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Mass transport in suspensions of swimming microorganisms is one of the most important
factors for the colonisation and growth of microorganisms. Hydrodynamic interactions
among swimming microorganisms play an important role in mass transport, especially in
highly concentrated suspensions. To elucidate the influence of highly concentrated cells
on mass transport, we numerically simulated mass transport in lattices of squirmers that
were fixed in space and oriented in the same direction. The effects of different volume
fractions, Péclet numbers (Pe) and lattice configurations on mass transport were quantified
by tracking Lagrangian material points that move with background flow with Brownian
diffusivity. Although the flow field became periodic in space and each streamline
basically extended in one direction, the motion of tracer particles became diffusive
over long durations due to Brownian motion and cross-flows. Flow-induced diffusion
was anisotropic and significantly enhanced over Brownian diffusion in the longitudinal
direction. We also investigated mass transport in random configurations of squirmers to
reproduce more general conditions. Similar enhanced diffusion was also observed in the
random configurations, indicating that the flow-induced diffusion appears regardless of the
configurations. The present flow-induced diffusion did not follow Pe dependency of the
conventional Taylor dispersion due to the cross-flows. The time and velocity scales were
proposed, which enabled us to predict the flow-induced diffusivity from the data of the
flow field and Brownian diffusivity without solving the mass conservation equation. The
findings reported here improve our understanding of the transport phenomena in packed
suspensions of swimming microorganisms.

Key words: micro-organism dynamics, boundary integral methods, coupled diffusion and flow

1. Introduction

Concentrated suspensions of microorganisms exist in nature and are closely related to
health and ecological issues. For example, biofilms consisting of communities of bacteria
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generally form on solid–liquid interfaces. They are encased in a matrix of extracellular
polymeric substances secreted by microorganisms (Jang, Rusconi & Stocker 2017), and
cause infection (Bjarnsholt et al. 2013) and contamination of medical devices (Harding &
Reynolds 2014). The gut flora is also composed of many bacterial species. It contributes
to the production of dietary components and is related to pathological conditions, so
is involved in health (Ishikawa et al. 2020). Volvox microalgae accumulate at the free
surface of bodies of fresh water due to their negative gravitaxis and attracting flow
produced by other cells (Drescher et al. 2009; Ishikawa, Omori & Kikuchi 2020). They
perform photosynthesis and form the bottom layer of the food chain in ecological systems.
To predict their colonisation and growth, it is necessary to clarify mass transport in
concentrated suspensions of microorganisms.

It has been reported that the flow induced by microbial swimming alters mass transport
in such suspensions (Wu & Libchaber 2000; Sokolov et al. 2009; Ishikawa et al. 2011).
The bacteria Bacillus subtilis and Escherichia coli generate mesoscale coherent structures
in dense suspensions (∼1010 cell ml−1) through cell–cell interactions (Dombrowski et al.
2004; Zhang et al. 2010; Ishikawa et al. 2011; Wensink et al. 2012; Dunkel et al.
2013). The coherent structures cause mesoscale turbulent-like flow in their suspensions,
hence diffusivity is enhanced significantly. Wu & Libchaber (2000) investigated the
diffusivity of tracer beads in quasi-two-dimensional dense suspensions of E. coli. They
showed that the diffusivity was proportional to the concentration of E. coli and was
two to three orders of magnitude greater than Brownian diffusivity. Ishikawa et al.
(2011) reported a similar result for the diffusivity of tracer beads in a three-dimensional
bacterial suspension. Sokolov et al. (2009) showed that the oxygen diffusion coefficient
in a B. subtilis suspension exceeded that in a dilute suspension by at least one order
of magnitude. Miño et al. (2011) focused on the swimmers’ own activity, rather than
the flow driven by swimmers, concerning enhanced diffusion in dense suspensions and
the proportional relationship between the diffusivity and cell concentration. They used
E. coli and self-propelled Au–Pt rods as active swimmers, and studied the effect of active
swimmers on diffusivity at a solid surface. They showed that the tracer effective diffusivity
Deff was enhanced with respect to Brownian diffusivity in their concentrated suspensions,
and the increase was linearly related to the active fluxes of swimmers as

Deff = DB
0 + κJA, (1.1)

where DB
0 is the Brownian diffusivity in the absence of active swimmers, JA is the active

flux, the product of the number density of cells and the swimmers’ average velocity, and
κ is the prefactor coefficient. They suggested that the diffusivity increased with higher
cell concentration due to the higher collision frequency between swimmers and tracers,
and this claim is consistent with the scaling proposed theoretically by Ishikawa, Locsei &
Pedley (2010) and Burkholder & Brady (2017). In contrast to these linear trends, Kasyap,
Koch & Wu (2014) showed that the tracer diffusivity corresponding to high bacterial
concentration did not follow a linear trend and was much larger. Thus diffusivity in dense
suspensions of swimming microorganisms has been investigated actively, but the details
of the transport mechanism are not yet fully understood.

Several theoretical and numerical models have been developed to elucidate the
mass transport mechanisms in suspensions of swimming microorganisms. Thiffeault &
Childress (2010) introduced the so-called ‘scattering event’, a closed-loop-like motion of
tracer particles induced by swimmer–tracer hydrodynamic interactions, and expressed the
net displacement of tracers as the sum of the advective displacement due to the event,
to derive the diffusion coefficient in the high-Reynolds-number regime. Lin, Thiffeault
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& Childress (2011) extended the theory to the low-Reynolds-number regime using the
spherical squirmer model. Jepson et al. (2013) applied this theory to bacterial dilute
suspensions and showed that (1.1) held even in the dilute case, and κ was largely dependent
on a run distance of E. coli. Miño et al. (2013) also calculated κ in the same way, but the
value was one order of magnitude lower than the value obtained by Jepson et al. (2013),
since they assumed that the run distance λ of the E. coli was infinite, while Jepson et al.
(2013) assumed it to be finite. If λ is infinite, then the net displacement due to a single
scattering event is very small. Such a dependence of displacement on λ has also been
asserted by Morozov & Marenduzzo (2014) using theory and simulation. In addition,
although the entrainment by swimmers (Pushkin, Shum & Yeomans 2013) is considered
to be one of the important factors in mass transport (Jin et al. 2021), the theoretical κ

value obtained by Jepson et al. (2013) was almost consistent with their experimental value,
indicating that the effect of the entrainment was negligibly small. The above studies focus
mainly on swimmers with pusher type such as E. coli, and Underhill, Hernandez-Ortiz &
Graham (2008) reported that active pusher type particles in a dilute suspension make the
diffusivity greater than puller type. Thus the mechanism of diffusion has been clarified in
detail for a dilute suspension of active swimmers. Theoretical and numerical analyses have
also been performed for semi-dilute suspensions. Ishikawa et al. (2010) studied the effect
of tracer size on diffusivity in a squirmers’ suspension. They used inert spheres without
Brownian motion as tracer particles, and investigated their flow-induced diffusion. Their
results showed that the diffusivity was almost independent of the size of inert spheres.
This was consistent with the trend in concentrated suspensions (Miño et al. 2011), but
differed from that reported by Patteson et al. (2016), who found that diffusivity of particles
with Brownian motion was enhanced with increasing particle size in a dilute suspension.
Ishikawa et al. (2010) also showed that the flow-induced diffusivity was proportional to
the volume fraction of active swimmers. Delmotte et al. (2018) incorporated Brownian
motion of inert particles into the model. They showed that the diffusivity was proportional
to the volume fraction of swimmers in the dilute regime, while a nonlinear increase was
seen in the semi-dilute regime rather than the linear trends reported by Ishikawa et al.
(2010). In terms of nutrient uptake, Ishikawa et al. (2016) showed that the nutrient uptake
rate increased as the square of the microbial volume fraction in semi-dilute regions, due
to the agitation effect of microbial swimming. The agitation effects on nutrient uptake
have also been reported by Magar, Goto & Pedley (2003) and Magar & Pedley (2005).
As described, the mechanisms of mass transport for semi-dilute suspensions have been
discussed actively as the same as the case of dilute suspensions. However, theoretical and
numerical analyses in three-dimensional concentrated suspensions have been carried out
only under limited conditions, such as in thin-film regions (Lambert et al. 2013), and have
rarely been examined quantitatively despite their importance.

Taylor dispersion is another important theory that has long been used to discuss
diffusion in flows. Taylor dispersion is the theory first proposed by Taylor (1953), with
which substances in a unidirectional flow field diffuse in the longitudinal direction much
more than they diffuse only by the Brownian motion. This enhanced diffusion occurs when
substances repeatedly cross streamlines with different longitudinal velocities by thermal
diffusion, i.e. it occurs under the condition with velocity variation in the cross-section.
The effective diffusivity is expressed by the following scaling with respect to the Péclet
number:

Deff

DB
0

= 1 + α Pe2, (1.2)
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where α is the coefficient determined by the boundary condition, flow field, and so on
(Broeck 1990). This theory has been extended widely, for example, to the curvilinear
flow (Shapiro & Brenner 1986) and to the laminar flow through a porous media (Brenner
1980; Koch et al. 1989). These three papers showed that scaling (1.2) holds even in
such conditions. It was also shown that even if the flow oscillates with time, the trend
remains the same, and α became a function of the frequency of the oscillation (Broeck
1982; Jansons 2006; Levesque et al. 2012). Crossing between streamlines of substances
is caused not only by thermal diffusion but also by advection such as cross-flow (Lin &
Shaqfeh 2019; Wang et al. 2022). Lin & Shaqfeh (2019) introduced a constant cross-flow
into a plane Poiseuille flow and investigated the effect of the cross-flow strength on Taylor
dispersion. They showed that the diffusivity in the direction of the mainstream followed
(1.2) for an identical strength cross-flow, and the effect of cross-flow suppressed Taylor
dispersion when the effect became dominant, i.e. the diffusivity was also determined by
the heterogeneity of cross-flow. Cross-flows could also occur in a dense microswimmer
suspension that forms a heterogeneous flow field and cause diffusion increases similar
to Taylor dispersion, but the extent of the cross-flow contribution is not determined
independently in such a suspension. In other words, as the Péclet number in a suspension
becomes higher, the heterogeneity of cross-flow becomes correspondingly stronger, and
the diffusivity in a suspension of swimming microorganisms can no longer be described
by the scaling (1.2). The scaling of diffusivity in such highly complex flow fields has not
been discussed extensively, so it needs to be established to better understand diffusion in
an active fluid.

In this study, we simulated numerically mass diffusion in a packed lattice of squirmers,
which are fixed in space, as a model of a concentrated suspension of swimming
microorganisms. Packed lattices of swimming microorganisms can be found in nature, e.g.
Volvox colonies accumulated by phototaxis and gravitaxis at the surface of water bodies
(Drescher et al. 2009), and Tetrahymena accumulated at the air–liquid interface (Ferracci
et al. 2013). Diffusion tensors are obtained from trajectories of passive particles in the
lattice of squirmers. Details of the problem setting and numerical methods are described
in § 2. In § 3, we investigate the effects of the volume fraction, Péclet number and lattice
configuration of squirmers on the diffusivity, and then propose a scaling law that differs
from the conventional theory (1.2) to predict diffusion tensors in § 4. We conclude in § 5.

2. Basic equations and numerical methods

2.1. Problem setting
Swimming microorganisms were modelled by squirmers, as first proposed by Lighthill
(1952) and then extended by Blake (1971). They have been used for the analysis of mass
transport in suspensions of swimming microorganisms in a number of studies (Magar et al.
2003; Magar & Pedley 2005; Ishikawa et al. 2010; Lambert et al. 2013; Ishikawa et al.
2016; Pedley 2016). The squirmer swims, generating slip velocities on its body surface,
as shown in figure 1(a). In this study, the squirmer is assumed to be a rigid sphere with
surface slip velocities that are tangential, axisymmetric and time-independent. Moreover,
we omit squirming modes larger than the second following Ishikawa et al. (2010). The
surface slip velocity is given by

us = 3
2 U sin θ (1 + β cos θ) , (2.1)

where U is the swimming speed of a solitary squirmer swimming freely in a fluid
otherwise at rest, β is the swimming mode, and θ is the angle from the orientation vector
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(a)

z

x y

(b) (c)

z

x y

z

x y

Figure 1. Problem setting. (a) Swimming microorganism is modelled by a squirmer. Black vectors are slip
velocities on the surface (β = 0). The white arrow indicates the orientation vector. (b) Configuration of
squirmers: the body-centred cubic lattice with uniform orientation. The orientation vectors e were set in the
z-direction as e = (0, 0, 1). (c) Configuration of squirmers: the random positions and orientations. The regions
bounded by solid lines in (b,c) indicate the unit domains.

e of the squirmer. The squirmer becomes a puller with positive β, a neutral swimmer with
β = 0, and a pusher with negative β.

The packed suspension of swimming microorganisms is represented by a lattice of
squirmers that are fixed in space by external forces. We assume two states. (i) In one
state, squirmers are aligned in the body-centred cubic (BCC) lattice, and all squirmers are
oriented in the same direction, e = (0, 0, 1) in the Cartesian coordinate system, as shown
in figure 1(b). (ii) In the other state, both the configuration and orientations of squirmers
are random (cf. figure 1c). For both cases, the configurations and orientations of squirmers
are assumed to remain at all time points due to their fixed state. Here, the setting (i) may
appear when many Volvox colonies are present at a free surface directed upwards due to
phototaxis and gravitaxis, or many Tetrahymena cells are present at an air–liquid interface
directed towards the air phase due to chemotaxis; although the swimming microorganisms
directing interfaces try to translate, cells at the interface are stuck geometrically, and
other cells below the interface also become stuck. We analysed the diffusivity in such
settings (cf. §§ 3.1, 3.2, 3.3 and 3.4), and further analysed the case of (ii) representing
general suspensions in § 3.4, to better understand mass transport in a dense suspension of
swimming microorganisms. As the configuration of squirmers is a lattice, we apply the
triply periodic boundary condition to squirmers and the flow field, which results in an
infinite suspension. Moreover, the net fluid velocity is set to zero, so there are flows that
cancel each other out on average, e.g. there are upward and downward flows in the setting
(i).

971 A17-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

65
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.651


Y. Kogure, T. Omori and T. Ishikawa

2.2. Fluid mechanics
Typically, swimming microorganisms range in size from one to hundreds of micrometres,
and the Reynolds number based on their size and velocity is sufficiently small that the flow
around them can be approximated as Stokes flow. The velocity u at any point x in the fluid
phase is given by the boundary integral equation (Pozrikidis 1992):

u(x) − 〈u〉 = − 1
8πη

N∑
n=1

∫
JE(x, y) q(y) dAn, (2.2)

where 〈u〉 is the fluid velocity averaged over a plane in a unit domain, η is the viscosity,
N is the number of squirmers in a unit domain, JE is the Green function for the triply
periodic lattice based on the Ewald summation (Beenakker 1986), and q is the traction
force induced at y on the squirmer surface A. Ewald summation expresses the Green
function as a summation in real and Fourier spaces, which accelerates the convergence
of the velocity field and makes it possible to represent a system with an infinite number
of squirmers by finite periodic domains. Though 〈u〉 can be set arbitrarily (Brady et al.
1988), we set it to zero to achieve no net flow in the domain. The boundary condition is
u(x) = us when x is on the surface of a squirmer.

2.3. Tracer particle motion
We calculated the motion of passive tracer particles in a lattice of squirmers to evaluate
the diffusivity of the particles. We assumed that particles are sufficiently small and show
Brownian motion, so they move by advection caused by the squirming velocities and
Brownian diffusion. The position of a particle at time t + �t is expressed by the Lagrange
description (Ermak & McCammon 1978)

r(t + �t) = r(t) +
∫ t+�t

t
u(r, t′) dt′ + rB(�t), (2.3)

where u is the velocity at r(t′), and rB indicates the displacement due to Brownian motion.
Brownian motion follows a Gaussian distribution with

μ = μi =
〈
rB

i (�t)
〉
= 0, σ = σi =

〈(
rB

i (�t)
)2
〉

= 2DB �t, (2.4a,b)

where DB is the isotropic diffusion coefficient of tracer particles in free space, and the
angle brackets 〈 〉 indicate the ensemble average (Ermak & McCammon 1978). According
to the Box–Muller method (Box & Muller 1958), Brownian random displacement rB(�t)
is given by

rB
i (�t) = μ +

√
−2σ ln(R1) cos(2πR2), (2.5)

where ln is the natural logarithm, and R1 and R2 are uniform random numbers between 0
and 1. As a boundary condition, the absorption of particles by the squirmer is not taken
into account, so there is no advection and diffusion flux normal to the surface. However,
the sliding velocity of the surface is given when the particles reach the squirmer surface:
u = us.
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To discuss whether mass transport is advection- or diffusion-dominated, the Péclet
number is introduced here and defined as

Pe = Ua
DB , (2.6)

where a is the radius of a squirmer. Advection is dominant when the Péclet number is
high, while diffusion is dominant when the Péclet number is low.

2.4. Flow-induced diffusivity
The flow-induced diffusion tensor is calculated based on the mean-square displacement
(MSD) of particles to each axis. If the MSD grows with the square of time, then the
spread of particles is advective. On the other hand, if it grows linearly with time, then it is
diffusive. We follow Ishikawa et al. (2010), and calculate the dispersion tensor with time
duration �t by

DF′(�t) = 〈(r(t + �t) − r(t)) ⊗ (r(t + �t) − r(t))〉
2�t

. (2.7)

The flow-induced diffusion tensor is then given by

DF = lim
�t→∞

DF′(�t). (2.8)

2.5. Numerical methods
The boundary integral equation is calculated by the boundary element method (Pozrikidis
1992), as in our previous paper (Kitamura, Omori & Ishikwa 2021). The spherical surface
of each squirmer is discretised by 1280 triangles, and the integration on each triangle is
performed by Gaussian quadrature with six Gaussian nodes. We solve the simultaneous
equation (2.2) with the boundary condition (2.1) to determine the traction forces on
squirmers. Once q distribution on the squirmer surfaces is obtained, the velocity field can
be calculated from (2.2) at arbitrary positions in the fluid phase. The number of tracer
particles used in the simulation is 10 000, and their initial positions are set uniformly
randomly. The velocities of particle motion are interpolated from the database of velocity
fields constructed as the combination of the Cartesian mesh in a unit domain and the polar
mesh centred at the centre of each squirmer. The accuracy of the calculated diffusivities is
guaranteed by the number of particles and the database resolution used in this study. Time
marching is performed using a second-order Runge–Kutta method. The parameters varied
in the present study were β, Pe and the volume fraction of squirmers φ. In addition, the
lattice configuration of squirmers was changed to investigate its effect on diffusivity.

3. Results

3.1. Trajectories of particles
As the positions and orientations of squirmers are fixed geometrically, the flow field within
the suspension is independent of time. Motion of particles can then be characterised by the
Péclet number under a given volume fraction, swimming mode and lattice configuration.
Figure 2 shows the trajectories of particles with various Pe. When Pe is low, the motion of
particles is governed mainly by Brownian motion, and the trajectories of particles are likely
to be random, as shown in figure 2(a). On the other hand, when Pe is high, the motion of
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(b)(a)

z

x y

(c)

Figure 2. Trajectories of passive particles when (a) Pe = 1.0 × 100, (b) Pe = 1.0 × 101, and (c) Pe = 1.0 ×
102 in a unit BCC. The volume fraction of squirmers is φ = 0.50, and the white arrow indicates the orientation
vector.

the particle is less affected by Brownian motion and follows the streamlines; cf. figure 2(c).
The MSD of particles in the swimming direction of squirmers, �r2

z , is shown as a double
logarithmic plot in figure 3(a). The volume fraction, swimming mode and Péclet number
were set to φ = 0.50, β = 0.0 and Pe = 1.0 × 102, respectively. We saw three different
particle motions, depending on the time duration �t: Brownian diffusion, advection and
flow-induced diffusion regimes. The Brownian diffusion regime is when �t U/a was much
smaller than 1, the motion of particles was diffusive, and the MSD was proportional
to time even under conditions with high Péclet number. The advection regime is when
�t U/a ∼ O(1), and the displacement due to Brownian motion was sufficiently small
compared to that due to advection, so the motion of particles was advection-dominated
and the MSD was proportional to the square of time. Note that the slope in figure 3(a) was
not exactly 2 because it contained a small Brownian effect. The flow-induced diffusion
regime is when �t U/a was sufficiently large, and the MSD was again proportional to
time. This indicated that the motion of particles became diffusive over a long duration
even when particle motion was governed mainly by advection.

To determine the time scale of flow-induced diffusion, we introduced the time scale
Tc at which particles start to show flow-induced diffusion. Figure 3(b) shows the time
evolution of the dispersion component DF′

zz in the orientation direction of squirmers (φ =
0.50, β = 0.0 and Pe = 1.0 × 102). The dashed line shows the tangent line at the point
where the slope reaches its maximum, i.e. when the advection effect is the maximum, and
the dash-dotted line shows the converged DF′

zz . The eventual diffusivity DF
zz and the time

scale Tc were defined as the intersection of these two lines. In the following subsections,
we discuss the effects of φ, β and lattice configuration on the flow-induced diffusion.

3.2. Effect of φ

Figure 4 shows the relationship between the volume fraction of squirmers φ and the
diffusion tensors (Pe = 1.0 × 102). Flow-induced diffusion was anisotropic, differed from
Brownian diffusion and tended to be more diffusive in the z-direction than the x- and
y-directions: DF

zz 	 DF
yy and DF

yy, where DF
zz is the diffusion component in the orientation

direction of squirmers, and DF
yy and DF

yy are the diffusion components perpendicular
to it. As shown in figure 4, DF

yy and DF
yy are almost independent of φ, whereas DF

zz
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103

102

101

100

10–1

10–2

10–3

10–4

10–1 100 101

2

(Tc, D
F
zz)

�
r z2

/a
2

1

1

Flow-induced

diffusion regime

Advection

regime

Brownian

diffusion

regime

1

1

1

102 10–1 100 101 102

101

100

10–1

10–2

10–3

�t U/a �t U/a

(a) (b)

D
F zz
/
U

a
′

Figure 3. (a) The MSD of particles in the squirmers’ orientation direction as a function of �t when φ = 0.50,
β = 0.0 and Pe = 1.0 × 102. The orange area represents the Brownian diffusion regime, the green area
represents the advection regime, and the blue area represents the flow-induced diffusion regime. (b) The
dispersion component DF′

zz in the orientation direction of squirmers as a function of �t. The dashed line is
the tangent line at the point where the slope has its maximum. The dash-dotted line indicates the converged
DF′

zz . The cross-section is (Tc, DF
zz).

1.0

0.8

0.6

0.4

φ φ

0.2

0
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β = 3
β = 1
β = 0

β

β = –1
β = –3

0.3 0.4 0.5

0.05

0.04

3 1 0 –1 –3

0.03

0.02

0.01

0
0.1 0.2 0.3 0.4 0.5

D
F zz
/
U

a

D
F xx

/U
a,

 D
F yy

/U
a

DF
yy

DF
xx

(b)(a)

Figure 4. Diffusion components as a function of φ with Pe = 1.0 × 102: (a) in the orientation direction of
squirmers; (b) in the direction perpendicular to the orientation direction.

increases with φ. The flow-induced diffusion component DF
zz/Ua is of the order of

O(10−1) (cf. figure 4a), while the thermal Brownian diffusion coefficient can be derived
as DB/Ua = 0.01, as the Péclet number is set to Pe = 1.0 × 102. Flow-induced diffusivity
is then from tens to a hundred times larger than Brownian diffusivity, and the diffusivity
is greatly enhanced by the squirming velocities.

When the volume fraction φ is less than 0.3, we also see a linear increase of DF
zz

regardless of the swimming mode β (cf. figure 4a). These linear trends in the dilute
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Figure 5. The relationship between diffusion components and Pe with φ = 0.50. The dash-dotted line with
slope −1 indicates the diffusion coefficient in a lattice of inert spheres that are arranged to the same
configuration as squirmers (DB

inert). (a) Diffusion components in the orientation direction of squirmers (DF
zz).

(b) Diffusion components in the direction perpendicular to the orientation direction (DF
yy and DF

yy).

regime are in good agreement with bacterial and Chlamydomonas suspensions (Wu &
Libchaber 2000; Leptos et al. 2009; Jepson et al. 2013). In high-concentration regimes
(φ ≥ 0.4), however, DF

zz is no longer linear and is almost a plateau when β = 0. These
results show that changes in the flow field caused by different swimming modes dominate
flow-induced diffusion, and that the diffusivity is not a simple function of the volume
fraction of squirmers.

3.3. Effect of Pe
We next investigated the effects of the Péclet number. Diffusion tensors as a function
of Pe are shown in figure 5. The volume fraction φ was set to φ = 0.50 for all cases.
Although DF

yy and DF
yy were approximately inversely proportional to Pe, DF

zz tended to
increase with Pe in high Péclet number regimes. This trend was completely different
from the diffusivity in a lattice of inert spheres, which was inversely proportional to Pe.
Accordingly, when Pe ≥ 1.0 × 102, the flow-induced diffusivity was more than 100 times
larger than in a lattice of inert spheres, and the diffusivity was comparable to that in low
Pe. These results indicate that even large molecules can be transported into a cluster of
swimming microorganisms by the flow generated by the microorganisms themselves. By
aggregating, microorganisms gain the ability to transport substances of any molecular
weight, from low-molecular-weight substances such as oxygen and carbon dioxide, to
high-molecular-weight substances such as proteins. This may help them to form colonies
and expand their habitats.

3.4. Effect of lattice configuration
To discuss the effects of the configuration of squirmers, we compared the diffusion
tensors in different lattice configurations and different orientations of squirmers. Figure 6
shows the diffusion tensors in the simple cubic (SC), body-centred cubic (BCC),
and face-centred cubic (FCC) lattices when φ = 0.50, β = 0.0 and Pe = 1.0 × 102.
The orientation direction of squirmers was (0, 0, 1) for all lattice configurations.
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Figure 6. The relationship between diffusion components and the configuration of squirmers. The schematic
diagram represents the lattice configurations SC, BCC and FCC. (a) Diffusion components in the orientation
direction of squirmers (DF

zz). (b) Diffusion components in the direction perpendicular to the orientation
direction (DF

yy and DF
yy).

Component DF
zz in the SC lattice was the largest, followed in order by that in the BCC lattice

and that in the FCC lattice. Components DF
yy and DF

yy were maximum at the FCC lattice,
although their magnitudes were smaller than DF

zz. The diffusivity differed substantially
depending on the lattice configuration.

We next investigated the effects of squirmer orientation. The lattice configuration
was kept to the BCC, but the orientation was varied from the z-axis with angle θ1

or θ2 (definitions are presented in figure 7a). We also define DF
ee as the diffusivity in

the orientation direction of squirmers, i.e. DF
ee = DF

zz with θ = 0. Here, DF
ee decreased

significantly with both θ1 and θ2, indicating that the diffusivity in the same lattice
configuration varied greatly due to the orientation direction of squirmers. These results
indicate that the diffusivity depends not only on the configuration but also on the
orientation of squirmers.

We simulated, at last, the effect of the randomness of lattice configurations and
orientations on the diffusivity in order to gain a better understanding of mass transport in
general situations. As seen in figure 1(c), 24 squirmers are set randomly in a unit domain,
and their orientations are also set randomly. Then the triply periodic boundary condition is
applied to this system. Figure 8(a) shows the MSD of tracer particles, �r2, as a function of
�t when φ = 0.47 and Pe = 1.0 × 102 in the BCC lattice and a random array of neutral
swimmers. The MSD in the random array had the same trend as the BCC case, which
indicates that flow-induced diffusion occurs even when both configuration and orientations
are random. Figures 8(b) and 8(c) show the ratio of flow-induced diffusivities to the
Brownian diffusivity: in figure 8(b) when squirmers are set to the BCC lattice and they
are oriented in the same direction, and in figure 8(c) when both are random. Shown by the
black bars, DF

I indicates the first invariant of diffusion tensors, i.e. DF
I = DF

yy + DF
yy + DF

zz.
In the random case, DF

I was below the value for the case of the BCC lattice and the same
oriented direction, indicating again that the diffusivity differed depending on the lattice
configurations and squirmers’ orientations. However, the order of the enhanced ratio was
O(10), which means even in the random case, the diffusivity can be significantly promoted.
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Figure 7. (a) Schematic diagram of the definitions of θ1 and θ2, the angles of squirmers’ orientation from the
z-axis. Here, θ1 is defined in the x–z plane, whereas θ2 is defined in the x = y plane. (b) Diffusion components
in the orientation direction of squirmers DF

ee as a function of the angles.
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Figure 8. (a) The MSD of tracer particles as a function of �t when φ = 0.47, β = 0.0 and Pe = 1.0 × 102

in the BCC lattice and a random array. (b,c) The ratio of flow-induced diffusion components to the Brownian
diffusivity: (b) when the configuration of squirmers is the BCC lattice and their orientations are in the same
direction, and (c) when both configuration and orientation are uniformly random. Here, DF

I indicates the first
invariant of the diffusion tensor. For the random case, DF/DB is the average of 16 independent cases, and error
bars are the standard deviations.

The enhanced direction of diffusion became isotropic when the orientation direction is
random, and the diffusivity in each axial direction was about 20–30 times the Brownian
diffusion coefficient. These results show that although the direction in which diffusion
occurs depends on the orientation distribution of the squirmers, aggregation of squirmers
enhances the flow-induced diffusivity regardless of the configuration.

3.5. Comparison with Taylor dispersion
When swimming microorganisms were oriented in the same direction, the flow-induced
diffusivity in the orientation direction was greatly enhanced with increasing Pe
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Figure 9. The scaling of diffusivity with respect to Pe: DF
zz/DB

inert = 1 + α Pen. (a) The ratio of diffusivity in
the squirmers’ orientation direction to the Brownian diffusivity in the BCC lattice as a function of Pe when
φ = 0.50. (b) The exponent n of Pe with various β. The values were obtained by least squares fitting of the
data in (a). The dotted line indicates the case of conventional Taylor dispersion, i.e. Deff /DB = 1 + α Pe2.

(cf. figure 5). Although this trend resembles the conventional Taylor dispersion theory,
which claims that the diffusivity is scaled as (1 + α Pe2)DB

inert, the slopes of the diffusivity
in a high-Pe regime of figure 5(a) differ depending on the size of β. In this subsection, we
compare the flow-induced diffusivity under study with the Taylor dispersion theory, and
examine the effect of squirming modes on it.

We adjust the vertical axis in figure 5(a) to the ratio between flow-induced diffusivity
in the squirmers’ orientation direction and the Brownian diffusivity in the BCC lattice
of inert spheres, DF

zz/DB
inert, and then see if the diffusivity obtained in the present study

follows (1.2), i.e. Taylor dispersion theory. Figure 9(a) shows DF
zz/DB

inert as a function of
Pe, which is a replotting of the data in figure 5(a). Although the slopes in the high-Pe
regime vary with β, they would all follow the equation

DF
zz

DB
inert

= 1 + α Pen. (3.1)

Figure 9(b) indicates the exponent n of Pe when fitting the data in figure 9(a) with (3.1).
Since diffusion can be considered as Taylor dispersion when n = 2, diffusion for all β

did not precisely follow Taylor dispersion. This is due to the presence of cross-flows in
a suspension of squirmers. When cross-flow is present, the increase in diffusivity in the
mainstream direction is weakened as the heterogeneity of cross-flow increases (Lin &
Shaqfeh 2019). Figures 10(a) and 10(b) show streamlines on a y = 0.0 plane with β =
0.0 and β = 3.0, respectively. For both β values, there were vortex flows, which caused
cross-flows in the direction vertical to the z-direction. In this case, as Pe becomes higher,
the heterogeneity of cross-flow becomes correspondingly stronger; therefore n became
lower than 2. Furthermore, when |β| > 1, recirculation regions were formed in front of or
behind a squirmer, as seen in figure 10(b), which increased the intensity of cross-flows, and
correspondingly n deviates from 2 more strongly with increasing |β|. Thus the diffusivity
in a complicated flow such as those found in a microorganisms’ suspension can no longer
be described by the conventional Taylor dispersion theory.
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Figure 10. Flow fields in the BCC lattice of squirmers. Green circles and half-spheres represent squirmers,
and white arrows indicate their orientation. Streamlines on a plane y = 0.0 with (a) β = 0.0 and (b) β = 3.0
(φ = 0.50). The colour contour indicates the z-component of the fluid velocity – upstream and downstream in
both cases – and the recirculation region is generated in front of the puller type with β = 3.0. (c) The schematic
diagram of a flow field. Blue arrows show the flow direction; the orange area represents upward flow (uz > 0),
and the light blue area represents downward flow (uz < 0). The curved surface with uz = 0 is the interface of
two areas, where area A is defined. Black dots represent particles, and black arrows indicate the fluxes involving
both the advection fluxes and the fluxes due to Brownian diffusion. Particles cross the two areas by the fluxes.

4. Scaling

Diffusivity has units m2 s−1, and so can be scaled as DF
zz ∼ U2

c Tc. In this section, we
provide a scaling argument for predicting Tc and Uc, which leads to estimation of DF

zz. Our
scaling is applicable to cases where the effects of mainstream and cross-flow vary together,
and differs from the traditional approach of considering cross-flow as independent.
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The scaling argument is useful to understand the mechanism of flow-induced diffusion,
because the effects of parameters on the diffusivity are described mathematically.

4.1. Particle flux crossing upstream and downstream
To predict flow-induced diffusion theoretically, we introduce a flux-based scaling law. As
total net flow in the suspension was zero, there were upward and downward flows within
the suspension (cf. figure 10). Under high-Pe conditions, passive particles move mainly
along their respective streamlines and are transported in one direction, either upwards or
downwards. However, they occasionally cross the interface, where the flow direction is
reversed by Brownian motion and advection fluxes perpendicular to the interface. The
motion of particles is then considered to be diffusive as they pass repeatedly through the
interface.

Based on the mass conservation law, flux crossing the boundary of uz = 0 per unit time
and unit area can be decomposed into two terms:

f = fa + fB, (4.1)

where fa is the advection flux crossing the boundary, and fB is the flux due to Brownian
diffusion. The advection flux fa is given by

fa = c |un| , (4.2)

where c is the number density of particles, and un is the velocity normal to the curved
surface of uz = 0.

The diffusion flux fB may be estimated using a one-dimensional random walk model
(Berg 1984) because the flux in (4.1) is normal to the surface of uz = 0. Let M(x) be the
number of particles at grid x. The grid for the random walk is placed with interval δ, where
δ2 is the MSD in time duration dt and satisfies δ2 = 2DB dt. The flux through a plane at
x + δ/2 can be expressed as

fB = M(x + δ) + M(x)
2A dt

, (4.3)

where M(x + δ) is the number of particles at x + δ, and A is the unit area. The two terms
in the numerator are both positive, because they do not imply a net flux, but rather account
for all fluxes in both directions. Equation (4.3) is then transformed into

fB = M(x + δ) + M(x)

2Aδ

δ2

2 dt
2
δ

= cDB 2
δ

= c

√
2Ua
Pe dt

. (4.4)

Substituting (4.2) and (4.4) into (4.1), the total flux can be rewritten as

f = c |un| + c

√
2Ua
Pe dt

. (4.5)
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Figure 11. The relationship between Tc and Pe when φ = 0.50 in the BCC lattice.

Integrating (4.5) in a unit domain and dividing it by the volume of a unit domain, total
mass crossing the boundary of uz = 0 per unit time and unit volume is given by

F = 1
V

∫
Auz=0

(
c |un| + c

√
2Ua
Pe dt

)
dA

= c
V

∫
Auz=0

|un| dA + cA0

V

√
2Ua
Pe dt

, (4.6)

where V is the volume of a unit domain, and A0 is the surface area of the boundary per
unit domain. The concentration field is assumed to have no effect on the velocity field, so
the first term on the right-hand side of (4.6) is independent of Pe, whereas the second term
is proportional to Pe−0.5. The swimming mode β and volume fraction φ change the flow
structure in the suspension and determine the balance between the advection and diffusion
flux in (4.6).

4.2. Time scale Tc

We first investigated the relationship between the flux and the time scale Tc. The time scale
of flow-induced diffusion should be dependent on the frequency for particles to pass the
boundary between positive and negative streamlines, because it corresponds to a direction
change in the random walk model. We then assumed that the time scale is inversely
proportional to the mass transport through the boundary per unit time and unit volume:
Tc ∝ F−1. In the case of a neutral squirmer (β = 0), there is no recirculation region, so
the advection flux across the boundary |un| is sufficiently small compared to the diffusion
flux:

∫
Auz=0

|un| dA � A0
√

2Ua/(Pe dt). Therefore, Tc should be proportional to the square
root of Pe. Figure 11 shows the relationship between Tc and Pe with φ = 0.50 and the BCC
lattice. We see the Pe0.5 trend when β = 0, while the slope is less than 0.5 when β ≥ 3. In
the case of pushers or pullers with |β| > 1, recirculation regions are generated around the
squirmer, and |un| becomes relatively large. Due to the flux enhancement by advection, Tc
becomes smaller than the 0.5 power law of Pe when |β| > 1.
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Figure 12. The relationship between Tc and F. The solid and dashed lines are fitted using the least squares
method with slope −1.

We then calculated F directly from the numerical simulation, and the relationship
between Tc and F is shown in figure 12. Here, Tc is almost inversely proportional to F
regardless of β and φ, confirming the reliability of our scaling.

4.3. Velocity scale Uc

Next, we discuss the velocity scale Uc under given β and φ conditions. We define

the characteristic velocity Uc as Uc ≡
√

DF
zz/Tc, where DF

zz and Tc were defined as in
figure 3(b). Figure 13 shows the relationship between Uc and Pe with φ = 0.50 and the
BCC lattice. Here, Uc was almost invariant with Pe, but changed slightly with β. Thus the
flow scale is independent of Pe, which is consistent with the condition that the flow field
is not changed by the concentration field.

To estimate the velocity scale without solving the mass transport equation, and fit the
results of DF

zz as in figure 3(b), we introduce another characteristic velocity Uz defined by
the volume average of uz:

Uz =

∫
|uz| dV

V
. (4.7)

The relationship between Uc and Uz is shown in figure 14(a). There is a linear correlation
between Uc and Uz, which indicates that the velocity scale Uc can be estimated simply by
the volume average velocity Uz. Accordingly, as shown in figure 14(b), the flow-induced
diffusion DF

zz can be scaled as DF
zz ∝ U2

z Tc regardless of β and φ, without introducing Uc.
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Figure 13. The relationship between Uc and Pe when φ = 0.50 in the BCC lattice.
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Figure 14. Scaling of Uc. (a) The trend between Uc and Uz. Here, Uc is averaged over Pe, and the results with
different β are plotted (small |β| results in small Uc). Each error bar indicates the standard deviation. The line
is fitted using the least squares method with slope 1. (b) The scaling of diffusivity in the orientation direction
of squirmers using Uz.

4.4. Diffusivity
Finally, we attempted to scale DF

zz without using Tc and Uc, instead using only the
information of the flow field and Brownian diffusivity DB. This treatment is important
because it enables us to estimate DF

zz without solving the mass transport equation.
From the definitions of velocity and time scales, the following relationship holds: DF

zz ∝
U2

c Tc. By estimating Tc ∝ F−1 as discussed in § 4.2, and Uc ∝ Uz as discussed in § 4.3,
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Figure 15. The scaling of diffusivity in the orientation direction of squirmers using Uz and F, i.e. γ defined
by (4.8). The line is fitted using the least squares method with slope 1.

the flow-induced diffusivity can be scaled as

DF
zz ∝

(∫
|uz| dV

)2

cV
∫

Auz=0

|un| dA + cA0V

√
2Ua
Pe dt

≡ γ. (4.8)

Component DF
zz as a function of γ with different β and φ is shown in figure 15. The figure

shows that the relationship is close to linear, but the slope is not exactly 1 (the best fit was
seen with slope 1.27). The reduced accuracy in the analytical estimation of diffusion fluxes
fB may be responsible for the discrepancy of the slope from 1. However, the diffusivity can
be predicted roughly from the flow field and Brownian diffusivity of particles without
solving the advection–diffusion equation for mass transport.

5. Conclusion

We evaluated diffusivity quantitatively in a packed lattice of squirmers by tracking passive
particles within it. We investigated the effects of the volume fraction, Péclet number
and lattice configuration on diffusivity. Even in the high-Pe regime, the trajectories
of particles became diffusive over a long duration due to Brownian diffusion. The
direction of flow-induced diffusion depended on the squirmers’ orientations, and the
diffusivity was enhanced over the Brownian diffusion regardless of the configuration
of squirmers. In particular, when their orientation directions were aligned in the same
direction, flow-induced diffusion was anisotropic and the diffusivity in the orientation
direction of the squirmer could become 100 times larger than Brownian diffusivity in the
high-Pe regime. The present flow-induced diffusion did not follow Pe dependency of the
conventional Taylor dispersion due to cross-flows. The discrepancy was more significant
with large |β| conditions, because the intensity of the cross-flows increased with |β|. The
time and velocity scales were proposed by averaging over the domain, which enabled
us to predict the flow-induced diffusivity from the data of the flow field and Brownian
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Figure 16. Comparison of the effective diffusivity between the present study and Blees & Leyte (1994). The
effective diffusivity is normalized by the Brownian diffusivity and obtained in cubic lattices of inert spheres:
(a) the SC lattice, (b) the BCC lattice, and (c) the FCC lattice.

diffusivity without solving the mass conservation equation. The results presented here can
be utilised to improve our understanding of transport phenomena in packed suspensions
of microorganisms, such as biofilms, gut flora and clustered cells, as well as providing
insights into their colonisation and growth.
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Appendix. Validation of the accuracy of the Lagrangian method

We quantified flow-induced diffusivity by tracking individual tracer particles in a
Lagrangian manner, rather than representing a continuous concentration field and solving
the advection–diffusion equation. In this appendix, we demonstrate the accuracy of the
present method by quantifying the Brownian diffusivity in a lattice of inert spheres as
a function of the spheres’ volume fraction. Figures 16(a,b,c) show the ratio of them
to the Brownian diffusion coefficient, for the SC lattice, the BCC lattice and the FCC
lattice, respectively. The plots are the results obtained by our present simulation, and solid
lines indicate the analytical solutions (Blees & Leyte 1994). For all lattices, the present
values and trends are in good agreement with the analytical solutions; the validity of the
Lagrangian method is confirmed.
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