GENERIC RESULTS FOR COCYCLES WITH VALUES IN A SEMIDIRECT PRODUCT

KARMA DAJANI

ABSTRACT Let $A \propto B$ be the semidirect product of two local compact Hausdorff topological groups We prove that for a nonsingular ergodic automorphism T of a Lebesgue probability space, a generic cocycle taking values in $A \propto B$ is nontrivial and recurrent

0. **Introduction.** Let *A* and *B* be two second countable locally compact (necessarily countably generated) Hausdorff topological groups, each with a translation invariant metric. We denote both metrics on *A* and *B* by *d* to be understood from the context which metric is under consideration. The group operation on *A* is denoted by multiplication, the identity by 1 and the inverse of $a \in A$ by a^{-1} . The group *B* is assumed to be abelian and noncompact; the group operation is denoted by addition, the identity by 0, and the inverse of $b \in B$ by -b. The group *A* acts on *B* by group automorphisms; for simplicity we shall denote the action by multiplication: $b \stackrel{a}{\rightarrow} ab$. Furthermore, the map $(a, b) \rightarrow ab$ is assumed to be uniformly jointly continuous, that is for every $\epsilon > 0$ there exist $\delta_1, \delta_2 > 0$ such that $d(ab, a'b') < \epsilon$ whenever $d(a, a') < \delta_1$ and $d(b, b') < \delta_2$. Let $A \propto B$ be the semidirect product of *B* by *A* relative to the given action. That is, the elements have the form $(a, b) \in A \times B$, and group operation \circ defined as follows:

$$(a,b) \circ (a',b') = (aa',b+ab').$$

The identity element is (1, 0), and $(a, b)^{-1} = (a^{-1}, -a^{-1}b)$.

Let (X, \mathcal{B}, μ) be a Lebesgue probability space, and *G* a countable group (with identity *e*) that acts nonsingularly, ergodically, and freely on *X*. We denote this action by multiplication: $x \xrightarrow{g} gx$. We shall consider cocycles on *X* taking values in the semidirect product $A \propto B$. That is, we shall consider measurable functions $F: G \times X \to A \propto B$ with the property that

(1)
$$F(g'g,x) = F(g,x) \circ F(g',gx).$$

The above identity is called the *cocycle identity* and it implies that F(e, x) = (1, 0). We let $\psi: G \times X \longrightarrow A$ and $f: G \times X \longrightarrow B$ denote the projections of F onto the first and second coordinates respectively. Then $F(g, x) = (\psi(g, x), f(g, x)) \equiv (\psi, f)(g, x)$ and together with (1) imply

Received by the editors January 3, 1991

AMS subject classification 28A05, 28C10

[©] Canadian Mathematical Society 1993

K. DAJANI

- (i) $\psi(g'g, x) = \psi(g, x)\psi(g', gx)$ and $\psi(e, x) = 1$ *i.e.*, ψ is a multiplicative A valued cocycle,
- (ii) $f(g'g,x) = f(g,x) + \psi(g,x)f(g',gx)$ and f(e,x) = 0; *i.e.*, f is a ψ -cocycle (or twisted) B valued cocycle.

Throughout this paper (ψ, f) will always mean that ψ is an A valued cocycle and f a B valued ψ -cocycle. All equalities are understood to hold a.e.

We study generic properties of nontrivial and recurrent cocycles (ψ, f) in terms of their coordinate functions; this work is a generalization of the results in [D]. In Section 1, we define the notion of ψ -cohomology for ψ -cocycles, and investigate its connection with the recurrence properties and cohomology of cocycles taking values in the semidirect product $A \propto B$. In Section 2 we define the essential range, $\bar{E}_{w}(f)$, of a ψ -cocycle f to be a certain closed subgroup of \overline{B} , the one point compactification of B. We give sufficient conditions for triviality (being a coboundary) and recurrence of (ψ, f) in terms of $\bar{E}_{\psi}(f)$. Let $\bar{E}(\psi, f)$ and $E(\psi, f)$ denote the essential range and finite essential range of the cocycle (ψ, f) (see [K], [S1], and [S3]). We show that $E(\psi, f)$ is always an extension of the abelian group $E_{\psi}(f)$ by $E_f(\psi)$, where $E_{\psi}(f) = \bar{E}_{\psi}(f) \cap B$ and $E_f(\psi)$ consists of all elements in the finite essential range of ψ that appear as a first coordinate of some element in $E(\psi, f)$. We give sufficient conditions under which this extension is split, that is, $E(\psi, f)$ is a semidirect product. We topologize the set of ψ -cocycles by extending appropriately the topology of convergence in measure. In Section 3 we prove that orbit equivalence induces a topological group isomorphism between the corresponding sets of twisted cocycles which preserve triviality, the notions of recurrence, full essential range, and infinity in the essential range. In Section 4 we prove that if T is a nonsingular ergodic automorphism, then for a certain class of A valued cocycles ψ which simultaneously recur with the cocycle of the Radon-Nikodym derivative, there is a dense G_{δ} set of ψ -cocycles f whose essential range contains infinity and for which the cocycle (ψ, f) is recurrent. Using techniques similar to those in [PS] (see also [D]) this is first done for cocycles of a particular countable group action Γ on $\{0,1\}^{\mathbb{N}}$ (see §4 for a definition) which is orbit equivalent to the action of \mathbb{Z} by powers of T ([S1] §8), then orbit equivalence (see §3) allows us to transfer the results back to T.

1. ψ -Cohomology.

DEFINITION 1.1. Two cocycles *F* and *H* on *X* taking values in $A \propto B$ are said to be *cohomologous* if there exists a measurable function $K: X \to A \propto B$ such that $F(g, x) = K(x) \circ H(g, x) \circ K(gx)^{-1}$ for $g \in G$ and a.e. $x \in X$. The function *K* is called a *transfer function*. If $F(g, x) = K(x) \circ K(gx)^{-1}$ (*i.e.*, *F* is cohomologous to the constant function (1,0)), then *F* is called a *coboundary*. Similar definitions hold for two *A* valued cocycles ψ and ϕ on *X*.

DEFINITION 1.2. Two ψ -cocycles f and h on X are said to be ψ -cohomologous if there exists a measurable function $\beta: X \to B$ such that $f(g, x) = \beta(x) + h(g, x) - \psi(g, x)\beta(gx)$. The function β is called a ψ -transfer function. If f is ψ -cohomologous to the constant function 0, then f is called ψ -coboundary.

PROPOSITION 1.3. A cocycle (ψ, f) is a coboundary with transfer function (α, β) if and only if ψ is a coboundary with transfer function α and f is a ψ -coboundary with ψ -transfer function β .

REMARK 1.4. Let ψ and ϕ be two A valued cohomologous cocycles with transfer function α , *i.e.*, $\psi(g, x) = \alpha(x)\phi(g, x)\alpha(gx)^{-1}$. Let h be a ϕ -cocycle, then the function $\alpha h: G \times X \longrightarrow B$ defined by $\alpha h(g, x) = \alpha(x)h(g, x)$ is a ψ -cocycle.

PROPOSITION 1.5. Two cocycles (ψ, f) and (ϕ, h) are cohomologous with transfer function (α, β) if and only if ψ and ϕ are cohomologous with transfer function α , and f and αh are ψ -cohomologous with ψ -transfer function β .

PROOF. Let $(\psi, f)(g, x) = (\alpha(x), \beta(x)) \circ (\phi, h)(g, x) \circ (\alpha(gx)^{-1}, -\alpha(gx)^{-1}\beta(gx))$. Then

$$\psi(g, x) = \alpha(x)\phi(g, x)\alpha(gx)^{-1},$$

and

$$f(g,x) = \beta(x) + \alpha(x)h(g,x) - \alpha(x)\phi(g,x)\alpha(gx)^{-1}\beta(gx)$$
$$= \beta(x) + \alpha(x)h(g,x) - \psi(g,x)\beta(gx).$$

That is, ψ and ϕ are cohomologous with transfer function α , and f and αh are ψ -cohomologous with ψ -transfer function β . The converse is proved by reversing the above steps.

COROLLARY 1.6. If the group A is abelian, then (ψ, f) and (ψ, h) are cohomologous with transfer function (α, β) if and only if α equals a constant α_0 and f is ψ cohomologous to $\alpha_0 h$ with ψ -transfer function β .

PROOF. Suppose (ψ, f) and (ψ, h) are cohomologous with transfer function (α, β) , from the above proposition we only need to show that α is a constant. Since *A* is abelian it follows that $\alpha(x) = \alpha(gx)$ and hence by ergodicity of the *G* action, α is equal to some constant α_0 . Conversely, suppose $\alpha(x) \equiv \alpha_0$ and $f(g, x) = \beta(x) + \alpha(x)h(g, x) - \psi(g, x)\beta(gx)$. Since *A* is abelian, it follows that $\psi(g, x) = \alpha(x)\psi(g, x)\alpha(gx)^{-1}$ so that $(\psi, f)(g, x) = (\alpha(x), \beta(x)) \circ (\psi, h)(g, x) \circ (\alpha(x), \beta(x))^{-1}$.

DEFINITION 1.7. A cocycle (ψ, f) is said to be *recurrent* if for every $C \in \mathcal{B}$ of positive measure, and for each neighborhood $U \subseteq A$ of 1 and $V \subseteq B$ of 0, there exists $g \in G$ different from the identity such that

$$\mu \big(C \cap g^{-1}C \cap \{ x : \psi(g, x) \in U \} \cap \{ x : f(g, x) \in V \} \big) > 0.$$

Similar definitions hold for the coordinate functions ψ and f.

REMARK 1.8. $(\psi, 0)$ is recurrent if and only if ψ is recurrent.

PROPOSITION 1.9. If (ψ, f) and (ϕ, h) are cohomologous cocycles, then (ψ, f) is recurrent if and only if (ϕ, h) is recurrent.

PROOF. Assume (ϕ, h) is recurrent and let $\psi(g, x) = \alpha(x)\phi(g, x)\alpha(gx)^{-1}$, and $f(g, x) = \beta(x) + \alpha(x)h(g, x) - \psi(g, x)\beta(gx)$. Let $\epsilon > 0$ there exist $0 < \delta_1, \delta_2 < \frac{\epsilon}{2}$ such that $d(ab, a', b') < \frac{\epsilon}{2}$ whenever $d(a, a') < \delta_1$ and $d(b, b') < \delta_2$. Choose sequences $\{a_n\}$ in A and $\{b_n\}$ in B such that the sequences of neighborhoods $U_n = \{a \in A : d(a, a_n) < \frac{\delta_1}{4}\}$ and $V_n = \{b \in B : d(b, b_n) < \frac{\delta_2}{2}\}$ cover A and B respectively. Now, let $C \in \mathcal{B}$ with $\mu(C) > 0$. For $n, m \in \mathbb{N}$, let $C_{n,m} = \{x \in C : \alpha(x) \in U_n \text{ and } \beta(x) \in V_m\}$. Since $C = \bigcup_{n,m} C_{n,m}$ there exist $n, m \in \mathbb{N}$ such that $\mu(C_{n,m}) > 0$. By recurrence of (ϕ, h) there exist $g \in G, g \neq e$ such that

$$\mu\Big(C_{n,m}\cap g^{-1}C_{n,m}\cap\Big\{x:d\big(\phi(g,x),1\big)<\frac{\delta_1}{2}\Big\}\cap\Big\{x:d\big(h(g,x),0\big)<\delta_2\Big\}\Big)>0.$$

Since,

$$C_{n,m} \cap g^{-1}C_{n,m} \cap \left\{ x : d\left(\phi(g,x),1\right) < \frac{\delta_1}{2} \right\} \cap \left\{ x : d\left(h(g,x),0\right) < \delta_2 \right\} \subseteq C \cap g^{-1}C \cap \left\{ x : d\left(\psi(g,x),1\right) < \epsilon \right\} \cap \left\{ x : d\left(f(g,x),0\right) < \epsilon \right\}$$

we have that $\mu(C \cap g^{-1} \cap \{x : d(\psi(g, x), 1) < \epsilon\} \cap \{x : d(f(g, x), 0) < \epsilon\}) > 0$. Therefore, (ψ, f) is recurrent. The converse is proved similarly.

PROPOSITION 1.10. If ψ is recurrent and f is a ψ -coboundary, then the cocycle (ψ, f) is recurrent.

PROOF. From Proposition 1.5, we have that (ψ, f) and $(\psi, 0)$ are cohomologous with transfer function $(1, \beta)$, where β is the ψ -transfer function of f. Remark 1.8 implies that $(\psi, 0)$ is recurrent, and hence by Proposition 1.9 (ψ, f) is recurrent.

2. Essential range. Let $(\psi, f): G \times X \to A \propto B$ be a cocycle, and consider its essential range $\overline{E}(\psi, f)$ which is a subgroup of $(A \propto B)^-$, the one point compactification of $A \propto B$. Let $E(\psi, f) = \overline{E}(\psi, f) \cap (A \propto B)$, the finite essential range which is a subgroup of $A \propto B$. Similarly the essential range and the finite essential range of ψ are denoted by $\overline{E}(\psi)$ and $E(\psi)$ respectively (see [S1] and [S3]). Let $\overline{B} = B \cup \{\infty\}$ be the one point compactification of B. For $\lambda \in B$ let $B_{\epsilon}(\lambda) = \{b \in B : d(b, \lambda) < \epsilon\}$, and $B_{\epsilon}(\infty) = \{b \in B : d(b, 0) > 1/\epsilon\}$. We define the essential range of f to be the set $\overline{E}_{\psi}(f)$ consisting of all $\lambda \in \overline{B}$ such that for every $\epsilon > 0$ and for every subset C of X of positive measure, there exists $g \in G$ such that

$$\mu\Big(C\cap g^{-1}C\cap \big\{x: d\big(\psi(g,x),1\big)<\epsilon\Big\}\cap \big\{x: f(g,x)\in B_{\epsilon}(\lambda)\big\}\Big)>0.$$

That is, $\lambda \in \bar{E}_{\psi}(f)$ if and only if $(1, \lambda)$ belongs to the essential range of the cocycle (ψ, f) in the usual sense. Let $E_{\psi}(f) = \bar{E}_{\psi}(f) \cap B$. Since 0 is trivially an element of $E_{\psi}(f)$, it follows that $E_{\psi}(f) \neq \emptyset$.

PROPOSITION 2.1. $E_{\psi}(f)$ is a closed subgroup of B.

PROOF. Assume that $\lambda, \lambda' \in E_{\psi}(f)$, we want to show that $\lambda + \lambda' \in E_{\psi}(f)$. Assume with no loss of generality that $\lambda, \lambda' \neq 0$. Let $\epsilon > 0$ and $C \subseteq X$ with $\mu(C) > 0$. By joint continuity of the action of A on B there exist $\delta_1, \delta_2 < \frac{\epsilon}{2}$ such that $d(ab, \lambda') < \frac{\epsilon}{2}$ whenever $d(a, 1) < \delta_1$ and $d(b, \lambda') < \delta_2$. Since $\lambda' \in E_{\psi}(f)$ there exists $g' \in G$ such that

$$\mu\Big(C\cap g'^{-1}C\cap \big\{x: d\big(\psi(g',x),1\big)<\delta_1\big\}\cap \big\{x: d\big(f(g',x),\lambda'\big)<\delta_2\big)>0.$$

Let $D = C \cap g'^{-1}C \cap \{x : d(\psi(g', x), 1) < \delta_1\} \cap \{x : d(f(g', x), \lambda') < \delta_2\}$. Then $\mu(D) > 0$ and there exists a $g \in G$ such that $\mu(D \cap g^{-1}D \cap \{x : d(\psi(g, x), 1) < \delta_1\} \cap \{x : d(f(g, x), \lambda) < \frac{\epsilon}{2}\}) > 0$. Since,

$$D \cap g^{-1}D \cap \left\{x : d\left(\psi(g, x), 1\right) < \delta_1\right\} \cap \left\{x : d\left(f(g, x), \lambda\right) < \frac{\epsilon}{2}\right\} \subseteq C \cap (g'g)^{-1}C \cap \left\{x : d\left(\psi(g'g, x), 1\right) < \epsilon\right\} \cap \left\{x : d\left(f(g'g, x), \lambda + \lambda'\right) < \epsilon\right\}.$$

it follows that

$$\mu\Big(C\cap (g'g)^{-1}C\cap \big\{x: d\big(\psi(g'g, x), 1\big) < \epsilon\big\} \cap \big\{x: d\big(f(g'g, x), \lambda + \lambda'\big) < \epsilon\big\}\Big) > 0.$$

Therefore, $\lambda + \lambda' \in E_{\psi}(f)$. Now, let $\lambda \in E_{\psi}(f)$. Note that $\psi(g^{-1}, gx) = \psi(g, x)^{-1}$, and $f(g^{-1}, gx) = -\psi(g, x)^{-1}f(g, x)$ for all $g \in G$. So that $d(\psi(g^{-1}, gx), 1) = d(\psi(g, x)^{-1}, 1) = d(1, \psi(g, x))$, and

$$d(f(g^{-1},gx),-\lambda) = d(-\psi(g,x)^{-1}f(g,x),-\lambda)$$

$$\leq d(-\psi(g,x)^{-1}f(g,x),-\psi(g,x)^{-1}\lambda) + d(-\psi(g,x)^{-1}\lambda,-\lambda)$$

$$= d(\psi(g,x)^{-1}f(g,x),\psi(g,x)^{-1}\lambda) + d(\psi(g,x)^{-1}\lambda,\lambda).$$

Choose $\delta_1, \delta_2 < \frac{\epsilon}{2}$ such that $d(ab, \lambda) < \frac{\epsilon}{2}$ whenever $d(a, 1) < \delta_1$ and $d(b, \lambda) < \delta_2$. For any set *C* in *X* of positive measure and for all $g \in G$, we have

$$g\Big(C \cap g^{-1}C \cap \{x : d\big(\psi(g, x), 1\big) < \delta_1\} \cap \{x : d\big(f(g, x), \lambda\big) < \delta_2\}\Big) \subseteq C \cap gC \cap \{x : d\big(\psi(g^{-1}, x), 1\big) < \delta_1\} \cap \{x : d\big(f(g^{-1}, x), -\lambda\big) < \epsilon\}$$

Since $\lambda \in E_{\psi}(f)$ and the *G* action is nonsingular, there exists $g \in G$ such that

$$\mu\Big(C\cap gC\cap \big\{x:d\big(\psi(g^{-1},x),1\big)<\delta_1\big\}\cap \big\{x:d\big(f(g^{-1},x),-\lambda\big)<\epsilon\big\}\Big)>0.$$

Therefore, $-\lambda \in E_{\psi}(f)$. The fact that $E_{\psi}(f)$ is closed is clear.

PROPOSITION 2.2. If f and h are ψ -cohomologous ψ -cocycles, then $\bar{E}_{\psi}(f) = \bar{E}_{\psi}(h)$.

PROOF. Suppose $f(g, x) = \beta(x) + h(g, x) - \psi(g, x)\beta(gx)$, where $\beta: X \to B$ is a measurable function. Let $\epsilon > 0$ be given, and choose $0 < \delta < \epsilon$ such that $d(b, ab) < \frac{\epsilon}{3}$

whenever $d(1, a) < \delta$. Since *B* is a Lindelöf space, there exist a sequence $\{b_n\}$ in *B* and a countable cover $\{U_n\}$ of *X* with $U_n = \{b \in B : d(b, b_n) < \frac{\epsilon}{6}\}$. Let $C \subseteq X$ with $\mu(C) > 0$. For each $n \in \mathbb{N}$, let $C_n = \{x \in X : \beta(x) \in U_n\}$. Since $C = \bigcup_n C_n$, it follows that there exists $n \in \mathbb{N}$ such that $\mu(C_n) > 0$. For any $\lambda \in B$ and $g \in G$ we have

(*)
$$d(f(g,x),\lambda) = d(\beta(x) + h(g,x) - \psi(g,x)\beta(gx),\lambda)$$
$$\leq d(h(g,x),\lambda) + d(\beta(x),\beta(gx)) + d(\beta(gx),\psi(g,x)\beta(gx))$$

Now, let $\lambda \in E_{\psi}(h)$. There exists $g \in G$ such that

$$\mu\Big(C_n\cap g^{-1}C_n\cap\left\{x:d\big(\psi(g,x),1\big)<\delta\right\}\cap\left\{x:d\big(h(g,x),\lambda\big)<\frac{\epsilon}{3}\right\}\Big)>0.$$

It follows from (*) that

$$\mu\Big(C\cap g^{-1}C\cap \big\{x: d\big(\psi(g,x),1\big)<\epsilon\big\}\cap \big\{x: d\big(f(g,x),\lambda\big)<\epsilon\big\}\Big)>0.$$

Therefore, $\lambda \in E_{\psi}(f)$, *i.e.*, $E_{\psi}(g) \subseteq E_{\psi}(f)$. The reverse containment is proved similarly, so that $E_{\psi}(g) = E_{\psi}(f)$. Now, let $\infty \in \overline{E}_{\psi}(g)$ and $\epsilon_1 > 0$ be so that $\frac{\epsilon_1}{1-\epsilon_1^2} < \epsilon$. Choose $0 < \delta_1, \delta_2 < \epsilon$ so that $d(b, ab') < \epsilon_1$ whenever $d(a, 1) < \delta_1$ and $d(b, b') < \delta_2$. Let $C \in \mathcal{B}$ be of positive measure, we can find for some $n \in \mathbb{N}$ an element $b_n \in B$ so that the set $C_n = \left\{x \in C : d(\beta(x), b_n) < \frac{\delta_2}{2}\right\}$ has positive measure. Let $g \in G$ be such that

$$\mu\Big(C_n\cap g^{-1}C_n\cap \big\{x:d\big(\psi(g,x),1\big)<\delta_1\big\}\cap \big\{x:d\big(h(g,x),0\big)>\frac{1}{\epsilon_2}\big\}\Big)>0.$$

Since

$$d(f(g,x),0) \ge d(h(g,x),0) - d(\beta(x),\psi(g,x)\beta(gx)) > \frac{1}{\epsilon_1} - \epsilon_1 > \frac{1}{\epsilon},$$

it follows that

$$\mu\Big(C\cap g^{-1}C\cap \left\{x: d\big(\psi(g,x),1\big)<\epsilon\right\}\cap \left\{x: d\big(f(g,x),0\big)>\frac{1}{\epsilon}\right\}\Big)>0.$$

PROPOSITION 2.3. If $\lambda \in E_{\psi}(f)$ for some $\lambda \neq 0$, then (ψ, f) is recurrent.

PROOF. Let $\epsilon > 0$ and $C \in \mathcal{B}$ with $\mu(C) > 0$. Choose $0 < \delta_1, \delta_2 < \frac{\epsilon}{2}$ so that $d(ab, \lambda) < \frac{\epsilon}{2}$ whenever $d(a, 1) < \delta_1$ and $d(b, \lambda) < \delta_2$. Since $\lambda \neq 0$ there exists $g' \in G$, $g' \neq e$ such that

$$\mu\Big(C\cap g'^{-1}C\cap \Big\{x: d\Big(\psi(g',x),1\Big)<\frac{\epsilon}{2}\Big\}\cap \Big\{x: d\big(f(g',x),\lambda\Big)<\delta_2\Big\}\Big)>0.$$

Let $D = C \cap g'^{-1}C \cap \{x : d(\psi(g', x), 1) < \frac{\epsilon}{2}\} \cap \{x : d(f(g', x), \lambda) < \delta_2\}$. By Rohlin lemma we can choose a subset D' of D of positive measure such that $D' \cup g'D' \subseteq D$ and $\mu(D' \cap g'D') = \mu(D' \cap g'^{-1}D') = 0$. Since $-\lambda \in E_{\psi}(f)$ and $\lambda \neq 0$, there exists $g \notin \{e, g', g'^{-1}\}$ such that

$$\mu\left(D'\cap g^{-1}D'\cap\left\{x:d\left(\psi(g,x),1\right)<\delta_1\right\}\cap\left\{x:d\left(f(g,x),-\lambda\right)<\frac{\epsilon}{2}\right\}\right)>0.$$

Now, for
$$x \in D' \cap g^{-1}D' \cap \{x : d(\psi(g, x), 1) < \delta_1\} \cap \{x : d(f(g, x), -\lambda) < \frac{\epsilon}{2}\}$$
, we have
(i) $x \in C \cap (g'g)^{-1}C$,
(ii) $d(\psi(g'g, x), 1) = d(\psi(g, x)\psi(g', gx), 1) \le d(\psi(g', gx), 1) + d(\psi(g, x), 1) < \epsilon$,
(iii) $d(f(g'g, x), 0) = d(f(g, x) + \psi(g, x)f(g', gx), 0) \le d(f(g, x), -\lambda) + d(\psi(g, x)f(g', gx), \lambda) < \epsilon$.

Thus,

$$\mu\Big(C\cap (g'g)^{-1}C\cap \big\{x: d\big(\psi(g'g,x),1\big)<\epsilon\big\}\cap \big\{x: d\big(f(g'g,x),0\big)<\epsilon\big\}\Big)>0.$$

Therefore, (ψ, f) is recurrent.

PROPOSITION 2.4. If ψ is cohomologous to ϕ with transfer function α and f is a ψ -cocycle, then $E_{\psi}(f) = B$ if and only if $E_{\phi}(\alpha^{-1}f) = B$, and $\infty \in \overline{E}_{\psi}(f)$ if and only if $\infty \in \overline{E}_{\phi}(\alpha^{-1}f)$.

PROOF. Let $\lambda \in B$ be any element, and let $\epsilon > 0$ be given. There exist $0 < \delta_1$, $\delta_2 < \frac{\epsilon}{2}$ such that $d(ab, a'b') < \frac{\epsilon}{2}$ whenever $d(a, a') < \delta_1$ and $d(b, b') < \delta_2$. Choose a sequence $\{a_n\}$ in A such that sequence of neighborhoods $\{V_n\}$, with $V_n = \{a \in A : d(a, a_n) < \frac{\delta_1}{2}\}$, covers A. Let $C \in \mathcal{B}$ with $\mu(C) > 0$; there exists $n \in \mathbb{N}$ such that the set $C_n = \{x \in C : \alpha^{-1}(x) \in V_n\}$ has positive measure. Since $a_n^{-1}\lambda \in E_{\psi}(f)$ there exists $g \in G$ such that

$$\mu\Big(C_n\cap g^{-1}C_n\cap\Big\{x:d\big(\psi(g,x),1\big)<\frac{\delta_1}{2}\Big\}\cap\Big\{x:d\big(f(g,x),a_n^{-1}\lambda\big)<\delta_2\Big\}\Big)>0.$$

For $x \in C_n \cap g^{-1}C_n \cap \left\{x : d\left(\psi(g, x), 1\right) < \frac{\delta_1}{2}\right\} \cap \left\{x : d\left(f(g, x), a_n\lambda\right) < \delta_2\right\}$ we have

$$d(\alpha^{-1}(x)f(g,x),\lambda) \leq d(\alpha^{-1}(x)f(g,x),\alpha^{-1}(x)a_n^{-1}\lambda) + d(\alpha^{-1}(x)a_n^{-1}\lambda,\lambda) < \epsilon$$

and

$$d(\phi(g,x),1) = d(\alpha(x)^{-1}\psi(g,x)\alpha(gx),1)$$

$$\leq d(\psi(g,x),1) + d(\alpha^{-1}(x),\alpha^{-1}(gx)) < \frac{\delta_1}{2} + \delta_1 < \epsilon$$

Therefore $\lambda \in E_{\phi}(\alpha^{-1}f)$. The converse is proved similarly. Also a similar proof shows that $\infty \in E_{\phi}(f)$ if and only if $\infty \in E_{\phi}(\alpha^{-1}f)$.

We now look at the algebraic connection between $E(\psi, f)$, $E_{\psi}(f)$, and $E(\psi)$. We first consider the split exact sequence $0 \to B \xrightarrow{\iota} A \propto B \xrightarrow{\pi} A \to 1$, where $\iota(b) = (1, b)$ and $\pi(a, b) = a$. Let $E_f(\psi) = \pi(E(\psi, f)) = \{a \in E(\psi) : (a, b) \in E(\psi, f) \text{ for some } b \in B\}$, and $E'_f(\psi) = \{a \in E(\psi) : (a, 0) \in E(\psi, f)\}$. Both $E_f(\psi)$ and $E'_f(\psi)$ are subgroups of $E(\psi)$. We now give an equivalent definition of $E'_f(\psi)$.

PROPOSITION 2.5. $a \in E'_f(\psi)$ if and only if $(a, b) \in E(\psi, f)$ for all $b \in E_{\psi}(f)$.

PROOF. Let $a \in E'_f(\psi)$, then $(a, 0) \in E(\psi, f)$. For any $b \in E_{\psi}(f)$ we have $(1, b) \in E(\psi, f)$. Since $E(\psi, f)$ is a group, then $(a, b) = (1, b) \circ (a, 0) \in E(\psi, f)$. The converse is trivial since $0 \in E_{\psi}(f)$.

K. DAJANI

PROPOSITION 2.6. The group $E(\psi, f)$ is an extension of $E_f(\psi)$ by $E_{\psi}(f)$.

PROOF. We need to show that the sequence $0 \to E_{\psi}(f) \stackrel{\iota}{\to} E(\psi, f) \stackrel{\pi}{\to} E_{f}(\psi) \to 1$ is short exact. Here ι and π denote the restrictions to the appropriate subgroups. By definition $E_{f}(\psi) = \pi(E(\psi, f))$, so that π is surjective. Clearly ι is injective and $\pi\iota(b) = b$ for all $b \in E_{\psi}(f)$.

The following lemma shows that the group $E_f(\psi)$ acts on the group $E_{\psi}(f)$, and the action is inherited from that of A on B.

LEMMA 2.7. If $a \in E_f(\psi)$ and $b \in E_{\psi}(f)$, then $ab \in E_{\psi}(f)$.

PROOF. We need to show that $(1, ab) \in E(\psi, f)$. Since $a \in E_f(\psi)$, there exists $b' \in B$ such that $(a, b') \in E(\psi, f)$. Also $(1, b) \in E(\psi, f)$, so that $(1, ab) = (a, b') \circ (1, b) \circ (a, b')^{-1} \circ (1, b')^{-1} \in E(\psi, f)$.

NOTATION. We denote by $E_f(\psi) \propto E_{\psi}(f)$, the semidirect product of $E_{\psi}(f)$ by $E_f(\psi)$ relative to the above inherited action.

PROPOSITION 2.8. If $E_f(\psi) = E'_f(\psi)$, then $E(\psi, f) = E_f(\psi) \propto E_{\psi}(f)$.

PROOF. For this it suffices to show that the sequence $0 \to E_{\psi}(f) \xrightarrow{\iota} E(\psi, f) \xrightarrow{\pi} E_{f}(\psi) \to 1$ is split exact. From the given, we have that $(a, 0) \in E(\psi, f)$ for every $a \in E_{f}(\psi)$. Define $\alpha: E_{f}(\psi) \to E(\psi, f)$ by $\alpha(a) = (a, 0)$. Then, $\pi\alpha(a) = a$ for all $a \in E_{f}(\psi)$, and hence the above sequence splits. Therefore, $E(\psi, f) = E_{f}(\psi) \propto E_{\psi}(f)$.

COROLLARY 2.9. If $E_{\psi}(f) = B$, then $E(\psi, f) = E_f(\psi) \propto E_{\psi}(f)$.

PROOF. For any $(a, b) \in E(\psi, f)$, we have $(1, b) \in E(\psi, f)$ so that $(a, 0) = (1, b)^{-1} \circ (a, b) \in E(\psi, f)$. This shows that $E_f(\psi) = E'_f(\psi)$ and hence by Proposition 2.8, $E(\psi, f) = E_f(\psi) \propto E_{\psi}(f)$.

COROLLARY 2.10. If $E'_f(\psi) = A$, then $E(\psi, f) = E_f(\psi) \propto E_{\psi}(f)$.

PROOF. Follows immediately from Proposition 2.8, since in this case $E'_f(\psi) = E_f(\psi)$.

Let $Z_{\psi}(X, G, B, \mu)$ be the set of ψ -cocycles which is a group under pointwise addition. Let $B_{\psi}(X, G, B, \mu)$ be the subgroup of ψ -coboundaries (we identify those that agree μ a.e.). We topologize Z_{ψ} and B_{ψ} by defining the following notion of convergence: $f^{(n)} \rightarrow f$ if and only if for each $g \in G, f^{(n)}(g, .) \rightarrow f(g, .)$ in measure. It is well known that the topology of convergence in measure is given by the metric: $\overline{d}(\beta, \beta') = \int_X \frac{d(\beta(x), \beta'(x))}{1+d(\beta(x), \beta'(x))} d\mu$, where $\beta, \beta': X \rightarrow B$ are measurable. Let $M(X, G, A, \mu)$ be the set of equivalence classes of multiplicative A valued cocycles on X.

Let $C = \{C_n : n \in \mathbb{Z}\}$ be a countable dense collection in the measure algebra. The following lemma gives a necessary condition for an element of *B* to be in the essential range of a ψ -cocycle by reducing the verifications to members of *C* only (see [CHP], [D]). This will be used in Section 4. Denote by ω , the Radon-Nikodym derivative μ *i.e.*, $\omega(g, x) = \frac{d\mu \circ g}{d\mu}(x)$, where $\mu \circ g(A) = \mu(gA)$. Let [*G*] denote the full group of *G*. That is,

[G] consists of all bimeasurable automorphisms $V: X \to Y$ such that for each $x \in X$ there exists $g \in G$ such that Vx = gx. For $V \in [G]$, set $\omega(V, x) = \omega(g, x)$, $\psi(V, x) = \psi(g, x)$, and f(V, x) = f(g, x) where Vx = gx.

LEMMA 2.11. If there exists a 0 < K < 1 such that for every $\epsilon > 0$ and for every $C \in C$

$$\sup_{V\in[G]} \mu\Big(C\cap V^{-1}C\cap\{x:|\omega(V,x)-1|<\epsilon\}\\\cap\Big\{x:d\big(\psi(V,x),1\big)<\epsilon\Big\}\cap\{x:f(V,x)\in B_{\epsilon}(\lambda)\}\Big)>K\mu(C),$$

then $\lambda \in \overline{E}_{\psi}(f)$.

PROOF. Let $\epsilon > 0$ and $E \subseteq X$ with $\mu(E) > 0$. Let $c(\epsilon, K) = \frac{(1-\epsilon)K}{(1-\epsilon)(K+1)+1}$. Choose $C \in C$ such that $\mu(E\Delta C) < c(\epsilon, K)\mu(E)$. By hypothesis, there exists $V \in [G]$ such that

$$\mu\Big(C \cap V^{-1}C \cap \{x : |\omega(V,x)-1| < \epsilon\}$$
$$\cap \{x : d\big(\psi(V,x),1\big) < \epsilon\} \cap \{x : f(V,x) \in B_{\epsilon}(\lambda)\}\Big) > K\mu(C).$$

Let $\overline{C} = C \cap V^{-1}C \cap \{x : |\omega(V,x)-1| < \epsilon\} \cap \{x : d(\psi(V,x),1) < \epsilon\} \cap \{x : f(V,x) \in B_{\epsilon}(\lambda)\}$, then

$$\mu(\bar{C}) > K\mu(C) \ge K\mu(E \cap C) \ge K(\mu(E) - \mu(E\Delta C)) > \mu(E)(K - Kc(\epsilon, K)) > 0.$$

Let $\overline{E} = C \cap \overline{C}$. Then $\mu(\overline{E}) = \mu(\overline{C}) - \mu(\overline{C} \setminus E) \ge \mu(\overline{C}) - \mu(C\Delta E) > \mu(E)(K - (K+1)c(\epsilon, K)) > 0$, and $\mu(V\overline{E}) \ge (1-\epsilon)\mu(\overline{E}) > (1-\epsilon)\mu(E)(K - (K+1)c(\epsilon, K))$. Since $V\overline{E} \subseteq C$, we have

$$\mu(E \cap V\bar{E}) = \mu(V\bar{E}) - \mu(V\bar{E} \setminus E)$$

$$\geq \mu(V\bar{E}) - \mu(C\Delta E)$$

$$\geq \mu(E) \Big((1 - \epsilon)K - c(\epsilon, K) \big((1 - \epsilon)(K + 1) + 1 \big) \Big) \geq 0.$$

by nonsingularity of μ with respect to V, it follows that $\mu(V^{-1}E \cap \overline{E}) > 0$ and hence

$$\mu\Big(E \cap V^{-1}E \cap \{x : |\omega(V,x)-1| < \epsilon\}$$
$$\cap \{x : d\big(\psi(V,x),1\big) < \epsilon\} \cap \{x : f(V,x) \in B_{\epsilon}(\lambda)\}\Big) > 0.$$

Therefore, $\lambda \in \overline{E}_{\psi}(f)$.

LEMMA 2.12. For each $\lambda \in \tilde{E}_{\psi}(f)$ and for each $k, m, n \in \mathbb{N}$, the map

$$f: \longrightarrow \sup_{V \in [G]} \mu \left(C_k \cap V^{-1} C_k \cap \left\{ x : |\omega(V, x) - 1| < \frac{1}{m} \right\} \\ \cap \left\{ x : d\left(\psi(V, x), 1 \right) < \frac{1}{n} \right\} \cap \left\{ x : f(V, x) \in B_{1/n}(\lambda) \right\} \right)$$

is lower semicontinuous.

PROOF. The result follows from the fact that for each $V \in [G]$ the map

$$f: \to \mu \left(C_k \cap V^{-1} C_k \cap \left\{ x : |\omega(V, x) - 1| < \frac{1}{m} \right\} \\ \cap \left\{ x : d\left(\psi(V, x), 1\right) < \frac{1}{n} \right\} \cap \left\{ x : f(V, x) \in B_{1/n}(\lambda) \right\} \right)$$

is continuous (see [D]).

3. Invariance under orbit equivalence.

THEOREM 3.1. Let G_i be a nonsingular free action on $(X_i, \mathcal{B}_i, \mu_i)$, i = 1, 2. If the actions of G_1 and G_2 are orbit equivalent, then there exists a topological group isomorphism Λ : $M(X_1, G_1, A, \mu_1) \rightarrow M(X_2, G_2, A, \mu_2)$ such that for every $\psi \in M(X_1, G_1, A, \mu_1)$ the following hold:

(a) If ϕ is cohomologous to $\Lambda(\psi)$, then $Z_{\psi}(X_1, G_1, A, \mu_1) \cong Z_{\phi}(X_2, G_2, A, \mu_2)$ and $B_{\psi}(X_1, G_1, A, \mu_1) \cong B_{\phi}(X_2, G_2, A, \mu_2)$ (as topological groups),

(b) under the isomorphism of (a), recurrence, ∞ in the essential range, and full essential range are preserved.

PROOF. Let $F: X_1 \to X_2$ denote the isomorphism that gives the orbit equivalence. For g_2, G_2 and $x_2 \in X_2$, set $\Lambda(\psi)(g_2, x_2) = \psi(g_1, x_1)$, where $x_2 = F(x_1)$ and $g_2F(x_1) = F(g_1x)$. Let $\psi \in M(X_1, G_1, A, \mu_1)$ and $\phi(g_2, x_2) = \alpha(x_2)\Lambda(\psi)(g_2, x_2)\alpha(g_2x_2)^{-1}$, where $\alpha: X_2 \to A$ is measurable. For $f \in Z_{\psi}(X_1, G_1, A, \mu_1)$, set $\overline{f}(g_2, x_2) = \alpha(x_2)f(g_1, x_1)$. Then \overline{f} is a ϕ -cocycle. Since if $g_2, g'_2 \in G_2$ and $x_2 \in X_2$, then there exists an $x_1 \in X_1$ and $g_1, g'_1 \in G_1$ such that $F(x_2) = x_1, F(g_1x_1) = g_2x_2$, and $F(g'_1g_1x_1) = g'_2g_2x_2$. Then,

$$\begin{split} \bar{f}(g_2'g_2, x_2) &= \alpha(x_2)f(g_1'g_1, x_1) \\ &= \alpha(x_2)\Big(f(g_1, x_1) + \psi(g_1, x_1)f(g_1', g_1x_1)\Big) \\ &= \alpha(x_2)f(g_1, x_1) + \alpha(x_2)\Lambda(\psi)(g_2, x_2)f(g_1', g_1x_1) \\ &= \alpha(x_2)f(g_1, x_1) + \phi(g_2, x_2)\alpha(g_2x_2)f(g_1', g_1x_1) \\ &= \bar{f}(g_2, x_2) + \phi(g_2, x_2)\bar{f}(g_2', g_2x_2). \end{split}$$

If $f(g_1, x_1) = \beta(x_1) - \psi(g_1, x_1)\beta(g_1x_1)$, then

$$\bar{f}(g_2, x_2) = \alpha(x_2)f(g_1, x_1) = \alpha(x_2) \big(\beta(x_1) - \psi(g_1, x_1)\beta(g_1x_1)\big) = \alpha(x_2)\beta(F^{-1}x_2) - \phi(g_2, x_2)\alpha(g_2x_2)\beta(F^{-1}g_2x_2)$$

i.e., \bar{f} is a ϕ -coboundary with ϕ -transfer function βF^{-1} . This proves (a). For part (b), proofs similar to those of Propositions 1.2, 2.2, and 2.4 show that (ψ, f) is recurrent if and only if (ϕ, \bar{f}) is recurrent, $\infty \in \bar{E}_{\psi}(f)$ if and only if $\infty \in \bar{E}_{\phi}(\bar{f})$, and $E_{\psi}(f) = B$ if and only if $E_{\phi}(\bar{f}) = B$.

4. A generic model: the binary odometer. Let $X = \prod_{i=1}^{\infty} \{0, 1\}_i$, which is a group under addition, and let \mathcal{F} be the Borel σ -algebra. Let Γ be the subgroup of X consisting of all those sequences with finitely many nonzero coordinates only. Then Γ acts on X by coordinatewise addition $(x \xrightarrow{\gamma} \gamma + x)$. Let μ be any nonsingular measure on X which is ergodic with respect to the Γ action. It is well known that the action of Γ on X is orbit equivalent to the binary odometer with respect to the measure μ , and for any nonsingular ergodic hyperfinite action of a countable group G on a Lebesgue probability space Y, there exists a measure μ on X which is nonsingular and ergodic for the Γ action such that the actions of G on Y and Γ on X are orbit equivalent (see [S1] §8).

Let $S: X \to X$ be the left shift, and for $n \ge 0$ let Γ_n be the finite subgroup of Γ whose members consist of all $\gamma \in \Gamma$ such that $\gamma_m = 0$ for all m > n ($\Gamma_0 = \{\bar{0} = (0, 0, ...)\}$). Denote by $\bar{\Gamma}_n$ the subgroup of Γ consisting of all those elements whose first *n* coordinates are all zeros. For $x \in X$, let $x^{(n)} = (x_1, ..., x_n, 0, 0, ...)$ and $x_{(n)} = (0, ..., 0x_{n+1}, x_{n+2}, ...)$, then $x^{(n)} \in \Gamma_n$, $x_{(n)} \in \bar{\Gamma}_n$ and $x = x^{(n)} + x_{(n)}$. For $a_1, a_2, ..., a_n \in A$ we denote the product $a_1 a_2 \cdots a_n$ by $\prod_{i=1}^n a_i$. The following proposition is a generalization of Theorem 3.1 in [SP] for *A* abelian.

PROPOSITION 4.1. For any cocycle $\psi: \Gamma \times X \to A$ there exists a sequence of measurable maps $\alpha_k: X \to A$ such that for each $n \ge 1$ and every $\gamma \in \Gamma_n$,

(*)
$$\psi(\gamma, x) = \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma + x)\right)^{-1}$$

Conversely, for any sequence of measurable maps α_k , (*) defines a cocycle.

PROOF. For $n \ge 1$, let $\psi_n(x) = \psi(x^{(n)}, x_{(n)})$. Note that if $\gamma \in \Gamma_n$, then $\gamma^{(n)} = \gamma$ and $\gamma_{(n)} = (0, 0, ...)$.

CLAIM (i). For any $\gamma \in \Gamma_n$, $\psi(\gamma, x) = \psi_n(x)^{-1}\psi_n(\gamma + x)$.

PROOF OF CLAIM (i). Note that $(\gamma + x)^{(n)} = \gamma + x^{(n)}$ and $(\gamma + x)_{(n)} = x_{(n)}$; hence the cocycle identity gives

$$\begin{split} \psi_n^{-1}(x)\psi_n(\gamma+x) &= \psi(x^{(n)}, x_{(n)})^{-1}\psi\big((\gamma+x)^{(n)}, (\gamma+x)_{(n)}\big) \\ &= \psi(x^{(n)}, x_{(n)})^{-1}\psi(x^{(n)}, x_{(n)})\psi(\gamma, x^{(n)}+x_{(n)}) \\ &= \psi(\gamma, x^{(n)}+x_{(n)}) = \psi(\gamma, x). \end{split}$$

CLAIM (ii). For any $\gamma \in \Gamma_n$ we have,

$$\psi_n(\gamma + x)\psi_{n+1}(\gamma + x)^{-1} = \psi_n(x)\psi_{n+1}(x)^{-1}.$$

PROOF OF CLAIM (ii).

$$\psi_{n+1}(x)^{-1}\psi_{n+1}(\gamma+x) = \psi(x^{(n+1)}, x_{(n+1)})^{-1}\psi\big((\gamma+x)^{(n+1)}, (\gamma+x)_{(n+1)}\big)$$

= $\psi(x^{(n+1)}, x_{(n+1)})^{-1}\psi(\gamma+x^{(n+1)}, x_{(n+1)})$
= $\psi(\gamma, x^{(n+1)} + x_{(n+1)}) = \psi(\gamma, x) = \psi_n(x)^{-1}\psi_n(\gamma+x)$

K. DAJANI

This shows that $\psi_n(\gamma + x)\psi_{n+1}(\gamma + x)^{-1} = \psi_n(x)\psi_{n+1}(x)^{-1}$. Thus for each $n \ge 1$, the function $\psi_n\psi_{n+1}^{-1}$ is independent of the first *n* coordinates, and hence there exists a measurable function $\alpha_n: X \to A$ such that $\alpha_n \circ S^n(x) = \psi_n(x)\psi_{n+1}(x)^{-1}$. Set $\alpha_0(x) = \psi_1(x)^{-1}$, then for $n \ge 1$ and any $\gamma \in \Gamma_n$ we have

$$\psi(\gamma, x) = \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma + x)\right)^{-1}.$$

Conversely, let $\{\alpha_k\}$ be a sequence of measurable maps defined on X with values in A. For $n \ge 1$ and $\gamma \in \Gamma_n$ set $\psi(\gamma, x) = (\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)) (\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma + x))^{-1}$, and let $\psi(\bar{0}, x) = 1$. We claim that ψ is a cocycle. Let $\gamma \in \Gamma_n$ and $\gamma' \in \Gamma_m$. Assume with no loss of generality that $m \ge n$, then $\gamma' + \gamma \in \Gamma_m$. Also for each i > n - 1 we have $\alpha_i \circ S^i(x) = \alpha_i \circ S^i(\gamma + x)$, so that

$$\begin{split} \psi(\gamma'+\gamma,x) &= \left(\prod_{k=0}^{m-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{m-1} \alpha_k \circ S^k(\gamma'+\gamma+x)\right)^{-1} \\ &= \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma+x)\right)^{-1} \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma+x)\right) \\ &\qquad \left(\prod_{k=0}^{m-1} \alpha_k \circ S^k(\gamma+x)\right) \left(\prod_{k=0}^{m-1} \alpha_k \circ S^k(\gamma'+\gamma+x)\right)^{-1} \\ &= \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma+x)\right)^{-1} \\ &\qquad \left(\prod_{k=0}^{m-1} \alpha_k \circ S^k(\gamma+x)\right) \left(\prod_{k=0}^{m-1} \alpha_k \circ S^k(\gamma'+\gamma+x)\right)^{-1} \\ &= \psi(\gamma,x)\psi(\gamma',\gamma+x). \end{split}$$

REMARK. We refer to the sequence $\{\alpha_k\}$ as the sequence associated with ψ .

LEMMA 4.2. Let ψ be an A valued cocyle, let $\{\alpha_k\}$ be its associated sequence. If $n \ge 1$ and $\beta: X \to B$ is a measurable map satisfying $\beta(x) = \psi(\gamma, x)\beta(\gamma + x)$ for all $\gamma \in \Gamma_n$, then there exists a measurable map $\beta': X \to B$ such that

$$\beta(x) = \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \beta' \circ S^n(x).$$

Conversely, suppose $\beta(x) = (\prod_{k=0}^{n-1} \alpha_k \circ S^k(x))\beta' \circ S^n(x)$ for some measurable function β' , then $\beta(x) = \psi(\gamma, x)\beta(\gamma + x)$ for all $\gamma \in \Gamma_n$.

PROOF. Suppose that $\beta(x) = \psi(\gamma, x)\beta(\gamma + x)$ for all $\gamma \in \Gamma_n$, Proposition 4.1 gives

$$\left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right)^{-1} \beta(x) = \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma+x)\right)^{-1} \beta(\gamma+x).$$

Then the function $(\prod_{k=0}^{n-1} \beta_k \circ S^k)^{-1}\beta$ is independent of the first *n* coordinates of $x \in X$, hence there exists a measurable function $\beta' \colon X \to B$ such that $(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x))^{-1}\beta(x) = \beta' \circ S^n(x)$. This shows that

$$\beta(x) = \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \beta' \circ S^n(x).$$

Conversely, suppose that $\beta(x) = (\prod_{k=0}^{n-1} \alpha_k \circ S^k(x))\beta' \circ S^n(x)$. For $\gamma \in \Gamma_n$, $\beta' \circ S^n(x) = \beta' \circ S^n(\gamma + x)$ and

$$\begin{split} \psi(\gamma, x)\beta(\gamma + x) &= \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma + x)\right)^{-1} \\ &\left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(\gamma + x)\right)\beta' \circ S^n(\gamma + x) \\ &= \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right)\beta' \circ S^n(x) = \beta(x). \end{split}$$

PROPOSITION 4.3. If $f: \Gamma \times X \to B$ is a ψ -cocycle, then there exists a sequence of measurable maps $\beta_n: X \to B$ such that for $n \ge 1$,

(**)
$$\psi(\gamma, x)\beta_n(\gamma + x) = \beta_n(x) \text{ for } \gamma \in \Gamma_n$$

and for $\gamma \in \Gamma$,

$$(***) f(\gamma, x) = \sum_{n=0}^{\infty} \psi(\gamma, x) \beta_n(\gamma + x) - \beta_n(x).$$

Conversely, if $\beta_n: X \to B$ is a sequence of measurable maps satisfying (**), then (* * *) defines a ψ -cocycle.

PROOF. Let $\{\alpha_k: X \to A\}$ be the sequence associated with the cocycle ψ . Let *f* be a ψ -cocycle, for $n \ge 1$ set

$$f_n(x) = \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x_{(n)})\right)^{-1} f(x^{(n)}, x_{(n)}).$$

If $\gamma \in \Gamma_n$, then $\gamma^{(n)} = \gamma$ and $\gamma_{(n)} = (0, 0, ...)$, so that

$$\begin{split} \psi(\gamma, x) f_n(\gamma + x) - f_n(x) \\ &= \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x_{(n)})\right)^{-1} f(\gamma + x^{(n)}, x_{(n)}) \\ &- \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x_{(n)})\right)^{-1} f(x^{(n)}, x_{(n)}) \\ &= \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x_{(n)})\right)^{-1} \psi(x^{(n)}x_{(n)}) f(\gamma, x) \\ &= f(\gamma, x). \end{split}$$

Using similar calculations as the above, one can show that for $\gamma \in \Gamma_n$

$$\psi(\gamma, x)f_{n+1}(\gamma + x) - f_{n+1}(x) = f(\gamma, x) = \psi(\gamma, x)f_n(\gamma + x) - f_n(x)$$

So that for each $n \ge 1$, the function $f_{n+1} - f_n$ satisfies

$$\psi(\gamma, x) \left(f_{n+1}(\gamma + x) - f_n(\gamma + x) \right) = f_{n+1}(x) - f_n(x).$$

By Lemma 4.2 for each $n \ge 1$ there exists a measurable function β'_n such that

$$f_{n+1}(x) - f_n(x) = \left(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x)\right) \beta'_n \circ S^n(x)$$

Let $\beta_n(x) = f_{n+1}(x) - f_n(x)$, then for $\gamma \in \Gamma_n$, $\psi(\gamma, x)\beta_n(\gamma + x) = \beta_n(x)$. Set $\beta_0(x) = \beta'_0(x) = f_1(x)$. Let $\gamma \in \Gamma_n$, then

$$\sum_{k=0}^{\infty} \psi(\gamma, x) \beta_k(\gamma + x) - \beta_k(x) = \sum_{k=0}^{n-1} \psi(\gamma, x) \beta_k(\gamma + x) - \beta_k(x)$$

$$= \psi(\gamma, x) f_1(\gamma + x) - f_1(x)$$

$$+ \psi(\gamma, x) \sum_{k=1}^{n-1} (f_{k+1}(\gamma + x) - f_k(\gamma + x))$$

$$- \sum_{k=1}^{n-1} (f_{k+1}(x) - f_k(x))$$

$$= \psi(\gamma, x) f_1(\gamma + x) - f_1(x)$$

$$+ \psi(\gamma, x) (f_n(\gamma + x) - f_1(\gamma + x))$$

$$- (f_n(x) - f_1(x))$$

$$= \psi(\gamma + x) f_n(\gamma + x) - f_n(x) = f(\gamma, x).$$

Conversely, let $\{\beta_k : X \to B\}$ be a sequence of measurable maps satisfying (**). Let f be as defined in (* * *) and let $\gamma_1, \gamma_2 \in \Gamma$. There exists $m \ge 1$ such that $\gamma_1, \gamma_2 \in \Gamma_m$, then $\gamma_1 + \gamma_2 \in \Gamma_m$ and

$$f(\gamma_{1} + \gamma_{2}, x) = \sum_{n=0}^{m-1} \psi(\gamma_{1} + \gamma_{2}, x)\beta_{n}(\gamma_{1} + \gamma_{2} + x) - \beta_{n}(x)$$

= $\psi(\gamma_{1}, x) \sum_{n=0}^{m-1} (\psi(\gamma_{2}, \gamma_{1} + x)\beta_{n}((\gamma_{2} + (\gamma_{1} + x)) - \beta_{n}(\gamma_{1} + x)))$
+ $\sum_{n=0}^{m-1} (\psi(\gamma_{1}, x)\beta_{n}(\gamma_{1} + x) - \beta_{n}(x))$
= $\psi(\gamma_{1}, x)f(\gamma_{2}, \gamma_{1} + x) + f(\gamma_{1}, x).$

Therefore, (* * *) defines a ψ -cocycle.

NOTATION. Let *f* be a ψ -cocycle and $\{\beta_n\}$ the sequence satisfying (**) and (***). Then by Lemma 4.2 for each $n \ge 1$ there exists a measurable map β'_n such that $\beta_n(x) =$

 $(\prod_{k=0}^{n-1} \alpha_k \circ S^k(x))\beta'_n \circ S^n(x)$, and $\beta_0 = \beta'_0$. We refer to $\{\beta_n\}$ and $\{\beta'_n\}$ as the sequence and tail sequence of *f* respectively. Let $Z'_{\psi}(X, \Gamma, B, \mu)$ be the subgroup of all ψ -cocycles *f* such that each member in the tail sequence of *f* depends on finitely many coordinates only. We denote by $F(X, \mu, B)$ the set of all equivalence classes of measurable maps on *X* with values in *B* (two functions are identified if they agree μ a.e.). We let $F'(X, \mu, B)$ be the subset consisting of the measurable maps depending on finitely many coordinates only. We give $F(X, \mu, B)$ the topology of convergence in measure.

PROPOSITION 4.4. The set $Z'_{\iota}(X, \Gamma, \mu)$ is dense in $Z_{\iota}(X, \Gamma, \mu)$.

PROOF. Let *f* be any ψ -cocycle and $\{\beta_n\}$, $\{\beta'_n\}$ its associated sequence and tail sequence. Let $\epsilon > 0$ be given, by joint continuity of the *A* action on *B* there exist sequences of real numbers $\{\delta_n\}$ and $\{\delta'_n\}$ such that

(i) for $n \ge 0, 0 < \delta_n < \frac{\epsilon}{2^{4+n}}$,

(ii) for $n \ge 0$, $d(ab, ab') < \frac{\epsilon}{2^{4+n}}$ whenever $d(b, b') < \delta_n$.

Since $F'(X, \mu, B)$ is dense in $F(X, \mu, B)$, it follows that for any finite set $\{\gamma^{(i)} \in \Gamma : 1 \le i \le m\}$ there exists a sequence $\{\tilde{\beta}_k\}$ of measurable maps each depending on finitely many coordinates only such that

- (i) $\bar{d}(\beta_0, \tilde{\beta}_0) < \delta_0$ and $\bar{d}(\beta_0 \circ \gamma^{(i)}, \tilde{\beta}_0 \circ \gamma^{(i)}) < \delta_0$ for $1 \le i \le m$,
- (ii) $\bar{d}(\beta'_k \circ S^k, \tilde{\beta}_k \circ S^k) < \delta_k$ and $\bar{d}(\beta'_k \circ S^k \circ \gamma^{(i)}, \tilde{\beta}_k \circ S^k \circ \gamma^{(i)}) < \delta_k$ for $1 \le i \le m$ and $k \ge 1$.

Thus, for $1 \le i \le m$ and $k \ge 1$ we have

- (a) $\bar{d}(\psi(\gamma^{(i)}, .)\beta_0 \circ \gamma^{(i)}, \psi(\gamma^{(i)}, .)\tilde{\beta}_0 \circ \gamma^{(i)}) < \frac{\epsilon}{2^4},$
- (b) $\bar{d}\left((\prod_{j=0}^{k-1} \alpha_j \circ S^j)\beta'_k \circ S^k, (\prod_{j=0}^{k-1} \alpha_j \circ S^j)\tilde{\beta}_k \circ S^k\right) < \frac{\epsilon}{2^{k+4}},$
- (c) $\tilde{d}(\psi(\gamma^{(i)},.)(\prod_{j=0}^{k-1}\alpha_j \circ S^j \circ \gamma^{(i)})\beta_k^\prime \circ S^k \circ \gamma^{(i)}, \psi(\gamma^{(i)},.)(\prod_{j=0}^{k-1}\alpha_j \circ S^j \circ \gamma^{(i)})\tilde{\beta}_k \circ S^k \circ \gamma^{(i)}) < \frac{\epsilon}{2^{k+4}}.$

Then the measurable function $\beta(x) = (\beta_0(x) - \tilde{\beta}_0(x)) + \sum_{k=1}^{\infty} (\prod_{j=0}^{k-1} \alpha_j \circ S'(x)) (\beta'_k \circ S^k(x) - \tilde{\beta}_k \circ S^k(x))$ is well defined. Set

$$\begin{split} \tilde{f}(\gamma, x) &= \psi(\gamma, x) \tilde{\beta}_0(\gamma + x) - \tilde{\beta}_0(x) \\ &+ \sum_{k=1}^{\infty} \psi(\gamma, x) \left(\prod_{j=0}^{k-1} \alpha_j \circ S^j(\gamma + x) \right) \tilde{\beta}_k \circ S^k(\gamma + x) \\ &- \left(\prod_{j=0}^{k-1} \alpha_j \circ S^j(x) \right) \tilde{\beta}_k \circ S^k(x), \end{split}$$

then \tilde{f} defines a ψ -cocycle. Also $f(\gamma, x) = \tilde{f}(\gamma, x) + \psi(\gamma, x)\beta(\gamma + x) - \beta(x)$, and for $1 \le i \le m$,

$$\bar{d}(f(\gamma^{(t)},.),\tilde{f}(\gamma^{(t)},.)) = \bar{d}(\psi(\gamma^{(t)},.)\beta \circ \gamma^{(t)},\beta) < \epsilon.$$

REMARK 4.5. Let $C = \{C_n : n \in \mathbb{N}\}$ be a countable dense collection in the measure

algebra and fix some 0 < K < 1. For $k, m, n \in \mathbb{N}$ and $0 \neq \lambda \in \overline{B}$, set

$$\begin{split} N_{\lambda}(k,m,n;\psi) &= \left\{ f \in Z_{\psi}(X,\Gamma,B,\mu) : \sup_{V \in [\Gamma]} \mu \Big(C_k \cap V^{-1} C_k \\ &\cap \Big\{ x : |\omega(V,x) - 1| < \frac{1}{m} \Big\} \cap \Big\{ x : d\Big(\psi(V,x),1\Big) < \frac{1}{n} \Big\} \\ &\cap \big\{ x : f(V,x) \in B_{1/n}(\lambda) \big\} \Big) > K\mu(C_k) \Big\}. \end{split}$$

By Lemma 2.12, $N_{\lambda}(k, m, n; \psi)$ is open. Note that Lemma 2.11 implies

$$\bigcap_{k,m,n} N_{\lambda}(k,m,n;\psi) = \{f \in Z_{\psi}(X,\Gamma,B,\mu) : \lambda \in \bar{E}_{\psi}(f)\}$$

If $\{\lambda_p : p \in \mathbb{N}\}$ is a dense sequence in *B*, then

$$\bigcap_{k,m,n,p} N_{\lambda_p}(k,m,n;\psi) = \{f \in Z_{\psi}(X,\Gamma,\mu) : E_{\psi}(f) = B\}.$$

This shows that $\{f \in Z_{\psi}(X, \Gamma, B, \mu) : \lambda \in \overline{E}_{\psi}(f)\}$ and $\{f \in Z_{\psi}(X, \Gamma, \mu) : E_{\psi}(f) = B\}$ are G_{δ} sets in $Z_{\psi}(X, \Gamma, B, \mu)$.

NOTATION. We denote by $M'(X, \Gamma, A, \mu)$ the set of cocycles $\psi \in M(X, \Gamma, A, \mu)$ that recurs simultaneously with ω , the Radon-Nikodym derivative, and whose associated sequence $\{\alpha_k\}$ depends on finitely many coordinates only. Then, for every $\epsilon > 0$ and for any $C \in \mathcal{F}$ with $\mu(C) > 0$, there exist a $\gamma \in \Gamma, \gamma \neq \overline{0}$ such that $\mu(C \cap \gamma^{-1}C \cap \{x : |\omega(\gamma, x) - 1| < \epsilon\} \cap \{x : d(\psi(\gamma, x), 1) < \epsilon\}) > 0$.

PROPOSITION 4.6. For each $\psi \in M'(X, \Gamma, A, \mu)$ and for each $k, m, n \in \mathbb{N}$, the set $N_{\infty}(k, m, n; \psi)$ is dense in $Z_{\psi}(X, \Gamma, B, \mu)$.

PROOF. Let $\{\alpha_k\}$ be the sequence associated with ψ , where each α_k depends on finitely many coordinates only. Choose a positive sequence $\{\epsilon_n\}$ such that $\epsilon_n < \frac{1}{n}$, and $d(ab, b) < \frac{1}{n}$ wherenver $d(a, 1) < \epsilon_n$. Let *U* be any nonempty open set in $Z_{\psi}(X, \Gamma, B, \mu)$, then by Proposition 4.4 there exists $f \in Z'_{\psi}(X, \Gamma, B, \mu)$ with $f \in U$. Since *f* is an interior point of *U* there is an $\epsilon > 0$ and $\gamma^{(1)}, \ldots, \gamma^{(K)} \in \Gamma$ such that

$$W = \left\{ h \in Z_{\psi}(X, \Gamma, B, \mu) : \overline{d} \left(h(\gamma^{(i)}, .), f(\gamma^{(i)}, .) \right) < \epsilon, 1 \le i \le K \right\} \subseteq U.$$

Let $\{\beta'_k\}$ be the tail sequence of f. Since $f \in Z'_{\psi}(X, \Gamma, B, \mu)$ each β'_k depends only on finitely many coordinates, and for $\gamma \in \Gamma$

$$f(\gamma, x) = \sum_{n=0}^{\infty} \psi(\gamma, x) \beta_n(\gamma + x) - \beta_n(x).$$

where $\beta_k(x) (\prod_{i=0}^{k-1} \alpha_i \circ S^i(x)) \beta'_k \circ S^k(x)$ depends only on finitely many coordinates. Then we can find integers $M_1 < M_2$ such that for each $0 \le j < M_1$ and every $1 \le i < K$ we have $\alpha_j \circ S^j$, β_j depend only on the first M_2 coordinates

$$f(\gamma^{(i)},x) = \sum_{j=0}^{M_1} \psi(\gamma^{(i)},x)\beta_j(\gamma^{(i)}+x) - \beta_j(x).$$

Using the simultaneous recurrence of ω and ψ and Rohlin lemma, we can find $\delta^{(1)} \in \Gamma$ different from the identity and a subset $B_1 \subseteq C_k$ of positive measure such that: $\delta^{(1)} \in \overline{\Gamma}_{M_2}$, $B_1 \cap \delta^{(1)}B_1 = \emptyset$, $B_1 \cup \delta^{(1)}B_1 \subseteq C_k$, and for $x \in B_1 \cup \delta^{(1)}B_1$ we have $|\omega(\delta^{(1)}, x) - 1| < \frac{1}{m}$, and $d(\psi(\delta^{(1)}, x), 1) < \epsilon_1 < 1$. Since $\delta^{(1)} \neq \overline{0}$ there exist positive integers k_1 , N_1 such that $M_2 < k_1 \leq N_1$, $\delta^{(1)} \in \overline{\Gamma}_{M_2} \cap \Gamma_{N_1}$, and $(\delta^{(1)})_{k_1} = (\delta^{(1)})_{N_1} = 1$. By hypothesis, we can find an integer $\overline{N}_1 > N_1$ such that $\alpha_j \circ S'$ depends on the first \overline{N}_1 coordinates only for $j \leq N_1$. If $\mu(C_k \setminus B_1 \cup \delta^{(1)}B_1) > 0$, then using again the simultaneous recurrence of ω and ψ and Rohlin lemma, we can find $\delta^{(2)} \in \Gamma$ different from the identity, and a subset $B_2 \subseteq C_k \setminus B_1 \cup \delta^{(1)}B_1$ of positive measure such that: $\delta^{(2)} \in \overline{\Gamma}_{\overline{N}_1}, B_2 \cap \delta^{(2)}B_2 = \emptyset$, $B_2 \cup \delta^{(2)}B_2 \subseteq C_k \setminus B_1 \cup \delta^{(1)}B_1$, and for $x \in B_2 \cup \delta^{(2)}B_2$ we have $|\omega(\delta^{(2)}, x) - 1| < \frac{1}{m}$, and $d(\psi(\delta^{(2)}, x), 1) < \epsilon_2 < \frac{1}{2}$. Since $\delta^{(2)} \neq \overline{0}$ there exist positive integers k_2, N_2 such that $\overline{N}_1 < k_2 \leq N_2, \delta^{(2)} \in \overline{\Gamma}_{\overline{N}_1} \cap \Gamma_{N_2}$, and $(\delta^{(2)})_{k_2} = (\delta^{(2)})_{N_2} = 1$. Let $\overline{N}_2 > N_2$ be such that $\alpha_j \circ S'$ depends on the first \overline{N}_2 coordinates only $j \leq N_2$. We continue by an exhasutive argument to find a sequence $\{B_r\}$ of subsets of C_k , sequences of positive integers $\{k_r\}$, $\{N_r\}, \{\overline{N}_r\}$, and a sequence $\{\delta^{(r)}\}$ in Γ such that:

(i) $\bar{N}_{r-1} < k_r \leq N_r < \bar{N}_r; \bar{N}_0 = M_2,$

(ii) for $0 \le j \le N_r$, $\alpha_j \circ S'$ depends only on the first \bar{N}_r coordinates,

(iii) $\delta^{(r)} \in \overline{\Gamma}_{N_{r-1}} \cap \Gamma_{N_r}$, and $(\delta^{(r)})_{k_r} = (\delta^{(r)})_{N_r} = 1$,

(iv) $B_r \cap \delta^{(r)} B_r = \emptyset, B_r \cup \delta^{(r)} B_r \subseteq C_k \setminus \bigcup_{j < r} B_j \cup \delta^{(j)} B_j$, and $\mu (C_k \setminus \bigcup_{r=1}^{\infty} B_r \cup \delta^{(r)} B_r) = 0$, (v) For $x \in B_r \cup \delta^{(r)} B_r$, we have $|\omega(\delta^{(r)}, x) - 1| < \frac{1}{m}$, and $d(\psi(\delta^{(r)}, x), 1) < \epsilon_n < \frac{1}{n}$. Define $V \in [\Gamma]$ by

$$Vx = \begin{cases} \delta^{(r)} + x & \text{if } x \in B_r \cup \delta^{(r)}B_r \text{ for some } r \ge 1\\ x & \text{otherwise.} \end{cases}$$

Using condition (ii) above, we can choose for each $j \ge 1$ an element $b_j \in B$ such that for $x \in X$, $d\left(\left(\prod_{i=0}^{j-1} \alpha_i \circ S^i(x)\right) b_j, 0\right) > n + \frac{3}{n}$. Then for any $a \in A$ such that $d(a, 1) < \epsilon_n$ we have $d\left(a\left(\prod_{i=0}^{j-1} \alpha_i \circ S^i(x)\right) b_j, 0\right) > n + \frac{2}{n}$. For $j \ge 1$, let $\beta': X \to B$ be given by

$$\beta'_j(x) = \begin{cases} b_j & \text{if } x_1 = 0\\ 0 & \text{if } x_1 = 1, \end{cases}$$

and let $\rho_J(x) = \left(\prod_{i=0}^{J-1} \alpha_i \circ S^i(x)\right) \beta_J^i \circ S^j(x)$. Define $h \in Z_{\psi}(X, \Gamma, \mu)$ by

$$h(\gamma, x) = \sum_{r=1}^{\infty} \psi(\gamma, x) \rho_{N_{r-1}}(\gamma + x) - \rho_{N_{r-1}}(x).$$

For a.e. $x \in C_k$ we have that $x \in B_r \cup \delta^{(r)} B_r$ for some $r \ge 1$. Now, either $\rho_{N_{r-1}}(\delta^{(r)} + x) = 0$ and $\rho_{N_{r-1}}(x) = (\prod_{i=0}^{N_{r-2}} \alpha_i \circ S^i(x)) b_{N_{r-1}}$, or $\rho_{N_{r-1}}(\delta^{(r)} + x) = (\prod_{i=0}^{N_{r-2}} \alpha_i \circ S^i(x)) b_{N_{r-1}}$ and $\rho_{N_{r-1}}(x) = 0$. Also, for $1 \le l \le r-1$, $\rho_{N_{l-1}}(\delta^{(r)} + x) = \rho_{N_{l-1}}(x)$ so that

$$h(V,x) = h(\delta^{(r)},x) = \sum_{l=1}^{r} \psi(\delta^{(r)},x)\rho_{N_{l-1}}(\delta^{(r)}+x) - \rho_{N_{l-1}}(x),$$

and

$$\begin{split} d\big(h(V,x),0\big) &\geq d\big(\psi(\delta^{(r)},x)\rho_{N_{r^{-1}}}(\delta^{(r)}+x) - \rho_{N_{r^{-1}}}(x),0\big) \\ &\quad -d\Big(\sum_{l=1}^{r-1}\psi(\delta^{(r)},x)\rho_{N_{l^{-1}}}(\delta^{(r)}+x) - \rho_{N_{l^{-1}}}(x),0\Big) \\ &= d\big(\psi(\delta^{(r)},x)\rho_{N_{r^{-1}}}(\delta^{(r)}+x),\rho_{N_{r^{-1}}}(x)\Big) \\ &\quad -d\Big(\psi(\delta^{(r)},x)\sum_{l=1}^{r-1}\rho_{N_{l^{-1}}}(x),\sum_{l=1}^{r-1}\rho_{N_{l^{-1}}}(x)\Big) \\ &> n + \frac{2}{n} - \frac{1}{n} = n + \frac{1}{n}. \end{split}$$

Also, for each $1 \le i \le K$, we have $h(\gamma^{(i)}, x) = 0$. Let

$$\bar{f}(\gamma, x) = \sum_{j=0}^{M_1} \psi(\gamma, x) \beta_j(\gamma + x) - \beta_j(x) + h(\gamma, x).$$

Then, for $1 \leq i \leq K \bar{f}(\gamma^{(i)}, x) = f(\gamma^{(i)}, x)$ so that $\bar{f} \in U$. Let $x \in B_r \cup \delta^{(r)}B_r$, since $M_2 \leq \bar{N}_{r-1}$ we have for $1 \leq j \leq M_1 \beta_j(\delta^{(r)} + x) = \beta_j(x)$. Hence,

$$d\Big(\sum_{j=0}^{M_1}\psi(\delta^{(r)},x)\beta_j(\delta^{(r)}+x)-\beta_j(x),0\Big)=d\Big(\psi(\delta^{(r)},x)\sum_{j=0}^{M_1}\beta_j(x),\sum_{j=0}^{M_1}\beta_j(x)\Big)<\frac{1}{n}.$$

Thus,

$$d(\bar{f}(V,x),0) \ge d(h(\delta^{(r)},x),0) - d(\sum_{j=0}^{M_1} \psi(\delta^{(r)},x)\beta_j(\delta^{(r)}+x) - \beta_j(x),0) > n.$$

This shows that $\overline{f} \in N_{\infty}(k, m, n; \psi) \cap U$ and therefore, $N_{\infty}(k, m, n; \psi)$ is dense.

COROLLARY 4.7. If $\psi \in M'(X, \Gamma, A, \mu)$, then the set $\{f \in Z_{\psi}(X, \Gamma, B, \mu) : \infty \in \overline{E}_{\psi}(f)\}$ is a dense G_{δ} .

Corollary 4.7, Theorem 3.1, and the orbit equivalence of the \mathbb{Z} action by powers of *T* with the Γ action above ([S1] §8), together give the following theorem:

THEOREM 4.8. Let T be a nonsingular ergodic automorphism of a Lebesgue probability space (Y, \mathcal{B}, ν) . Then for each $\psi \in M'(Y, \mathbb{Z}, A, \nu)$, the set $\{f \in Z_{\psi}(Y, \mathbb{Z}, B, \nu) : \infty \in \overline{E}_{\psi}(f)\}$ is a dense G_{δ} .

REMARK 4.9. (i) Using similar techniques and notation as in Lemma 2.11 and Lemma 2.12 one can show that:

(a) If for $\epsilon > 0$ and for every C_k (in a countable dense collection in the measure algebra)

$$\sup_{V\in[\Gamma]} \mu\Big(C_k \cap V^{-1}C_k \cap \{x : |\omega(V,x)-1| < \epsilon\} \cap \{x : d\big(\psi(V,x),1\big) < \epsilon\}$$
$$\cap \{x : d\big(f(V,x),0\big) < \epsilon\} \cap \{x : Vx \neq x\}\Big) > K\mu(C_k),$$

then (ψ, f) is recurrent.

(b) For each $k, m, n \in \mathbb{N}$ the map

$$f \longrightarrow \sup_{V \in [\Gamma]} \mu \left(C_k \cap V^{-1} C_k \cap \left\{ x : |\omega(V, x) - 1| < \frac{1}{m} \right\} \\ \cap \left\{ x : d(\psi(V, x), 1) < \frac{1}{n} \right\} \cap \left\{ x : d(f(V, x), 0) < \frac{1}{n} \right\} \\ \cap \left\{ x : Vx \neq x \right\} \right\},$$

is lower semicontinuous,

(ii) Let $R(k, m, n; \psi)$ be the set of $f \in Z_{\psi}(X, \Gamma, B, \mu)$ such that

$$\sup_{V\in[\Gamma]} \mu\left(C_k \cap V^{-1}C_k \cap \left\{x : |\omega(V,x)-1| < \frac{1}{m}\right\} \cap \left\{x : d\left(\psi(V,x),1\right) < \frac{1}{n}\right\} \\ \cap \left\{x : d\left(f(V,x),0\right) < \frac{1}{n}\right\} \cap \left\{x : Vx \neq x\right\}\right\} > K\mu(C_k),$$

Then (i) part (b) implies that $R(k, m, n; \psi)$ is open, and hence the set

$$\{f \in Z_{\psi}(X, \Gamma, B, \mu) : (\psi, f) \text{ is recurrent}\} = \bigcap_{k,m,n} R(k, m, n; \psi)$$

is a G_{δ} .

(iii) If in the proof of Proposition 4.6 we define $h_1(\gamma, x) = \sum_{r=1}^{\infty} \psi(\gamma, x) \rho_{N_r}(\gamma + x) - \rho_{N_r}(x)$, then for $x \in B_r \cup \delta^{(r)}B_r$ we have

$$d(h_1(V,x),0) = d(h_1(\delta^{(r)},x),0) = d\left(\sum_{j=1}^{r-1} \psi(\delta^{(r)},x)\rho_{N_j}(\delta^{(r)}+x) - \rho_{N_j}(x),0\right)$$
$$= d\left(\psi(\delta^{(r)},x)\sum_{j=1}^{r-1} \rho_{N_j}(x),\sum_{j=1}^{r-1} \rho_{N_j}(x)\right) < \frac{1}{n}.$$

Also,

$$d\Big(\sum_{j=0}^{M_1}\psi(\delta^{(r)},x)\beta_j(\delta^{(r)}+x)-\beta_j(x),0\Big)=d\Big(\psi(\delta^{(r)},x)\sum_{j=0}^{M_1}\beta_j(x),\sum_{j=0}^{M_1}\beta_j(x)\Big)<\frac{1}{n}.$$

Set

$$\bar{f}_1(\gamma, x) = \sum_{j=0}^{M_1} \psi(\gamma, x) \beta_j(\gamma + x) - \beta_j(x) + h_1(\gamma, x).$$

For $x \in B_r \cup \delta^{(r)}B_r$, $d(\bar{f}_1(V,x),0) = d(\bar{f}_1(\delta^{(r)},x),0) < \frac{1}{n}$; thus $\bar{f}_1 \in R(k,m,n;\psi) \cap U$. Therefore, $R(k,m,n;\psi)$ is dense. Again using orbit equivalence to the Γ action this proves:

K DAJANI

THEOREM 4.10. Let T be a nonsingular ergodic automorphism of a Lebesgue probability space (Y, \mathcal{B}, ν) . Then for each $\psi \in M'(Y, \mathbb{Z}, A, \nu)$ the set $\{f \in Z_{\psi}(Y, \mathbb{Z}, \nu) : (\psi, f)$ is recurrent and $\infty \in \overline{E}_{\psi}(Y, \mathbb{Z}, \nu)\}$ is a dense G_{δ} .

ACKNOWLEDGEMENT. The author would like to thank Professor Robert Zimmer for suggesting this work. Also Professor E. A. Robinson for his encouragment and time during the preparation of the manuscript.

REFERENCES

- [CHP] J R Choksi, J M Hawkins and V S Prasad, Abelian cocycles for nonsingular transformations and genericity of type III₁ transformations, Mh Math **102**(1987), 187–205
- [D] D G Dajani, Genericity of nontrivial H-superrecurrent H-cocycles, Trans Amer Math Soc 323(1991), 111–132
- [HO] T Hamachi and M Osikawa, Ergodic groups of automorphisms and Krieger's Theorem, Sem Math Sci 3(1981)
- **[K]** W Krieger, On the Araka-Wood asymptotic ratio set and nonsingular transformations of a measure space, Contributions to ergodic theory and probability, Lect Notes Math **160**(1970), 158–177
- [MF] C Moore and J Feldman, Ergodic equivalence relations, cohomology and von Neumann algebras I, Trans Amer Soc 234(1977), 289–324
- [PS] K R Parthasarathy and K Schmidt, On the cohomology of hyperfinite action, Mh Math 84(1977), 37–48
- [S1] K Schmidt, *Cocycles of ergodic transformation group*, MacMillan Lectures in Math New Delhi MacMillan, India, (1977)

[S2] _____, On Recurrence, Z Wahrscheinlichkeitstheorie verw Geb 68(1984), 75–95

- [S3] _____, Algebraic Ideas in Ergodic Theory, AMS Regional Conference Series in Math 76(1990)
- [Z] R J Zimmer, Ergodic theory and semisimple groups, Monographs in Math , Birkhauser, (1984)

University of North Carolina Chapel Hill North Carolina 27599–3250

University of South Alabama Mobile, Alabama 36608