
J. Appl. Probab. 1–23 (2024)
doi:10.1017/jpr.2024.41

LIMIT THEOREMS OF OCCUPATION TIMES OF NORMALIZED BINARY
CONTACT PATH PROCESSES ON LATTICES
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Abstract

The binary contact path process (BCPP) introduced in Griffeath (1983) describes the
spread of an epidemic on a graph and is an auxiliary model in the study of improving
upper bounds of the critical value of the contact process. In this paper, we are con-
cerned with limit theorems of the occupation time of a normalized version of the BCPP
(NBCPP) on a lattice. We first show that the law of large numbers of the occupation time
process is driven by the identity function when the dimension of the lattice is at least 3
and the infection rate of the model is sufficiently large conditioned on the initial state
of the NBCPP being distributed with a particular invariant distribution. Then we show
that the centered occupation time process of the NBCPP converges in finite-dimensional
distributions to a Brownian motion when the dimension of the lattice and the infection
rate of the model are sufficiently large and the initial state of the NBCPP is distributed
with the aforementioned invariant distribution.
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1. Introduction

In this paper we are concerned with the normalized binary contact path process (NBCPP).
For later use, we first introduce some notation. For d ≥ 1, the d-dimensional lattice is denoted
by Z

d. For x, y ∈Z
d, we write x ∼ y when they are neighbors. The origin of Zd is denoted by

O. Now we recall the definition of the binary contact path process (BCPP) introduced in [6].
The binary contact path process {φt}t≥0 on Z

d is a continuous-time Markov process with state

space X= {0, 1, 2, . . .}Zd
and evolves as follows. For any x ∈Z

d, x ∼ y, and t ≥ 0,

φt(x) →

⎧⎪⎪⎨⎪⎪⎩
0 at rate

1

1 + 2λd
,

φt(x) + φt(y) at rate
λ

1 + 2λd
,

where λ is a positive constant. As a result, the generator � of {φt}t≥0 is given by

�f (φ) = 1

1 + 2λd

∑
x∈Zd

(f (φx,−) − f (φ)) + λ

1 + 2λd

∑
x∈Zd

∑
y∼x

(f (φx,y) − f (φ))
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2 X. XUE

for any f from X to R depending on finitely many coordinates and φ ∈X, where, for all x, y, z ∈
Z

d,

φx,−(z) =
{

φ(z) if z �= x,

0 if z = x;
φx,y(z) =

{
φ(z) if z �= x,

φ(x) + φ(y) if z = x.

Intuitively, {φt}t≥0 describes the spread of an epidemic on Z
d. The integer value a vertex

takes is the seriousness of the illness on this vertex. A vertex taking value 0 is healthy and one
taking a positive value is infected. An infected vertex becomes healthy at rate 1/(1 + 2λd). A
vertex x is infected by a given neighbor y at rate λ/(1 + 2λd). When the infection occurs, the
seriousness of the illness on x is added with that on y.

The BCPP {φt}t≥0 was introduced in [6] to improve upper bounds of critical values of
contact processes (CPs) according to the fact that the CP {ξt}t≥0 on Z

d can be equivalently
defined as

ξt(x) =
{

0 if φ(1+2λd)t(x) = 0,

1 if φ(1+2λd)t(x) > 0

for any x ∈Z
d. For a detailed survey of CPs, see [11, Chapter 6] and [12, Part II]. To emphasize

the dependence on λ, we also write ξt as ξλ
t . The critical value λc of the CP is defined as

λc = sup

{
λ > 0: P

( ∑
x∈Zd

ξλ
t (x) = 0 for some t > 0 |

∑
x

ξλ
0 (x) = 1

)
= 1

}
.

Applying the above coupling relationship between BCPP and CP, it is shown in [6] that
λc(d) ≤ 1/2d(2γd − 1) for d ≥ 3, where γd is the probability that the simple random walk on
Z

d starting at O never returns to O again. In particular, λc(3) ≤ 0.523 as a corollary of the above
upper bound. In [17], a modified version of BCPP is introduced and then a further improved
upper bound of λc(d) is given for d ≥ 3. It is shown in [17] that λc(d) ≤ (2 − γd)/(2dγd) and
consequently λc(3) ≤ 0.340.

The BCPP belongs to a family of continuous-time Markov processes called linear systems
defined in [11, Chapter 9], since there are a series of linear transformations {Ak : k ≥ 1} on
X such that φt =Akφt− for some k ≥ 1 at each jump moment t. As a result, for each m ≥ 1,
Kolmogorov–Chapman equations for{

E

(
m∏

i=1

φt(xi)

)
: x1, . . . , xm ∈Z

d

}

are given by a series of linear ordinary differential equations, where E is the expectation
operator. For the mathematical details, see [11, Theorems 9.1.27 and 9.3.1].

For technical reasons, it is convenient to investigate a rescaled time change {ηt}t≥0 of the
BCPP defined by

ηt = exp

{
1 − 2dλ

2dλ
t

}
φ(1+2dλ)/2dλt.

The process {ηt}t≥0 is introduced in [11, Chapter 9] and is called the normalized binary contact
path process (NBCPP) since Eηt(x) = 1 for all x ∈Z

d and t > 0 conditioned on Eη0(x) = 1 for
all x ∈Z

d (see Proposition 2.1).
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Normalized binary contact path processes 3

Here we recall some basic properties of the NBCPP given in [11, Section 9.6]. The state
space of the NBCPP {ηt}t≥0 is Y= [0, +∞)Z

d
and the generator L of {ηt}t≥0 is given by

Lf (η) = 1

2λd

∑
x

(f (ηx,−) − f (η)) + 1

2d

∑
x∈Zd

∑
y∼x

(f (ηx,y) − f (η)) +
(

1

2λd
− 1

) ∑
x∈Zd

f ′
x(η)η(x)

for any η ∈Y, where f ′
x is the partial derivative of f with respect to the coordinate η(x) and, for

all x, y, z ∈Z
d,

ηx,−(z) =
{

η(z) if z �= x,

0 if z = x;
ηx,y(z) =

{
η(z) if z �= x,

η(x) + η(y) if z = x.

Applying [11, Theorem 9.1.27], for any x ∈Z
d, t ≥ 0, and η ∈Y,

d

dt
Eηηt(x) = −Eηηt(x) + 1

2d

∑
y∼x

Eηηt(y), (1.1)

where Eη is the expectation operator with respect to the NBCPP with initial state η0 = η. For
any x, y ∈Z

d, t ≥ 0, and η ∈Y, let Fη,t(x, y) =Eη(ηt(x)ηt(y)). Consider Fη,t as a column vector
from Z

d ×Z
d to [0, +∞); applying [11, Theorem 9.3.1], there exists a (Zd)2 × (Zd)2 matrix

H = {H((x, y), (v, w))}x,y,v,w∈Zd , independent of η, t, such that

d

dt
Fη,t = HFη,t (1.2)

for any η ∈Y and t ≥ 0. For a precise expression for H, see Section 3, where proofs of main
results of this paper are given. Roughly speaking, both Eηηt(x) and Eη(ηt(x)ηt(y)) are driven
by linear ordinary differential equations, which is a basic property of general linear systems as
we recalled above. For more properties of the NBCPP as consequences of (1.1) and (1.2), see
Section 2.

In this paper we study the law of large numbers and the central limit theorem (CLT) of the
occupation time process

{ ∫ t
0 ηu(O) du

}
t≥0 of an NBCPP as t → +∞. The occupation time is

the simplest example of the so-called additive functions of interacting particle systems, whose
limit theorems have been popular research topics since the 1970s (see the references cited in
[7]). In detail, let {Xt}t≥0 be an interacting particle system with state space SZ

d
, where S ⊆R,

then
∫ t

0 f (Xs) ds is called an additive function for any f : SZ
d →R. If {Xt}t≥0 starts from a

stationary probability measure π and f ∈ L1(π ), then the law of large numbers of
∫ t

0 f (Xs) ds is
a direct application of the Birkhoff ergodic theorem such that

lim
t→+∞

1

t

∫ t

0
f (Xs) ds =Eπ (f | I) almost surely (a.s.) and in L1,

where I is the set of all invariant events. Furthermore, if the stationary process {Xt}t≥0 starting
from π is ergodic, i.e. I is trivial, then Eπ (f | I) =Eπ f = ∫

SZd f (η) π (dη) almost surely. In
the ergodic case, it is natural to further investigate whether a CLT corresponding to the above
Birkhoff ergodic theorem holds, i.e. whether

lim
t→+∞

1√
t

∫ t

0
(f (Xs) −Eπ f ) ds = N(0, σ 2)
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4 X. XUE

in distribution for some σ 2 = σ 2(f ) > 0 as t → +∞. It is shown in [7] that if the generator of
the ergodic process {Xt}t≥0 satisfies a so-called sector condition, then the CLT above holds.
As an application of this result, [7, Part 2] shows that mean-zero asymmetric exclusion pro-
cesses starting from Bernoulli product measures are ergodic and satisfy the sector condition.
Consequently, corresponding CLTs of additive functions are given. For exclusion processes,
particles perform random walks on Z

d but jumps to occupied sites are suppressed. We refer
the reader to [11, Chapter 8] for the basic properties of exclusion processes.

CLTs of additive functions are also discussed for the supercritical contact process ξ
λ,d
t ,

where λ > λc. It is shown in [11, Chapter 6] that the supercritical contact process has a non-
trivial ergodic stationary distribution ν, which is called the upper invariant distribution. CLTs
of additive functions of supercritical contact processes starting from ν are given in [16]. Since
marginal distributions of ν do not have clear expressions as product measures, the proof of the
main theorem in [16] follows a different strategy than that given in [7]. It is shown in [16] that
additive functions of the supercritical contact process satisfy a so-called FKG condition, and
then corresponding CLTs follow from [15, Theorem 3].

For a general interacting particle system starting from a stationary distribution π which is
not ergodic (or we do not know whether π is ergodic), we should first study which type of
f makes Eπ (f | I) =Eπ f almost surely and then the investigation of a corresponding CLT is
meaningful. It is natural to first consider f with the simplest form f (η) = η(x) for some x ∈Z

d,
then the corresponding additive function reduces to the occupation time. CLTs of occupation
times of interacting particle systems are discussed for critical branching processes and voter
models on Z

d in [1, 3] respectively. For voter models, each x ∈Z
d has an opinion in {0, 1}

and x adopts each neighbor’s opinion at rate 1. For critical branching random walks, there
are several particles on each x ∈Z

d, the number of which is considered as the state of x. All
particles perform independent random walks on Z

d and each particle dies with probability 1
2 or

splits into two new particles with probability 1
2 at rate 1. As shown in [1, 3], CLTs of occupation

times of both models perform dimension-dependent phase transition phenomena. For critical
branching random walks, the CLTs above have three different forms in the respective cases
where d = 3, d = 4, and d ≥ 5. For voter models, the CLTs above have five different forms in
the respective cases where d = 1, d = 2, d = 3, d = 4, and d ≥ 5.

The investigation of the CLT of the occupation time of an NBCPP in this paper is greatly
inspired by [1, 3]. Several basic properties of NBCPPs are similar to those of the voter model
and the critical branching random walk. For example, in all these three models, the expectations
of states of sites on Z

d are all driven by linear ordinary differential equations. Furthermore,
when d ≥ 3 (and λ is sufficiently large for an NBCPP), each model has a class of nontrivial
extreme stationary distributions distinguished by a parameter representing the mean particle
number on each site, the probability of a site taking opinion 1, and the mean seriousness
of the illness on each site in critical branching random walks, voter models, and NBCPPs
respectively. In addition, the voter model and NBCPP are both linear systems. In conclusion,
according to all these similarities, it is natural to ask whether CLTs similar to those of voter
models and critical branching random walks hold for the NBCPP.

On the other hand, the evolution of NBCPPs has different mechanisms than those of voter
models and critical branching random walks. For the voter model, the state of each site is
bounded by 1. For the critical branching random walk, although the number of particles on a
site is not bounded from above, each jump, birth, and death of a particle can only change one
or two sites’ states by one. The above properties make it easy to bound high-order moments
of states of sites for voter models and critical branching random walks. For NBCPPs, the
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Normalized binary contact path processes 5

seriousness of the illness on a site is unbounded and the increment of this seriousness when
being further infected is also unbounded, which makes the estimation of E((ηt(x))m) diffi-
cult for large m. Hence, it is also natural to discuss the influence of the above differences
between NBCPPs and the other two models on the techniques utilized in the proof of the CLT
of NBCPPs.

According to a calculation of the variance (see Remark 2.3), it is natural to guess that the
CLT of the occupation time of an NBCPP should take three different forms in the respective
cases where d ≥ 5, d = 4, and d = 3, as in [3, Theorem 1] and [1, Theorem 1.1]. However, in
this paper we only give a rigorous result for part of the first case, i.e. the CLT of the occupation
time for sufficiently large d, since we cannot bound the fourth moment of ηt(O) uniformly for
t ≥ 0 when the dimension d is low. For our main result and the mathematical details of the
proof, see Sections 2 and 3, respectively.

Since the 1980s, the large deviation principle (LDP) of the occupation time has also been a
popular research topic for models such as exclusion processes, voter models, critical branching
random walks, and critical branching α-stable processes [2, 4, 8–10, 13]. It is natural to ask
whether an LDP holds for the occupation time of an NBCPP. We think the core difficulty in
the study of this problem is the estimation of E exp

{
α
∫ t

0 ηs(O) ds
}

for α �= 0. We will work
on this problem as a further investigation.

We are also inspired by investigations of CLTs of empirical density fields of NBCPPs,
which are also called fluctuations. For sufficiently large d and λ, [18] gives the fluctuation
of the NBCPP {ηλ,d

t }t≥0 starting from the configuration where all sites are in state 1; [14]
gives another type of fluctuation of a class of linear systems starting from a configuration with
finite total mass, including NBCPP as a special case. The boundedness of supt≥0 E

((
η

λ,d
t (O)

)4)
given in [18] for sufficiently large d and λ is a crucial property for the proofs of the main results
in this paper. For the mathematical details, see Section 2.

2. Main results

In this section we give our main result. For later use, we first introduce some notation and
definitions. We denote by {Sn}n≥0 the discrete-time simple random walk on Z

d, i.e. P(Sn+1 =
y | Sn = x) = 1/2d for any n ≥ 0, x ∈Z

d, and y ∼ x. We denote by {Yt}t≥0 the continuous-time
simple random walk on Z

d with generator L given by Lh(x) = (1/2d)
∑

y∼x (h(y) − h(x)) for

any bounded h from Z
d to R and x ∈Z

d. As defined in Section 1, we use γd to denote the
probability that {Sn}n≥1 never returns to O again conditioned on S0 = O, i.e.

γd = P(Sn �= O for all n ≥ 1 | S0 = O) = P(Yt �= O for any t ≥ 0 | Y0 = x)

for any x ∼ O. For any t ≥ 0, we use pt( · , · ) to denote the transition probabilities of Yt, i.e.
pt(x, y) = P(Yt = y | Y0 = x) for any x, y ∈Z

d. For any x ∈Z
d, we define

�(x) = P(Sn = x for some n ≥ 0 | S0 = O). (2.1)

We use 1 to denote the configuration in Y where all vertices take the value 1. For any η ∈Y,
as defined in Section 1, we denote by Eη the expectation operator of {ηt}t≥0 conditioned on
η0 = η. Furthermore, for any probability measure μ on Y, we use Eμ to denote the expectation
operator of {ηt}t≥0 conditioned on η0 being distributed with μ.
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6 X. XUE

Now we recall more properties of the NBCPP {ηt}t≥0 proved in [11, Chapter 9] and [18,
Section 2].

Proposition 2.1. (Liggett, [11].) For any η ∈Y, t ≥ 0, and x ∈Z
d,

Eηηt(x) =
∑
y∈Zd

pt(x, y)η(y).

Furthermore, E1 ηt(x) = 1 for any x ∈Z
d and t ≥ 0.

Proposition 2.1 follows from (1.1) directly. In detail, since the generator L of the simple
random walk on Z

d satisfies

L(x, y) =

⎧⎪⎪⎨⎪⎪⎩
−1 if x = y,
1

2d
if x ∼ y,

0 otherwise,

we have Eηηt(x) =∑
y∈Zd etL(x, y)Eηηt(y) by (1.1), where etL =∑+∞

n=0 tnLn/n! = pt.

Proposition 2.2. (Liggett, [11].) There exist a series of functions {qt}t≥0 from (Zd)2 to R and
a series of functions {q̂t}t≥0 from (Zd)4 to R such that

E1 (ηt(O)ηt(x)) =E1 (ηt(y)ηt(x + y)) =
∑
z∈Zd

qt(x, z), (2.2)

Eη(ηt(x)ηt(y)) =
∑

z,w∈Zd

q̂t((x, y), (z, w))η(z)η(w) (2.3)

for any t ≥ 0, x, y ∈Z
d. and η ∈Y. Furthermore,

qt(O, w) =
∑

(y,z): y−z=w

q̂t((x, x), (y, z)) (2.4)

for any x, w ∈Z
d.

Proposition 2.2 follows from (1.2). In detail, (2.3) holds by taking q̂t = etH . When η0 = 1,
applying the spatial homogeneity of ηt, we have

F1,t(O, x) = F1,t(O, −x) = F1,t(y, y + x) = F1,t(y + x, y). (2.5)

Denote by At(x) the expression F1,t(O, x), applying (1.2) and (2.5), we have

d

dt
At = QAt

for any t ≥ 0 and a Z
d ×Z

d matrix Q = {q(x, y)}x,y∈Zd independent of t. Consequently, (2.2)
holds by taking qt = etQ. Since

d

dt
At(x) = d

dt
F1,t(z + x, z)

=
∑

u

∑
v

H((z + x, z), (u, v))F1,t(u, v) =
∑
y∈Zd

∑
(u,v):u−v=y

H((z + x, z), (u, v))At(y),
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the Z
d ×Z

d matrix Q can be chosen such that q(x, y) =∑
(u,v):u−v=y H((z + x, z), (u, v)) for

any x, y, z ∈Z
d. Applying this equation repeatedly, we have

qn(x, y) =
∑

(u,v):u−v=y

Hn((z + x, z), (u, v))

for all n ≥ 1 by induction, and then

qt(x, y) =
∑

(u,v):u−v=y

q̂t((z + x, z), (u, v)). (2.6)

As a result, (2.4) holds.

Proposition 2.3. (Liggett, [11].) When d ≥ 3 and λ > 1/(2d(2γd − 1)), we have the following
properties:

(i) For any x, y, z, w ∈Z
d, limt→+∞ qλ,d

t (x, y) = limt→+∞ q̂λ,d
t (x, y, z, w) = 0.

(ii) Conditioned on η0 = 1, ηt converges weakly as t → +∞ to a probability measure νλ,d

on Y.

(iii) For any x, y ∈Z
d,

lim
t→+∞ E1 ((ηt(x))2) = sup

t≥0
E1 ((ηt(x))2) =Eνλ,d ((η0(O))2) = 1 + 1

hλ,d
,

lim
t→+∞ Cov1 (ηt(x), ηt(y)) = Covνλ,d (η0(x), η0(y)) = �(x − y)

hλ,d
,

where

hλ,d = 2λd(2γd − 1) − 1

1 + 2dλ

and � is defined as in (2.1).

Proposition 2.3 follows from [11, Theorem 2.8.13, Corollary 2.8.20, Theorem 9.3.17]. In
detail, let {p(x.y)}x,y∈Zd be the one-step transition probabilities of the discrete-time simple
random walk on Z

d, and {q(x, y)}x,y∈Zd be defined as

q(x, y) =
⎧⎨⎩

1
2 q(x, y) if x �= y,

1
2 q(x, y) + 1 if x = y.

Furthermore, let h : Zd → (0, +∞) be defined as

h(x) = �(x) + hλ,d

hλ,d
.

Then, direct calculations show that p, q, and h satisfy the assumption of [11, Theorem 2.8.13].
Consequently, applying [11, Theorem 2.8.13], limt→+∞ qt(x, y) = 0 for all x, y ∈Z

d, where
qt = e−tetq. It is easy to check that qt = q2t and hence the first limit in (i) is zero. By (2.6),
q̂t(x, y, z, w) ≤ qt((x − y), (z − w)) and hence the second limit in (i) is zero. Therefore, (i)
holds. It is not difficult to show that p, q, and h also satisfy the assumption of [11, Corollary
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8 X. XUE

2.8.20]. Applying this corollary, we have limt→+∞
∑

y qt(x, y) = h(x). Equation (2.2) shows
that

∑
y qt(x, y) =E(ηt(z)ηt(z + x)), and hence

lim
t→+∞ E1 ((ηt(x))2) = h(0) = 1 + 1

hλ,d
,

lim
t→+∞ Cov1 (ηt(x), ηt(y)) = h(x, y) − 1 = �(x − y)

hλ,d
.

Note that the second limit also applies Proposition 2.1. These last two limits along with (i)
ensure that {qt}t≥0 and 1 satisfy the assumption of [11, Theorem 9.3.17]. By this theorem, (ii)
and (iii) hold.

Proposition 2.4 ([18].) There exist an integer d0 ≥ 5 and a real number λ0 > 0 satisfying the
following properties:

(i) If d ≥ d0 and λ ≥ λ0, then λ > 1/2d(2γd − 1).

(ii) For any d ≥ d0, λ ≥ λ0, and x ∈Z
d,

Eνλ,d ((η0(O)4)) ≤ lim inf
t→+∞ E

λ,d
1 ((ηt(x))4) < +∞.

(iii) For any d ≥ d0 and λ ≥ λ0,

lim
M→+∞ sup

(x,y,z)∈(Zd)3:
‖x−y‖1∧‖x−z‖1≥M

Covνλ,d ((η0(x))2, η0(y)η0(z)) = 0,

where ‖ · ‖1 is the l1-norm on R
d and a ∧ b = min{a, b} for a, b ∈R.

Here we briefly recall how to obtain Proposition 2.4 from the main results given in [18].
Note that, in [18], limit behaviors are discussed for ηtN2 as N → +∞ and t is fixed. All these
behaviors can be equivalently given for ηt as t → +∞. In [18], a discrete-time symmetric

random walk {Sλ,d
n }n≥0 on (Zd)4 and function H

λ,d
: (Zd)4 × (Zd)4 → [1, +∞) are introduced

such that

E
λ,d
1

(
4∏

i=1

ηt(xi)

)
≤Ex

( +∞∏
n=0

H(Sn, Sn+1)

)

for any x = (x1, x2, x3, x4) ∈ (Zd)4 and t ≥ 0. We refer the reader to [18] for precise expressions
of H and the transition probabilities of {Sn}n≥0. It is shown in [18] that there exist d̂0 and λ̂0
such that

sup
x∈(Zd)4

Ex

(( +∞∏
n=0

H(Sn, Sn+1)

)1+ε)
< +∞ (2.7)

for some ε = ε(λ, d) > 0 when d ≥ d̂0 and λ ≥ λ̂0. Taking

d0 = max{5, d̂0}, λ0 = max

{
λ̂0, 1 + 1

2d0(2γd0 − 1)

}
,

(i) holds. By Proposition 2.3(ii) and Fatou’s lemma, we have

Eνλ,d ((η0(O)4)) ≤ lim inf
t→+∞ E

λ,d
1 ((ηt(x))4).
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Then, Proposition 2.4(ii) follows from (2.7). It is further shown in [18] that

|Cov1 (ηt(x)ηt(v), ηt(y)ηt(z))| ≤E(x,v,y,z)

( +∞∏
n=0

H(Sn, Sn+1), σ < +∞
)

for any x, v, y, z ∈Z
d and t ≥ 0, where σ = inf{n : {Sn(1), Sn(2)}⋂{Sn(3), Sn(4)} �= ∅} and

Sn(j) is the jth component of Sn. Applying Proposition 2.4(ii) and (iii), the left-hand side in the
last inequality can be replaced by |Covνλ,d (η0(x)η0(v), η0(y)η0(z))|. By (2.7) and the Hölder
inequality, (iii) holds by checking that

lim
M→+∞ sup

(x,y,z)∈(Zd )3:
‖x−y‖1∧‖x−z‖1≥M

P(x,x,y,z)(σ < +∞) = 0. (2.8)

By the transition probabilities of {Sn}n≥0, {Sn(i) − Sn(j)}n≥0 is a lazy version of the simple
random walk on Z

d for any 1 ≤ i �= j ≤ 4. Hence, (2.8) follows from the transience of the
simple random walk on Z

d for d ≥ 3, and then (iii) holds.
Now we give our main results. The first one is about the law of large numbers of the

occupation time process
{ ∫ t

0 ηu(O) du
}

t≥0.

Theorem 2.1. Assuming that d ≥ 3 and λ > 1/2d(2γd − 1).

(i) If the NBCPP on Z
d starts from νλ,d, then

lim
N→+∞

1

N

∫ tN

0
ηu(O) du = t

a.s., and is in L2 for any t > 0.

(ii) If the NBCPP on Z
d starts from 1, then

lim
N→+∞

1

N

∫ tN

0
ηu(O) du = t

is in L2 for any t > 0.

Remark 2.1. By Proposition 2.3, an NBCPP starting from νλ,d is stationary. Hence,
Theorem 2.1(i) will hold immediately when we can check the ergodicity. However, as far as
we know, it is still an open question as to whether an NBCPP starting from νλ,d is ergodic. As
far as we understand, the currently known properties of NBCPPs do not provide convincing
evidence for either a positive or negative answer to this problem. We will work on this problem
as a further investigation.

It is natural to ask what happens for the occupation time for small λ and d = 1, 2. Currently,
we have the following result.

Theorem 2.2. Assuming that d ≥ 1 and λ < 1/2d, if the NBCPP on Z
d starts from 1, then

lim
N→+∞ E1

((
1

N

∫ tN

0
ηu(O) du

)2)
= +∞

for any t > 0.
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Remark 2.2. Theorem 2.2 shows that there is no convergence in L2 for the occupation time
when λ < 1/2d and the process starts from 1. Combined with Theorem 2.1, the occupation time
for the NBCPP on Z

d for d ≥ 3 performs a phase transition as λ grows from small to large.
More problems arise from Theorem 2.2. What occurs in cases where d = 1, 2 and λ ≥ 1/2d, or
d ≥ 3 and 1/2d ≤ λ ≤ 1/(2d(2γd − 1))? Furthermore, does the occupation time converge to 0
in distribution when λ is sufficiently small? Our current strategy cannot solve these questions,
which we will work on as further investigations.

Our third main result is about the CLT of the occupation time process. To state our result,
we first introduce some notation and definitions. For any t ≥ 0 and N ≥ 1, we define

XN
t = 1√

N

∫ tN

0
(ηu(O) − 1) du.

We write XN
t as XN

t,λ,d when we need to distinguish d and λ.
Here we recall the definition of ‘weak convergence’. Let S be a topological space. Assuming

that {Yn}n≥1 is a sequence of S-valued random variables and Y is an S-valued random variable,
then we say that Yn converges weakly to Y when and only when limn→+∞ Ef (Yn) =Ef (Y) for
any bounded and continuous f from S to R.

Now we give our central limit theorem.

Theorem 2.3. Let d0 and λ0 be defined as in Proposition 2.4. Assume that d ≥ d0, λ > λ0,
and the NBCPP on Z

d starts from νλ,d. Then, for any integer m ≥ 1 and t1, t2, . . . , tm ≥ 0,(
XN

t1,λ,d, XN
t2,λ,d, . . . , XN

tm,λ,d

)
converges weakly, with respect to the Euclidean topology of Rm,

to
√

C1(λ, d)(Bt1, Bt2 , . . . , Btm ) as N → +∞, where {Bt}t≥0 is a standard Brownian motion
and

C1(λ, d) = 2
∫ +∞

0

∫ +∞
0 pr+θ (O, O) dr dθ

hλ,d
∫ +∞

0 pθ (O, O) dθ
.

Remark 2.3. Theorem 2.3 is consistent with a calculation of variance. Applying Propositions
2.1–2.3 and the Markov property of {ηt}t≥0,

lim
N→+∞ Varνλ,d (XN

t ) = 2t

hλ,d

∫ +∞

0

∑
x

�(x)pr(O, x) dr.

Applying the strong Markov property of the simple random walk,∫ +∞

0
pθ (x, O) dθ = �(x)

∫ +∞

0
pθ (O, O) dθ

and hence ∫ +∞

0

∑
x

�(x)pθ (O, x) dθ =
∫ +∞

0

∫ +∞
0

∑
x pr(O, x)pθ (x, O) dr dθ∫ +∞

0 pθ (O, O) dθ

=
∫ +∞

0

∫ +∞
0 pr+θ (O, O) dr dθ∫ +∞
0 pθ (O, O) dθ

.
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Note that pt(O, O) = O(t−d/2). Hence,∫ +∞
0

∫ +∞
0 pr+θ (O, O) dr dθ∫ +∞
0 pθ (O, O) dθ

∈ (0, +∞)

when and only when d ≥ 5. That is why we guess that Theorem 2.3 holds for all d ≥ 5 and
sufficiently large λ. Note that

γd = 1∫ +∞
0 pθ (O, O) dθ

by the strong Markov property, and hence

C1(λ, d) = 1

hλ,d
C(x)

∣∣
x=O,

where {C(x)}x∈Zd are constants given in [3, Theorem 1] for cases where d ≥ 5. Explicit calcu-
lations of the constants occurring in the main theorems and their dependency on d are given in
[1, Section 1] and [3, Sections 0 and 2].

Remark 2.4. Under assumptions of Theorem 2.3, it is natural to ask, for any given T > 0,
whether

{{
XN

t,λ,d

}}
0≤t≤T converges in distribution to {√C1(λ, d)Bt}0≤t≤T with respect to the

Skorokhod topology. We think the answer is positive but we cannot prove this claim according
to our current approach. Roughly speaking, in the proof of Theorem 2.3 we decompose the
centralized occupation time as a martingale plus an error function. We can show that the error
function converges to 0 in distribution at each moment t > 0 but we cannot check the tightness
of this error function to show that it converges weakly to the zero function with respect to the
Skorokhod topology. We will work on this problem as a further investigation.

Theorem 2.3 shows that the central limit theorem of the NBCPP is an analogue of that of
voter models and branching random walks given in [1, 3] when the dimension d is sufficiently
large. Using Proposition 2.3 and the fact that pt(O, O) = O(t−d/2), calculations of variances
similar to that in Remark 2.3 show that

lim
N→+∞

1

N log N
Covνλ,d

( ∫ tN

0
(ηu(O) − 1) du,

∫ sN

0
(ηu(O) − 1) du

)
= K4 min{t, s}

when d = 4 and

lim
N→+∞

1

N3/2
Covνλ,d

( ∫ tN

0
(ηu(O) − 1) du,

∫ sN

0
(ηu(O) − 1) du

)
= K3

(
t3/2 + s3/2 − |t − s|3/2)

when d = 3 for any t, s > 0 and some constants K3, K4 ∈ (0, +∞). These two limits provide
evidence for us to guess that, as N grows to infinity,{

1

N3/4

∫ tN

0
(ηu(O) − 1) du

}
t≥0

converges weakly to
√

K3 times the fractional Brownian motion with Hurst parameter 3
4 when

d = 3, and {
1√

N log N

∫ tN

0
(ηu(O) − 1) du

}
t≥0
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converges weakly to {√K4Bt}t≥0 when d = 4, where {Bt}t≥0 is the standard Brownian motion.
Furthermore, Remark 2.3 provides evidence for us to guess that Theorem 2.3 holds for all
d ≥ 5. That is to say, central limit theorems of occupation times of NBCPPs on Z

3, Z4, and
Z

d for d ≥ 5 are guessed to be analogues of those of voter models and branching random
walks in each case. However, our current proof of Theorem 2.3 relies heavily on the fact that
supt≥0 E

λ,d
1 ((ηt(O))4) < +∞ when d and λ are sufficiently large, which we have not managed

to prove yet for small d. That is why we currently only discuss the NBCPP on Z
d with d

sufficiently large.
Another possible way to extend Theorem 2.3 to cases with small d is to check the ergod-

icity of the NBCPP, as mentioned in Remark 2.1. If the NBCPP is ergodic, then we can
apply Birkhoff’s theorem for f with the form f (η) = η2(O) and then an upper bound of fourth
moments of {ηt(O)}t≥0 is not required. We will work on this way as a further investigation.

Proofs of Theorems 2.1, 2.2, and 2.3 are given in Section 3. The proof of Theorem 2.1 is
relatively easy, where it is shown that

lim
N→+∞ Eνλ,d

(
1

N

∫ tN

0
ηu(O) du

)
= t, lim

N→+∞ Varνλ,d

(
1

N

∫ tN

0
ηu(O) du

)
= 0

according to Propositions 2.1 and 2.3. The proof of Theorem 2.2 utilizes the coupling
relationship between the NBCPP and the contact process to show that

E1 ((ηt(O))2) ≥ exp

{
(1 − 2λd)t

(1 + 2λd)

}
.

The proof of Theorem 2.3 is inspired by [1], which gives CLTs of occupation times of criti-
cal branching random walks. The core idea of the proof is to decompose

∫ t
0 (ηu(O) − 1) du as

a martingale Mt plus a remainder Rt such that the quadratic variation process (1/N)〈M〉tN of
(1/

√
N)MtN converges to C1t in L2 and (1/

√
N)RtN converges to 0 in probability as N → +∞.

To give the above decomposition, a resolvent function of the simple random walk {Yt}t≥0
on Z

d is utilized. There are two main technical difficulties in the execution of the above
strategy for the NBCPP. The first one is to prove that Var((1/N)〈M〉tN) converges to 0 as
N → +∞, which ensures that the limit of (1/N)〈M〉tN is deterministic. The second one is
to show that E((1/N) sup0≤s≤tN (Ms − Ms−)2) converges to 0 as N → +∞, which ensures
that the limit process of {(1/

√
N)MtN}t≥0 is continuous. To overcome the first difficulty, we

relate the calculation of Var(〈M〉tN) to a random walk on Z
2d according to the Kolmogorov–

Chapman equation of linear systems introduced in [11]. To overcome the second difficulty,
we bound P((1/N) sup0≤s≤tN (Ms − Ms−)2 > ε) from above by O

(
(1/N2)

∫ tN
0 E(η4

s (O)) ds
)

according to the strong Markov property of our process. For the mathematical details, see
Section 3.

3. Theorem proofs

In this section we prove Theorems 2.1, 2.2, and 2.3. We first give the proof of Theorem 2.1.

Proof of Theorem 2.1. Throughout this proof we assume that d ≥ 3 and λ > 1/(2d(2γd − 1)).
We only prove (i), since (ii) follows from an analysis similar to that leading to the L2 con-
vergence in (i). So in this proof we further assume that η0 is distributed with νλ,d. By
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Proposition 2.3, the NBCPP starting from νλ,d is stationary. Hence, applying Birkhoff’s
ergodic theorem,

lim
N→+∞

1

N

∫ tN

0
ηu(O) du = tEνλ,d (η(O) | I) a.s.,

where I is the set of all invariant events. As a result, we only need to show that the convergence
in Theorem 2.1 is in L2.

Applying Proposition 2.3, {ηu(O)}u≥0 are uniformly integrable and hence

Eνλ,dη(O) = lim
t→+∞ E1ηt(O) = 1.

Therefore,

Eνλ,d

(
1

N

∫ tN

0
ηu(O) du

)
= t

for any N ≥ 1 and t > 0. Consequently,

Eνλ,d

((
1

N

∫ tN

0
ηu(O) du − t

)2)
= 1

N2
Varνλ,d

( ∫ tN

0
ηu(O) du

)
.

Hence, to prove the L2 convergence in Theorem 2.1 we only need to show that

lim
N→+∞

1

N2
Varνλ,d

( ∫ tN

0
ηu(O) du

)
= 0 (3.1)

for any t ≥ 0. Since νλ,d is an invariant measure of our process,

Varνλ,d

( ∫ tN

0
ηu(O) du

)
= 2

∫ tN

0

( ∫ θ

0
Covνλ,d (ηr(O), ηθ (O)) dr

)
dθ

= 2
∫ tN

0

( ∫ θ

0
Covνλ,d (η0(O), ηθ−r(O)) dr

)
dθ . (3.2)

Applying Propositions 2.1 and 2.3,

Covνλ,d (η0(O), ηt(O)) =Eνλ,d (η0(O)ηt(O)) − 1

=Eνλ,d

(
η0(O)

( ∑
y∈Zd

pt(O, y)η0(y)

))
− 1

=
∑
y∈Zd

pt(O, y)(Eνλ,d (η0(O)η0(y)) − 1)

=
∑
y∈Zd

pt(O, y)Covνλ,d (η0(O), η0(y))

= 1

hλ,d

∑
y∈Zd

pt(O, y)�(y). (3.3)
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Therefore, by (3.3), for any t ≥ 0,

−1 ≤ Covνλ,d (η0(O), ηt(O)) ≤ 1

hλ,d

∑
y∈Zd

pt(O, y) = 1

hλ,d
, (3.4)

and hence supt≥0 |Covνλ,d (η0(O), ηt(O))| < +∞. By (3.2) and (3.4), to prove (3.1) we only
need to show that

lim
t→+∞ Covνλ,d (η0(O), ηt(O)) = 0. (3.5)

Since d ≥ 3, for any ε > 0 there exists M > 0 such that �(y) < ε when ‖y‖1 ≥ M. As a result,
by (3.3),

lim sup
t→+∞

Covνλ,d (η0(O), ηt(O)) ≤ lim sup
t→+∞

ε

hλ,d

∑
y:‖y‖1≥M

pt(O, y) + 1

hλ,d

∑
y:‖y‖1≤M

(
lim

t→+∞ pt(O, y)
)

= lim sup
t→+∞

ε

hλ,d

∑
y:‖y‖1≥M

pt(O, y) ≤ ε

hλ,d
.

Since ε is arbitrary, let ε → 0 and then (3.5) holds. As we have explained, Theorem 2.1 follows
from (3.5), and the proof is complete. �

Now we prove Theorem 2.2.

Proof of Theorem 2.2. Throughout this proof we assume that λ < 1/2d. According to a
calculation similar to that leading to (3.3),

E1
((

1

N

∫ tN

0
ηu(O) du

)2)
= 2

N2

∫ tN

0

∫ s

0

∑
x

ps−r(O, x)E1 (ηr(O)ηr(x)) dr ds

≥ 2

N2

∫ tN

0

∫ s

0
ps−r(O, O)E1 (η2

r (O)) dr ds. (3.6)

Let ξt be the contact process defined as in Section 1, then a well-known property of ξt is that

P1 (ξt(O) = 1) ≤ exp

{
(2λd − 1)t

1 + 2dλ

}
.

This property can be proved by coupling the contact process with a branching process, the
detail of which we omit here. According to the coupling relationship of the NBCPP and the
contact process given in Section 1, utilizing the Hölder inequality and Proposition 2.1, we have

P1 (ξt(O) = 1) = P1 (ηt(O) > 0) ≥ (E1 ηt(O))2

E1 (η2
t (O))

= 1

E1 (η2
t (O))

.

Hence,

E1 (η2
t (O)) ≥ exp

{
(1 − 2λd)t

1 + 2dλ

}
. (3.7)

Since pt(O, O) = �(t−d/2) as t → +∞, Theorem 2.2 follows directly from (3.6) and (3.7). �

From now on we assume that d ≥ d0 and λ ≥ λ0, where d0 and λ0 are defined as in
Proposition 2.4. As mentioned at the end of Section 2, our proof follows the strategy intro-
duced in [1] where XN

t is decomposed as a martingale plus a remainder term. As N → +∞,
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the martingale converges weakly to a Brownian motion and the remainder converges to 0 in
probability. In detail, for any θ > 0, we define

Gθ (η) =
∑
x∈Zd

gθ (x)(η(x) − 1),

where gθ is the resolvent function of the simple random walk given by

gθ (x) =
∫ +∞

0
e−θupu(O, x) du.

According to the Markov property of the simple random walk,

∑
x

g2
0(x) =

∫ +∞

0

∫ +∞

0
pu+θ (O, O) du dθ .

Then, applying pt(O, O) = �(t−d/2) as t → +∞,
∑

x g2
0(x) is finite when and only when d ≥ 5.

Hence,
∑

x gk
0(x) < +∞ when k ≥ 2 and d ≥ 5. Let

Mθ
t = Gθ (ηt) − Gθ (η0) −

∫ t

0
LGθ (ηs) ds,

then by Dynkin’s martingale formula, {Mθ
t }t≥0 is a martingale with quadratic variation process

{〈Mθ 〉t}t≥0 given by

〈Mθ 〉t =
∫ t

0
(L((Gθ (ηs))

2) − 2Gθ (ηs)LGθ (ηs)) du.

Applying the definition of L,

〈Mθ 〉t = 1

2λd

∫ t

0

∑
x∈Zd

η2
s (x)

(
g2
θ (x) + λ

∑
y∼x

g2
θ (y)

)
ds. (3.8)

Applying θgθ (·) − Lgθ (·) = 1O(·),

LGθ (η) = θGθ (η) −
(

η(O) − θ
∑

x

gθ (x)

)
= θGθ (η) − (η(O) − 1).

As a result,

XN
t = 1√

N
M1/N

tN + 1√
N

R1/N
tN , (3.9)

where Rθ
t = −Gθ (ηt) + Gθ (η0) + ∫ t

0 θGθ (ηs) ds. To prove Theorem 2.3, we need the following
lemmas.

Lemma 3.1. For any t ≥ 0, (1/N)〈M1/N〉tN converges to C1(λ, d)t in L2 as N → +∞.

Lemma 3.2. For any t ≥ 0, (1/
√

N)R1/N
tN converges to 0 in L2 as N → +∞.
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Lemma 3.3. For any t ≥ 0,

lim
N→+∞ E

(
sup

0≤s≤tN

1

N

(
M1/N

s − M1/N
s−
)2)= 0,

where M1/N
s− = limu<s,u→s M1/N

u , i.e. the state of M1/N· at the moment just before s.

We first utilize Lemmas 3.1, 3.2, and 3.3 to prove Theorem 2.3.

Proof of Theorem 2.3. We denote by D[0, +∞) the set of càdlàg functions from [0, +∞)
to R endowed with the Skorokhod topology. According to Lemmas 3.1 and 3.3,({

1√
N

M1/N
tN

}
t≥0

,

{
1

N
〈M1/N〉tN

}
t≥0

)
satisfies condition (b) of [5, Theorem 1.4, Chapter 7]. Hence, using that theorem,{
(1/

√
N)M1/N

tN : t ≥ 0
}

N≥1 converges weakly, with respect to the Skorokhod topology of
D[0, +∞), to a continuous martingale {Wt}t≥0 as N → +∞, where {Wt}t≥0 satisfies that
{W2

t − C1(λ, d)t}t≥0 is also a martingale. Hence, {Wt}t≥0 is a standard Brownian motion
times

√
C1(λ, d). Then, for given 0 < t1 < t2 < · · · < tm, since {ηt}t≥0 is continuous at

each ti with probability 1, we have that (1/
√

N)
(
M1/N

t1N , . . . , M1/N
tmN

)
converges weakly to√

C1(λ, d)(Bt1, . . . , Btm ) as N → +∞. Consequently, Theorem 2.3 follows from (3.9) and
Lemma 3.2. �

Now we only need to prove Lemmas 3.1, 3.2, and 3.3. We first give the proof of Lemma 3.1.

Proof of Lemma 3.1. Conditioned on Y0 = O, the number of times {Yt}t≥0 visits O follows
a geometric distribution with parameter γd, and at each time Yt stays at O for an exponential
time with mean 1. Therefore,∫ +∞

0
ps(O, O) ds =EO

∫ +∞

0
1{Xs=O} ds = 1 × 1

γd
= 1

γd
.

Then, by (3.8) and Proposition 2.3,

lim
N→+∞ Eνλ,d

(
1

N
〈M1/N〉tN

)
= t(1 + 2λd)

2λd

(
1 + 1

hλ,d

)∑
x

g2
0(x)

= 2γdt

hλ,d

∫ +∞

0

∫ +∞

0
pθ+r(O, O) dθ dr = C1(λ, d)t.

Hence, to complete the proof we only need to show that

lim
N→+∞

1

N2
Varνλ,d (〈M1/N〉tN) = 0. (3.10)

By Proposition 2.2 and the Markov property of {ηt}t≥0, for s < u and x, w ∈Z
d,

Covνλ,d (η2
s (x), η2

u(w)) =
∑
y,z

q̂u−s((w, w), (y, z))Covνλ,d (η2
0(x), η0(y)η0(z)).
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Therefore, to prove (3.10) we only need to show that

lim
r→+∞

∑
x,w,y,z

V0(x)V0(w)q̂r((w, w), (y, z))|Covνλ,d (η2
0(x), η0(y)η0(z))| = 0, (3.11)

where Vθ (x) = g2
θ (x) +∑

y∼x g2
θ (y), which is decreasing in θ .

According to Propositions 2.2–2.4 and the Cauchy–Schwarz inequality,∑
y,z

q̂r((w, w), (y, z)) =
∑

y

qr(O, y) =E1 ((ηr(O))2) ≤ 1 + 1

hλ,d
,

sup
w,y,z

|Covνλ,d (η2
0(w), η0(y)η0(z))| < 2Eνλ,d ((η0(O))4) < +∞.

Then, using the fact that
∑

x V0(x) < +∞ and the dominated convergence theorem, to prove
(3.11) we only need to show that

lim
r→+∞

∑
y,z

q̂r((w, w), (y, z))|Covνλ,d (η2
0(x), η0(y)η0(z))| = 0 (3.12)

for any x, w ∈Z
d. By Proposition 2.4, for any ε > 0, there exists M > 0 such that

|Covνλ,d (η2
0(x), η0(y)η0(z))| < ε when ‖x − y‖1 ∧ ‖x − z‖1 ≥ M, and hence∑

(y,z):‖x−y‖1∧‖x−z‖1≥M

q̂r((w, w), (y, z))|Covνλ,d (η2
0(x), η0(y)η0(z))|

≤ ε
∑

(y,z):‖x−y‖1∧‖x−z‖1≥M

q̂r((w, w), (y, z)) ≤ ε

(
1 + 1

hλ,d

)
.

We claim that

lim
t→+∞

∑
v

q̂t((w, w), (y, v)) = lim
t→+∞

∑
v

q̂t((w, w), (v, z)) = 0 (3.13)

for any w, y, z ∈Z
d. The proof of (3.13) is given later. By (3.13), Proposition 2.4, and the

Cauchy–Schwarz inequality,

lim
r→+∞

∑
(y,z):‖x−y‖1≤M or

‖x−z‖1≤M

q̂r((w, w), (y, z))|Covνλ,d (η2
0(x), η0(y)η0(z))| = 0

and hence

lim sup
r→+∞

∑
y,z

q̂r((w, w), (y, z))|Covνλ,d (η2
0(x), η0(y)η0(z))| ≤ ε

(
1 + 1

hλ,d

)
.

Since ε is arbitrary, let ε → 0 and then (3.12) holds. �

Now we prove (3.13) to complete the proof of Lemma 3.1.

Proof of (3.13). By [11, Theorem 9.3.1] and the definition of L,

q̂t((w, w), (y, v)) = e−2t
+∞∑
n=0

tn

n!Hn((w, w), (y, v)),
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where H is a (Zd)2 × (Zd)2 matrix given by

H((x, y), (u, v)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2d if x �= y, u ∼ x, and v = y,

1/2d if x �= y, u = x, and v ∼ y,

1/2dλ if x = y and (u, v) = (x, x),

1/2d if x = y, u ∼ x, and v = u,

1/2d if x = y, u = x, and v ∼ x,

1/2d if x = y, u ∼ x. and v = x,

0 otherwise

and

Hn((w, w), (y, v)) =
∑

{(ui,vi)}0≤i≤n:

(u0,v0)=(w,w),(un,vn)=(y,v)

n−1∏
i=0

H((ui, vi), (ui+1, vi+1)).

As a result,

∑
v∈Zd

q̂t((w, w), (y, v)) = e−2t
+∞∑
n=0

(2t)n

n! E(w,w)

(
n−1∏
i=0

�(βi, βi+1)1{βn(1)=y}

)
,

where {βn = (βn(1), βn(2)) : n ≥ 0} is a random walk on (Zd)2 such that

P(βn+1 = (u, v) | βn = (x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/4d if x �= y, u ∼ x. and v = y,

1/4d if x �= y, u = x, and v ∼ y,

1(6d + 1) if x = y and (u, v) = (x, x),

1/(6d + 1) if x = y, u ∼ x. and v = u,

1/(6d + 1) if x = y, u ∼ x, and v = x,

1/6d + 1 if x = y, u = x, and v ∼ x,

0 otherwise

and � is a function from (Zd)2 to R such that �((x, y), (u, v)) = 1
2 H((x, y), (u, v))deg(x, y),

where

deg(x, y) =
{

4d if x �= y,

6d + 1 if x = y.

Note that deg(·) is the degree function of the graph generated by adding edges on Z
2d to connect

(x,x) with itself and (y, y) for all x ∈Z
d and all y such that y ∼ x on Z

d.
According to the definition of �, for each i ≥ 0, �(βi, βi+1) ≥ 1 and �(βi, βi+1) = 1 when

and only when βi(1) = βi(2). Hence, by Hölder’s inequality,∑
v∈Zd

q̂t((w, w), (y, v))

≤
(
E(w,w)

( +∞∏
i=0

�1+ε(βi, βi+1)

))1/(1+ε)

e−2t
+∞∑
n=0

(2t)n

n! (P(βn(1) = y))ε/(1+ε) (3.14)
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for any ε > 0. Since {βn(1) − βn(2)}n≥0 is a lazy version of the simple random walk on Z
d and

H(βi, βi+1) > 1 only when βi(1) = βi(2), by the strong Markov property of {βn}n≥0,

E(w,w)

( +∞∏
i=0

�1+ε(βi, βi+1)

)
= 4d

6d + 1

(
6d + 1

4d

)1+ε

γd +
+∞∑
k=1

(αε(d, λ))kγd,

where

αε(d, λ) = 1

6d + 1

(
6d + 1

2 · 2dλ

)1+ε

+ 2d

6d + 1

(
6d + 1

2 · 2d

)1+ε

+ 4d

6d + 1

(
6d + 1

2 · 2d

)1+ε

(1 − γd).

Since λ > 1/2d(2γd − 1), limε→0 αε(d, λ) = 1/4dλ + 1
2 + 1 − γd < 1 and hence there exists

ε0 > 0 such that E(w,w)
(∏+∞

i=0 �1+ε0 (βi, βi+1)
)
< +∞. By (3.14), to complete the proof we

only need to show that

lim
t→+∞ e−2t

+∞∑
n=0

(2t)n

n! (P(βn(1) = y))ε0/(1+ε0) = 0. (3.15)

Since d ≥ 3 and {βn(1)}n≥1 is a lazy version of the simple random walk on Z
d,

lim
n→+∞ P(βn(1) = y) = 0.

Hence, for any ε > 0, there exists M ≥ 1 such that (P(βn(1) = y))ε0/(1+ε0) ≤ ε when n ≥ M, and
then

e−2t
+∞∑
n=M

(2t)n

n! (P(βn(1) = y))ε0/(1+ε0) ≤ εe−2t
+∞∑
n=0

(2t)n

n! = ε.

Since limt→+∞
∑M−1

n=0 e−2t(2t)n/n! = 0, we have

lim sup
t→+∞

e−2t
+∞∑
n=0

(2t)n

n! (P(βn(1) = y))ε0/(1+ε0) ≤ ε.

Since ε is arbitrary, let ε → 0 and then (3.15) holds. �

Now we prove Lemma 3.2.

Proof of Lemma 3.2. Applying Propositions 2.1 and 2.3, for any moment c ≥ 0,

Eνλ,d

((
1√
N

G1/N(ηc)

)2)
= Varνλ,d

(
1√
N

G1/N(ηc)

)
= Varνλ,d

(
1√
N

G1/N(η0)

)
= 1

N

∑
x

∑
y

g1/N(x)g1/N(y)
�(y − x)

hλ,d
.

As shown in Remark 2.3,

�(y − x) =
∫ +∞

0 ps(y − x, O) ds∫ +∞
0 ps(O, O) ds

=
∫ +∞

0
ps(x, y) dsγd.
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Hence,

Eνλ,d

((
1√
N

G1/N(ηc)

)2)
= γd

Nhλ,d

∫ +∞

0

∫ +∞

0

∫ +∞

0
e−(r+s)/N

∑
x

∑
y

pr(0, x)ps(x, y)pu(y, 0) dr ds du

= γd

Nhλ,d

∫ +∞

0

∫ +∞

0

∫ +∞

0
e−(r+s)/Npr+s+u(O, O) dr ds du

= γd

Nhλ,d

∫ +∞

0
pθ (O, O)

( ∫ θ

0
e−v/N

( ∫ v

0
1 du

)
dv

)
dθ

= Nγd

hλ,d

∫ +∞

0
pθ (O, O)

(
1 − e−θ/N

(
1 + θ

N

))
dθ . (3.16)

Since pθ (O, O) = O(θ−d/2) as θ → +∞ and limx→+∞ 1 − e−x(1 + x) = 1, there exist 0 <

M1, Ĉ4 < +∞ such that pθ (O, O) ≤ Ĉ4θ
−d/2 and 1 − e−x(1 + x) ≤ Ĉ4 when θ, x ≥ M1. Since

limx→0 (1 − e−x(1 + x))/x2 = 1
2 , we have

C̃4 := sup
0<x≤M1

1 − e−x(1 + x)

x2
< +∞.

We denote by C4 the maximum of Ĉ4 and C̃4. Then,

pθ (O, O)

(
1 − e−θ/N

(
1 + θ

N

))
≤

⎧⎪⎨⎪⎩
θ2C4/N2 when 0 ≤ θ ≤ M1,

C2
4θ

2−(d/2)/N2 when M1 ≤ θ ≤ NM1,

C2
4θ

−d/2 when θ > NM1.

Hence, for d ≥ 5,

Nγd

hλ,d

∫ M1

0
pθ (O, O)

(
1 − e−θ/N

(
1 + θ

N

))
dθ ≤ C4γd

Nhλ,d

∫ M1

0
θ2 dθ = O(N−1),

Nγd

hλ,d

∫ NM1

M1

pθ (O, O)

(
1 − e−θ/N

(
1 + θ

N

))
dθ ≤ C2

4γd

Nhλ,d

∫ NM1

M1

θ2−(d/2) dθ

≤ C2
4γd

Nhλ,d

∫ NM1

M1

θ2−5/2 dθ = O(N−1/2),

Nγd

hλ,d

∫ +∞

NM1

pθ (O, O)

(
1 − e−θ/N

(
1 + θ

N

))
dθ ≤ C2

4Nγd

hλ,d

∫ +∞

NM1

θ−d/2 dθ = O(N2−(d/2)).

Consequently, applying (3.16),

lim
N→+∞ Eνλ,d

((
1√
N

G1/N(η0)

)2)
= lim

N→+∞ Eνλ,d

((
1√
N

G1/N(ηtN2 )

)2)
= 0. (3.17)

By the Cauchy–Schwarz inequality,

Eνλ,d

((
1√
N

∫ tN

0

1

N
G1/N(ηs) ds

)2)
≤ tN

N3

∫ tN

0
(Eνλ,d ((G1/N(ηs))

2)) ds

= t2N2

N3
Eνλ,d ((G1/N(η0))2).
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Hence, applying (3.17),

lim
N→+∞ Eνλ,d

((
1√
N

∫ tN

0

1

N
G1/N(ηs) ds

)2)
= 0. (3.18)

Lemma 3.2 follows from (3.17) and (3.18). �

Finally, we prove Lemma 3.3.

Proof of Lemma 3.3. By (3.9) and the fact that {XN
t }t≥0 is continuous in t,

sup
0≤s≤tN

1

N

(
M1/N

s − M1/N
s−
)2 ≤ sup

0≤s≤tN

1

N
sup

x
max
y∼x

{g2
1/N(x)η2

s (x), g2
1/N(x)η2

s (y)}. (3.19)

For any M > 0, let

τM = inf

{
s > 0:

1

N
sup

x
max
y∼x

{g2
1/N(x)η2

s (x), g2
1/N(x)η2

s (y)} > M

}
;

then {
sup

0≤s≤tN

1

N
sup

x
max
y∼x

{g2
1/N(x)η2

s (x), g2
1/N(x)η2

s (y)} > M

}
= {τM ≤ tN}.

Conditioned on {τM ≤ tN}, there exists x0 ∈Z
d such that

max
y∼x0

{g2
1/N(x0)η2

τM
(x0), g2

1/N(x0)η2
τM

(y)} > NM.

If {ηs(y)}y∼x0 and ηs(x0) do not jump to 0 during s ∈ [τM, τM + 1], then

max
y∼x0

{g2
1/N(x)η2

s (x0), g2
1/N(x0)η2

s (y)} ≥ NM exp

{
min

{
1

2λd
− 1, 0

}}
for s ∈ [τM, τM + 1] and hence∫ tN+1

0

∑
x

g4
1/N(x)

(
η4

s (x) +
∑
y∼x

η4
s (y)

)
ds ≥ N2M2 exp

{
2 min

{
1

2λd
− 1, 0

}}
.

Since the state of a vertex jumps to 0 at rate 1/(2λd), applying the strong Markov property of
{ηt}t≥0,

P

( ∫ tN+1

0

∑
x

g4
1/N(x)

(
η4

s (x) +
∑
y∼x

η4
s (y)

)
ds ≥ N2M2 exp

{
2 min

{
1

2λd
− 1, 0

}})

≥ P(τM ≤ tN) exp

{
−2d + 1

2λd

}
.

Then, by Markov’s inequality, Proposition 2.4, and the fact that∑
x

g4
1/N(x) ≤

∑
x

g4
0(x) < +∞,
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we have

P

(
sup

0≤s≤tN

1

N
sup

x
max
y∼x

{g2
1/N(x)η2

s (x), g2
1/N(x)η2

s (y)} > M

)
≤ exp{(2d + 1)/2λd}

N2M2 exp 2 min{1/(2λd) − 1, 0}
∫ tN+1

0

∑
x

g4
0(x)(Eλ,d(η4(O))(2d + 1)) ds ≤ C3

NM2
,

(3.20)

where C3 < +∞ is independent of N and M. Applying the Fubini theorem, for any positive
random variable V and any c > 0,

E
(
V1{V>c}

)= cP(V > c) +
∫ +∞

c
P(V ≥ u) du.

Hence, for any ε > 0,

E

(
sup

0≤s≤tN

1

N
(M1/N

s − M1/N
s− )2

)
≤ ε + ε

C3

Nε2
+
∫ +∞

ε

C3

Nu2
du = ε + 2C3

Nε

according to (3.19) and (3.20). As a result,

lim sup
N→+∞

E

(
sup

0≤s≤tN

1

N
(M1/N

s − M1/N
s− )2

)
≤ ε.

Since ε is arbitrary, let ε → 0 and the proof is complete. �
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