ON THE PARTIALLY ORDERED SET OF PRIME IDEALS OF A DISTRIBUTIVE LATTICE

RAYMOND BALBES

1. Introduction. For a distributive lattice L, let $\mathscr{P}(L)$ denote the poset of all prime ideals of L together with \emptyset and L. This paper is concerned with the following type of problem. Given a class \mathscr{C} of distributive lattices, characterize all posets P for which $P \cong \mathscr{P}(L)$ for some $L \in \mathscr{C}$. Such a poset P will be called representable over \mathscr{C}. For example, if \mathscr{C} is the class of all relatively complemented distributive lattices, then P is representable over \mathscr{C} if and only if P is a totally unordered poset with 0,1 adjoined. One of our main results is a complete characterization of those posets P which are representable over the class of distributive lattices which are generated by their meet irreducible elements. The problem of determining which posets P are representable over the class of all distributive lattices appears to be very difficult. (See [2].) It will be shown that this problem is equivalent to the embeddability of P as the set of meet irreducible elements of a certain distributive algebraic lattice.

Results concerning the degree to which $\mathscr{P}(L)$ determines L are presented in $\S \$ 4$ and 5 . It is shown that if $\mathscr{P}(L)$ is isomorphic with the power set of a non-empty set X, then L is a free distributive lattice.
2. Preliminaries. Let P be a poset and S a non-empty subset of P. Denote by $(S]_{P}$, or simply $(S]$, the set $\{x \in P \mid x \leqq s$ for some $s \in S\}$; abbreviate ($\{s\}]$ by $(s] ;[S)$ is defined dually. S is hereditary if $x \leqq y$ and $y \in S$ imply $x \in S$. For a non-empty set $X, 2^{x}$ will denote the poset of all subsets of X.

The class of all distributive lattices will be denoted by \mathscr{L}. As stated above, $\mathscr{P}(L)$ is the poset of prime ideals of L together with \emptyset and L (we avoid unnecessary technical complications by not excluding \emptyset and L from $\mathscr{P}(L)$). For each $x \in L$, let $x^{*}=\{I \in \mathscr{P}(L) \mid x \notin I\}$. Note that $\emptyset \in x^{*}$ and that $L \notin x^{*}$. It is well known (see, e.g., [4]) that the prime ideal theorem implies (i) $L \cong\left\{x^{*} \mid x \in L\right\}$, and (ii) if T_{1}, T_{2} are non-empty subsets of L and

$$
\cap\left\{x^{*} \mid x \in T_{1}\right\} \subseteq \cup\left\{y^{*} \mid y \in T_{2}\right\}
$$

then there exist finite subsets $\emptyset \neq T_{1}{ }^{\prime} \subseteq T_{1}, \emptyset \neq T_{2}{ }^{\prime} \subseteq T_{2}$ such that

$$
\cap\left\{x^{*} \mid x \in T_{1}^{\prime}\right\} \subseteq \cup\left\{y^{*} \mid y \in T_{2}^{\prime}\right\}
$$

Finally, recall that an element $x \in L$ is meet irreducible (M.I.) if $y z \leqq x$ implies that $y \leqq x$ or $z \leqq x$. So $(x] \in \mathscr{P}(L)$ if and only if x is M.I. The class

Received April 30, 1971. This research was supported, in part, by NSF Grant GP11893.
of all distributive lattices which are generated by M.I. elements will be denoted by \mathscr{A}.
3. Posets representable over \mathscr{A}. We begin by giving a sufficient condition for a poset P to be representable over \mathscr{L}.

Definition 1. Let P be a poset with 0,1 . A non-zero element $k \in P$ is weakly compact provided that if $\emptyset \neq D \subseteq P, \sum_{P} D$ exists, and $k \leqq \sum_{P} D$, then there exists $\left\{d_{1}, \ldots, d_{n}\right\} \subseteq D$ such that $\left[d_{1}\right) \cap \ldots \cap\left[d_{n}\right) \subseteq[k)$.

Definition 2. A non-empty subset D of a poset P will be called prime provided that if $\left\{s, \ldots, s_{n}, t_{1}, \ldots, t_{m}\right\}$ are weakly compact in $P,\left\{t_{1}, \ldots, t_{m}\right\} \subseteq D$ and $\left[t_{1}\right) \cap \ldots \cap\left[t_{m}\right) \subseteq\left[s_{1}\right) \cup \ldots \cup\left[s_{n}\right)$, then $s_{i} \in D$ for some $i \in\{1, \ldots, n\}$.

Let P be a poset with $0<1$ and K the weakly compact members of P. Consider the following two conditions on P :
(C1) If $p \neq q$ then there exists $k \in K$ such that $k \leqq p$ and $k \neq q$.
(C2) If D is a prime subset of P then $\sum_{P} D$ exists.
Theorem 3. If P is a poset with $0<1$ that satisfies (C1) and (C2) then P is representable over \mathscr{L}.

Proof. Let R be the ring of sets generated by $\left\{[k)^{\prime} \mid k \in K\right\}$ where $[k)^{\prime}=P \sim[k)$. For each $p \in P$, let $\psi(p)=\{A \in R \mid p \notin A\}$. Then $\psi(p) \in \mathscr{P}(R)$, so $p \rightarrow \psi(p)$ defines a function from P into $\mathscr{P}(R)$. Now $[k)^{\prime}$ is a hereditary subset of P for each $k \in K$, so R is a ring of hereditary sets. It follows that ψ preserves order. Condition (C1) implies that $[k)^{\prime} \in \psi(p) \sim$ $\psi(q)$, so $p \leqq q$ if and only if $\psi(p) \leqq \psi(q)$.

Next, observe that $\psi(0)=\emptyset$ and $\psi(1)=R$. Now let I be a prime ideal in R and set $D=\left\{k \in K \mid[k)^{\prime} \in I\right\}$. Then $D \neq \emptyset$ since $I \neq \emptyset$. Also, if

$$
\left\{s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}\right\} \subseteq K, \quad\left\{t_{1}, \ldots, t_{m}\right\} \subseteq D
$$

and

$$
\left[t_{1}\right) \cap \ldots \cap\left[t_{m}\right) \subseteq\left[s_{1}\right) \cup \ldots \cup\left[s_{n}\right)
$$

then

$$
\left[s_{1}\right)^{\prime} \cap \ldots \cap\left[s_{n}\right)^{\prime} \subseteq\left[t_{1}\right)^{\prime} \cup \ldots \cup\left[t_{m}\right)^{\prime}
$$

but I is a prime and $\left\{\left[t_{1}\right)^{\prime}, \ldots,\left\{t_{m}\right)^{\prime}\right\} \subseteq I$, so $s_{i} \in D$ for some $i \in\{1, \ldots, n\}$. That is, D is a prime subset of P.

By (C2), $p=\sum_{P} D$ exists and the proof will be completed by showing that $\psi(p)=I$. Let

$$
A=\bigcap_{i=1}^{n}\left(\bigcup_{j=1}^{n_{i}}\left[k_{i j}\right)^{\prime}\right)
$$

First, suppose that $A \in \psi(p)$; then $p \notin A$, so

$$
p \in \bigcap_{j=1}^{n_{i}}\left[k_{i_{0} j}\right)
$$

for some $i_{0} \in\{1, \ldots, n\}$. Let $j \in\left\{1, \ldots, n_{i_{0}}\right\}$. Then $k_{i_{0} j} \leqq p=\sum_{p} D$, and since $k_{i_{0 j}}$ is weakly compact there exists $\left\{q_{1}, \ldots q_{n}\right\} \subseteq D$ such that $\left[q_{1}\right) \cap \ldots \cap\left[q_{n}\right) \subseteq\left[k_{i_{0} j}\right)$. But D is prime, so $k_{i_{0 j}} \in D$; hence $\left[k_{i_{0 j}}\right)^{\prime} \in I$. This means that $\left[k_{i_{0} j}\right)^{\prime} \in I$ for $i=1, \ldots, n_{i_{0}}$, and so $A \in I$. To show the reverse inclusion, let $A \in I$. Say

$$
\bigcup_{j=1}^{n_{1}}\left[k_{1_{j}}\right)^{\prime} \in I .
$$

Then $\left\{k_{1 j}, \ldots, k_{1_{1} 1}\right\} \subseteq D$ so $k_{1 j} \leqq \sum D=p$ for each j. Therefore,

$$
p \notin \bigcup_{j=1}^{n_{1}}\left[k_{1 j}\right)^{\prime}
$$

and $p \notin A$ which means that $A \in \psi(p)$.
Next, we determine the weakly compact elements in $\mathscr{P}(L)$ for $L \in \mathscr{A}$.
Lemma 4. If $L \in \mathscr{A}$ then the following are equivalent:
(i) I is weakly compact in $\mathscr{P}(L)$;
(ii) $I=(x]_{L}$ for some M.I. element $x \in L$.

Proof. Let M be the M.I. elements of I and set $P=\mathscr{P}(L)$.
(i) \Rightarrow (ii). Let $D=\left\{(u]_{L} \mid u \in M \cap I\right\} . D \neq \emptyset$ since $I \neq \emptyset$. Now I is the ideal generated by $\cup D$ so, in fact, $I=\sum_{P} D$. Since I is weakly compact, there exist $\left\{\left(u_{1}\right]_{L}, \ldots,\left(u_{n}\right]_{L}\right\} \subseteq D$ such that

$$
\left[\left(u_{1}\right]_{L}\right)_{P} \cap \ldots \cap\left[\left(u_{n}\right]_{L}\right)_{P} \subseteq[I)_{P}
$$

Now let $x=u_{1}+\ldots+u_{n}$. We will show $(x]=I$. Indeed, $u_{i} \in I$ for each $i \in\{1, \ldots, n\}$ so $(x] \subseteq I$. If $I \nsubseteq(x]$ then there exists $y \in I$ such that $y \neq x$ and therefore a prime ideal J such that $x \in J, y \notin J$. But $x \in J$ implies $J \in\left[\left(u_{1}\right]_{L}\right)_{P} \cap \ldots \cap\left[\left(u_{n}\right]_{L}\right)_{P} \subseteq[I)_{P}$ so $y \in I \subseteq J$, which is a contradiction. Thus, $I=(x]$ and since I is prime, x is M.I.
(ii) \Rightarrow (i) Firstly, $x \in M$ implies that $(x] \in P$. Suppose that $\emptyset \neq D \subseteq P, \sum_{P} D$ exists, and that $(x] \subseteq \sum_{P} D$. Let J be the ideal generated by $\cup D$ and suppose that $x \notin J$. Then there is a prime ideal J^{\prime} such that $x \notin J^{\prime}, J \subseteq J^{\prime}$. So $K \subseteq J \subseteq J^{\prime}$ for each $K \in D$ and hence $(x] \subseteq \sum_{P} D \subseteq J^{\prime}$, which is a contradiction. Thus, since $x \in J$, there exist I_{1}, \ldots, I_{n} in D and $x_{i} \in I_{i}$ such that $x \leqq x_{1}+\ldots+x_{n}$. Finally,

$$
\left[I_{1}\right) \cap \ldots \cap\left[I_{n}\right) \subseteq\left[(x]_{L}\right)_{P}
$$

for if $K \in P$ and $K \in\left[I_{1}\right) \cap \ldots \cap\left[I_{n}\right)$, then for each $i \in\{1, \ldots, n\}$, $x_{i} \in I_{i} \subseteq K$, so $x \in K$. Hence $(x]_{L} \subseteq K$.

Theorem 5. A poset P is representable over \mathscr{A} if and only if P satisfies ($C 1$) and (C2).

Proof. Suppose first that P satisfies (C1) and (C2). Now the ring R constructed in Theorem 3 was generated by $\left\{[k)^{\prime} \mid k \in K\right\}$ for some non-empty subset $K \subseteq P$. From this, it is easily verified that $[k)^{\prime}$ is M.I. for each $k \in K$.

Conversely, suppose that $P=\mathscr{P}(L)$, where L is generated by the set M of M.I. elements of L. For (C1), suppose that $\{I, J\} \subseteq P$ and that $I \nsubseteq J$. Then there is an element $x \in I \sim J$. But since x is a sum of products of members of M, there is an element $u \in M \cap(I \sim J)$. By Lemma 4, $(u]$ is weakly compact in P, and also ($u] \subseteq I,(u] \nsubseteq J$. For (C2), suppose that D is prime in P. Let J be the ideal in L generated by $\cup D$. Clearly, if $J \in P$, then $\sum D$ will exist and equal J. Now to prove that J is a prime ideal, it is sufficient to show that if $\left\{u_{1}, \ldots, u_{n}\right\} \subseteq M$ and $u_{1} \cdot \ldots \cdot u_{n} \in J$, then $u_{i} \in J$ for some $i \in\{1, \ldots, n\}$. But if $u_{1} \cdot \ldots \cdot u_{n} \in J$, then there are members I_{1}, \ldots, I_{m} of D and elements $x_{i} \in I_{i}$ such that $u_{1} \cdot \ldots \cdot u_{n} \leqq x_{1}+\ldots+x_{m}$. Now I_{i} is weakly compact since D is prime, so $I_{i}=\left(y_{i}\right]$ where $y_{i} \in M$ for each $i \in\{1, \ldots, m\}$. Hence $u_{1} \ldots u_{n} \leqq y_{1}+\ldots+y_{m}$ and so

$$
\left[\left(y_{1}\right]_{L}\right)_{P} \cap \ldots \cap\left[\left(y_{m}\right]_{L}\right)_{P} \subseteq\left[\left(u_{1}\right]_{L}\right)_{P} \cup \ldots \cup\left[\left(u_{n}\right]_{L}\right)_{P}
$$

Invoking the primeness of D again, we find that $\left(u_{i}\right]_{L} \in D$ for some i, so $u_{i} \in J$.

To show how conditions (C1) and (C2) can be applied in specific cases we present the following corollary:

Corollary 6. If P is a poset with $0<1$ and $[p)$ is finite for each $p \neq 0$, then it is representable over \mathscr{A}.

Proof. Let D be a non-empty subset of $P \sim\{0\}$. For each finite, non-empty subset $T \subseteq D, \cap_{t \in T}[t)$ is finite and contains 1 . Let n be the least number of elements in $\bigcap_{t \in T}[t)$ for any such $T \subseteq D$ and let T_{0} be a finite non-empty subset of D such that $\cap_{t \in T_{0}}[t)=\left\{x_{1}, \ldots, x_{n}\right\}$. Then the elements $\left\{x_{1}, \ldots, x_{n}\right\}$ are all upper bounds of D, for clearly $t \leqq x_{i}$ for all $t \in T_{0}$ and if $d \in D \sim T_{0}$, then

$$
\left(\cap_{t \in T_{0}}[t)\right) \cap[d) \subseteq \cap_{t \in T_{0}}[t)=\left\{x_{1}, \ldots, x_{n}\right\}
$$

so by the minimality of n,

$$
\left(\cap_{t \in T_{0}}[t)\right) \cap[d)=\left\{x_{1}, \ldots, x_{n}\right\}
$$

and hence $d \leqq x_{i}$.
We now proceed to verify (C1). Suppose that $p \neq 0, \sum_{P} D$ exists, and that $p \leqq \sum_{P} D$. But then $u \in \bigcap_{t \in T_{0}}[t)$ implies that $x_{i} \leqq u$ for some $i \in\{1, \ldots, n\}$ and as x_{i} is an upper bound for $D, p \leqq \sum_{P} D \leqq x_{i} \leqq u$. Thus, $\cap_{t \in T_{0}}[t) \subseteq[p)$. For (C2), suppose that D is prime in P. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be the minimal elements of $\left\{x_{1}, \ldots, x_{n}\right\}$ so that $\cap_{t \in T_{0}}[t)=\left[u_{1}\right) \cup \ldots \cup\left[u_{m}\right)$. By the definition of prime, $u_{i_{0}} \in D$ for some $i_{0} \in\{1, \ldots, m\}$. But then

$$
\left(\cap_{t \in T_{0}}[t)\right) \cap\left[u_{i_{0}}\right) \subseteq\left\{x_{1}, \ldots, x_{n}\right\}
$$

and again by the minimality of n,

$$
\left[u_{i_{0}}\right)=\left(\cap_{t \in t_{0}}[t)\right) \cap\left[u_{i_{0}}\right)=\left\{x_{1}, \ldots, x_{n}\right\}
$$

It follows that $\sum_{P} D$ exists and equals $u_{i 0}$.

Corollary 7. Every finite poset and every totally unordered poset, with 0 and 1 adjoined, is representable over \mathscr{A}.
4. Uniqueness of posets representable over \mathscr{A}. Corollary 7 implies that posets representable over \mathscr{A} may also be representable by distributive lattices outside of \mathscr{A}. Indeed, choose a non-atomic Boolean algebra B. Then there is a lattice $L \in \mathscr{A}$ such that $\mathscr{P}(B)=\mathscr{P}(L)$. However, within the class \mathscr{A}, we do have uniqueness.

Theorem 8. If L and L^{\prime} are members of \mathscr{A} and $\mathscr{P}(L) \cong \mathscr{P}\left(L^{\prime}\right)$, then $L \cong L^{\prime}$.
Proof. Let M and M^{\prime} be the sets of M.I. elements of L and L^{\prime}, respectively, and let $f: \mathscr{P}(L) \rightarrow \mathscr{P}\left(L^{\prime}\right)$ be an isomorphism. Since f induces an isomorphism between the set of weakly compact elements of $\mathscr{P}(L)$ and the set of weakly compact elements of $\mathscr{P}\left(L^{\prime}\right)$, Lemma 4 implies the existence of an isomorphism $g: M \rightarrow M^{\prime}$ such that $f((x])=(g(x)]$. To show that g can be extended to a homomorphism $G: L \rightarrow L^{\prime}$, it is sufficient to prove that if S and T are finite non-empty subsets of M, and $\Pi S \leqq \sum T$, then $\Pi g(S) \leqq \sum g(T)$. Indeed, this condition implies that the function $G: L \rightarrow L^{\prime}$ defined by

$$
G\left(\Pi S_{1}+\ldots+\Pi S_{n}\right)=\Pi g\left(S_{n}\right)+\ldots+\Pi g\left(S_{n}\right)
$$

is well defined. It is easy then to verify that G is a homomorphism; the details can be found, for example, in [1, Lemma 1.7].

Now suppose that $\Pi g(S) \neq \sum g(T)$. Then there exists $I \in P\left(L^{\prime}\right)$ such that $\sum g(T) \in I$ and $\Pi g(S) \notin I$. For each $t \in T, g(t) \in I$, so $f((t])=(g(t)] \subseteq I$. Hence, $t \in(t] \subseteq f^{-1}(I)$. But then $\sum T \in f^{-1}(I)$, so $s \in f^{-1}(I)$ for some $s \in S$ and, therefore, $(s] \subseteq f^{-1}(I)$. Finally, $g(s) \in(g(s)]=f((s]) \subseteq I$, which is a contradiction. Thus, there is a homomorphism $G: L \rightarrow L^{\prime}$ such that $G \mid M=g$. Similarly, there is a homomorphism $G^{\prime}: L^{\prime} \rightarrow L$ such that $G^{\prime} \mid: M^{\prime}=g^{-1}$. It follows that G is an isomorphism.

The existence and uniqueness of representable chains can now be described completely.

Theorem 9. If C is a chain which is representable over \mathscr{L}, then C is complete and each interval $(a, b]$ contains an element with an immediate predecessor. Moreover, the representation of C over \mathscr{L} is unique. Conversely, if C is a complete chain in which each interval (a, b] contains an element with an immediate predecessor then $C \cong \mathscr{P}\left(C_{1}\right)$ for some chain C_{1}.

Proof. If $C=\mathscr{P}(L)$ for some $L \in \mathscr{L}$, then C is closed under arbitrary unions, so C is complete. For $\{I, J\} \subseteq \mathscr{P}(L)$, if $I \subset J$, then there is an element $x \in J \sim I$, so $I \subset(x] \subseteq J$. Since C is a chain, so is L, and hence $(x] \in \mathscr{P}(L)$. The immediate predecessor of $(x]$ is $\{u \in L \mid u<x\}$. Next, if $\mathscr{P}(L) \cong$ $C \cong \mathscr{P}\left(L^{\prime}\right)$, then L and L^{\prime} are chains and hence in \mathscr{M}. By Theorem $8, L \cong L^{\prime}$. For the converse, it is sufficient to prove that if $c \in C$ has an immediate
predecessor c^{\prime}, then c is weakly compact. Thus, suppose that $c \leqq \sum{ }_{P} D$. If $d<c$ for all $d \in D$, then $d \leqq c^{\prime}$, so $c \leqq \sum{ }_{P} D \leqq c^{\prime}<c$. Hence, $c \leqq d_{0}$ for some $d_{0} \in D$.
5. Free distributive lattices. In this section we show that $P=2^{X}$ is representable only as the free distributive lattice on $|X|$ free generators. The fact that $\mathscr{P}(L) \cong 2^{X}$ when L is free is well known.

Lemma 10. Let L be a distributive lattice and suppose that $P=\mathscr{P}(L)$ is complete. If T is a finite non-empty set of M.I. elements of L, then

$$
\begin{equation*}
\sum_{P}\{(t] \mid t \in T\}=\left(\sum T\right], \tag{3}
\end{equation*}
$$

and $\sum T$ is M.I. in L.
Proof. For each $t \in T, t \in(t] \subseteq \sum_{P}\{(t] \mid t \in T\}$, so

$$
\left(\sum T\right] \subseteq \sum_{P}\{(t] \mid t \in T\}
$$

Conversely, if $u \notin\left(\sum T\right]$, then there is a prime ideal I such that $u \notin I$, $\sum T \in I$. But then $T \subseteq I$, so $(t] \subseteq I$ for each $t \in I$. Hence $\sum_{P}\{(t] \mid t \in I\} \subseteq I$, and so $u \notin \sum_{P}\{(t] \mid t \in I\}$. Since $\left(\sum T\right] \in P, \sum T$ is M.I.

Lemma 11. Let $L \in \mathscr{L}$ and let $P=\mathscr{P}(L) \cong 2^{x}$ for some $X \neq \emptyset$. Then I is an atom in P if and only if $I=(m]$, where m is M.I. in L and is minimal in the set of all M.I. elements in L.

Proof. Sufficiency. Suppose that I has no greatest element. Then for each $u \in I$, there exists $v_{u} \in I$ and $I\left(u, v_{u}\right) \in P$ such that $v_{u} \neq u, u \in I\left(u, v_{u}\right)$, and $v_{u} \notin I\left(u, v_{u}\right)$. Let $S=\left\{I\left(u, v_{u}\right) \mid u \in I\right\}$. Since $v_{u} \in I \sim I\left(u, v_{u}\right)$, we have $I \nsubseteq J$ for all $J \in S$. But I is an atom in P which implies that $I \cdot J=0_{P}$ for all $J \in S$. Now $I \subseteq \cup S \subseteq \sum_{p} S$, and since the Boolean algebra P is (2, ∞)distributive,

$$
\begin{aligned}
I & =I \cdot \sum_{P} S \\
& =\sum_{P}\{I \cdot J \mid J \in S\} \\
& =0_{P},
\end{aligned}
$$

contradicting the definition of an atom.
So I has a greatest element m. It follows that $I=(m], m$ is M.I., and is, in fact, minimal in the set of all M.I. elements in L.

Necessity. Under the conditions of the hypothesis, $(m] \in P$ and ($m] \neq \emptyset=0_{P}$. So there is an atom $J \in P$ such that $J \subseteq(m]$. But from the converse, $J=(n]$ where n is M.I. Since m is minimal in the set of M.I. elements and $n \leqq m$, we have $n=m$, so $(m]=J$ is an atom in P.

Theorem 12. If L is a distributive lattice and $\mathscr{P}(L) \cong 2^{x}$ for some nonempty set X, then L is the free distributive lattice on $|X|$ free generators.

Proof. Let $P=\mathscr{P}(L)$ and let S be the minimal elements in the set of M.I. elements of $L .|S|=|X|>0$ by Lemma 11. We prove first that S is an independent set.

Let T_{1} and T_{2} be finite non-empty subsets of S such that $\Pi T_{1} \leqq \sum T_{2}$. By Lemma 10, $\sum T_{2}$ is M.I., so there exists $t_{1} \in T_{1}$ such that $t_{1} \leqq \sum T_{2}$. Now

$$
\left(t_{1}\right] \subseteq\left(\sum T_{2}\right]=\sum_{P}\left\{(t] \mid t \in T_{2}\right\}
$$

and since $t_{1} \in S,\left(t_{1}\right]$ is an atom in P; so there exists $t_{2} \in T_{2}$ such that $\left(t_{1}\right] \subseteq\left(t_{2}\right]$. The minimality of t_{2} and $t_{1} \leqq t_{2}$ imply $t_{1}=t_{2}$.

Since independent sets generate free distributive lattices, it suffices to prove that S generates L. For this purpose, let $S^{\Sigma}=\left\{\sum T \mid T\right.$ is a finite nonempty subset of $S\}$. Recall from Lemma 10 that the members of S^{Σ} are M.I. in L. We prove that if $I \in P$ and $I \neq \emptyset$, then $I \cap S^{\Sigma} \neq \emptyset$ and

$$
\sum_{P}\left\{(t] \mid t \in I \cap S^{\Sigma}\right\}=\cup\left\{(t] \mid t \in I \cap S^{\Sigma}\right\}
$$

Since $I \neq \emptyset$, it is a sum of atoms in P. By Lemma 11, there is a member $y \in S$ such that $(y] \subseteq I$, so $y \in I \cap S \subseteq I \cap S^{\Sigma}$. For the second part of the assertion it is easily verified that

$$
\cup\left\{(t] \mid t \in I \cap S^{\Sigma}\right\} \in P
$$

We will now show that each $x \in L$ is a finite product of members of S^{Σ}. The work is divided into two cases.

Firstly, assume that $S^{\Sigma} \cap[x) \neq \emptyset$. Then

$$
\begin{equation*}
x^{*}=\cap\left\{y^{*} \mid y \in S^{\Sigma} \cap[x)\right\} . \tag{4}
\end{equation*}
$$

To see this, let $I \in x^{*}$. Then $x \notin I$, so $y \in S^{\Sigma} \cap[x)$ implies that $y \notin I$ and, therefore, that $I \in y^{*}$. Conversely, suppose that

$$
I \in \cap\left\{y^{*} \mid y \in S^{\Sigma} \cap[x)\right\} \sim x^{*}
$$

Now

$$
\begin{aligned}
I & =\sum_{P}\left\{(t] \mid t \in S^{\Sigma} \cap I\right\} \\
& =\bigcup\left\{(t] \mid t \in S^{\Sigma} \cap I\right\},
\end{aligned}
$$

and as $x \in I, x \in(t]$ for some $t \in S^{\Sigma} \cap I$. So $t \in S^{\Sigma} \cap[x)$ and, therefore, $I \in t^{*}$, which is a contradiction. But by (2), (4) implies that $x^{*}=y_{1}{ }^{*} \cap \ldots \cap y_{n}{ }^{*}$ for some $y_{i} \in S^{\Sigma}$ and hence that $x=y_{1} \cdot \ldots \cdot y_{n}$, which completes the proof for this case.

Finally, suppose that $S^{\Sigma} \cap[x)=\emptyset$. Thus, $x \neq t$ for all $t \in S^{\Sigma}$. Then

$$
\begin{equation*}
x^{*}=\cup\left\{s^{*} \mid s \in S\right\} \tag{5}
\end{equation*}
$$

Indeed, if $I \notin x^{*}$ then $x \in I=\bigcup\left\{(t] \mid t \in I \cap S^{\Sigma}\right\}$, so $x \leqq t$ for some $t \in S^{\Sigma}$, which is a contradiction. If $I \in x^{*}$, then $x \notin I$, so either $I=\emptyset$ or there is an atom ($s], s \in S$, such that $(s] \nsubseteq I$ and therefore, in either case, $I \in \bigcup\left\{s^{*} \mid s \in S\right\}$.

From (5), it follows that $x=s_{1}+\ldots+s_{n} \in S^{\Sigma}$.
6. Posets representable over \mathscr{L}. A characterization of those posets representable over L can be obtained immediately from (1) and (2).

Theorem 13. A poset P is representable over \mathscr{L} if and only if P has $0<1$ and there is a ring R of non-empty, proper, hereditary subsets of P satisfying:
(i) If $p \neq q$ then there exists $A \in R$ such that $p \notin A$ and $q \in A$.
(ii) If $\left\{A_{i}\right\}_{i \in I}$ and $\left\{B_{j}\right\}_{j \in J}$ are non-empty families in R and

$$
\cap\left\{A_{i} \mid i \in I\right\} \subseteq\left\{B_{j} \mid j \in J\right\}
$$

then there exist finite non-empty subsets $I^{\prime} \subseteq I$ and $J^{\prime} \subseteq J$ such that

$$
\cap\left\{A_{i} \mid i \in I^{\prime}\right\} \subseteq \cup\left\{B_{j} \mid j \in J^{\prime}\right\}
$$

Another characterization can be obtained by distinguishing the prime ideals in the class of all ideals of a distributive lattice.
Theorem 14. A poset P with $0<1$ is representable over \mathscr{L} if and only if P is the set of M.I. elements of a distributive algebraic lattice L in which the nonzero compact elements K form a sublattice of L.

Proof. For the sufficiency of the condition, we show that $P \cong \mathscr{P}(K)$. For each $p \in P$, let $\psi(p)=\{q \in K \mid q \leqq p\}$. The relation $p \mapsto \psi(p)$ establishes a function from P into $\mathscr{P}(K)$ which is order preserving in both directions. To show that ψ is onto, first note that $\psi(0)=\emptyset$ and that $\psi(1)=K$. Now let I be a prime ideal in K. Set $p=\sum_{L} I$. To show that p is M.I., suppose that $x y \leqq p$ but $x \neq p$ and $y \nsubseteq p$ for some $\{x, y\} \subseteq P$. Since L is algebraic, there exists $\{s, t\} \subseteq K$ such that $s \leqq x, s \neq p$ and $t \leqq y, t \neq p$. But $s t \leqq x y \leqq p=$ $\sum_{L} I$, and since K is a sublattice of L, there exists $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq I$ such that $s t \leqq x_{1}+\ldots+x_{n}$. But I is prime, so $s \in I$ or $t \in I$. Thus, either $s \leqq \sum I=p$ or $t \leqq \sum I=p$, which is a contradiction. Hence, $p \in P$ and it follows that $\psi(p)=I$.

Conversely, suppose that L is a distributive lattice and that $P=\mathscr{P}(L)$. Let $\mathscr{I}(L)$ be the poset of all ideals in L together with $\emptyset . \mathscr{I}(L)$ is a complete lattice where $\Pi S=\cap S$ and $\sum S$ is the ideal generated by $\cup S$. Since L is distributive, it follows that $\mathscr{I}(L)$ is also distributive. Since $I \in \mathscr{I}(L)$ can be represented by $I=\sum\{(x] \mid x \in I\}$, it is easily verified that $\mathscr{I}(L)$ is an algebraic lattice. It remains to show that $I \in \mathscr{P}(L)$ if and only if I is M.I. in $\mathscr{I}(L)$. Let $I \in \mathscr{P}(L)$ and let $J \cdot J_{1} \subseteq I$. If $J \nsubseteq I$, then there is an element $u \in J \sim I$. But then $J_{1} \subseteq I$; for, if $x \in J_{1}$, then $x u \in J \cap J_{1}=J \cdot J_{1} \subseteq I$, and so $x \in I$. On the other hand, if I is M.I. in $\mathscr{I}(L)$ and $x y \in I$, then $(x] \cdot(y]=(x y] \subseteq I$, so $(x] \subseteq I$ or $(y] \subseteq I$. Hence, $x \in I$ or $y \in I$, and $I \in \mathscr{P}(L)$.

Neither Theorem 13 nor Theorem 14 is an optimal solution, since neither really tells us much about P itself. We therefore ask for a characterization of posets representable over \mathscr{L}, which is analogous the solution for \mathscr{A} given in Theorem 5.

References

1. R. Balbes, Projective and injective distributive lattices, Pacific J. Math. 21 (1967), 405-420.
2. G. Grätzer, Lattice theory: First concepts and distributive lattices (Freeman, San Francisco, 1971).
3. L. Nachbin, Une proprieté characteristique des algébres Booléiennes, Portugal. Math. 6 (1947), 115-118.
4. M. H. Stone, Topological representations of distributive lattices and Browerian logics, Časopis Pěst. Mat. 67 (1937), 1-25.

University of Missouri, St. Louis, Missouri

