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PLURIHARMONIC SYMBOLS
OF COMMUTING TOEPLITZ TY PE OPERATORS
ON THE WEIGHTED BERGMAN SPACES

YOUNG JOO LEE

ABsTRACT. A class of Toeplitz type operators acting on the weighted Bergman
spaces of the unit ball in the n-dimensional complex space is considered and two pluri-
harmonic symbols of commuting Toeplitz type operators are completely characterized.

1. Introduction and result. Let B be the unit ball of the n-dimensional complex
spaceC" and V denotethe L ebesgue volume measure on B normalized to havetotal mass
1. For o > —1, define ameasure dV,, on B by dV,(2) = c,(1 — |Z?)* dV(2) where the
constant c,, isanormalizing constant so that dV,, is a probability measure. The weighted
Bergman space A, (1 < p < o0) is the closed subspace of the usual Lebesgue space
LP = LP(B, V,) consisting of holomorphic functions on B.

Corresponding to each ¢ > —1, we define an integral operator

_ 2\o
P = o [, g L vV <)

— <Z, W>)n+l+0
where 1/, = [g(1 — |w|?)’ dV(w) and (z,w) is the ordinary Hermitian inner product
for points zzw € C". It is known [2, Theorem 1] that forp > 1and o, > —1, P,
is a bounded operator from L, onto A)} if and only if p(1 + ¢) > 1+ a. Moreover, if
p(1+0) > 1+ «, then P, hasthe following reproducing properties:

1) Pf=f and P,f=f(0)

for every functionsf € AP. See[2] for more informations on P, and related facts.
Letp > landa,0 > —1besuchthat p(1+0) > 1+ «. Foru € L, the Toeplitz type
operator TJ with symbol u is the linear operator acting on A}, defined by

To(f) = Po(uf)

for functionsf € A). Then, T] isabounded operator on A)).
In this paper, we study the commuting problem of Toeplitz type operators, acting on
the weighted Bergman spaces, with pluriharmonic symbols. A functionu € C?(B) issaid
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to bepluriharmonicif itsrestriction to an arbitrary complex line that intersectsthe ball is
harmonic as afunction of single complex variable. Asiswell known [6, Theorem 4.4.9],
every pluriharmonic function on B can be expressed, uniquely up to an additive constant,
as the sum of a holomorphic function and an antiholomorphic function.

On the unweighted L2-Bergman space, a characterization problem for pluriharmonic
symbols of commuting Toeplitz operators induced by the Bergman projection was first
solved by Axler and Cugkovic[1] onthedisk. Later, onthesetting of theball, somepartial
results on this problem were obtained by Choe and Lee [3]. In [9], Zheng solved the
problem completely by using the M -harmonic function theory. Also, the same problem
was considered for certain Toeplitz type operator. In arecent paper, the author [5] solved
the problem for the certain Toeplitz type operator acting on the unweighted L1-Bergman
space of the ball.

In the present paper, we consider the same characterization problem for a class of
Toeplitz type operators acting on the weighted Bergman spaces and completely charac-
terize two pluriharmonic symbols for which the associate Toeplitz type operators com-
mute. The following is the main theorem of the paper.

THEOREM 1. Letp > landa, o > —1besuchthat p(1+0) > 1+ andp(n+1+o) =
2(n+1+ «). Supposethat u and v are two bounded pluriharmonic symbols on B. Then
TSTg = TgTS on A if and only if one of the following properties holds:

(a) uandv are both holomorphic on B.

(b) uand v are both antiholomorphic on B.

(c) Thereexist constants c and d, not both 0, such that cu + dv is constant on B.

In the unweighted case of p = 2, « = 0 and ¢ = 0, the above theorem was obtained
in [1] on the disk and then, on the ball, in [3] partially and [9] completely. Recently,
a certain weighted case was considered. In [5], the author obtained Theorem 1 in the
weightedcasep=1, a =0ando = n+1.

In Section 2, we collect some basic facts and preliminary resultson M -harmonic and
pluriharmonic functions needed in the proof. In Section 3, we prove Theorem 1 and give
an application (see Corollary 9).

2. Préeliminaries. Forzw € B,z # 0, define
z— |2 2w, 2)2— 1 - |22(w - [2-2(w, 2)2)
1—(w,2)
and po(w) = —w. Then ¢, € A, the group of all automorphisms (= biholomorphic self-
maps) of B and o, is an involution. That is, ¢, o ¢, is the identity on B. Furthermore,

each ¢ € A hasa unique representation ¢ = ¢, o U forsomez € BandU € U, the
group of all unitary operators on C". For u € C?(B) and z € B, we define

Bu)@ = Auo ¢,)(0)

where A denotesthe ordinary Laplacian. The operator Aiscalledtheinvariant Laplacian
becauseit commuteswith automorphismsof B in the sensethat A(u o ) = (Au) o ¢ for

pz(W) =
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¢ € A. We say that afunction u € C?(B) is M -harmonic on B if it is annihilated on B
by theinvariant Laplacian A. M -harmonic functions are characterized by acertain mean
value property. To be more precise, for a continuous function F on B, let R (F) denote
the radialization of F defined by the formula

R(F)@ = /U F(U2dU (z<€B)

where dU denotes the Haar measure on U.

It is not hard to see that if F is M -harmonic on B and ¢ € A, then the radializa-
tion R (F o ¢) is constant on B and hence extends to a continuous function on B. The
following proposition shows that this property, together with a certain mean value prop-
erty, conversely characterizesthe M -harmonicity. Thefollowing characterization of M -
harmonicity given by the weighted areaversion of invariant mean value property will be
useful in the proof of Theorem 1.

PROPOSITION 2. Lett > —1 and suppose F € L{ is a continuous function on B.
Then F is M -harmonic on B if and only if

(Fo2)(0) = A [[(F o p)W)(L — [w) dv(w)
and R (F o ) hasa continuous extension on B for every ¢ € A.

PROOF.  See Proposition 3 of [5].

To characterize the symbols, we also need a recent result of D. Zheng [9] on M -
harmonic products (the original statement in [9, Theorem 2] is in a dlightly different
form).

LEMMA 3. Letu=f+gandv=h+ k be two bounded pluriharmonic functions on
B. If fk — hgis M -harmonic on B, then u and v are all holomorphic or antiholomorphic
or there exist constants ¢ and d, not both 0, such that cu + dv is constant on B.

Let1 < s < oo. The Hardy space H® is the space of all functionsf holomorphic on B
for which

Ifle=(swp_[ff0Pdo)" <.

Herethe measure o denotesthe rotation invariant probability measure on S, the boundary
of B. It iswell known (see [6, Theorem 5.6.4]) that if f € HS, then f*(() = lim,_1f(r¢)
exists for [0] ae. ¢ € S The space BMOA consists of al f € H? whose boundary
functionsf* are functions of bounded mean oscillations with respect to the nonisotropic
metric on Sthat corresponds to the Koranyi approach regions. See [4] for details. Note
that BMOA functions are closed under composition with automorphismsand BMOA C
Hs for all s. Also, it turns out (see, for example, [7]) that f € BMOA if and only if

sup ||f o pa — f(@)]]2 < oo.
acB

Before turning to the proof, we prove several simple results which will be used in the
proof of Theorem 1. Thefollowing proposition was obtained in [8, Proposition 3] on the
disk.
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PrOPOSITION 4. Let f + g be a bounded pluriharmonic function on B. Thenf and g
areall in BMOA.

ProOF. Putu = f + g for notational simplicity. By the mean value property for
holomorphic functions, we see that

/S(f (r¢) = £(0)) (9(rQ) — 9(0)) do(¢) = 0

foral 0 < r < 1. It follows from a simple manipulation that

@) = T@P do(©) + [[l(rQ) = O do(Q) = [ u(r¢) — u(O)?dor(©)
<A4ul3, O0<r<1)

and hence ||f — f(0)||3 + ||lg — 9(0)||5 < 4/|ul|%,- Now, for a € B, replace u by uo ¢, to
get
[If o pa—f@I3+]g0 va—9@]5 < 4]ul%.

Therefore, taking the supremum over all a € B, we havef,g € BMOA, asdesired. The
proof is complete. ]

It isnot hard to see that by an integration in polar coordinates, H® C A7 forall s > 1
andt > —1. Hence, the following corollary is an immediate consequence of Proposi-
tion 4 because BMOA C HSfor al s < oo.

COROLLARY 5. Letf + g be abounded pluriharmonic function on B. Then f and g
areal inAfforalls>1andt > —1.

It is shown in [3] that if F,G € HZ, then the radialization R (FG) has a continuous
extension on B. Since BMOA is invariant under composition with automorphisms, we
have the following.

LEMMA 6. LetF,G € BMOA. Then R (Fo 4,060 ) extendsto a continuousfunction
on B for every » € A.

3. Proof. In this section we will prove Theorem 1 and give a simple application.
Wefirst need some elementary propertiesof canonical automorphisms. Thereal Jacobian
Jryp Of @7 isgiven by

— 2 n+l
%) Jrp(W) = (%) weB)
and the identity
1421 —
® 1— (pAa), p2(b)) = (1—171 - (a,b))

B (1 - <a., Z>)(1 - <Z! b>)
holdsfor every a,b € B. See[6, Chapter 2] for details. For « > —1 and a € B, welet

= (7/1_|a|2 ) nHl+a ccB)

1—(za)
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for notational simplicity. Then, by (2) and (3), we have a useful change-of-variable for-
mula:

(4) /Bde :/BFogpa|kg|2dVa (a € B)

for all measurable F on B whenever the integrals make sense.
Letp > 1anda > —1. Fora € B, let U, denotethe linear operator on L, defined by

Uaf = (f o pa)(K)?P.
Then, by the change-of-variable formula (4), one can easily seethat
JI0afPave = [ 1f oIk dVe = [ IfPaVe

for every f € L. Hence U, isanisometry of LY, into LY. Using (3), one can easily show
that k%(a)kq = 1 on B. It followsthat U,U, is theidentity operator on LY, and hence U,
takes A? onto AP.

Before proving Theorem 1, we have a couple of lemmas. The following lemma says
that P, and U, commute on L, in certain cases.

LEMMA 7. Letp> landa,o > —1besuchthatp(l+o) > 1+aandp(n+1+o) =
2(n+ 1+ «). For a € B, we have P,U; = U,P, on L.

ProOOF. Letf € L? and z € B. By the change-of-variable formula (4) and simple
manipulations using (3), one can see

WP)f (2a(w)) (ka(w))*/”

Gt A

PUa (@) = A, |, 4=
a 104 2/p n+
(2= [pa() P W) (K2 (17aw)) ) ( 1-Jaf 2) v
(1—(z pa(w) |

== >\U /
B
n+l+o

_ (= [
A= (zaym

o [ 85 W)t (w)(1 — (w, &)
e (1— (a@, W)™

Ontheother hand, sincep(n+1+0) = 2(n+1+«) by the assumption, the last expression
of the aboveturnsinto

1— 2 gnﬁil — 2y
(@) Aa/e(l—(l MY e V) = (k)PP (o)

dv(w)

>)n+1+0 |1 _ <W, a

2 n+pl+u 7(n+l+(7)

dv(w).

1-(za) (pa(2),W))
which is exactly U,P,f(2). Hence P,U; = UsP, on L, as desired. The proof is
complete. -
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LEMMA 8. Letp > landa,oc > —1besuchthatp(l+o) > 1+aandp(n+1+o) =
2(n+1+a). Forae Bandu € L™, wehaveUaTjUa = T(,, ON AP
PrROOF. Letf € AY. By Lemma7, one obtains
T3, Uaf = T3, [(F 0 0a)(K)P]
= P[(uo wa)(f o pa)(k§)*/]

= P,Ug(uf)

= UaPU(Uf)

= U,Tef.
Thus Ty, Ua = UaTj] on A}. Now, use the fact UaUs is the identity operator on A to
get the desired result. This completesthe proof. ]

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. We begin with easy direction. First supposethat (a) holds,
so that u and v are holomorphic on B. Then, by (1), we can see that T} and T] are,
respectively, the operators on A5, of multiplication by u and v. Thus T{TS = TJT] on
AP, Now assume (b), so that U and v are holomorphic on B. Using the explicit formula
for P,, an application of Fubini’s theorem and (1), one can seethat T]TJf = P, (uvf) for
every bounded functionsf in A?. Note that the set of all bounded functions in A?, forms
adense subset of AP, It follows from the continuity that TS and T commute, as desired.
Finally, suppose (c) holds and assume ¢ # O (the other case is in a similar fashion).
Thenu = cyv + ¢, for some constants ¢; and ¢z, whichimplies T] = ¢, TJ + ¢, so that
TITg = i TTg + G Tg = TgTS on Al Hence Ty and T] commuteon AS.

Now we prove the converse implication. Writeu = f +gandv = h + k for some
holomorphic f, g, h and k. Then, by Corollary 5, the functions f, g, h and k are all in
AP Moreover, th, hg and fk areall in LY, by Corollary 5 again. Let 1 denote the constant
function 1 on B. Then, by the reproducing properties (1), we have

Tl = T3 (P,v)
= T](h+k(0))
= P,(fh+Kk(O)f +hg +gk(0))
= fh+ k(0)f + P,(hg) + g(0)k(0).
Notethat fz F dV,, = F(0) for holomorphic functions F € L. It follows that

(5)
LTIV, = (TETY1)(0)

= f(0)h(0) +f (Q)k(0) + GOK(O) + Py (hG)(0)

= £(Oh(0) +(O)k(0) +TOK(O) + A, [ h(w)GW)(L — W)’ dV(w).
Similarly,
6) [(TSTIL)dVe = F(Oh(O) +hOF(O) +FOKO) + A, [ FWIkW)(L— [wl?)” dV(w).
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Since TGTy = TJT by the assumption, letting A = fk— hg, we have by (5) and (6) that
(7) Ao [LAMY(L— WP dV(w) = AQ).

Let a € B. Multiplying both sides of the equation T] T = TJT] by U, ontheleft and by
U, on the right, we obtain since U,U, is the identity operator

UaTSUaUaT\(/TUa = UaT\(/TUaUaTSUa
and therefore by Lemma8
) Ta

T(T
Uoipa " Vowa

_ TO o
- TVO’v/"aTUO’v/"a :

Equation (7) was derived under the assumptionthat T T = Ty T]. Thus(8) saysthat (7)
remains valid with A o ¢4 in place of A. That is,

9 Xo LA 0 022 — W) VW) = A@)

for any a € B. Let ¢ € A and suppose ¢ has the representation ¢ = ¢, o U for some
ae€ BandU € U. Then, by the rotation-invariance of the measure dV and (9), we have
the weighted area version of the invariant mean value property for A:

Xo [0 R)W)(L — W) dV() = A, [[(A o wa)(w)(L — [W2)” dV(w)

=A(a)

= (N o ¢)(0)
because »(0) = a. On the other hand, since f, g, h and k are all in BMOA by Propo-
sition 4, the function R (A o ¢) has a continuous extension on B for any » € A by
Lemma 6. Note from Corollary 5that A € LL. It follows from Proposition 2 with t = o
that A = fk—hgisM -harmonic on B. Now, the characterization followsfrom Lemma3.
This completes the proof. ]

We conclude this paper with a simple application. We note that pluriharmonic func-

tions are closed under complex conjugation.

COROLLARY 9. Letp > 1and a,0 > —1 besuchthat p(1+¢) > 1+ o and
p(n+1+0) =2(n+1+ ). upposeu is a bounded pluriharmonic symbol on B. Then
ToTe = T2TS on AP, if and only if the image of B under u lies on somelinein C.

ProoF. If u(B) lies on somelinein C, arotation and a translation show that there
exist constantsc (|c| = 1) and d such that cu + d isreal valued on B. It follows that

T = (T2 ) = 2(T — 0)
Now, since T] = (T4 — d), we see that T and T commute. Conversely, assume
ToTg = T2TS on Ab. Then, by Theorem 1, u and U are holomorphic on B or anontrivial
linear combination of u and u'is constant on B. Thefirst caseimpliesu is constant on B,
so we are done. Also, a simple manipulation shows that the latter case implies u(B) lies
on somelinein C. This completes the proof. ]

https://doi.org/10.4153/CMB-1998-020-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-020-7

136 YOUNG JOO LEE

REFERENCES

1. S. Axler and Z. Cutkovit, Commuting Toeplitz Operators with Harmonic Symbols. Integral Equations
Operator Theory 14(1991), 1-11.

2. B. R. Choe, Projections, the Weighted Bergman Spaces, and the Bloch Space. Proc. Amer. Math. Soc.
108(1990), 127-136.

3. B. R. Choe and Y. J. Lee, Pluriharmonic Symbols of Commuting Toeplitz Operators. lllinois J. Math.
37(1993), 424-436.

4. R. Coifman, R. Rochberg and G. Weiss, Factorizations Theorems for Hardy Spaces in Several Variables.
Ann. of Math. 103(1976), 611-635.

5. Y. J. Lee, Pluriharmonic Symbols of Commuting Toeplitz Type Operators. Bull. Austral. Math. Soc. 54
(1996), 67-77.

6. W. Rudin, Function Theory in the Unit Ball of C". Springer-Verlag, Berlin, Heidelberg, New York, 1980.

7. J. Shapiro, Cluster Sets, Essential Range, and Distance Estimates in BMO. Michigan Math. J. 34(1987),
323-335.

8. K. Stroethoff, Essentially Commuting Toeplitz Operators with Harmonic Symbols. Canad. J. Math. 45
(1993), 1080-1093.

9. D. Zheng, Commuting Toeplitz Opetators with Pluriharmonic Symbols. preprint.

Department of Mathematics

Mokpo National University
Chonnam 534-729

Korea

e-mail: yjlee@chungkye.mokpo.ac.kr

https://doi.org/10.4153/CMB-1998-020-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-020-7

