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Operating principles of peristaltic pumping
through a dense array of valves
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Immersed nonlinear elements are prevalent in biological systems that require a preferential
flow direction, such as the venous and the lymphatic system. We investigate here a
certain class of models where the fluid is driven by peristaltic pumping and the nonlinear
elements are ideal valves that completely suppress backflow. This highly nonlinear system
produces discontinuous solutions that are difficult to study. We show that, as the density
of valves increases, the pressure and flow are well approximated by a continuum of
valves which can be analytically treated, and we demonstrate through numeric simulation
that the approximation works well even for intermediate valve densities. We find that
the induced flow is linear in the peristaltic amplitude for small peristaltic forces and,
in the case of sinusoidal peristalsis, is independent of pumping direction. Despite the
continuum approximation used, the physical valve density is accounted for by modifying
the resistance of the fluid appropriately. The suppression of backflow causes a net benefit
in adding valves when the valve density is low, but once the density is high enough, valves
predominately suppress forward flow, suggesting there is an optimum number of valves
per wavelength. The continuum model for peristaltic pumping through an array of valves
presented in this work can eventually provide insights about the design and operating
principles of complex flow networks with a broad class of nonlinear elements.

Key words: flow-vessel interactions, peristaltic pumping, lubrication theory

1. Introduction

Peristalsis occurs when external radial forces propagate along a fluid-filled tube, inducing
fluid motion. In the human body alone, peristaltic waves drive fluid transport in the
oesophagus (Brasseur 1987), the ureter (Carew & Pedley 1997), the lymphatic system
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Figure 1. Model for peristaltic pumping with a dense array of valves satisfying assumption (1.1). The imposed
peristaltic force f has wavelength A and speed c. The strength of the force at each point on the boundary is
proportional to the length of the arrows. The vessel has rest radius Ry and intervalve spacing x,.

(Moore & Bertram 2018) and the perivascular spaces of the brain (Mestre et al. 2018;
Carr et al. 2021). The success of modelling peristaltic pumping arises from its simplicity:
when only peristaltic forces drive flow and the forces take the form of a wave propagating
in an infinitely long tube, the Navier—Stokes equations describe steady flow in the
co-moving wave frame. The problem of peristalsis at low Reynolds number was first
studied perturbatively in powers of a small-amplitude parameter (Burns & Parkes 1967)
and later extended to the case of arbitrary amplitudes, but under the assumption of long
wavelength (Shapiro, Jaffrin & Weinberg 1969). Historically, the term ‘long-wavelength
peristalsis’ has been used to refer to a regime where the wavelength is large compared with
the unperturbed radius of the compliant tube Ry. When nonlinear elements are scattered
throughout the tube, one has an additional length scale arising from the characteristic
spacing between these elements, x, in figure 1. These nonlinear elements are important for
determining the pressure—flow relationship, but they introduce complexities that render an
analytical treatment difficult. In this paper, we will consider the case when these nonlinear
elements are ideal valves that completely prevent backflow.

The combination of peristalsis and valves at low Reynolds number is particularly
relevant for studying biological fluid networks with a nonlinear pressure—flow relationship.
For example, synchronous peristalsis in a finite tube capped with valves at both ends was
used to model a bat wing venule (Farina et al. 2016). Our model closely resembles pumping
in the collecting lymphatic vessels, where intrinsic and extrinsic pumping mechanisms
transport lymph through units separated by valves called lymphangions (Margaris &
Black 2012; Moore & Bertram 2018). The peristaltic response in the lymphatic system
is fundamentally different from that in the oesophagus or the ureter in that the direction
of fluid motion is fixed by the valve orientation, not the direction of peristaltic wave
propagation. The fluid is transported in the valve direction even when the peristaltic
wave travels in the opposite direction (McHale & Meharg 1992; Zawieja et al. 1993).
Lymphatic-inspired peristaltic pumping with valves has been studied numerically using
a lattice Boltzmann model for the lymph and a lattice spring model for the mechanics
(Ballard et al. 2018; Wolf, Dixon & Alexeev 2021; Wolf et al. 2023). The aspect ratio
(Ballard er al. 2018), bending stiffness (Wolf et al. 2021) and spacing (Wolf et al. 2023)
of the valves all play a role in enhancing the net flow and energetic efficiency of the
lymphatic system. The valves must be designed in such a way that backflow is prevented
when pressure is unfavourable while keeping the resistance to forward flow minimal.

Existing numerical models elucidate operating principles of the lymphatic system, but
due to the nonlinearity of the valves, no analytical treatment of peristalsis with many valves
has been attempted. In this work, we will assume that the peristaltic wavelength A is much
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longer than the characteristic valve spacing x,,
Ry < xy K A. (L.1)

The first inequality allows us to neglect complicated behaviour near the valves and apply
the lubrication approximation. The valves are spaced far enough apart that the velocity
profile remains parabolic throughout most of the channel with no slip at the tube walls,
and the resistances of the valves can be added in series. The second inequality suggests
that the valves are dense enough that we can write approximate expressions for the flow
through many closed or open valves. See figure 1 for an example geometry that satisfies
approximation (1.1).

While focus will be given to this lymphatics-inspired model, the technique demonstrated
in this paper could be used for a variety of problems containing a dense array of
nonlinear elements satisfying (1.1), and could be of potential interest for engineering
applications that incorporate artificial valves (see e.g. Park er al. 2018; Brandenbourger
et al. 2020). The key observation will be that, when (1.1) is satisfied, the precise placement
of valves becomes unimportant, and the flow is well approximated by treating the entire
medium as a fluid with nonlinear properties inherited from the valves. This effective
nonlinear fluid will be referred to as the valve continuum. While a finite number of
valves will break the translation symmetry required to study steady flow in the co-moving
wave frame, this symmetry is restored in the valve continuum, allowing us to make
analytical progress into this highly nonlinear problem. The valve continuum has peculiar
properties which we will analyse throughout the paper. Perhaps most interesting is the
property that a backward-propagating peristaltic wave can induce flow in the forward
direction (the valve’s preferred direction) of comparable magnitude to the flow induced
by a forward-propagating peristaltic wave, elucidating the peculiar operating principle
observed in the lymphatic system.

The paper is outlined as follows. In §2, the fluid and solid equations governing
force-imposed peristaltic pumping in an elastic tube are reviewed, along with the choice
of non-dimensionalization. In § 3, the equations for discrete ideal valves are introduced.
We then demonstrate how to approximately describe the fluid confined to regions of
many closed valves in 3.1, many open valves in 3.2 and appropriate matching conditions
in 3.3. From these considerations, one arrives at a model for the valve continuum.
Throughout §§ 4 and 5, solutions to the valve continuum model are studied for the cases
of forward-propagating and backward-propagating peristaltic waves, respectively. Explicit
solutions are found and plotted for the special case of sinusoidal peristaltic waves. The
role of the open valve resistance in setting the optimum valve density is discussed in
§ 6. Finally, discussion on how this model relates to the lymphatic system and other
applications is given in § 7. Additional mathematical details and a table of parameters
are given in Appendix C.

2. Force-imposed peristalsis at low Reynolds number

There are two methods of mathematically modelling peristalsis on a cylindrical pipe. The
most commonly used model assumes that the radius varies in time according to some
prescribed function in the form of a wave R(x — ct), where c is the wave speed. This
induces fluid motion in the tube, and the pressure and flow can be easily calculated (Burns
& Parkes 1967; Shapiro et al. 1969). This method is appropriate for modelling the response
from a peristaltic pump where the radius is fixed by the size of the rollers, but in the
biological setting, it is more accurate to measure the fluid response from a force per area
propagating along the pipe. This captures the fluid—structure interaction at the walls of

989 A18-3


https://doi.org/10.1017/jfm.2024.480

https://doi.org/10.1017/jfm.2024.480 Published online by Cambridge University Press

A. Winn and E. Katifori

the vessel. The goal of the paper will be to generalize the results of force-imposed
peristalsis (Carew & Pedley 1997; Takagi & Balmforth 2011; Elbaz & Gat 2014) to the
case with valves. In order to isolate the effects of peristalsis, the mean pressure drop per
wavelength will be assumed zero throughout the paper.

2.1. Dimensional formulation

We will concern ourselves only with an incompressible fluid at low Reynolds number
under the lubrication approximation. Since the radial velocity is always small, the pressure
is only a function of the axial coordinate x, and the velocity profile is assumed to remain
parabolic. Thus, it is sufficient to work only in terms of the flow Q(x, #), since the axial
velocity uy(x, r, t) can be recovered by using the following relations:

R(x,1)
O, 1) E/ uy(x, r, )2nrdr, (2.1)
0
_20(x,1) r?
uy(x, r,t) = <R 1)? (1 — R, t)2> . 2.2)

Here, R(x, t) is the radius of the tube, and r is the distance from the midline of the vessel.
Under our approximations, the equations governing mass continuity and momentum
conservation reduce to

9 OR?

90, R, 2.3)
0x ot

aP 8

Tyt h—n, 2.4
ox + nR4Q 24

where u is the dynamic viscosity. Finally, the pressure and radius are coupled via a linear
elasticity equation (Timoshenko & Woinowsky-Krieger 1959; Takagi & Balmforth 2011)

PP =_ " (R 25
~ Paltx _(1—v2)Ro<Ro_>’ .

where E is Young’s modulus, /4 is the thickness of the tube, v is Poisson’s ratio and
Ry is the rest radius of the tube, which in this work is assumed to be independent of
x. A generalization of (2.5) was considered by Macdonald ef al. (2008) to represent the
elastic response of lymphangions; the form is still a linear relationship between pressure
and radial deformation, but with a different coefficient. The term P, f is the prescribed
peristaltic force with characteristic amplitude P, and functional form f whose mean value
is zero. Throughout the paper, most of our numerical results for a forward-propagating
wave will use f(x, r) = cos(2m(x — ct)), and our results for a backward-propagating wave
will use f(x, ) = — cos(2m(x + ct)).

Consequences of adding a small bending term to (2.5) will be discussed in Appendix A.
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2.2. Dimensionless formulation

We will now work with convenient dimensionless quantities

0 P p
cnR3’ (ctR3) (8ud/mRY)
X t
A T

Eh/(l - VZ)RO _ P, _ne Py
(R Sua/ary T enR)Eu/mR) T

R

R N
Ro

0 (2.6a—c)

t (2.7a,b)

=1

K = —
k  Eh/(1 —V2)Ry

(2.8a—c)

The radius, flow and pressure non-dimensionalization is similar to that used in previous
papers describing peristalsis, such as Shapiro et al. (1969) and Provost & Schwarz (1994).
Space is scaled by the peristaltic wavelength A, and time is scaled by the peristaltic period
T. In the above, « is the ratio of the stiffness to the characteristic pressure of peristalsis in
a viscous tube, np is the ratio of the applied peristaltic force to the characteristic pressure
of peristalsis in a viscous tube and nr (which can be constructed from the other two
parameters) gives the characteristic radial deformation of a stiff vessel.

Using these dimensionless variables, our model for peristaltic pumping in an elastic tube
becomes

0 N aR? _o 29)
ax ar ’
_ _, 0P
0=-R*—, (2.10)
ox
_ _ _ 1-
P=«x(R—-1)+npf, R=1—npf+ —P. (2.11a,b)
K

When periodic boundary conditions are applied, the integral of (2.9) implies that the total
volume is conserved. By convention (or by an appropriate definition of Rg), we will enforce
this dimensionless volume to remain one

1
/ R*dx = 1. (2.12)
0

This simple form of the volume constraint was also imposed in Takagi & Balmforth (2011).
Keeping only linear terms in the radial deformation allows one to combine (2.9), (2.10) and
(2.11a,b) into a single driven heat equation. Formally, one expands the pressure, flow and
radius in powers of np: 13=in1 + .-, Q:mqu +---,R=1 +np1_i’1 + ---. Then,
the terms linear in np satisfy

- )z

b _ kP Y (2.13)

a2 3x* a1
This equation allows us to better understand the role of the parameter . One can think
of k /2 as a diffusion coefficient or 2/« as an elastic relaxation time per peristaltic period.
When « is large, the pressure diffuses to an equilibrium configuration of nearly uniform
pressure. When « is small, the relaxation time is longer than the peristaltic period, and the
pressure distribution closely resembles the external pressure applied to the tube.
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3. Incorporating valves into a model for peristalsis

A valve could be any nonlinear element that promotes flow in one direction more than
the other. We will concern ourselves only with the extreme case of an ideal valve, which
only allows flow in one direction proportional to the pressure drop across the valve. This
is equivalent both to the diode representation of valves used in lumped models of the
lymphatic system (Margaris & Black 2012) and to the boundary conditions used by Farina
et al. (2016) to study veinous valves. A more detailed valve model could incorporate the
mechanical properties of the valves such as the bending and stretching stiffness (Wolf
et al. 2021). Superscripts are used to index a particular valve; specifically, x, is used to
denote the position of valve i. For our ideal valves, the valve status (open or closed) is
determined by the sign of the pressure drop across the valve, such that the valve closes
when the pressure downstream exceeds the pressure upstream, and the valve opens when
the pressure upstream exceeds the pressure downstream. Formally, if we let AP} () denote
the upstream pressure minus the downstream pressure, then the valves open and close
according to the following equations:

. 9 .
AP,(t) =0 and &APL(t) <0 == valve closes, (3.1

. 9 .
AP,(t)=0 and §AP§)(t) >0 =  valve opens. (3.2)

A closed valve has identically zero flow and a negative pressure drop. An open valve has
a positive pressure drop related to the flow by Poiseuille’s law. Here, we will not concern
ourselves with the fluid dynamics inside the valve, but instead assume the pressure—flow
relationship at valve i is

Ry QL (1) = (R();O )> APL(N@ (AP (1)), (3.3)

where R, is the resistance of a fully open valve, and @ (x) is the Heaviside step function
which evaluates to zero for x < 0 and to one for x > 0. The choice of ®(0) is irrelevant due
to the factor of AP (#) out front. Using the non-dimensional functions from the previous
section

7,0l (D) = RE, D AP (1O (AP; (i)) , (3.4)

where 7, is a dimensionless resistance parameter which compares the resistance of an open
valve with that of a valveless tube of length A4

Ry

=" 3.5
8ud/mRY (3-5)

In order to numerically solve (2.9), (2.10), (2.11a,b) and (3.4), we discretize space
with periodic boundary conditions and integrate in time usmg Scipy’s solve_ivp function
initialized with the tube at rest. At each time step, the area R is updated according to (2.9),
the pressure is calculated from (2.11a,b) and the flow is calculated using (2.10) and (3.4).
Note that edges without valves have a fluidic resistance equal to the step size dx, edges
with open valves have a fluidic resistance of r, 4+ dx and edges with closed valves have
an infinite fluidic resistance. The radius along an edge with a valve is multivalued, but
numerically, the areas upstream and downstream are averaged when computing the factor
of R* in (3.4). Integration stops once the system has converged to its periodic steady state.
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Figure 2. Demonstration of how the pressure and flow in a system of many randomly placed valves is
approximated by the results in the valve continuum limit for various choices of the amplitude of peristalsis
np and the stiffness x. The solid lines show numerical results from simulating a tube with n, = 20 valves
per wavelength. Red solid line: normalized radius as a function of X, the normalized location along the tube;
blue solid line: normalized pressure; purple solid line: normalized flow. The dimensionless valve resistance
was chosen to be 7, = 0.05. The black dashed line shows the corresponding valve continuum prediction, and
the grey dotted line shows the prediction for the valveless case. The valves in the shaded region are closed
while the valves in the unshaded region are open. Parameters used for the discrete valve simulations are
(@ k=16,np=0.2, (b) k =16,np=2, (¢) k =04,9p =0.2, (d) «k =0.4,np =2. For the valve
continuum and valveless cases, x and np were divided by 1 + 7,n, = 2, and P was multiplied by 2 as compared
with the discrete valve case.

Solutions to these equations using f(x, 7) = £ cos(2n(x F 7)) are displayed in figure 2.
Twenty valves were placed on the domain with mean valve separation € = x, /4 = 0.05
and standard deviation 0.01. The resistance of a single valve was chosen to be r, = 0.05
such that the total valve resistance is ny7, = 1, where n, = ¢! is the number of valves
per wavelength. For each choice of parameters, three solutions differing only by their
random choice of valve placements were plotted on top of each other with solid lines. The
details of the various regimes will be explained throughout the paper, but for now, only the
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features of the valves will be discussed. First, notice that the small randomness in valve
placement has only a weak effect on the solutions. Regions of closed valves are shaded
for clarity. Between two closely spaced closed valves, the flow is small when compared
with the flow in regions with many open valves. The pressure has a characteristic step-like
pattern in regions of closed valves. The radius displays large discontinuities at the locations
of closed valves. The small jumps in P and R in the open sections are due to the finite
open valve resistance. The solid lines closely follow the continuous dashed line, which is
the valve continuum solution we will present in later sections. For comparison purposes,
the solution to the equivalent valveless problem is shown with a dotted line. The goal of
the next three subsections will be to understand the cusps and discontinuities in the solid
curves and find a way to smooth out the fluid dynamics in regions of open and closed valves
to obtain the appropriate valve continuum (dashed curves). First, we will characterize P,
QO and R in powers of € in regions where valves are closed; in doing so, we will see that
enforcing zero flow and a continuous pressure profile gives a good approximation to our
collection of discretely placed closed valves. Then, we show how to obtain a homogenized
resistance describing flow through many open valves. Throughout the rest of the paper,
constant valve spacing will be assumed ¥, = ie for simplicity.

3.1. Closely spaced closed valves suppress flow

The flow between two closed valves spaced a distance x, apart is identically the flow
in a flexible pipe of length x, capped at both ends. When x, <« A, peristalsis is nearly
synchronous across the entire pipe, and € can be used as an expansion parameter. We
change to using spatial coordinate y = x/¢ such that the fluid between valves i and i + 1
is confined to an interval of length one, y € B}fj, )')f)“]. Since f is nearly constant in space
between two closed valves, we Taylor expand f about the midpoint between two valves

X, = 5@ + 3
fGD =fE,D+ef @ DG =)+ @, DG - )2+ . (3.6)

Here, the primes denote derivatives with respect to x. Equations (2.9) and (2.10) become

9 9R?
—? +e— =0,
ay ot
_ 3.7
- —4 8P
GQ - — P
ay

which, along with (2.11a,b), can be solved perturbatively with zero flow boundary
conditions. We expand P(3, 7) = Po(y,7) + €P1(3, 1) + €2Py(y,7) + - - -, and similarly for
0(y, 1) and R(y, 7). To lowest order, we have

900.D) _
ay
0— —1_?0()7, 2)4 aPoa(_y, t)’ (3.8)
Po(3, D = k(Ro(3, D) — 1) + npf (X', 7).
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From the first equation, the flow is constant in y, and the boundary conditions fix that
constant to zero. From the second equation, the pressure is independent of y, and the last
equation implies that the radius must also be independent of y. The first-order equations
read _

9016:1) | RGO _

ay ot
AP\ (3,1 ' 39
—Ro(®)* 10, )’ (3.9

dy

P13, 1) = KRG 1) + npf (@ DG = 51)-
The first equation permits flow which is linear in y, but our boundary conditions forbid this
unless Q1 = 0, which implies Ry is also independent of time. The second equation implies
Py is independent of , and its time dependence is related to R; by the third equation. The
second-order equations read

0:6.0 5, SRI0D

ot
0= —Rg%_y’f), (3.10)
y

_ _ _ _ 1 . .
P23 D) = ka3 D) + S0 f (5, DG — 2

The second equation tells us that P, is independent of ¥, and its time dependence is related
to R, by the third equation. Integrating the first equation from y,, — 1/2 to y,, + 1/2 gives
the constraint

/ym+1/2 M 18151(?) _ (3.11)
3

n—1/2 ot Kk 0f
So, in fact, P; is a constant. The continuity equation and boundary conditions are satisfied
by
- o = npdf (x 1) _
0:(,1) = Ry- == =) -5 =0. (3.12)

Assuming the valves are equally spaced, we can make the replacement )_cfn =e€lx/e] +
€/2, and write an expression for the pressure, flow and radius

P, 7) = k(Ro — 1) + npf (€|X/€] + €/2,7) + Py + €2P2 (1) + O(e?), (3.13)
0Gh = "R, G Lx/e;; €/2.1) ( —e EJ) ()_c— ¢ EJ - e) + 0, (3.14)

RG D =Ry+ P - Lf (elxX/el +€/2,7) ()_c —€ FJ - 5)
K K € 2

e lnp,, ., .. - - X e\’ 3
+ —Py(1) — =—f" (e|x/e] + €/2,7) (x— € L—J — —) +0(e’). (3.15)
K 2k € 2

Here, Ry and P; are undetermined constants and P, () is an undetermined function of time.
These approximate expressions for a confined fluid agree well with the exact solutions, as
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Figure 3. Exact numerical solutions to (2.9), (2.10), (2.11a,b) and (3.4) with f(x,7) = cos(2n(x — 7)) in a
region of many closed valves are shown with solid lines. The analytical predictions (3.13), (3.14), (3.15) are
shown with dash-dotted lines, and appear to agree well with the exact solutions. The valve continuum solutions
(3.16), (3.17) and (3.18) are shown with black dashed lines. Parameters used for this simulation are n, = 20,
v = 0,k = 0.5 and np = 0.5. Subtracting (or in the case of the flow, dividing) by a constant value eliminates
the unknown parameters Ry and P;. In the case of the analytical solutions, the pressure and radius should be
evaluated at the limit as x approaches one from below.

demonstrated in figure 3. The pressure is nearly constant in space in between two valves,
and the time dependence is dominated by the value of f(x!, 7), explaining the step-like
profiles observed in figure 3(b). The flow is everywhere continuous, but cusps can be seen
at valves, as shown in figure 3(c). Crucially, the flow between the valves is suppressed
by €2, so the induced flow decreases rapidly as the valve spacing decreases, but may be
noticeable in a highly compliant vessel with small «. The radius displays rapid oscillations
due to the y-dependent term at O(e), as seen in figure 3(a). These oscillations describe
how slightly different forces applied between two valves can cause a large gradient in the
radius.
Continuous equations can be recovered by taking the limite — 0

lin}) P(x,T) = k(Ro — 1) + npf (%, 1), (3.16)
lirr(l) ok, 1) =0, (3.17)
111% R(%,7) = Ry. (3.18)

These equations describe the valve continuum in a region of closed valves and can be
understood as a simple consequence of the zero flow boundary conditions. Not only does
this enforce Q = 0, but also the radius must be kept constant to prevent induced flow.
With this idea in mind, note that we cannot apply an arbitrary radius-imposed peristalsis
in between two closed valves because doing so would violate the zero flow condition.
The model of Farina et al. (2016) utilizing ideal valves and radially imposed peristalsis
considers the case of only two valves, and they find that at least one of the valves must
be open at any time. We will later see that it is possible to have radius-imposed peristalsis
through many valves, but only if precisely one valve is closed per wavelength.

3.2. Flow through many open valves

Next, we seek a simplified model for a region with many open valves. Notice that we can
incorporate open valves into our one-dimensional momentum equation by introducing an
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additional resistance r, at the location of each valve
dP . ]
- — g [1 7y 8- x;)} 0. (3.19)

The calculation will be similar to the previous section, but here there will be two length
scales which are important. The valves change the fluidic resistance over a small length
scale y = x/e while the channel changes the resistance over a longer length scale X, so we
can apply the tools of homogenization theory to derive an appropriate effective resistance
(Holmes 2013). We will expand each of the functions P, Q, R in powers of €, and introduce
n, = €1, which counts the number of valves per wavelength, with n,r, ~ 0(%). In a

region of open valves

3 19\ ,: _ 3 /=) B
e(£+;a—y)(Q0+6Q1+---)+68—2(R0+---)_o, (3.20)

24_13 (i)+ﬁ+)
Aoz Tegy) V0T

= —¢ <R54+--~) {1 +nv?v28()7—)7f)):| (Qo+---). (3.21)
i
(Po+€Pi+--)=k[(Ro+eRi +---) — 1]+ npf. (3.22)
From the O(€°) terms in (3.20) and (3.21), we immediately learn that Qo and Py are

independent of y. From (3.22), we can also see that Ry is independent of y. At O(eh)
in (3.22), we have

Po =« (Ro — 1) + npf. (3.23)

At O(e) in (3.20), we have

0QE.D 015D IRG D

3.24
3% 3y 31 (3:24)

We see that Q1 is linear in ¥, but since y describes effects localized to the valves, we must
have that Q; does not grow far from the valves, and thus dQ; (%, y, 1) /9y = 0. This leaves
us with a continuity equation purely in terms of X

300  OR}
= 4+ 02— 3.25
ox ot (3.25)

Looking at O(e 1Y in (3.21), we have

dPy(xX, 1)  IP1(%,¥,1)
— + -
X ay

= —Rox, D74 [1 + oy » 8 — y{,)} Qo(x, 7.  (3.26)
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Integrating over y from an arbitrary point yg to y gives
P57 — P1(X 50. 1)
aPO —4
:_/ |:¥+R |:1+”vrv25(y _yu)i|Q0:|dy

9Py

= — (? +R—4Qo) (7 — Jo) — mFuRy™* Qo / 230 S, (327

Each of the terms on the right-hand side diverges for large y, so the only way for P; to
remain finite is to have these terms cancel as y increases

1 P y
lim —— [— (—O+R_4Qo> 3 — o) — myruRy Qo/ > 86 _yv)dyi| =0.

y—00y — Yo dx

(3.28)

The integral in the second term grows like y —yo for large y, so our homogenized
momentum equation simply becomes

B—P_‘) = —Ry* [1 + ny7] Qo. (3.29)

ax

This equation could have been guessed by adding the resistance of our tube and n, valves
in series. In the limit e — 0, (3.23), (3.25) and (3.29) are exact. These are the expressions
for the valve continuum in a region of open valves. While P1 and R are both discontinuous
at the valves, Q; is independent of the microscopic coordinate y, so much like the theory
for regions of closed valves, the leading-order term in our expansion for regions of open
valves works particularly well at describing the flow which is the fundamental quantity of
interest.

The dependence on valve parameters can be eliminated entirely by rescaling the
amplitude and stiffness according to np — np/(1 + nyry) and « — k/(1 + nyry). This
will give the correct radius and flow, but the result for the pressure will then need to
be multiplied by a factor of (1 + n,7,) to get the correct homogenized pressure. This
procedure was done to obtain the valve continuum solutions (solid lines) in figure 2. For
notational simplicity, we will simply set 7, = O until we are interested in exploring specific
features related to the number of valves.

Throughout the next section, all analytical results are presented in the limit € — 0, and
the subscript zero will be re-purposed for a new perturbative expansion.

3.3. Matching conditions

So far, we have derived the equations for a continuum of open valves and a continuum
of closed valves. What remains is to match these regions. Matching occurs at coordinates
where the valves are closing or opening. From (3.1) and (3.2), we know that the pressure
must be continuous at these coordinates, and (2.5) implies the radius is also continuous.
Just as in the discrete valve system, the flow is always continuous and is identically zero
during opening or closing. By (3.29), the pressure gradient in an open region adjacent to a
closed region must be zero to ensure zero flow at the transition, but the pressure gradient in
a closed region adjacent to an open region only needs to be non-negative, so the pressure

989 A18-12


https://doi.org/10.1017/jfm.2024.480

https://doi.org/10.1017/jfm.2024.480 Published online by Cambridge University Press

Peristaltic pumping through a dense array of valves

gradient need not be continuous. Thus, although P, Q and R are continuous in the valve
continuum, the functions may not be smooth at the closing and opening coordinates. This
behaviour can be seen in the valve continuum predictions in figure 2, where cusps can be
seen where the shaded and unshaded regions match. Later, we will show that for the case
of travelling waves, the pressure gradient is continuous at the closing coordinates but not
at the opening coordinates.

To summarize, a fluid in an elastic pipe containing many valves with arbitrary imposed
force f satisfies (3.16), (3.17) and (3.18) in a region containing many closed valves, and
(3.23), (3.25) and (3.29) in a region containing many open valves. These regions are
matched by continuity of P, Q and R. This is the general form of the valve continuum.
Additional boundary conditions could be imposed on a finite tube. We will only consider
f in the form of forward-propagating and backward-propagating peristaltic waves imposed
on an infinitely long tube with zero net pressure drop such that periodic boundary
conditions in P, Q and R apply.

4. Valve continuum results I: forward-propagating peristaltic waves

Combining the results of §3 gives us the behaviour of P, Q and R when € — 0. The
motivation for studying this regime of dense valves is twofold. First, we have eliminated
any dependence on the valve positions {x;} and by appropriate rescaling have even
eliminated r,, leaving only two parameters characterizing the peristaltic pumping. Second,
because the valves no longer break translation symmetry, we can study peristaltic waves
using ordinary differential equations in terms of a single wave coordinate. In the next two
sections, we will consider forward- and backward-propagating waves, respectively (where
valves always promote flow in the positive direction). For the valveless system, these two
systems are related trivially by time-reversal symmetry, but the presence of valves will
require us to study these solutions separately. It will be convenient when discussing the role
of valves to consider only functions f which have a unique local maximum and minimum.
This will ensure that, within each wavelength, there is one continuous region of open

valves (where 815/ dx < 0) and one continuous region of closed valves (where 813/ ox > 0).
In this section, we will consider forward-propagating peristaltic forces of the form

f&D=fx-1=f&. (4.1)

Since all functions now only depend on &, we will sometimes use primes to unambiguously
denote derivatives with respect to £. The origin is chosen such that closing occurs at § = 0.
We will show that this corresponds to a simple phase shift of f. First, let us consider

the continuity equation for this model. By our choice of origin, Q(0) = 0, the continuity
equation (2.9) is simply

d
dg

From our work in § 3.1, we not only know that the flow in the closed regions will
be zero, but also the radius in the closed regions will be constant and equal to R(0).
Equation (4.2), along with the fact that Q(&) > 0, enforces that R(0) = min R. Also, the
pressure in the open regions is decreasing while the pressure in the closed regions is
increasing, so the opening and closing coordinates must be relative extrema. Considering
the sign of the pressure gradient at a previous time step reveals that closing occurs at
the maximum value of P, and opening occurs at the minimum value of P. Therefore, at
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(a) (b)

Open Closed ... Closed <+ Open

=

=

3 3

Figure 4. Example solutions to the valve continuum model which demonstrate the appropriate matching
conditions. (a) For a forward-propagating wave, closing occurs at max P and min R, so it must also occur
at max f by (2.11a,b). The origin is chosen to be max f for simplicity. However, opening occurs at min P and
min R, so the opening coordinate £ cannot be simply expressed in terms of f. (b) By a similar argument, for a
backward-propagating wave, closing occurs at minf, but the opening coordinate £ cannot be simply expressed
in terms of f. Note that opening is defined as the time at which the valve transitions from closed to open, and
closing is defined as the time at which the valve transitions from open to closed. For a forward-propagating
wave where § = X — 7, one should read the plots from right to left when determining the opening and closing
coordinates, but for a backward-propagating wave where & = x + 7, one should read the plots from left to right
when determining the opening and closing coordinates.

closing, npf(0) = max P — xk(minR — 1) = np max f. Thus, we can ensure that the valve
closes at the origin by shifting the origin to align with the maximum value of f

f(0) = maxf <= valvecloses at§ = 0. 4.3)

A summary of this argument is given in figure 4(a). The fact that we have this simple
matching condition during closing has further implications. Since f(0) = max f, assuming
f has continuous first derivative, then f'(0) = 0. As mentioned in § 3.3, we only require
continuity between the closed and open regions, but since f'(0) = 0, and P'(0") =0
to ensure continuity in the flow, R'(0%) = 0 by (2.11a,b), which also implies Q' oh) =
0 by (4.2). Similarly, since f'(1) =0 and R'(17) =0 in a closed region, (2.11a,b)
implies P’(17) = 0. Therefore, during closing, the pressure, flow and radius are not only
continuous, but also have a continuous first derivative.

The opening coordinate, which we denote &, does not possess a simple form. Attempting
to apply a similar argument gives npf(£) = minP — k(minR — 1), which cannot be
simplified purely in terms of f. Since f’(£) need not be zero, we typically observe a cusp
até&.

It is often useful to combine (3.17) and (3.29) (with r, = 0) into a single momentum
equation that will govern the entire valve continuum

_ _,dP ( dP)
0=-R"—0(-+). (4.4)
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For regions with open valves, we can decouple (4.2), (4.4) and (2.11a,b) into a single
nonlinear ordinary differential equation. To summarize, the radius is given by solving

dR | R np df -

— =—R*R-R0)?) - == 0<&<

dé K ( %) K d§ ssf (4.5)
R(§) = R(0) E<eL,

where £ € (0, 1] is found by applying continuity of R during opening, and the constant
R(0) is fixed by enforcing volume conservation (2.12), which for the valve continuum
model with forward-propagating peristaltic waves takes the special form

£ _ .
/O R*E)dE + (1 — ER*(0) = 1. (4.6)
Taking the average of (4.2) and applying (4.6) gives a simple expression for the mean flow

(0) = 1 — R%(0). 4.7

The differential equation for the open region looks identical to that for the valveless
problem. However, the boundary conditions make our problem significantly harder to
solve. During the remainder of the section, specific regimes will be studied analytically
and numerically.

4.1. Forward-propagating peristalsis in a stiff tube (radius-imposed peristalsis)

Taking the limit of an infinitely stiff vessel k — oo at fixed 7z in (2.11a,b) suggests R(&) =
I — nrf(§). However, a constant term may be added to this expression corresponding to
a constant shift in pressure, and this constant is chosen to ensure that (R?) = 1 for any f
satisfying (f) =0

R(E) = /1 —nx(f2) — nrf(€). (4.8)

Since f(&) is known, we have recovered radius-imposed peristalsis as a special case of
force-imposed peristalsis where the tube is stiff, but the amplitude of the applied forces np
scales with the stiffness « to induce finite radial deformations of amplitude ng = np/k.
This reduction from force-imposed peristalsis to radius-imposed peristalsis was studied in
a system without valves by Takagi & Balmforth (2011).

In a system with ideal valves, radius-imposed peristalsis appears problematic, even
before considering travelling waves or a valve continuum. The continuity equation (2.9)
with known R(x, 7) is a first-order differential equation in space, but we wish to satisfy two
zero flow boundary conditions at the closing and opening coordinates & = 0 and & = &.
The resolution is to have only a single closed valve per wavelength, reducing the number
of boundary conditions to one. Indeed, for the current problem of forward-propagating
peristaltic waves, we see that the only way to simultaneously satisfy R(§) = R(0) for the
closed valves and to satisfy (4.8) is to have f(§) = f(0), which is the unique maximum of
f by (4.3). By our definition of the opening coordinate, & = 1. This is the coordinate of the
only closed valve, while all other valves remain open. The pressure will be discontinuous
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Figure 5. Results for forward-propagating peristalsis in a stiff tube with a continuum of valves, f(x, ) =
cos(2mt(x —7)). (a) Fraction of valves open in a stiff vessel for two different choices of large stiffness and
varying radial amplitude ng. The dashed line is the small-amplitude analytic result (4.30). (b) Mean flow for
two different choices of large stiffness and varying radial amplitude ng. The dashed line is the analytic result
(4.10).

across the closed valve, but the flow can easily be obtained by plugging (4.8) into (4.2)
0(6) = —2nry/1 = n3(f2) (F(€) — max(F) + 1k (F©)? = (max(£)?),  “49)
and its time average is

(0) = 2nrmax(f)y/1 = 3 (/) = nf (max()? = (1))

This solution is valid only if the radius remains positive which is true provided ng is
sufficiently small

(4.10)

1

S w8

For larger ng, the tube is completely occluded with all of the fluid volume transported
in one period, which in dimensionless units is (Q) = 1. Figure 5 compares the numerical
results of the fraction of valves open and the mean flow with the analytic predictions in
the case of sinusoidal peristalsis. The fraction of valves open approaches a number close
to one, which will be quantified in the next section. The flow for ng < 4/2/3 is correctly
predicted by (4.10), and is equal to one for larger values of ng.

The flow in this limit is drastically different from that of radius-imposed peristalsis
without valves. Perhaps the most striking feature is that the leading-order time-averaged
flow for small-amplitude peristalsis scales with ng in the valve continuum, as opposed to
7712? for the case without valves. The intuition is that the flow at O(ng) describes inflow
at locations along the vessel undergoing expansion and outflow at locations undergoing
contraction, a result of the continuity equation (2.9). In the absence of valves, an expansion
will pull fluid from the left and the right and a contraction will push fluid to the left
and the right. Since the deformation is periodic, the vessel must undergo equal amounts
of expansion and contraction at each location of the vessel, and this leading-order term
in the flow (which makes no reference to the momentum equation) is zero on average.
Non-zero flow results from higher-order terms where the continuity equation couples to

the nonlinear term R~*(Q in the momentum equation (2.10). Integrating R~*Q over one
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period and applying continuity of pressure gives
(R?)

Q" =1-— <R_4>, (4.12)

The notation ‘nv’ will be used to denote ‘no valves’. In the valve continuum, expansions
may only pull fluid from the left, and contractions may only push fluid to the right, so the
leading-order term describing mass continuity with rectification leads to some net fluid
flow to the right even without considering the nonlinear factor of R~ in the momentum
equation. In fact, the valve continuum solution in the special case of radius-imposed
peristalsis does not even rely on the precise form of the momentum equation, only
that there is precisely one closed valve, across which the pressure is allowed to be
discontinuous.

Sample solutions in this regime are given in the left columns of figures 2(a) and 2(b).
For a finite «, the fraction of valves open is less than one, and a continuous pressure is
observed in the closed region which interpolates between that in the open regions. Here,
a value of ¥k = 16 was used, but the area of the shaded region will get smaller for larger
values of «, collapsing to & = 1 in the limit « — oo. The pressure for the valveless case is
small and nearly averages to zero, but a large negative pressure gradient is established for
the case with valves. The flow curve has a similar shape as that of the valveless solution
but is shifted upward.

4.2. Forward-propagating, small-amplitude peristalsis

The opposite limit of vanishing stiffness ends up being a hard problem to solve analytically,
but we have already discovered interesting solutions at order #p, so we will now investigate
the leading-order small-amplitude response for arbitrary . We attempt to solve (4.5) up to
order np by expanding R(§) =1 4+ npR1(§) + - --

d—Rl——%(R —R(O))—l% 0<E<E
& T e cde oo (4.13)
R1(€) = R1(0) E<ELI

Note that &; is defined as the coordinate at which the open and closed radial solutions at
order np match. The constraint (4.6) becomes

g o
0=/0 R1€)ds + (1 — EDR1(0)

—/El[fd—kl Ri(0) lg}d (1 —EDR1(0)
=, _2df§+1( YT §+ (0 —-8DR

- |
=Ri(0) = S1f D) = f(O)]

_ 1 ~
= Ri1(0) = —E[f(O) —féDl (4.14)
The solution to (4.5) with this initial condition is
_ o1 - 1[5, df&) 2
Ri®) = =3 [F© —rén] - = /O dg' =35~ exp (;(s —s)), (4.15)
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where &; satisfies

& /
dg’ @ exp (%(5/ - 51)) =0. (4.16)
0 ds K

We now have R; and can easily write down Py and Ql

1 / f 2 ! =
—=Lf(0) —f )] ——/0 p(;(é —S)) for0 <& <&

Rue) = ? T
—EUﬂD—féo] for& <& < 1,
“4.17)
K = / f 2 / =
) —Evmyﬁﬂan+f@y—/ s——wp(4s—sﬂ for 0 < £ < &
_ 0 dé K
Pi(§) =
K ~ ~
—5LFO) = fEDT+£®) for& <& <1,
(4.18)
] ——/dsgém(ﬂé—a> for0 < & < &
016) =1 «Jo ~ d& K (4.19)
0 for& <& < 1.

Clearly « plays an important role in the shape of these curves, but this will be easier to
understand once an explicit solution is given in the next section.
Additionally, we can calculate the mean flow in terms of &;

(01) = —2R1(0) = f(0) — f(&1). (4.20)

Evaluating this simple-looking equation requires knowing & which depends on . We will
now show these results for the special case of a sine wave f(§) = cos(2nt§)

~ - 1 ~
C_(Z/K)SI _ COS(QJT%_I) 4+ — SiIl(ZT[gl) =0. 4.21)
K

—% [1 — cos(2n§1)]

N |:mce_(2/")5 + sin(27E) — Tk cos(2mE)
T

Ri(¢) =

. } , for0<& <& (4.22)

1 - -
) [l—cos(Znél)], for§; <& <1
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—% (1 _ cos(2m§1)>
N (mk)2e =I5 4 cos(2mE) + Tk sin(27E)

Pi(§) = s , for0<E<E  (423)
K ~ ~
—5 (1 - cos(2n§1)> + cos(2mté), for§ <£€<1
—Q/E 4 & _
) ’ |:m<e + sin(21té) - K cos(2n$):|  for0<E< é
01(8) = I+ (i) (4.24)
0, foré; <£<1
(01) = 1 — cos(2m&)). (4.25)

Two cases can be solved exactly: when k — o0, 51 — 1 and (Ql) — 0; when « — 0,

f;:] — % and (Q1) — 2. For all finite x, (Q;) is positive. To quantify the effect a valve
has on peristaltic flow, we review the leading-order results for small-amplitude peristalsis
without valves. For a more complete study of valveless force-driven peristalsis, see Takagi

& Balmforth (2011) and Elbaz & Gat (2014). The equations for the radius, pressure and
flow read

R =m [Si“@“i);gfk ‘;’S(Z“‘E )} , (4.26)
pre) = [ )] az

o (€)= 2m [Si“(z“i); i ;;’S(z“”%)} , (4.28)

(0" =0, (Q5")=-4 /O 1 R’f“(é/)%@’) &’ = % (4.29a,b)

Note that the leading-order contribution to the mean flow is at order 77123, and the direction
of the flow is always in the direction of peristalsis. We contrast these intuitive results with
those predicted in the valve continuum where the leading-order contribution to the mean
flow is order np, and we will soon find that the magnitude of the flow is independent of
peristalsis direction, but always in the direction of the valve. The lowest-order term in
the valveless problem is pure fluctuations that average to zero, but in the valve problem,
these fluctuations are rectified. Note that even for the valveless problem, net flow is only
permitted due to nonlinearity in the momentum equation, but the nonlinearity arises from
the factor of R~ in the resistance rather than from valves. This geometric nonlinearity is
weaker than the step-function nonlinearity imposed by valves, and it does not show up in
the calculations until order 77123. This quantitatively explains the different scalings of the net
flow with np for the valveless and valve continuum problems.

There is another interesting observation we can make by comparing the solutions with
and without valves. The solutions in between open valves with zero valve resistance (4.22),
(4.23) and (4.24) seem to closely resemble the solutions for the valveless problem (4.26),
(4.27) and (4.28). Other than some constant terms which enforce volume conservation, the

only difference between the two solutions is a term proportional to e~ /)¢ Tt is best to
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think of x /2 as the diffusion coefficient as in (2.13). Following a disturbance, the system
relaxes on a time scale of 2/« . For a valveless system, this term is transient, but for a system
with valves, this becomes part of the steady state. This term is particularly important when
Kk is large such that the relaxation time is small compared with the period of peristaltic
pumping. The extreme case k — oo corresponds to a system driven quasistatically, in
which case the pressure diffuses completely such that P; =0, much like how a gas
compressed quasistatically with a piston maintains a spatially uniform pressure throughout
the process.

It is difficult to continue our analysis to higher order in np analytically due to
the challenge in finding higher-order corrections to &, so even for moderate-amplitude
peristalsis, one must resort to numerically solving (4.2), (4.4) and (2.11a,b). In the next
couple subsections, we will further simplify the sinusoidal solutions to study the limits of
large and small «.

4.2.1. Forward-propagating, small-amplitude peristalsis, large

Even at small amplitude, the condition for valve closure (4.21) is transcendental. We know
that, at « = oo, all but one valve is open, and &1 = 1. Perturbing & ~ 1 — §&; and keeping
the lowest-order terms in 851 and k! in (4.21) gives

U, Uosp

Eirl— —« 4+ —K7e (4.30)
B4 3n

The « 3/ correction is only necessary for getting the correct pressure scaling. Even
for large values of x (such as k =40 in figure 5), the fraction of valves open appears
noticeably far from one due to the slowly varying « ~!/? term. The radius, pressure, flow
and mean flow can now easily be calculated

1 ~
——cos(2mé), for0 <& <&

RiE) = f (4.31a)
——, for & <& <1,

K
2 1 1 3
—— |:(S - =) — — s1n(2n§):| , for0<&<§
_ 2 27
Pi(§) = | (4.31b)
—1 4 cos(2E) + —, for & <& <1,
K
] 21— cos@n)], for0 <& <&
Q1) =1k (4.31c)
0, for & <& < 1,
_ 2
(01) = =. (4.31d)
K

These solutions for R; and Ql agree with the O(ng) solutions in § 4.1, but now we also have
estimates for the fraction of open valves and the pressure in the region of closed valves.
The pressure becomes discontinuous for infinite stiffness, but we now see that, for any
finite stiffness, the pressure in the small region of closed valves continuously interpolates
to the solutions in the open regions. Although we were able to explain the mean flow in
§ 4.1 purely as a result of the continuity equation (and constraints placed by the valves),
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we can now also understand the mean flow as a consequence of the linear pressure drop
established across the open region of valves. Physically, this pressure drop arises from the
rectification of the diffusive motion described by (2.13) for the valveless case.

4.2.2. Forward-propagating, small-amplitude peristalsis, small k

At small k, we can neglect the exponential term in (4.21). We will keep the exponential
term in (4.22), (4.23) and (4.24) to ensure the boundary condition at £ = 0 is satisfied, and
write (4.21), (4.22), (4.23), (4.24) and (4.25) as

Fo iyt 432
§ = 3 + > (4.32a)
_ _ - 2, (a—Q2/KE _ z
Rie) — {_1 + msin@2nE) + 3 (e cos(27£)) | g gliiisi )
- _Jcos(2mE) — k + Tk sin(2wE) + n2ic2e=@/RE for0 < £ < &
Pi®) = {005(275“;‘) — K, for & <& <1, (4.32¢)
, _|2msin@ng) +2n%k (e795 — cos(2né)), for0< & < E
016) = {0, forFl <& <1, (4.32d)
(01) = 2. (4.32¢)

The peristaltic period is much shorter than the elastic response time, so the fluid pressure
is dominated by the external pressure, and the radial deformation is out of phase with
f- Since f has negative slope half of the time, P; also has negative slope approximately
half of the time, suggesting approximately half of the valves should be open. Up to some
constants fixed by matching conditions and the exponentially small term, the solutions in
the open region exactly match those for the valveless problem. The diffusion mechanism
discussed in the previous subsection is suppressed.

An example solution in this regime is given in the left column of figure 2(c). Because
the vessel is highly compliant, even though np is small, the radial deformation is large.
The pressure for the cases with and without valves is similar, so the flow with valves is just
the rectification of the flow without valves

01~ 01’ OQ"). (4.33)

4.3. Forward-propagating, large-amplitude peristalsis

Large-amplitude peristalsis is already capable of pushing fluid in one direction, so if the
peristalsis direction agrees with the valve direction, the flow response of the valve problem
will essentially be that of the valveless problem. This is confirmed in the left column of
figure 2(d). The radius is narrow throughout most of the tube, but is very large in a small
region which traps and pushes the fluid in the direction of peristalsis. Since the fluid is
completely trapped, the mean flow approaches one in the limit np — oo. The deviation
from one can be found by considering the fluid in the occluded region where both R4
and np are large such that the R’ term in (4.5) is negligible. Then R? satisfies an algebraic

989 A18-21


https://doi.org/10.1017/jfm.2024.480

https://doi.org/10.1017/jfm.2024.480 Published online by Cambridge University Press

A. Winn and E. Katifori

(@) (b) (©)
v np=0.01 (numerical) v np=0.01 (numerical) v «=0.2 (numerical)
np = 0.1 (numerical) np = 0.1 (numerical) k =1 (numerical)
x np=1 (numerical) % np=1 (numerical) x k=8 (numerical)
--- | (analytical) --- () (analytical) ——
1.0 ra
g 204, 10/ BV
8“ 09 1 “w——-—”—__—«' lll /,’ X
%) 7 1.541 _ v s
2 0.8 X \ 107! v
_— 1 QL \ v
s f = 10{d ©
S 071/ S 102"~
= | x X
=) ¥ 054
Z 0.644 N x
o Y fa -3
< i - g 10
~ 1 —==%
054 T y y y 04, T T T y i T T T
0 5 10 15 20 0 5 10 15 20 102 107! 100 10!
K K np

Figure 6. Results for forward-propagating peristalsis with a continuum of valves, f(x, 7) = cos(2nt(X — 7)).
(a) The fraction of valves per wavelength which are open at any given time is calculated numerically (points)
as a function of « and compared with the small-amplitude result (4.21) (dashed line). () The mean flow
divided by np is calculated numerically as a function of ¥ and compared with the small-amplitude result (4.25).
(¢) The mean flow is calculated as a function of np. For small np, the scaling is linear for each «, as
demonstrated by the dashed line.

equation whose solution is real if and only if R*(0) < 1/8mnp. This leads to the scaling

- 1
1 -(0) ~

N (4.34)
8mnp

A thorough analysis of large-amplitude force-imposed peristalsis can be found in Takagi
& Balmforth (2011). Although it is mathematically unsurprising that the valve system
behaves like a valveless system when driven by large-amplitude peristalsis, it is worth
stressing the implication of this. If a biological or engineered system is reliably driven
by large-amplitude peristalsis, there is no reason for it to contain valves. We have already
seen one reason why a system may utilize valves. Given a small perturbation, the valveful
system can transport volume proportional to the amplitude of the perturbation (as opposed
to the amplitude squared as is the case for valveless peristalsis). We will see an even more
apparent difference when we consider backward-propagating peristaltic waves in the next
section.

A complete summary of the fraction of valves open and the mean flow for the case of a
forward-propagating sinusoidal wave is shown in figure 6. The fraction of valves open is
well approximated by the small-amplitude result even for np = 1, as shown in figure 6(a).
However, for larger values of np, this is a less useful metric for quantifying the system since
the behaviour is nearly that of the valveless system. In figure 6(b), it is shown that, for a
fixed np, the flow decreases with «, indicating a larger flow response in more compliant
tubes subject to forces of the same magnitude. In figure 6(c), it is clear that the flow for
small np is linear in np, a unique feature to the system with ideal valves, but for np close

to or greater than one, the flow approaches the fully occluded limit (Q) = 1.
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5. Valve continuum results II: backward-propagating peristaltic waves

In this section, we will revisit some of the calculations from the previous section but with
backward-propagating peristaltic forces of the form

f&D=f&x+0=[&). (GRY)

The origin is again chosen such that closing occurs at £ = 0 and opening occurs at £ = £.
Equation (4.4) is unchanged, but the continuity equation (4.2) becomes

d
ds

Following similar arguments as in §4, R(0) = maxR and closing occurs at min P.
Therefore

[0+R]=0 = 0@ =R0) - R (5:2)

f(0) =minf <= valveclosesaté& = 0. (5.3)
An illustration is given in figure 4(b). The decoupled radius equation is
R(&) = R(0) 0<&<é
drR 1.

dR _ L (m2 _royy- Y
dg_KR (R* — R(0)?) P

5 (5.4)
§<E<

where § € (0, 1] is defined by matching the solutions, and the constant R(0) is fixed by
enforcing volume conservation (2.12) which in this case takes the special form

1
§1f'e2(0)+/§ R*(&)de = 1. (5.5)

Note that the fraction of time open for backward-propagating peristalsis as we have
formulated it is 1 — £. The mean flow is

(0) = R*(0) — 1. (5.6)

The fact that R(0) = max R automatically suggests something peculiar. Typically, we think
of the flow driven by peristalsis as being largest in regions where the tube has expanded,
but, here, the radius is largest in regions where the valves are closed, and the flow is zero.

In regions where the valves are open, and flow is permitted, R will be smaller than one,
and the nonlinear factor of R* in the momentum equation will suppress the flow. See the
right columns of figure 2 for some example solutions. B

The backward-propagating wave has an additional constraint. Because (Q) must remain
less than 1 (corresponding to the surprising case where all fluid volume is transported
forward each period), (5.6) implies that R(0)? < 2, and since R(0) = max R, we have more
generally that

R(E) < V2. (5.7)

The forward-propagating peristaltic wave possessed no such bound on the radius for either
the valveless or the valve continuum problem, but this constraint will be important for
understanding large-amplitude retrograde peristalsis with many valves. For the general
case of force-imposed peristalsis that we are considering, (5.7) imposes no constraint on
the allowed forces, but may require a large rise in fluid pressure to counteract large external
forces while keeping the radius sufficiently small. We will see, however, that the range of
validity for radius-imposed peristalsis is reduced.
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5.1. Backward-propagating peristalsis in a stiff tube (radius-imposed peristalsis)

In the limit ¥ — oo at fixed small ng, we again recover radius-imposed peristalsis with R
given by (4.8), but in this case, the flow is given by

0(6) = 2nry/1 = n3(/2) (£ = min(f) — 1 (& = min(fN?)  (58)

(0) = —2ngmin(£)y/1 = () + n (min()? = (7)) (5.9)

This looks similar to the forward peristalsis solution. In fact, (5.9) suggests that, for a
sine wave, the flow induced by reverse peristalsis is larger than that induced by forward
peristalsis satisfying (4.10). The caveat is that (5.9) is valid over a smaller range of values
than (4.10). To see this, note that in addition to satisfying (4.11), we also need to satisfy
(5.7) which gives an additional constraint

(5.10)

1
k= V2| minf| + /(minf)2 — (£2)

For the case of a sine wave, (4.11) gives a bound of ng < +/2/3, but (5.10) places a stronger
bound of ng < +/2/9. To be clear, the bound only tells us when the analytic solution is
guaranteed to give an unphysical solution, it does not tell us when the radius-imposed
solutions will work. Although we found good agreement with the analytic result for all
physical values in the case of a forward-propagating wave in a stiff tube, the same is not
true here. In fact, it appears the analytic solution (5.8) only works for values much smaller
than (5.10). In that limit, only the linear term in (5.9) contributes, and for the case of
a sine wave, the mean flow is identical to that of a forward-propagating wave. Indeed,
comparing the left and right columns of figures 2(a) and 2(b), the radius and flow look
nearly identical. For an f with minimum value larger in magnitude than its maximum
value, the small-amplitude backward-propagating wave will produce more forward flow
than the small-amplitude forward-propagating wave. This effect is demonstrated using
Gaussian wave forms in Appendix B.

The qualitative explanation of the O(ng) term in (5.9) is the same as that for the
forward-propagating wave. Expansions and contractions induce oscillatory flow which is
rectified by the valves, and the pressure in the vessels is irrelevant for determining the flow.

5.2. Backward-propagating, small-amplitude peristalsis
Proceeding as in § 4.2, we wish to solve

R1(§) = R (0) 0<&E<E
dRy 2 . - 1df . (5.11)
E_;(Rl_Rl(O))_;E fr<éE< L.

In this case, §1 satisfies

L dreE 2 .
f dg’ ff ) exp (——(S’ - %1)) =0, (5.12)
g £ K
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and the remaining quantities of interest are

1 - -
E[f(&) —f(0)] for0 <& <&
Ri(§) =
,d 2 -
SUED — 01 - —/ ¢ Y o (——(E’ - s>) fordi <& <1,
&1 § k
(5.13)
SUE) —FO1+£) for 0 < & < &
Pi(§) = |
2 ~
—[f(él) —fO]+f¢) — _/g g f(§ ) exp (—;(E' - S)) for&§ <§<1,
(5.14)
0 for 0 <& <&
015) =12 df 2 - (5.15)
—f dg’ L exp (——(E - s>) ford <& <1,
Kk Jg, d& K
(01) = 2R1(0) = f(&) — f(0). (5.16)
For the special case of a sine wave f(§) = — cos(2n&), the fraction of time open satisfies

the same equation as that of the forward-propagating wave
2 - ~ 1 . -
exp (—=(1 = &) ) —cos (2n(1 = &)) + —sin (2n(1 = &)) =0.  (5.17)
K K

The mean flow is also identical

(01) =1 —cos2n(1 — &)). (5.18)

Figures 7(a) and 7(b) confirm this claim numerically. For np <« 1, the numerical results
agree with the predictions for 1 — & and (Q;). It is not, in general, true that an arbitrary
low-amplitude peristaltic wave in a valve-filled tube produces the same flow regardless of
pumping direction.

5.3. Backward-propagating, large-amplitude peristalsis

For the amplitudes considered in figure 7(c), the flow appears to reach 1 at a slower rate as
compared with figure 6(c). Unlike forward-propagating peristaltic waves, large-amplitude
backward-propagating peristaltic waves produce solutions which are qualitatively different
from the valveless problem. For backward-propagating peristaltic waves, the tube becomes
constricted in the region of open valves, and the radius approaches the maximum value
(5.7) in the closed reglons For k not too large, we expect the terms on the right side of
(5.4) to dominate since R~* and np are both large. Setting R'(§) = 0, we are left solving
an algebraic equation which is independent of «

df

B2 Bm2
dSR + R° — R(0) =0. (5.19)

Just like the k — 0 limit, the solution to this equation is to have f'(£) = 0, so the open
region of valves will correspond to where f is decreasing. With this in mind, we can
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Figure 7. Results for backward-propagating peristalsis with a continuum of valves, (X, 7)) = — cos2m(x + 7)).

The dashed lines in (a,b) correspond to the small-amplitude analytic expressions (5.17) and (5.18), which are
identical to (4.21) and (4.25) for the forward-propagating wave.

uniquely pick the sign to this quadratic equation that gives a positive area

e \/1 +4R(0)2np|f/ ()]
2np|£/(8)] '

In order to fix R(0), we would need to solve (5.5). This is difficult to solve in general, but
we can approximately solve this problem for the case of a sine wave where & = % We will
assume that the integral is dominated by the largest values of the radius close to the closed
regions, where sin(2n&) is approximately linear

R(E)* = (5.20)

_ R(0)?
-2

1

| D 2 .
N / 1+ /1 + 87R(0)2np| sin(2m&)| "
1

/2 4mnp|sin(2n)|

_ R(0)?
=72 7

R0 N 2f1/4 —1 41+ 87R0)2np(27E)
2 0 4nnp(2nE)

2/1/4 —14++/1+87R(0)2np sin(2né)d$
0

4mnp sin(2mé)

dg

_ R(0)?
2

mnp

- \/ﬁ

(5.21)

R(0)? 2 - lo
_RO” /—R(O)+O( g"P>.
2 P ne
We can now write down the maximum radius and mean flow
. 2
— (maxR)*~2— [—,
nnp

(5.22)
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Figure 8. Large-amplitude peristalsis against a continuum of valves with f(x,7) = —cos(2n(x +1)).

(@) Numerical solutions for the cross-sectional area and flow using np = 25, k¥ = 0.5 are shown with solid
lines and compared with the analytic solution (5.20) with R(0)2 given by (5.22) shown with dotted lines.
(b) Deviation of the mean flow from the fully occluded limit. The dots show numerical solutions for two
different choices of «, and the dashed line is the analytical large-amplitude prediction (5.23).

- 2
1 —(Q)~ T[—np, (5.23)

This is a distinct power law from the forward case which approaches 1 as 77;1. It is not
surprising that much larger amplitudes are needed in order to achieve maximum flow for
a backward-propagating wave as compared with a forward-propagating wave. Perhaps it is
more surprising that this limit is ever achieved. As a technical note, one can also derive an
17;1/ 2 power law without making the approximation on the third line but instead assuming
that the 4R(0)2ﬂpf/ (¢) term dominates the square root; however, this gives a slightly
smaller prefactor which does not agree as well with our numerical results. The analytical
results are confirmed in figure 8. Although the radius is small in the open region, the large
imposed force produces a pressure gradient which drives flow. This is entirely different
from large-amplitude peristalsis without valves where the flow is confined to a region of
large radius but small pressure gradient.

6. Valve density

The previous sections demonstrated the features of the valve continuum model with r, =
0. Valves are able to successfully pump fluid given only small-amplitude perturbations
or to pump fluid against the direction of peristalsis. In any case, if r, = 0, the mean
flow is optimized by having a continuum of valves, as demonstrated in figure 9(a,b).
However, when r, > 0, an excessive number of valves will increase the fluidic resistance
and thus lower the magnitude of the flow, as demonstrated in 9(c,d). The valve continuum
prediction, in this case, is numerically obtained by filling all edges with valves of zero
resistance, but with modified parameters k — « /(1 + nyry) and np — np/(1 + nyry). It
appears that for a stiff vessel (¢ = 8 in figure 9), the flow barely changes as more valves
are added. This is because, as we saw in §§4.1 and 5.1, the flow in this limit only
depends on ng which is not modified by having a non-zero r,. All but one valve is kept
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Figure 9. Mean flow as a function of the number of equally spaced valves per wavelength n,,. As the density
of valves increases, the mean flow approaches the valve continuum result (lines). In all cases, np = 0.1.
(a) Forward-propagating peristaltic wave with zero valve resistance. (b) Backward-propagating peristaltic
wave with zero valve resistance. (¢) Forward-propagating peristaltic wave with non-zero valve resistance.
(d) Backward-propagating peristaltic wave with non-zero valve resistance.

open regardless of the number of valves, and the result is completely determined by the
continuity equation, so it is not too surprising that the number of valves is unimportant in
this regime. For small x and small np, (4.32a—¢) suggests that the mean flow will decay
with the number of valves as n; !, Comparing the triangles in figures 9(c) and 9(d), it
is clear that valves may sometimes be unnecessary in rectifying flow when peristalsis
is driven by a forward-propagating wave, but necessary when peristalsis is driven by a
backward-propagating wave.

Figure 9 demonstrates that, when driven by sinusoidal peristalsis, a system of more
than approximately 5 valves is well approximated by the valve continuum. This is no
longer true when multiple wavenumbers contribute. More generally, the valve continuum
is not reached until the valve spacing is smaller than all relevant axial length scales for the
problem. This effect is studied in the context of a Gaussian wave train in Appendix B.

One enlightening application of this model is to estimate the density of valves that
optimizes the mean flow (see e.g. Venugopal et al. 2009). The most interesting case is
when 7p is small and 7, # 0. In this case, there is a finite optimum number of valves that
maximizes the mean flow, which will be denoted n};. We will avoid studying the case of
large « since there is only a slight dependence on n, in this limit. The results are shown in
figure 10. In panel (a), it is demonstrated that for forward-propagating peristaltic waves,
ny > 0 when 7, is small, but n}; = 0 when 7, is large. Also, n}; is smaller when np is larger
since valveless peristalsis is more efficient in that case. Contrast these results with those in
panel (b) where the fluid is driven by backward-propagating peristaltic waves. Here, there
is a less clear dependence on np, and even for very large values of 7,, we find n}; > 0.
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Figure 10. The value of n, which maximizes (Q), denoted #3, as a function of valve resistance r,. Valves were
spaced equally, and all integer values of n, between 0 and 25 were tested. (a) Forward-propagating peristaltic
wave. (b) Backward-propagating peristaltic wave.

Interestingly, for several orders of magnitude, having 3 or 4 valves per wavelength seems
optimal when 7, is large.

7. Discussion
7.1. Application: lymphatic system

In order to apply the results of this paper to the lymphatic system, we must first check that
our models for the fluid, vessel and valve are appropriate. If so, then we may check that
approximation (1.1) holds and study the implications of our valve continuum model.

The viscosity of lymph is nearly that of water (Macdonald et al. 2008), but due to the
small radius of lymphangions, the fluid is often in the Stokes regime. Lymph can be treated
at zero Reynolds number when the diameters are less than 100 pm (Moore & Bertram
2018). This is the case for the rat mesenteric lymphatics, where the Reynolds number
was experimentally calculated to be 0.045 (Dixon et al. 2006). However, in the largest
lymphatic vessel in the human body, the thoracic duct, the diameters are closer to 2 mm,
and inertial effects should be taken into account (Moore & Bertram 2018).

Experimental data on lymphatic pumping are plentiful, but few studies have been able to
resolve the propagation of peristaltic waves. When only a single lymphangion is studied,
the whole vessel appears to contract uniformly (Moore & Bertram 2018). Thus, the ratio
xy /A is difficult to find in the literature, while Ry/x, can be found in numerous sources.
A detailed study of the peristaltic waves in mesenteric rat lymphatics is given in Zawieja
et al. (1993). The authors demonstrate that 80 %—90 % of waves are coordinated, meaning
contractions are observed in adjacent sites within one second of each other. The waves
were observed to propagate at a speed of 4 —8 mm s~! at a contraction frequency
of 8.4 — 13 min~'. The calculated wavelength is 2 = 20 — 60 mm. The radii of these
vessels was measured to be Ry = 0.03 — 0.06 mm, and x, = 0.6 — 1 mm, so there are
approximately 20-100 valves per wavelength. Thus, we can safely say Ry < x, < 4.
For bovine mesenteric lymphatics, the contraction waves were seen to propagate at 4 —
5 mm s~ ! with a frequency of 4 — 6 min~!, indicating a wavelength of A = 40 — 75 mm
(Ohhashi, Azuma & Sakaguchi 1980). However, the radii of these vessels was much larger,
Rp = 0.25 — 1.5 mm, with a valve spacing closer to 20 mm (Macdonald et al. 2008), so
there are approximately 2—4 valves per wavelength. For these larger vessels, the discrete
nature of the valves may be important.

The value of k can be estimated by measuring the radius as a function of pressure for a
non-pumping vessel and comparing with (2.5). The reciprocal of the slope of the AR(AP)
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curve was found to be 330 & 100 Pa mm~! for excised bovine lymphatics (Macdonald
et al. 2008). These results are only for a passive wall model, but for an active wall model,
the Young’s modulus itself can be treated as time varying (Macdonald et al. 2008). Using
the values of ¢ and A from Ohhashi et al. (1980) gives a value of x > 1. For the rat
mesentery which has much smaller radius, « is likely small enough for compliance effects
to become important. It is widely accepted in the lymphatics literature that the valves
operate via the pressure drop across the valve. Further details of lymphatic valves including
valve stiffness (Ballard et al. 2018) and hysteretic pressure response (Bertram, Macaskill &
Moore 2014) are neglected by our analysis. It was shown that the aspect ratio of lymphatic
valves is above a critical threshold that allows for complete closure of the valves under
adverse pressure conditions (Ballard er al. 2018). Two works give estimates of the open
valve resistance. Experimental measurements on isolated rat mesenteric lymphatics found
a value of R, = 0.6 x 10° g cm~4 s~! (Bertram ez al. 2014), while detailed modelling

utilizing experimental geometric data found a value of R, = 0.95 x 10® g cm™* s~!
(Wilson et al. 2015). Using these values, and dividing by the tube resistance obtained from
the rat data, suggests 7, = 0.0004 — 0.03. For these larger values of r,, the stiffness can
be suppressed by a factor as large as 1 4 n,r, = 4, which further enhances compliance
effects. The fact that the elastic parameters are hard to estimate, and that Ry can vary
greatly within and between species, suggests the full range of « values should be studied,
as we have in this paper, in order to understand mechanisms that could be relevant for
lymphatic pumping.

The exact value of the peristaltic amplitude is unimportant, but it is reasonable to
assume that the lymphatic system operates in the regime of small-amplitude peristalsis.
Experimentally, one can see that the radius changes by no more than one half of its rest
value (Zawieja et al. 1993; Davis et al. 2012). All of these considerations suggest that
we should be able to at least qualitatively apply the small-amplitude valve continuum
results to the lymphatic system. This work gives us some intuition for how a chain of
lymphangions operates. Valves induce a mean flow at order np, suggesting that even
small perturbations can be harnessed to drive lymph back to the circulatory system.
The direction of the contraction wave is unimportant at this order, meaning no carefully
coordinated, unidirectional contractions are necessary. Indeed, backward-propagating
waves in lymphangions have been observed to be just as prevalent as forward-propagating
waves, and the induced flows have been found to be comparable (McHale & Meharg 1992;
Zawieja et al. 1993).

A summary of parameters is given in table 1. Note that these values closely resemble
those reported in Wolf er al. (2021).

It is worth noting that, for the range of parameters found for the rat, a theoretically
optimum flow is achieved with tens of valves (see figure 10), and this is consistent with the
range of n, observed. This suggests that the density of valves in the lymphatic system is
large enough to rectify negative flows and not too large to unnecessarily suppress forward
flows, such that n,, ~ n}.

7.2. Summary

In this work, inspired by the lymphatic system, we provide some analytical and numerical
results regarding fluid flow driven by peristalsis in the presence of many valves. When
considered at small density, the valves produce discontinuous pressure profiles and do
not support wave-like solutions typical of peristaltic pumping. Interestingly, we recover
both a continuous pressure profile and wave solutions by considering the limit of an
infinite density of valves. Theoretical models of peristalsis with valves have either been
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Physical parameter Measured Value Reference

Viscosity p 8.9 x 107* Pass Macdonald ez al. (2008)
AP/AR = Eh/(1 —v?)R3 330 100 Pamm™! Macdonald et al. (2008)
Peristaltic period T (rat) 46—"7.1s Zawieja et al. (1993)
Peristaltic period T (bovine) 10-15s Ohhashi et al. (1980)

Rest radius Ry (rat) 0.03-0.06 mm Zawieja et al. (1993)

Rest radius R (bovine) 0.25-1.5 mm Ohhashi et al. (1980)

Valve spacing x, (rat) 0.6—-1.0 mm Zawieja et al. (1993)

Valve spacing x,, (bovine) ~20 mm Macdonald et al. (2008)
Wavelength A (rat) 20-60 mm calculated from Zawieja et al. (1993)
Wavelength A (bovine) 40-75 mm calculated from Ohhashi et al. (1980)
K >1 calculated

nR <0.5 Zawieja et al. (1993), Davis et al. (2012)
Ty <0.03 calculated from Bertram et al. (2014),

Wilson et al. (2015), Zawieja et al. (1993)

Table 1. Experimental values of physical parameters in the lymphatic system.

limited to studying only two valves treated as time-dependent boundary conditions (Farina
et al. 2016) or have relied only on numerical results (Ballard er al. 2018; Wolf et al.
2021). The simplifications brought on by studying a continuum of valves have allowed
us to study a range of parameters which could be relevant for explaining biological
phenomena. Although the analytic results in this work were derived for the high valve
density limit, the agreement between the theoretical predictions and numerical results
for finite valve density were very good, even for valve densities as low as 5 valves per
wavelength. This bolsters the validity of the results in more biologically relevant settings.
Perhaps the most striking feature of our model is that, for small-amplitude peristalsis,
the mean flow grows linearly with np, and, in some cases, the magnitude of the flow is
independent of pumping direction. This might explain the observation that both retrograde
and orthograde peristaltic waves are observed in the lymphatic system with almost equal
frequency (Bertram et al. 2014). At large amplitudes, if peristalsis and valves are oriented
the same direction, then valves do little more than increase the resistance to flow. However,
if a peristaltic wave travels against the valve direction, an entirely new regime can be
found where the flow is confined to a region of small radius. We also considered the effect
of a finite stiffness. When « is infinite, radius-imposed peristalsis is recovered, with all
but one valve open. Yet, even for very large finite «, this is not observed due to a slow
approach to the infinite x limit. When the peristaltic period is longer than the elastic
relaxation time (large «), the flow is entirely determined by the continuity equation and
has a simple analytical form which can be understood as rectified diffusion that establishes
a pressure gradient across the vessel. When the peristaltic period is shorter than the elastic
relaxation time (k small), the pressure in the vessel closely resembles the applied force,
so the fluid is driven by the components of peristalsis that lower the pressure downstream
while the valves prevent backflow when the pressure is lower upstream. Approaching the
valve continuum, the flow increases with valve density as more oscillations are rectified,

but the presence of a non-zero valve resistance reduces the flow causing a decay in the

mean flow proportional to n;l.

The valve continuum models an effective fluid with nonlinear properties inherited
from the valves. It is tempting to associate this effective fluid with a real fluid with
strange rheological properties, but the non-reciprocal response induced by valves cannot
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be achieved by a non-Newtonian fluid. It has been shown that for a general class of
non-Newtonian fluids, it is possible to find (radius-imposed) peristaltic wave forms that
induce flow against the peristalsis direction (Provost & Schwarz 1994). In our case, by
construction, the flow will always be in the valve direction regardless of the peristaltic
wave form, but surprisingly, the flow can even be enhanced by a backward-propagating
wave, something which was not studied for non-Newtonian fluids. Effective fluids with
nonlinear properties arising from flexible structures have been studied in the context of
soft hair beds (Alvarado et al. 2017; Stein & Shelley 2019), brushes and carpets (Gopinath
& Mahadevan 2011). This is the first paper to derive the coarse-grained behaviour for a
system consisting of many ideal valves without appealing to lumped-parameter modelling.
The methods employed to derive our two-state ideal valve continuum results can be
generalized to systems containing n-state immersed elements provided that each ‘state’
has a linear pressure—flow relationship. That is, any immersed element with a piecewise
linear pressure—flow relationship can be approximated by a continuum theory with new
parameters that depend on the density of the immersed elements and the resistance of
each state. It is worth comparing the limit in (1.1) with that studied in Alvarado et al.
(2017). They considered flow over deformable hairs that are so densely packed that the
flow remains confined to the tips of the hairs which may deform. In our case, the valves
are still spaced far enough that the resistances of the open valves are additive. This may no
longer be the case as x, becomes comparable to Ry.

In order to limit the number of parameters in our model, we assumed throughout the
paper that the pressure drop per wavelength was zero. The lymphatic system pumps against
large adverse pressure gradients which suppress the flow (Bertram er al. 2014). A non-zero
pressure drop per wavelength has been taken into account in previous models of peristaltic
pumping with valves (Farina et al. 2016; Wolf et al. 2021), but these models do not consider
backward-propagating peristaltic waves. In general, the competition between the pressure
gradient, peristaltic wave, and valves will determine the flow direction.

The simplifications made in this paper will allow for the study of biologically inspired
nonlinear fluidic networks without explicit dependence on the valve positions. Rather, only
two numbers « and np are needed to characterize the pumping through an edge containing
many valves. This allows the lymphatic network function to be studied more easily at the
whole system level and its architecture to be examined with optimality in mind, providing
invaluable insights about an important, but not well understood biological flow network.
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Appendix A. Bending effects

Approximation (1.1) guarantees any force dependent on spatial derivatives of R will be
small. However, incorporating ideal valves into an elastic tube governed by (2.5) leads to
spatial discontinuities in R and cusps in Q at the valve locations. In biological terms,
there is no coupling between adjacent lymphangions separated by closed valves since
our force-balance equation (2.5) only accounts for radial forces. To couple adjacent
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Figure 11. Results when a small bending term is introduced such that the force-balance equation takes the
form (A1) with @ = 10~7. Other parameters used in this simulation are np = 0.25, x = 0.2 and r, = 0.
(a) Radius, pressure and flow induced by a forward-propagating sinusoidal peristaltic wave. The dotted line
is the valveless solution, the dashed line is the solution with five equally spaced valves, and the solid line is the
valve continuum result. (b) Radius, pressure and flow induced by a backward-propagating sinusoidal peristaltic
wave.

lymphangions, we can add a small bending force so that our force-balance equation

Peristalsis with bending of this form was studied in Takagi & Balmforth (2011), and a
similar term involving a second-order spatial derivative was considered in Macdonald
et al. (2008). Since o = th% /A% <« 1, it is tempting to drop the bending terms and focus
only on the stretching as we did throughout the paper. Indeed, this new term does not
affect the large-scale pumping properties in the tube, justifying our use of (2.11a,b). The
solutions with bend for a realistic choice of « (figure 11) are similar to the case without
bend (figure 2). The key difference is that the radius is now continuous and the flow is
now smooth in regions of a finite number of closed valves (dashed line), but the pressure
distribution remains discontinuous. The mean flow for the two cases is essentially the
same. Notice that adding spatial derivatives to our force-balance equation does not affect
the homogenization procedure described in § 3, so the valve continuum can easily be
generalized to incorporate more complicated tube mechanics. The valve continuum still
succeeds in capturing the simplified dynamics for a tube with bend, as can be seen by
comparing the solid and dashed lines in figure 11.

Appendix B. Gaussian forcing

In the main text, all numerical results were given assuming f took the form of a sine wave.
In order to demonstrate the generality of our small-amplitude results and highlight some
features absent from the sine waves, here we show the results when f takes the form of a
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Figure 12. Summary of results for a Gaussian forcing with width parameter [ = 0.1. (@) Each column
represents a different peristaltic Gaussian wave train. In order from left to right, f takes the form of a
forward-propagating bell curve f(%,7) = Y, exp(—( — F — m)?/21?)/~/2nl2 — 1, a backward-propagating
bell curve f(x, 1) =), exp(—(x +1—m — %)2 /21%) /212 — 1, a forward-propagating inverted bell curve
fen=1=-3%, exp(—x—1—m— %)2/212)/\/ 2ml? and a backward-propagating inverted bell curve
fen=1-=3% exp(—(x+7— m)?/21%)/~/2mi2. The radius, pressure and flow are displayed for each.
Parameters used for these simulations are ¥ = 8, np = 0.1 and r,, = 0. Notice that, when f takes the form of a
bell curve such that R is an inverted bell curve, the flow is larger for a forward-propagating wave, but when f
takes the form of an inverted bell curve such that R is a bell curve, the flow is larger for a backward-propagating
wave. (b) Mean flow as a function of amplitude for each of the cases in (a).

Gaussian wave train. For the forward-propagating wave, f takes the form

2
( ¢ lm) )—1. (B1)

The parameter / < 1 describes the width of the Gaussian. Notice that (f) = 0, and f(0)
is a maximum so that the valve opens at & = 0 for a forward-propagating wave. We also
consider inverted and backward-propagating waves of a similar form. A summary of the
valve continuum results is given in figure 12. We consider four different forms of f related
to (B1) by time reversal and phase shifts. The functional forms are written at the top
of each column. We focus on the simple case of large ¥ where the peristalsis is nearly
radius imposed. By comparing the first two or last two columns in figure 12(a), it is clear
that the forward- and backward-propagating waves no longer produce similar flows, as
was the case for sinusoidal waves in this regime. In fact, a backward-propagating inverted
Gaussian wave train (last column) is better at pumping than a forward-propagating inverted
Gaussian wave train (third column), consistent with (4.10) and (5.9). There appears to be a
symmetry between the forward-propagating Gaussian wave and the backward-propagating
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Figure 13. Mean flow as a function of the number of equally spaced valves per wavelength n, when driven
by a (a) forward-propagating and a (b) backward-propagating Gaussian wave train. In both cases, 7, = 0,
np = 0.01 and « = 1. The results for a discrete number of valves are shown with points for different choices
of [ and compared with the valve continuum result shown with a dotted line. Smaller values of / require more
valves to reach the valve continuum.

inverted Gaussian wave, and a symmetry between the backward-propagating Gaussian
wave and the forward-propagating inverted Gaussian wave. This symmetry breaks down at
large amplitudes as shown in figure 12(b). For larger amplitudes, both forward-propagating
waves approach (Q) = 1 faster than either backward-propagating wave.

As this example demonstrates, the amplitude is not the only important feature of the
peristaltic wave. Certain shapes are more effective at pumping in certain directions than
others. This is reminiscent of the findings in Provost & Schwarz (1994) who consider
how to engineer peristaltic waves to optimize retrograde flow due to non-Newtonian
fluid properties as opposed to valves. For our problem, at least in the simple case of
small-amplitude peristalsis in a rigid tube, the flow is optimized for a large positive
value of max(f) for a forward-propagating wave or a large negative value of min(f)
for a backward-propagating wave, all while fixing (f) = 0. For the sine wave where the
magnitude of the maximum and minimum values of f are the same, we found identical
flow at O(ng), as in (4.25) and (5.18), but more generally, the values of the maxima and
minima will be important in determining the value of the flow at O(nr).

Sharper functions, like the Gaussian wave trains shown here, will have a large maxima
or minima and are therefore capable of inducing more flow in the valve continuum.
However, such functions will have a second relevant length scale much smaller than the
wavelength (/ for the Gaussian wave trains). The valve continuum model was derived under
the assumption that the valve spacing is much less than the wavelength of peristalsis, but
more precisely, the valve spacing should be much less than any relevant axial length scale
of the system. In figure 13, this idea is confirmed by looking at the mean flow for a discrete
number of valves for different choices of / and compared with the valve continuum result.
A small value of np was chosen to focus on the valve effects rather than flow induced by
peristalsis without valves. For the forward-propagating waves shown in figure 13(a), the
number of valves required to reach the valve continuum is roughly /~! such that x, ~ L.
For smaller values of n, (larger values of x,), x, is larger than the width of the Gaussian.
Interestingly, for this particular wave form, the backward-propagating waves seem to reach
the valve continuum for fewer valves, as shown in figure 13(b).
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Symbol Description

Ro Radius of the pipe when no external forces are present

X Position of the ith valve

Xy Mean valve spacing

A Wavelength of peristalsis

€ Xy/A

ny Number of valves per wavelength = ¢!

Ty Valve resistance parameter as defined in (3.5)

np Strength of applied peristaltic forces as defined in (2.6a—c)

R Strength of radial deformation induced by peristalsis as defined in (2.6a—c)

T Period of peristaltic wave

c Peristaltic wave speed = /T

K Dimensionless stiffness parameter as defined in (2.6a—c)

o Strength of bend = h2R(2) /A2

P, Characteristic amplitude of peristalsis

X Dimensionless axial length used to study fluid dynamics at large length scales x/A4
y Dimensionless axial length used to study the region between closely spaced valves x/e
1 Dimensionless time /T

& X — 1 for a forward-propagating wave, or x + 7 for a backward-propagating wave
fx, 0 Dimensionless peristaltic force imposed on the tube

P,O,R Fluid pressure, volumetric flow rate and tube radius

P, Q R Dimensionless pressure, flow and radius, as defined by (2.6a—c)

(Q) Angle brackets denote an average over one period

P; Subscript i denotes the ith term in an expansion in powers of a small parameter (e or 1p)

Coordinate at which the valve opens
The value of n,, which maximizes the mean flow
Pressure drop across valve i (upstream pressure minus downstream pressure)
Superscript ‘nv’ denotes that the tube contains no valves

- =

Q> S vm
g,_g‘c*

Table 2. Parameters used in the paper.

Appendix C. Table of parameters
See table 2 for a summary of parameters used in the paper.

REFERENCES

ALVARADO, J., COMTET, J., DE LANGRE, E. & H0sSo01, A.E. 2017 Nonlinear flow response of soft hair beds.
Nat. Phys. 13 (10), 1014-1019.

BALLARD, M., WOLF, K.T., NEPIYUSHCHIKH, Z., DIXON, J.B. & ALEXEEV, A. 2018 Probing the effect
of morphology on lymphatic valve dynamic function. Biomech. Model. Mechanobiol. 17 (5), 1343-1356.

BERTRAM, C.D., MACASKILL, C. & MOORE, J.E. 2014 Incorporating measured valve properties into a
numerical model of a lymphatic vessel. Comput. Meth. Biomech. Biomed. Engng 17 (14), 1519-1534.

BRANDENBOURGER, M., DANGREMONT, A., SPRIK, R. & CoULAIS, C. 2020 Tunable flow asymmetry and
flow rectification with bio-inspired soft leaflets. Phys. Rev. Fluids 5 (8), 1-11.

BRASSEUR, J.G. 1987 A fluid mechanical perspective on esophageal bolus transport. Dysphagia 2 (1), 32-39.

BURNS, J.C. & PARKES, T. 1967 Peristaltic motion. J. Fluid Mech. 29 (4), 731-743.

CAREW, E.O. & PEDLEY, T.J. 1997 An active membrane model for peristaltic pumping: part I — periodic
activation waves in an infinite tube. Trans. ASME J. Biomech. Engng 119 (1), 66-76.

CARR, J.B., THOMAS, J.H., LU, J. & SHANG, J.K. 2021 Peristaltic pumping in thin non-axisymmetric
annular tubes. J. Fluid Mech. 917, A10.

DAVIS, M.J., SCALLAN, J.P., WOLPERS, J.H., MUTHUCHAMY, M., GASHEV, A.A. & ZAWIEJA, D.C. 2012
Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. Am. J. Physiol.
Heart Circ. Physiol. 303 (7), H795-H808.

989 A18-36


https://doi.org/10.1017/jfm.2024.480

https://doi.org/10.1017/jfm.2024.480 Published online by Cambridge University Press

Peristaltic pumping through a dense array of valves

DIxON, J.B., GREINER, S.T., GASHEV, A.A., COTE, G.L., MOORE, J.E. & ZAWIEJA, D.C. 2006 Lymph
flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13 (7),
597-610.

ELBAZ, S.B. & GAT, A.D. 2014 Dynamics of viscous liquid within a closed elastic cylinder subject to external
forces with application to soft robotics. J. Fluid Mech. 758, 221-237.

FARINA, A., Fusl, L., FASANO, A., CERETANI, A. & R0sSS0, F. 2016 Modeling peristaltic flow in vessels
equipped with valves: implications for vasomotion in bat wing venules. Intl J. Engng Sci. 107, 1-12.

GOPINATH, A. & MAHADEVAN, L. 2011 Elastohydrodynamics of wet bristles, carpets and brushes. Proc. R.
Soc. Lond. A 467 (2130), 1665-1685.

HOLMES, M.H. 2013 Introduction to Perturbation Methods, 2nd edn. Springer.

MACDONALD, A.J., ARKILL, K.P., TABOR, G.R., MCHALE, N.G. & WINLOVE, C.P. 2008 Modeling
flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements. Am.
J. Physiol. Heart Circ. Physiol. 295 (1), H305-H313.

MARGARIS, K.N. & BLACK, R.A. 2012 Modelling the lymphatic system: challenges and opportunities. J. R.
Soc. Interface 9 (69), 601-612.

MCHALE, N.G. & MEHARG, M.K. 1992 Co-ordination of pumping in isolated bovine lymphatic vessels.
J. Physiol. 450 (1), 503-512.

MESTRE, H., TITHOF, J., DU, T., SONG, W., PENG, W., SWEENEY, A.M., OLVEDA, G., THOMAS, J.H.,
NEDERGAARD, M. & KELLEY, D.H. 2018 Flow of cerebrospinal fluid is driven by arterial pulsations and
is reduced in hypertension. Nat. Commun. 9 (1), 4878.

MOORE, J.E. & BERTRAM, C.D. 2018 Lymphatic system flows. Annu. Rev. Fluid Mech. 50, 459-482.

OHHASHI, T., AZUMA, T. & SAKAGUCHI, M. 1980 Active and passive mechanical characteristics of bovine
mesenteric lymphatics. Am. J. Physiol. Heart Circ. Physiol. 239 (1), H88-H95.

PARK, K., TIXIER, A., CHRISTENSEN, A.H., ARNBJERG-NIELSEN, S.F., ZWIENIECKI, M.A. & JENSEN,
K.H. 2018 Viscous flow in a soft valve. J. Fluid Mech. 836, R3.

PROVOST, A.M. & SCHWARZ, W.H. 1994 A theoretical study of viscous effects in peristaltic pumping.
J. Fluid Mech. 2779, 177-195.

SHAPIRO, A.H., JAFFRIN, M.Y. & WEINBERG, S.L. 1969 Peristaltic pumping with long wavelengths at low
Reynolds number. J. Fluid Mech. 37 (4), 799-825.

STEIN, D.B. & SHELLEY, M.J. 2019 Coarse graining the dynamics of immersed and driven fiber assemblies.
Phys. Rev. Fluids 4 (7), 073302.

TAKAGI, D. & BALMFORTH, N. 2011 Peristaltic pumping of viscous fluid in an elastic tube. J. Fluid Mech.
672, 196-218.

TIMOSHENKO, S. & WOINOWSKY-KRIEGER, S. 1959 Theory of Plates and Shells. McGraw-Hill.

VENUGOPAL, A.M., QUICK, C.M., LAINE, G.A. & STEWART, R.H. 2009 Optimal postnodal lymphatic
network structure that maximizes active propulsion of lymph. Am. J. Physiol. Heart Circ. Physiol. 296 (2),
303-309.

WILSON, J.T., VAN LOON, R., WANG, W., ZAWIEJA, D.C. & MOORE, J.E. 2015 Determining the combined
effect of the lymphatic valve leaflets and sinus on resistance to forward flow. J. Biomech. 48 (13),
3584-3590.

WoLF, K.T., DIXON, J.B. & ALEXEEV, A. 2021 Fluid pumping of peristaltic vessel fitted with elastic valves.
J. Fluid Mech. 918, A28.

WoLF, K.T., POORGHANI, A., DIXON, J.B. & ALEXEEV, A. 2023 Effect of valve spacing on peristaltic
pumping. Bioinspir. Biomim. 18 (3), 035002.

ZAWIEJA, D.C., Davis, K.L., SCHUSTER, R., HINDS, W.M. & GRANGER, H.J. 1993 Distribution,
propagation, and coordination of contractile activity in lymphatics. Am. J. Physiol. Heart Circ. Physiol.
264 (4), H1283-H1291.

989 A18-37


https://doi.org/10.1017/jfm.2024.480

	1 Introduction
	2 Force-imposed peristalsis at low Reynolds number
	2.1 Dimensional formulation
	2.2 Dimensionless formulation

	3 Incorporating valves into a model for peristalsis
	3.1 Closely spaced closed valves suppress flow
	3.2 Flow through many open valves
	3.3 Matching conditions

	4 Valve continuum results I: forward-propagating peristaltic waves
	4.1 Forward-propagating peristalsis in a stiff tube (radius-imposed peristalsis)
	4.2 Forward-propagating, small-amplitude peristalsis
	4.2.1 Forward-propagating, small-amplitude peristalsis, large 
	4.2.2 Forward-propagating, small-amplitude peristalsis, small 

	4.3 Forward-propagating, large-amplitude peristalsis

	5 Valve continuum results II: backward-propagating peristaltic waves
	5.1 Backward-propagating peristalsis in a stiff tube (radius-imposed peristalsis)
	5.2 Backward-propagating, small-amplitude peristalsis
	5.3 Backward-propagating, large-amplitude peristalsis

	6 Valve density
	7 Discussion
	7.1 Application: lymphatic system
	7.2 Summary

	Appendix A. Bending effects
	Appendix B. Gaussian forcing
	Appendix C. Table of parameters
	References

