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A REMARK ON THE TENSOR PRODUCT OF TWO MAXIMAL
OPERATOR SPACES

by CHRISTIAN LE MERDY
(Received 20th September 1995)

Given a Banach space E, let us denote by Max(E) the largest operator space structure on E. Recently
h
Paulsen-Pisier and, independently, Junge proved that for any Banach spaces E, F, Max(E) @ Max(F) =

— h ~
Max(E) ® Max(F) isomorphically where ® and ® respectively denote the Haagerup tensor product and the
spatial tensor product of operator spaces. In this paper we show that, in general, this equality does not hold
completely isomorphically.

1991 Mathematics subject classification: 46B28, 46MOS5.
Let E be a Banach space. Among all the operator space structures on E, there is a
largest one Max(E) usually called the maximal operator space structure on E. It can be

defined as follows. For any n, m > 1 and any n x m matrix x = [x;] with entries in E,

"x"M,,r,,.(Max(E)) =Sup{”[T(xij)]"M,,.,,,(B(H))/ H is a Hilbert space,

1
T : E - B(H) is a linear contraction} M
Similarly there is a least operator space structure Min(E) on the space E defined by:
%1, mtingen = SUPUNIE(x )l /€ € E™, 1SN < 1} (2

These extremal operator space structures were introduced and then investigated in the
papers [3, 2, 8]. Recently Paulsen-Pisier in a joint work included in [9] and,
independently, Junge (unpublished) proved that for any Banach spaces E, F:

Max(E) é Max(F) = Max(E) ® Max(F) isomorphically 3)

h -
where ® and ® respectively denote the Haagerup tensor product and the spatial tensor
product of operator spaces. More precisely for any u € Max(E) ® Max(F),

Nl maxmyamay < Nl maxplmaxcr (4(1))
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"u"Max(E)éMax(F) < 2"u”Max(E)§Max(F) (4(11))

(The proof in [9] yields this constant 2 whereas Junge’s proof yields a worse constant.)

h ~
Since Max(E) ® Max(F) and Max(E) ® Max(F) can be regarded as operator spaces, it
is natural to consider the inequalities (4) at the matrix level. The resulting problem,
which was pointed out by Paulsen in [9], reads as follows:

Does (3) hold completely isomorphically? 5

that is, does there exist two constants C;, C, > 1 such that for any n>1 and any
u € M, ® Max(E) ® Max(F),

Il (Max@EMaxe) = Cillul,, (MaxBEMax(P) (6
||u ” Mn (Max(E)e’éMax(F)) = Cz ||u ”M,. (Max(E)éMax(F)) . (6(ii))

In fact the first inequality (6(i)) holds as (4(i)) with C, = 1. This is the consequence of the
general fact that for all operator spaces X, Y, we have a completely contractive inclusion

X®Y >X®Y %)

Thus the significant part of problem (5) is the existence of C, such that (6(ii)) is satisfied.
The aim of this note is to provide the following negative answer to (5).

Theorem. Let E and F be two Banach spaces. Then the following are equivalent.
h -
(i) Max(E) ® Max(F) = Max(E) ® Max(F) completely isomorphically.

(ii) E or F is finite-dimensional.

We will assume the reader is familiar with the basic notions of the theory of operator
spaces and use traditional notation. We especially denote by || ||, the completely
bounded norm of a linear map between operator spaces and by R,(=M,,) and
C.(= M, ) the row and column operator space structures on the n-dimensional Hilbert
space £5. We recall that given two operator spaces X,Y and ue X ® Y, we have by
definition:

32
llullxé»w =infq [[(xy, .. . o X3)llRyen 8)

In/ lewn

where the infimum runs over all N >1 and all families (x)),y in X, (}))ey in Y

satisfying u = Zi, X ® y;.
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We also recall that for any Banach space E, (Max(E))" = Min(E*) in the sense of
the duality theory of operator spaces [2, 3, 6]. It then follows from the self-duality of
the Haagerup tensor product [7] that given two Banach spaces E, F:

h h
Min(E*) ® Min(F*) ¢ (Max(E) ® Max(F))" completely isometrically C))
For undefined notions and terminology we refer the reader to [1, 2, 3, 6, 7]. The proof

of our theorem will be mainly based on the following

h
Proposition. Let ¢; denote the n-dimensional Hilbert space. Let +,:Min(€3) ®
h
Min(£3) —Min(€3) ® Min(£3) be the flip isomorphism defined by 1,(x ® y) = y ® x where
x, y € £3. Then: |It,ll, = /1.

Proof of proposition. We shall use tensor products of Banach spaces. Following

the usual notation (see e.g. {10]), we denote by & the injective tensor product and by %
the Grothendieck tensor product corresponding to factorization through Hilbert space.
Namely let A, B be two Banach spaces and let u € A ® B. Then:

llull 2, = inf{llxll 18I}

A@B

where the infimum runs over all linear maps o:¢, > A, §:¢, > B such that the
composed map Ba* : A* — B represents u.

We begin with an identification lemma. It should be noticed that in the case
n = m = 1, the following statement reduces to [3, Proposition 4.1}.

Lemma. Let E, F be Banach spaces. Given integers n,m > 1, let us denote by (E,j)m.
the canonical basis of M, ,,. We also denote by (e;),,, the canonical basis of £,. Then:

M, .(Min(E) ® Min(F)) = (. @ E) ® (F & &)  isometrically (10)
under the identification:

E;xQy«—(e,®x)0(y®¢) withxe E,ye F 08))

Proof of lemma. As mentioned above, (10) was proved with n =m =1 in [3] thus:

Min(E,) ® Min(F,) = E, ® F,

isometrically for any Banach spaces E,, F,. Applying this with E, =£§éE and
F, = F ® £3, we obtain:
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v v v h v
(2®E)® (F ® £7) = Min(£; & E) ® Min(F & £5). (12)
Furthermore recall that we have an isometric identification
h h
M, (X)=C,® X ®R,, (13)

valid for any operator space X. Applying this with X equal to Min(E), Min(F) or
h
Min(E) ® Min(F) we see that (11) gives rise to:

M, .(Min(E) é Min(F)) = C,(Min(E)) é R, (Min(F)). (14)
In view of (8), (12) and (14) it then suffices to check that for any N > 1:
Ry(C,(Min(E))) = Ry(Min(é} ® E)), (15)
Ca(R(Min(F))) = Cy(Min(F ® £5)). (16)
Now we have isometrically:

Ry(C,(Min(E))) = M, y(Min(E)) by (13)
=M,y®E by().
Writing M, y = £ ® £, we thus obtain Ry(C,(Min(E))) = £ ® (€2 ® E) whence (15)
by (2) again. The proof of (16) is similar. a

End of the proof of proposition. Let us apply the lemma with n=m, E = F = ;.
We thus have:

M,(Min(€3) & Min(€D)) = (& & £) & (& & £). (17)

Let us denote by Z, the Banach space in the right hand of (17). Under the identifica-
tion (17), the tensor map Id,, ® 1, corresponds to the linear map:

on:zn_)zm en(ei®ej®ek®el)=ei®ek®ej®et'

Let t=3% .t ®¢ (With t;€C) and let T=3 . . t,6®e®e¢®¢€Z,. We
claim that:

1Tz, < el g - (18)
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16.(Dllz, = It 22,0 - (19)
It therefore follows that
A\ 2
6.0l > |lId : €2, ® €5, — €5, @ £3]I. (20)

It is well-known that ¢, é) ¢y # € é ¢, hence the right hand side of (20) tends to +oo
when n grows to +o0o. More specifically, the description of £, %Z:o as the Banach
space of Schur multipliers on M, (see e.g. [11, Theorem 5.1]) shows that the norm
Il1d : e, é &, — £, 5 £, is the unconditional constant of the canonical basis (E‘/')E:
of M,. This constant is known to be /n, see e.g. [10, Chapter 8]. Since fz,[l, > IIG,,I_I,
this yields the result. It thus remains to check (18) and (19).

Since ¢; é 5 =M, we can write Z, =M, Zé M,. In this setting, T corresponds to
the Schur product ¢ : (M,)" — M, defined by o([a;]) = [t;a;]. Let HS, be the vector
space M, endowed with the Hilbert-Schmidt norm ||[a,]llus, = (¥, ,<n 851>, Then
HS, is a Hilbert space and:

lo: HS, — HS,|| = Sup{|t;|/1 <i,j <n}. 21)

Since the identity maps M, — HS, and HS, — M, are contractive, the equality (21)
leads to:

[ITHz, < Sup{|t;l/1 <i,j<n}

Since Zi = £, é £, this proves (18).
We now turn to (19). By definition

0.(T)= Z tie®e Qe Qe;

1<ij<n

Observe that the mapping e;— ¢; ® e; induces an isometry from £, into M, = £} é 2
which maps £;, onto the space of diagonal matrices. Hence (19) follows from the
injectivity of the tensor norm ® a

Proof of theorem. (i) = (ii): Assume (i). As an early result of the theory of
operator spaces it has been proved that the spatial tensor product is commutative
[3]. This means that for any operator spaces X, Y, the flip map x®@y—y®x is a
completely isometric isomorphism from X ® Y onto Y ® X. Applying this with
X = Max(E) and Y = Max(F), our assumption yields a complete isomorphism between
Max(E) ® Max(F) and Max(F)®@ Max(E). Let t be the flip map on
Min(F*) ® Min(E"). By duality (see (9)),
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*: Min(F*) ® Min(E*) — Min(E*) ® Min(F")

h
is a completely bounded map. Since the Haagerup tensor product ® is injective, we
thus deduce that there is a constant K > 0 such that for any pair of subspaces A C E*,
B C F°, the restriction map 74, of T to the subspace B ® A4 satisfies:

h
7504 : Min(B) ® Min(4) — Min(4) ® Min(B)|l,, < K. (22)

Now assume that E and F are infinite-dimensional. Then by Dvoretsky’s theorem [4],
E* contains subspaces of arbitrary dimension which are uniformly isomorphic to
Hilbert spaces. More precisely, for any n > 1, there exist 4, C E* with dim 4, =n and
an isomorphism a, : A, — £; which satisfies, say, ||«,|l [le;'[| < 2. Similarly, there are
subspaces B, C F* and isomorphisms f,: B, — & with [I8,l18;'ll <2. Then the
inequality (22) and an obvious composition of maps yields:

. n h - n . n h . n P —
liz, : Min(€3) ® Min(£3) > Min(£3) ® Min(¢5)[| < Kllot, |l llee; ' 11 18,11 118, 1| < 4K.
This contradicts our proposition, whence the result.

(if) = (i); this is the easy implication. Note that by (7), we only have to check that

- h
the identity map Id: Max(E) ® Max(F) - Max(E) ® Max(F) is completely bounded.
We will use the fact that for any operator space X and any n > 1:

The identity map Id : R, é X->X é R, is completely contractive 23)

(see [7, Theorem 4.3]).
Now assume for instance that F is finite dimensional. Then observe that there is a con-
stant C > 0 (only depending on the dimension of F) such that for any operator space X

I1d : X & Max(F) > X ® Max(F)|| < C. (24)

Let n > 1. The following identity maps are either isometries or bounded maps with
norms not depending on n.

M,(Max(E) ® Max(F)) = M,(Max(E)) ® Max(F) by associativity
— M,(Max(E)) ® Max(F) by (24)
= C, ® Max(E) ® R, ® Max(F) by (13)
- C, ® Max(E) ® Max(F) ® R, by (23)
= M,(Max(E) ® Max(F)) by (13).

This completes the proof. 0O
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