it cannot separate the points ax and zaz−1 · x = z · az−1a−1 · ax, which contradicts
our supposition. �

Lemma 7.18. There exists a constant M ≥ 0 such that the following hold.

(1) For all g ∈ G and j �= 0, either Ωj ∩ gΩj = Ωj or #(Ωj ∩ gΩj) ≤M .
(2) Suppose that either (∗) or (∗∗) holds. If there exist g ∈ G and j �= 0 such that Ωj ∩ gΩj = Ωj ,

then there are at most M elements of G · w separating w and gw.

Proof. We begin with part (1). Consider g ∈ G. Since πw(gw) is convex in w, the splitting
w = w0 × L1 × · · · × Lm given by Lemma 7.15 determines a splitting πw(gw) = Y0 × · · · × Ym.
The set of hyperplanes of X corresponding to the factor Yj is precisely Ωj ∩ gΩj . Indeed, recall
that all intersections Ωj ∩ gΩj′ with j �= j′ are empty because G acts non-transversely on X.

Since C satisfies the UCP condition in X, there exists a constant N1 such that, for every
g ∈ G, the subgroup C ∩ gCg−1 acts on πw(gw) with at most N1 orbits of vertices. This action
preserves all factors in the above splitting of πw(gw), since C preserves the factors in the splitting
of w. Hence C ∩ gCg−1 acts on each factor Yj with at most N1 orbits of vertices.

Since each Lj is an essential quasi-line and Yj is a cocompact convex subcomplex, Yj is either
the entire Lj or a compact subset. Thus, if Ωj ∩ gΩj �= Ωj , then C ∩ gCg−1 fixes a point of Yj ,
and it follows that the diameter of Yj is at most N1. Since Yj is isomorphic to a subcomplex of
X, which is locally finite, this results in a uniform bound on the number of vertices of Yj , hence
on the cardinality of Ωj ∩ gΩj . This proves part (1).

We now prove part (2), keeping the above notation. Since C does not have any non-trivial
finite normal subgroups, the action C � w is faithful and we can apply Proposition 2.2. As a
consequence, C has a finite-index subgroup C ′ = C0 × 〈h1, . . . , hm〉, where 〈h1, . . . , hm〉 � Zm,
each hj acts trivially on w0, and each Lj is acted upon trivially by C0 and all hi with i �= j. If
N2 is the index of C ′ in C, then the action C ′ ∩ gC ′g−1 � πw(gw) has ≤ N1N

2
2 orbits of vertices

for every g ∈ G. Let N3 be the highest order of a finite-order element of C0.
If Ωj ∩ gΩj = Ωj for some j �= 0, then Yj = Lj . It follows that there exist an element h ∈

C ′ ∩ gC ′g−1 and a point x ∈ πw(gw) such that 0 < d(x, hx) ≤ N1N
2
2 and W (x|hx) ⊆ Ωj . The

latter implies that h = h0h
n
j for some h0 ∈ C0 that is elliptic in w0, while the former ensures

that n ≤ N1N
2
2 . Note that hN3 = hnN3

j . In conclusion, C ′ ∩ gC ′g−1 contains a power of hj of
exponent at most N1N

2
2N3.

The cyclic subgroup 〈hj〉 is convex-cocompact in X, since the convex hull of any of its axes
is isomorphic to Lj . By Lemma 2.9, there exist finite subsets Fj,n ⊆ G such that

{g ∈ G | hnj ∈ gCg−1} = ZG(hnj ) · Fj,n · C,

for all j �= 0 and n ≥ 1.
Summing up, if Ωj ∩ gΩj = Ωj for some j �= 0, then gw belongs to the set ZG(hnj )Fj,n · w

for some 1 ≤ n ≤ N1N
2
2N3. Now, if (∗∗) holds, then each subgroup ZG(hnj ) is elliptic in the

tree T . If instead (∗) holds, 〈z〉 is convex-cocompact and contained in C, so we have m = 1 and
W1(z) = Ω1. In this case, a power of z lies in C ′ = C0 × 〈h1〉 and its projection to C0 must have
finite order. Thus, z and h1 have a common power, hence ZG(hn1 ) is again elliptic in T by (∗).

In both cases, this gives a uniform bound to the maximum possible distance between the
edges of T corresponding to w and gw, as required by part (2). �
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Note that the three options in part (b) of the next result correspond exactly to the three
options in Theorem 7.1.

Proposition 7.19. Under the assumptions listed at the beginning of this subsection, the
following hold.

(a) We have supx∈w supg∈G d(πw(gx), πw(σ(g)x)) < +∞.
(b) We have supx∈w supg∈G d(πw(gx), πw(τ(g)x)) < +∞, provided that either 〈z〉 ⊥ C, or one

among (∗) and (∗∗) holds.

Proof. LetK be the constant provided by Lemma 7.4 applied to w. Letm,D,M be the constants
provided by Lemmas 7.15, 7.16 and 7.18, respectively.

Recall that G � T has either one or two orbits of vertices. We will have to treat separately
these two situations, which correspond to parts (a) and (b) of the proposition.

Case (a): the action G � T gives an amalgamated product splitting G = A ∗C B. We consider
the partial conjugation σ with σ(a) = a for a ∈ A and σ(b) = zbz−1 for b ∈ B. It is actually
more convenient to consider the automorphism σ satisfying σ(a) = zaz−1 for a ∈ A and σ(b) = b
for b ∈ B. This differs from σ−1 by composition with an inner automorphism given by z. By
Lemma 7.16, we have d(πw(σ−1(g)x), πw(σ(g)x)) ≤ 2D for every x ∈ w and g ∈ G, so it suffices
to prove the proposition for σ.

We can write g ∈ G as g = a0(b1a1 . . . bnan)bn+1, with n ≥ 0 and ai ∈ A \ C, bi ∈ B \ C,
except for a0 which is allowed to vanish, and bn+1 which is allowed to lie in C. Consider a point
x ∈ w.

For 0 ≤ i ≤ n+ 1, we introduce the following hyperplanes and points of X:

wi := a0b1a1 . . . ai−1bi · w, yi := a0b1a1 . . . ai−1bi · σ(aibi+1 . . . bnanbn+1) · x.

Thus w0 = w and wn+1 = gw, while y0 = σ(g)x and yn+1 = gx. Observe that w0,w1 . . . ,wn+1

is a chain of hyperplanes. For 1 ≤ i ≤ n, the hyperplane wi separates yi and yi+1 from w.

Claim 1. At most 2KD elements of Ω0 separate gx and σ(g)x.

Proof of Claim 1. By our choice of K, there exists a subset I ⊆ {1, . . . , n} such that #I ≤ K
and, for every i �∈ I, every hyperplane transverse to both w and wi is also transverse to wi+1.

Recall that, since G acts non-transversely, an element of Ω0 can only be transverse to wi if
it lies in the set a0b1a1 . . . ai−1bi · Ω0.

By Lemma 7.17(1), the points yi and yi+1 are separated by at most 2D hyperplanes
in Ω0 ∩ T (wi). By Lemma 7.17(2), none of these hyperplanes is transverse to wi+1 (since
a0b1a1 . . . ai−1biai · w separates wi and wi+1). So, if yi and yi+1 are separated by an element
of Ω0 ∩ T (wi), then i ∈ I.

Since wi separates yi and yi+1 from w, we deduce that yi and yi+1 are separated by at most
2D elements of Ω0. In addition, they can only be separated by at least one element of Ω0 when
i ∈ I. Since #I ≤ K, this shows that at most 2KD elements of Ω0 separate y0 from yn+1, as
required. �

Claim 2. For every j �= 0, at most 2D(K + 1) +M elements of Ωj separate gx and σ(g)x.

Proof of Claim 2. Fix j �= 0. By Lemma 7.18(1), there exists an index 0 ≤ k ≤ n+ 1 such that
Ωj ⊆ T (wi) for i ≤ k, while #(Ωj ∩ T (wi)) ≤M for i > k.

Let I be as in the proof of Claim 1. If i ≤ k − 1 and i �∈ I, Lemma 7.17(2) shows that no
element of Ωj separates yi and yi+1. Thus, y0 and yk are separated by at most 2DK elements of
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Ωj , using Lemma 7.17(1) as in Claim 1. Similarly, at most 2D elements of Ωj separate yk and
yk+1.

Finally, every element of Ωj separating yk+1 and yn+1 is transverse to wk+1, hence there are
at most M such hyperplanes. This shows that at most 2D(K + 1) +M elements of Ωj separate
y0 and yn+1, as required. �

Combining the two claims with the fact that T (w) =
⋃
j≥0 Ωj , we obtain

d(πw(gx), πw(σ(g)x)) ≤ 2KD +m(2D(K + 1) +M).

Case (b): the action G � T gives an HNN splitting G = A∗C . We fix t ∈ G with tA = B and
consider the transvection τ with τ(a) = a for a ∈ A and τ(t) = zt. We can write g ∈ G as g =
a1t

ε1 . . . ant
εnan+1 with n ≥ 0 and ai ∈ A, εi ∈ {±1}. In addition, we can require that this word

be reduced in the following sense.

• If εi−1 = −1 and εi = +1, then ai �∈ C.
• If εi−1 = +1 and εi = −1, then ai �∈ t−1Ct.

Note that τ(g) = a1t
ε1 . . . ant

εnan+1, where:

• ai = ai if (εi−1, εi) = (+1,−1);
• ai = aiz if (εi−1, εi) = (+1,+1), or i = 1 and ε1 = +1;
• ai = z−1ai if (εi−1, εi) = (−1,−1), or i = n+ 1 and εn = −1;
• ai = z−1aiz if (εi−1, εi) = (−1,+1).

Since z normalises C, this word representing τ(g) is again reduced as defined above. The words
a1t

ε1 . . . ait
εiai+1t

εi+1 . . . ant
εnan+1 are also reduced.

Consider a point x ∈ w. For 0 ≤ i ≤ n+ 1, we introduce the following hyperplanes and points:

wi := a1t
ε1 . . . ait

εi · w, yi := a1t
ε1 . . . ait

εiai+1t
εi+1 . . . ant

εnan+1 · x.
Again, we have w0 = w and wn+1 = gw, while y0 = τ(g)x and yn+1 = gx. The hyperplanes
w = w0,w1 . . . ,wn,wn+1 form a chain, possibly with wn = wn+1. For 1 ≤ i ≤ n, the hyperplane
wi separates yi and yi+1 from w, except if i = n and an+1 ∈ C or an+1 ∈ C.

Claim 3. At most 2KD elements of Ω0 separate gx and τ(g)x.

Proof of Claim 3. This is proved exactly as in Claim 1. A little more care is only required when
showing that yi and yi+1 are separated by at most 2D elements of T (wi) ∩ Ω0, and no element
of T (wi+1) ∩ Ω0. We spend a few more words on this point.

If ai+1 = ai+1, this is obvious and, if ai+1 = z−1ai+1z, we can repeat the argument in Claim 1.
The cases when ai+1 = z−1ai+1 or ai+1 = ai+1z can be deduced from the previous two via
Lemma 7.16(2). �

If 〈z〉 ⊥ C, then Lemma 2.25(1) shows that T (w) = Ω0. In this situation, Claim 3
immediately implies that d(πw(gx), πw(τ(g)x)) ≤ 2KD, proving the proposition.

In the rest of the proof, we suppose that either (∗) or (∗∗) is satisfied.

Claim 4. At most mM + 3D(M + 2) elements of T (w) \ Ω0 separate gx and τ(g)x.

Proof of Claim 4. Lemma 7.18(2) rules out the existence of some j �= 0 such that wM+2 is trans-
verse to every element of Ωj . Lemma 7.18(1) then shows that at most M elements from each Ωj

are transverse to wM+2. Since wM+2 separates yM+2 and yn+1 from w, we deduce that πw(yM+2)
and πw(yn+1) are separated by at most M elements of each Ωj .

For every i, the projections of yi and yi+1 to wi are at distance at most 3D. This can be
deduced from Lemma 7.17(1) and Lemma 7.16(2). Thus, the projections πw(yi) and πw(yi+1)
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are also at distance at most 3D. It follows that πw(y0) and πw(yM+2) are at distance at most
3D(M + 2).

Summing up, the projections πw(y0) and πw(yn+1) are separated by at most
mM + 3D(M + 2) elements of T (w) \ Ω0. �

Combining Claims 3 and 4, we obtain

d(πw(gx), πw(τ(g)x)) ≤ 2KD +mM + 3D(M + 2).

This completes the proof of the proposition. �

For simplicity, we introduce the notation ϕ ∈ Aut(G) to refer to either the partial conjugation
σ or the transvection τ .

Definition 7.20. Consider the setting described at the beginning of this subsection and ϕ ∈
Aut(G) as above. The earthquake map is the only bijection Φ: X(0) → X(0) that satisfies:

• Φ(gx) = ϕ(g)Φ(x) for all x ∈ X and g ∈ G;
• Φ(p) = p for all p ∈ A, and Φ(q) = zq for all q ∈ B.

We leave to the reader the straightforward check that Φ exists and is unique. Note that Φ
descends to an automorphism of the tree T .

Proposition 7.21. Under the assumptions of Proposition 7.19, the earthquake map Φ is
(D + 1)-Lipschitz and coarse-median preserving.

Proof. First, we prove that Φ is Lipschitz. It suffices to show that d(Φ(x),Φ(y)) ≤ D + 1 when-
ever x and y are the endpoints of an edge of X. On each connected component of X \G · w,
the map Φ is an isometry, so it is enough to consider the case when x and y are in distinct
components.

Thus, suppose that there exist points x′ ∈ A, y′ ∈ B and an element g ∈ G such that x = gx′

and y = gy′. Now, since Φ(x) = ϕ(g)x′ and Φ(y) = ϕ(g)zy′, we have

d(Φ(x),Φ(y)) = d(x′, zy′) ≤ 1 + d(y′, zy′) ≤ 1 +D,

where the last inequality follows from Lemma 7.16(1).
Before showing that Φ is coarse-median preserving, we need to obtain the following.

Claim 1. We have P := supx∈X d(πw(x), πw(Φ(x))) < +∞.

Proof of Claim 1. Fix a point w in the intersection between A and the carrier of w. Let L ≥ 0
be a constant such that the orbit G · w is L-dense in X. Since Φ is (D + 1)-Lipschitz and πw is
1-Lipschitz, we have

sup
x∈X

d(πw(x), πw(Φ(x))) ≤ sup
g∈G

d(πw(gw), πw(Φ(gw))) + L+ (D + 1)L

= sup
g∈G

d(πw(gw), πw(ϕ(g)w))) + L+ (D + 1)L.

The last quantity is finite by Proposition 7.19, which proves the claim. �

Claim 2. For every hyperplane u ∈ G · w bounding the region A and every x ∈ X, we have
d(πu(x), πu(Φ(x))) ≤ P +D.
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Proof of Claim 2. Suppose first that u = aw for some a ∈ A. Then, since ϕ(a) = a, we have

d(πaw(x), πaw(Φ(x))) = d(πw(a−1x), πw(a−1Φ(x))) = d(πw(a−1x), πw(Φ(a−1x))) ≤ P,

by Claim 1. The only other option (only in the HNN case) is that u = at−1w for some a ∈ A.
By the above equalities, it suffices to consider the case a = 1. Then, we have

d(πt−1w(x), πt−1w(Φ(x))) = d(πw(tx), πw(tΦ(x))) = d(πw(tx), πw(Φ(z−1tx))).

Since πw(tx) and πw(z−1tx) are at distance at most D by Lemma 7.16(2), the above quantity is
at most P +D, as required. �

Now, consider vertices x, y, p ∈ X with p = m(x, y, p). We will show that there are at most
4P + 2D hyperplanes in the set W (Φ(p)|Φ(x),Φ(y)). By Lemma 2.17, this shows that Φ is
coarse-median preserving.

Since Φ is the restriction of an isometry on each connected component of X \G · w, we can
assume that x, y, p do not all lie in the same component of X \G · w. Thus, possibly swapping
x and y, the points p and y are separated by a hyperplane in the orbit G · w. Translating x, y, p
by an element of G does not alter the size of the set W (Φ(p)|Φ(x),Φ(y)) (by the first property
in Definition 7.20), so we can assume that w ∈ W (p|y) and p ∈ A ∪ B.

We only treat the case when p ∈ A. The other case is identical if we replace Φ with the map
z−1Φ and compose ϕ with an inner automorphism of G given by z.

By Claim 1, the projections πw(Φ(x)) and πw(Φ(y)) are at distance at most P from the points
πw(x) and πw(y), respectively. Since x, p, y lie on a geodesic in this order, so do their projections
πw(x), πw(p) and πw(y). Hence at most 2P hyperplanes can separate πw(p) from πw(Φ(x)) and
πw(Φ(y)). In other words, at most 2P hyperplanes in W (p|Φ(x),Φ(y)) are transverse to w.

In case x �∈ A, let u ∈ G · w be a hyperplane adjacent to A and separating Φ(x) from A. With
the argument in the previous paragraph, Claim 2 implies that at most 2(P +D) hyperplanes in
W (p|Φ(x),Φ(y)) are transverse to u.

Since ϕ is the identity on A, note that y and Φ(y) are on the same side of w and, similarly,
x and Φ(x) are on the same side of u. Thus w lies in W (p,Φ(x)|y,Φ(y)) and, when defined, u

lies in W (p,Φ(y)|x,Φ(x)).
Now, since the set W (p|x, y) is empty, we have

W (p|Φ(x),Φ(y)) = W (p, x|Φ(x),Φ(y)) ∪ W (p, y|Φ(x),Φ(y)).

The set W (p, y|Φ(x),Φ(y)) is transverse to the set W (p,Φ(x)|y,Φ(y)), which contains w. Sim-
ilarly, W (p, x|Φ(x),Φ(y)) is transverse to W (p,Φ(y)|x,Φ(x)) � u (or it is empty, if x ∈ A). In
conclusion, every element of W (p|Φ(x),Φ(y)) is transverse to either w or u, and so there are at
most 4P + 2D hyperplanes in W (p|Φ(x),Φ(y)). This completes the proof of the proposition. �
Proof of Theorem 7.1. By Corollary 7.14, it suffices to prove the theorem under the assump-
tions of this subsection. Let ϕ ∈ Aut(G) be our DLS automorphism, as above. Applying
Proposition 7.21 to both ϕ and ϕ−1, we obtain a bi-Lipschitz, coarse-median preserving map
Φ: X → X satisfying Φ(gx) = ϕ(g)Φ(x) for all g ∈ G and x ∈ X. This shows that ϕ preserves
the coarse median structure on G induced by X. �
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AMS16 Y. Antoĺın, A. Minasyan and A. Sisto, Commensurating endomorphisms of acylindrically

hyperbolic groups and applications, Groups Geom. Dyn. 10 (2016), 1149–1210.
BJ96 H. Bass and R. Jiang, Automorphism groups of tree actions and of graphs of groups, J. Pure

Appl. Algebra 112 (1996), 109–155.
BW12 N. Bergeron and D. T. Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012),

843–859.
Bes88 M. Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), 143–161.
BF95 M. Bestvina and M. Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995),

287–321.
Bow13 B. H. Bowditch, Coarse median spaces and groups, Pacific J. Math. 261 (2013), 53–93.
BH99 M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319
(Springer, Berlin, 1999).

CS11 P.-E. Caprace and M. Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal.
21 (2011), 851–891.

CRK11 M. Casals-Ruiz and I. Kazachkov, On systems of equations over free partially commutative
groups, Mem. Amer. Math. Soc. 212 (2011), No. 999.

CRK15 M. Casals-Ruiz and I. Kazachkov, Limit groups over partially commutative groups and group
actions on real cubings, Geom. Topol. 19 (2015), 725–852.

CSV17 R. Charney, N. Stambaugh and K. Vogtmann, Outer space for untwisted automorphisms of
right-angled Artin groups, Geom. Topol. 21 (2017), 1131–1178.

CFI16 I. Chatterji, T. Fernós and A. Iozzi, The median class and superrigidity of actions on CAT(0)
cube complexes. J. Topol., 9 (2016), 349–400.

Che00 V. Chepoi, Graphs of some CAT(0) complexes, Adv. in Appl. Math. 24 (2000), 125–179.
CU18 M. Clay and C. Uyanik, Simultaneous construction of hyperbolic isometries, Pacific J. Math.

294 (2018), 71–88.
CW04 J. Crisp and B. Wiest, Embeddings of graph braid and surface groups in right-angled Artin

groups and braid groups, Algebr. Geom. Topol. 4 (2004), 439–472.
DG11 F. Dahmani and V. Guirardel, The isomorphism problem for all hyperbolic groups, Geom. Funct.

Anal. 21 (2011), 223–300.
Deh38 M. Dehn, Die Gruppe der Abbildungsklassen: das arithmetische Feld auf Flächen, Acta Math.
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Pau88 F. Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent.
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