AN EXTREMAL PROBLEM IN NUMBER THEORY
H. L. Abbott and B. Gardner

(received November 17, 1966)

Let n and k be integers with n> k> 3 . Denote by
f(n, k) the largest positive integer for which there exists a set
S of f(n, k) integers satisfying (i) SC {1,2,...,n} and (ii)
no k members of S have pairwise the same greatest common
divisor. The problem of determining f(n, k) appears to be diffi-
cult. Erdds [2] proved that there is an absolute constant ¢ > 1
such that for every ¢ > 0 and every fixed k

log n

(1) c loglogn < f(n,3) < f(n, k) < n3 [4+e

provided n> no(k, €) . In[1] itis proved that for every € > 0
and every fixed k

log n
(2) f(n, k) > {(k_1)2 + [hé—i]} (24+¢)log log n

provided n> no(k, €) .
In this paper we investigate partially the case where

k- with n . In this connection it is known [2] that for
0<a< 1

(3) f(n, [na])«. c n

where ¢ is a constant depending only on o. The main result
o

that we prove is
THEOREM 1. Let ¢ >0 and > 0. Then

[o4 2a+3

- €
n1+a < f(n, [logan]) < n2a+4

+ €
(4)
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provided n> no(a, €) .
In addition we shall prove

THEOREM 2. Let t> 2 be a positive integer. Then

(5) f(n, [m1/]) > 2U=<)

(log n)t

)

for every e¢ >0 provided n> no(t, €) .

Note, however, that Theorem 2 is not as strong as (3).
We remark also that in connection with Theorem 1, it would be
of interest to know whether

f(n, [log® n]) = Be)+0(1)

and, if so, to determine h(a) .
To prove Theorems 1 and 2 we need the following lemma:
LEMMA. Let t and k be positive integers and let

. . th
Pi' PZ’ e, Ptk be the first tk prlrzles. ( Pr denotes the r
prime.) Let St be the set of the k numbers P, P, ... P,

i, 1 i
1 2 t
where (s-1)k +1< is < sk for s=1,2,...,t. Thenno k#
members of St have pairwise the same greatest common
divisor.

Proof. The lemma can be established by a straight-
forward induction argument on t .

i i =P “ve .
Observe that the largest number in St is N kPZk Ptk

We thus have
t
(6) f(N, k+1) > k.

Now we prove Theorem 2. Let t> 2 be a fixed positive

1/t
integer and set k = [n / / log n] . Then by the prime number
theorem (Pr ~r log r) we have

t t
N= 1 P ~ T mk log mkn~tt (k log k)t
mk
m=1 m=1
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1/t ¢t
< t! (P—t—) <

N

Hence we have for all sufficiently large n

(7) N<n.
Also
t | 1'11/t t n1/t t (1
(8) k = [ >( - 1) s Uoen
log n log n

(log n)"

provided n > no(t, €) . Now (6), (7) and (8) imply

fn, [0 > 1, [ H]) > £, k)

kt N (1-¢)n
(log n)t

v

This establishes (5) and thus Theorem 2 is proved.

o
To obtain the lower bound in (4) choose k = [log n] - 1 and
log n

t = (1+2) log log n Then we have for all sufficiently large n
t ¢ ¢ t
(9) N=1I P < (1+e) t' k M log mk
mk
m=1 m=1

t t
< (1+6)" ¢ k' (log tk) < n .

Also it is easy to verify that for n sufficiently large

t o
(10) k > 1o €
n

Now (6), (9) and (10) yield

a
5. -~ €

1
£(n, [log¥n]) > £(N,k+1) > k'> n o
This establishes the lower bound in (4).

The argument used by Erdés to obtain the upper bound
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given by (1) can be used with only slight modifications to obtain

the upper bound given in (4). Let {ai, SRRy } be an arbi-

2a+ 3

20t 4 " €
trary subset of {1,2,...,n}, £ = n * Split the a's

into two classes. In one class put those a's which have at least
log n

2(2+a)log log n

placed in the second class. The Erdds argument can now be

distinct prime factors. The remaining a's are

used to show that the second class contains at least [1og n] in-
tegers with pairwise the same greatest common divisor. We do
not reproduce the details of the argument. This completes the
proof of Theorem 1.

In [2] Erdés raised the following problem. Denote by 3 (n)
the largest positive integer for which there exists a set S of
9(n) integers satisfying S C {1,2,..., n} and no three members
of S have pairwise the same least common multiple. Is it true
that 9(n) = O(n) ? We do not settle this question here, but it may
be worth noting that a very simple argument shows that for
n> no(e )

_ n log log n
(11) I(n) > (1- €) log n

1/

To prove (11Ylet ¢ = [n 4] and consider the following

set of numbers:

PP , P , «.e., PP
1 4+ 1p1+2 1 £+s1

PoPrw FoFpa oo P2P£+sz
» P R S
PIPI +1 IPI +2 £ £+s£
. . e
where s, is defined by Pﬁ +Si§ pi < P2 s 1
i

Then it is clear that all of these numbers are distinct and
do not exceed n and it is easy to verify that no three of the
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numbers have pairwise the same least common multiple. The
number of numbers in the above array is

n n n 2
Si+52+"+s —(P)+(P)+..-+(P)'f
1 2 ]
i
3 n 1 2
> (1 -7) zZ = -
2" logn =1 Pi
n
> (1—6)10gn log log n .

This proves (11).

We wish to express our thanks to the referee for his
valuable comments and suggestions.

REFERENCES
1. H. L. Abbott, Some remarks on a combinatorial theorem
of Erdds and Rado. Can. Math. Bull. vol. 9, no. 2 (1966)
pages 155-160.
2. P. Erdds, On a problem in elementary number theory and

a combinatorial problem. Math. of Comp., vol. 18, no.88
(1964), pages 644-646.

Memorial University of Newfoundland

177

https://doi.org/10.4153/CMB-1967-015-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-015-8

