GENERIC RESULTS FOR COCYCLES WITH VALUES IN A SEMIDIRECT PRODUCT

KARMA DAJANI

Abstract

Let $A \propto B$ be the semidirect product of two local compact Hausdorff topological groups We prove that for a nonsingular ergodic automorphism T of a Lebesgue probability space, a generic cocycle taking values in $A \propto B$ is nontrivial and recurrent

0 . Introduction. Let A and B be two second countable locally compact (necessarlly countably generated) Hausdorff topological groups, each with a translation invariant metric. We denote both metrics on A and B by d to be understood from the context which metric is under consideration. The group operation on A is denoted by multiplication, the identity by 1 and the inverse of $a \in A$ by a^{-1}. The group B is assumed to be abelian and noncompact; the group operation is denoted by addition, the identity by 0 , and the inverse of $b \in B$ by $-b$. The group A acts on B by group automorphisms; for simplicity we shall denote the action by multiplication: $b \xrightarrow{a} a b$. Furthermore, the map $(a, b) \rightarrow a b$ is assumed to be uniformly jointly continuous, that is for every $\epsilon>0$ there exist $\delta_{1}, \delta_{2}>0$ such that $d\left(a b, a^{\prime} b^{\prime}\right)<\epsilon$ whenever $d\left(a, a^{\prime}\right)<\delta_{1}$ and $d\left(b, b^{\prime}\right)<\delta_{2}$. Let $A \propto B$ be the semidirect product of B by A relative to the given action. That is, the elements have the form $(a, b) \in A \times B$, and group operation \circ defined as follows:

$$
(a, b) \circ\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b+a b^{\prime}\right)
$$

The identity element is $(1,0)$, and $(a, b)^{-1}=\left(a^{-1},-a^{-1} b\right)$.
Let (X, \mathcal{B}, μ) be a Lebesgue probability space, and G a countable group (with identity $e)$ that acts nonsingularly, ergodically, and freely on X. We denote this action by multiplication: $x \xrightarrow{g} g x$. We shall consider cocycles on X taking values in the semidirect product $A \propto B$. That is, we shall consider measurable functions $F: G \times X \rightarrow A \propto B$ with the property that

$$
\begin{equation*}
F\left(g^{\prime} g, x\right)=F(g, x) \circ F\left(g^{\prime}, g x\right) \tag{1}
\end{equation*}
$$

The above identity is called the cocycle identity and it implies that $F(e, x)=(1,0)$. We let $\psi: G \times X \rightarrow A$ and $f: G \times X \rightarrow B$ denote the projections of F onto the first and second coordinates respectively. Then $F(g, x)=(\psi(g, x), f(g, x)) \equiv(\psi, f)(g, x)$ and together with (1) imply
(i) $\psi\left(g^{\prime} g, x\right)=\psi(g, x) \psi\left(g^{\prime}, g x\right)$ and $\psi(e, x)=1$ i.e., ψ is a multiplicative A valued cocycle,
(ii) $f\left(g^{\prime} g, x\right)=f(g, x)+\psi(g, x) f\left(g^{\prime}, g x\right)$ and $f(e, x)=0$; i.e., f is a ψ-cocycle (or twisted) B valued cocycle.
Throughout this paper (ψ, f) will always mean that ψ is an A valued cocycle and f a B valued ψ-cocycle. All equalities are understood to hold a.e.

We study generic properties of nontrivial and recurrent cocycles (ψ, f) in terms of their coordinate functions; this work is a generalization of the results in [D]. In Section 1, we define the notion of ψ-cohomology for ψ-cocycles, and investigate its connection with the recurrence properties and cohomology of cocycles taking values in the semidirect product $A \propto B$. In Section 2 we define the essential range, $\bar{E}_{\psi}(f)$, of a ψ-cocycle f to be a certain closed subgroup of \bar{B}, the one point compactification of B. We give sufficient conditions for triviality (being a coboundary) and recurrence of (ψ, f) in terms of $\bar{E}_{\psi}(f)$. Let $\bar{E}(\psi, f)$ and $E(\psi, f)$ denote the essential range and finite essential range of the cocycle (ψ, f) (see [K], [S1], and [S3]). We show that $E(\psi, f)$ is always an extension of the abelian group $E_{\psi}(f)$ by $E_{f}(\psi)$, where $E_{\psi}(f)=\bar{E}_{\psi}(f) \cap B$ and $E_{f}(\psi)$ consists of all elements in the finite essential range of ψ that appear as a first coordinate of some element in $E(\psi, f)$. We give sufficient conditions under which this extension is split, that is, $E(\psi, f)$ is a semidirect product. We topologize the set of ψ-cocycles by extending appropriately the topology of convergence in measure. In Section 3 we prove that orbit equivalence induces a topological group isomorphism between the corresponding sets of twisted cocycles which preserve triviality, the notions of recurrence, full essential range, and infinity in the essential range. In Section 4 we prove that if T is a nonsingular ergodic automorphism, then for a certain class of A valued cocycles ψ which simultaneously recur with the cocycle of the Radon-Nikodym derivative, there is a dense G_{δ} set of ψ-cocycles f whose essential range contains infinity and for which the cocycle (ψ, f) is recurrent. Using techniques similar to those in [PS] (see also [D]) this is first done for cocycles of a particular countable group action Γ on $\{0,1\}^{N}$ (see $\S 4$ for a definition) which is orbit equivalent to the action of \mathbb{Z} by powers of T ([S1] §8), then orbit equivalence (see $\S 3$) allows us to transfer the results back to T.

1. ψ-Cohomology.

Definition 1.1. Two cocycles F and H on X taking values in $A \propto B$ are said to be cohomologous if there exists a measurable function $K: X \rightarrow A \propto B$ such that $F(g, x)=$ $K(x) \circ H(g, x) \circ K(g x)^{-1}$ for $g \in G$ and a.e. $x \in X$. The function K is called a transfer function. If $F(g, x)=K(x) \circ K(g x)^{-1}$ (i.e., F is cohomologous to the constant function $(1,0))$, then F is called a coboundary. Similar definitions hold for two A valued cocycles ψ and ϕ on X.

Definition 1.2. Two ψ-cocycles f and h on X are said to be ψ-cohomologous if there exists a measurable function $\beta: X \rightarrow B$ such that $f(g, x)=\beta(x)+h(g, x)-\psi(g, x) \beta(g x)$. The function β is called a ψ-transfer function. If f is ψ-cohomologous to the constant function 0 , then f is called ψ-coboundary.

Proposition 1.3. A cocycle (ψ, f) is a coboundary with transfer function (α, β) if and only if ψ is a coboundary with transfer function α and f is $a \psi$-coboundary with ψ-transfer function β.

REMARK 1.4. Let ψ and ϕ be two A valued cohomologous cocycles with transfer function α, i.e., $\psi(g, x)=\alpha(x) \phi(g, x) \alpha(g x)^{-1}$. Let h be a ϕ-cocycle, then the function $\alpha h: G \times X \rightarrow B$ defined by $\alpha h(g, x)=\alpha(x) h(g, x)$ is a ψ-cocycle.

Proposition 1.5. Two cocycles (ψ, f) and (ϕ, h) are cohomologous with transfer function (α, β) if and only if ψ and ϕ are cohomologous with transfer function α, and f and α h are ψ-cohomologous with ψ-transfer function β.

PROOF. Let $(\psi, f)(g, x)=(\alpha(x), \beta(x)) \circ(\phi, h)(g, x) \circ\left(\alpha(g x)^{-1},-\alpha(g x)^{-1} \beta(g x)\right)$. Then

$$
\psi(g, x)=\alpha(x) \phi(g, x) \alpha(g x)^{-1}
$$

and

$$
\begin{aligned}
f(g, x) & =\beta(x)+\alpha(x) h(g, x)-\alpha(x) \phi(g, x) \alpha(g x)^{-1} \beta(g x) \\
& =\beta(x)+\alpha(x) h(g, x)-\psi(g, x) \beta(g x) .
\end{aligned}
$$

That is, ψ and ϕ are cohomologous with transfer function α, and f and αh are ψ-cohomologous with ψ-transfer function β. The converse is proved by reversing the above steps.

Corollary 1.6. If the group A is abelian, then (ψ, f) and (ψ, h) are cohomologous with transfer function (α, β) if and only if α equals a constant α_{0} and f is ψ cohomologous to $\alpha_{0} h$ with ψ-transfer function β.

Proof. Suppose (ψ, f) and (ψ, h) are cohomologous with transfer function (α, β), from the above proposition we only need to show that α is a constant. Since A is abelian it follows that $\alpha(x)=\alpha(g x)$ and hence by ergodicity of the G action, α is equal to some constant α_{0}. Conversely, suppose $\alpha(x) \equiv \alpha_{0}$ and $f(g, x)=\beta(x)+\alpha(x) h(g, x)-$ $\psi(g, x) \beta(g x)$. Since A is abelian, it follows that $\psi(g, x)=\alpha(x) \psi(g, x) \alpha(g x)^{-1}$ so that $(\psi, f)(g, x)=(\alpha(x), \beta(x)) \circ(\psi, h)(g, x) \circ(\alpha(x), \beta(x))^{-1}$.

Definition 1.7. A cocycle (ψ, f) is said to be recurrent if for every $C \in \mathcal{B}$ of positive measure, and for each neighborhood $U \subseteq A$ of 1 and $V \subseteq B$ of 0 , there exists $g \in G$ different from the identity such that

$$
\mu\left(C \cap g^{-1} C \cap\{x: \psi(g, x) \in U\} \cap\{x: f(g, x) \in V\}\right)>0
$$

Similar definitions hold for the coordinate functions ψ and f.
REMARK 1.8. $(\psi, 0)$ is recurrent if and only if ψ is recurrent.

Proposition 1.9. If (ψ, f) and (ϕ, h) are cohomologous cocycles, then (ψ, f) is recurrent if and only if (ϕ, h) is recurrent.

Proof. Assume (ϕ, h) is recurrent and let $\psi(g, x)=\alpha(x) \phi(g, x) \alpha(g x)^{-1}$, and $f(g, x)=\beta(x)+\alpha(x) h(g, x)-\psi(g, x) \beta(g x)$. Let $\epsilon>0$ there exist $0<\delta_{1}, \delta_{2}<\frac{\epsilon}{2}$ such that $d\left(a b, a^{\prime}, b^{\prime}\right)<\frac{\epsilon}{2}$ whenever $d\left(a, a^{\prime}\right)<\delta_{1}$ and $d\left(b, b^{\prime}\right)<\delta_{2}$. Choose sequences $\left\{a_{n}\right\}$ in A and $\left\{b_{n}\right\}$ in B such that the sequences of neighborhoods $U_{n}=\left\{a \in A: d\left(a, a_{n}\right)<\frac{\delta_{1}}{4}\right\}$ and $V_{n}=\left\{b \in B: d\left(b, b_{n}\right)<\frac{\delta_{2}}{2}\right\}$ cover A and B respectively. Now, let $C \in \mathcal{B}$ with $\mu(C)>0$. For $n, m \in \mathbb{N}$, let $C_{n, m}=\left\{x \in C: \alpha(x) \in U_{n}\right.$ and $\left.\beta(x) \in V_{m}\right\}$. Since $C=\bigcup_{n, m} C_{n, m}$ there exist $n, m \in \mathbb{N}$ such that $\mu\left(C_{n, m}\right)>0$. By recurrence of (ϕ, h) there exist $g \in G, g \neq e$ such that

$$
\mu\left(C_{n, m} \cap g^{-1} C_{n, m} \cap\left\{x: d(\phi(g, x), 1)<\frac{\delta_{1}}{2}\right\} \cap\left\{x: d(h(g, x), 0)<\delta_{2}\right\}\right)>0 .
$$

Since,

$$
\begin{aligned}
C_{n, m} \cap g^{-1} C_{n, m} \cap & \left\{x: d(\phi(g, x), 1)<\frac{\delta_{1}}{2}\right\} \cap\left\{x: d(h(g, x), 0)<\delta_{2}\right\} \subseteq \\
& C \cap g^{-1} C \cap\{x: d(\psi(g, x), 1)<\epsilon\} \cap\{x: d(f(g, x), 0)<\epsilon\}
\end{aligned}
$$

we have that $\mu\left(C \cap g^{-1} \cap\{x: d(\psi(g, x), 1)<\epsilon\} \cap\{x: d(f(g, x), 0)<\epsilon\}\right)>0$. Therefore, (ψ, f) is recurrent. The converse is proved similarly.

Proposition 1.10. If ψ is recurrent andf is a ψ-coboundary, then the cocycle (ψ, f) is recurrent.

Proof. From Proposition 1.5, we have that (ψ, f) and $(\psi, 0)$ are cohomologous with transfer function $(1, \beta)$, where β is the ψ-transfer function of f. Remark 1.8 implies that $(\psi, 0)$ is recurrent, and hence by Proposition $1.9(\psi, f)$ is recurrent.
2. Essential range. Let $(\psi, f): G \times X \rightarrow A \propto B$ be a cocycle, and consider its essential range $\bar{E}(\psi, f)$ which is a subgroup of $(A \propto B)^{-}$, the one point compactification of $A \propto B$. Let $E(\psi, f)=\bar{E}(\psi, f) \cap(A \propto B)$, the finite essential range which is a subgroup of $A \propto B$. Similarly the essential range and the finite essential range of ψ are denoted by $\bar{E}(\psi)$ and $E(\psi)$ respectively (see [S1] and [S3]). Let $\bar{B}=B \cup\{\infty\}$ be the one point compactification of B. For $\lambda \in B$ let $B_{\epsilon}(\lambda)=\{b \in B: d(b, \lambda)<\epsilon\}$, and $B_{\epsilon}(\infty)=\{b \in$ $B: d(b, 0)>1 / \epsilon\}$. We define the essential range of f to be the set $\bar{E}_{\psi}(f)$ consisting of all $\lambda \in \bar{B}$ such that for every $\epsilon>0$ and for every subset C of X of positive measure, there exists $g \in G$ such that

$$
\mu\left(C \cap g^{-1} C \cap\{x: d(\psi(g, x), 1)<\epsilon\} \cap\left\{x: f(g, x) \in B_{\epsilon}(\lambda)\right\}\right)>0 .
$$

That is, $\lambda \in \bar{E}_{\psi}(f)$ if and only if $(1, \lambda)$ belongs to the essential range of the cocycle (ψ, f) in the usual sense. Let $E_{\psi}(f)=\bar{E}_{\psi}(f) \cap B$. Since 0 is trivially an element of $E_{\psi}(f)$, it follows that $E_{\psi}(f) \neq \emptyset$.

Proposition 2.1. $\quad E_{\psi}(f)$ is a closed subgroup of B.
Proof. Assume that $\lambda, \lambda^{\prime} \in E_{\psi}(f)$, we want to show that $\lambda+\lambda^{\prime} \in E_{\psi}(f)$. Assume with no loss of generality that $\lambda, \lambda^{\prime} \neq 0$. Let $\epsilon>0$ and $C \subseteq X$ with $\mu(C)>0$. By joint continuity of the action of A on B there exist $\delta_{1}, \delta_{2}<\frac{\epsilon}{2}$ such that $d\left(a b, \lambda^{\prime}\right)<\frac{\epsilon}{2}$ whenever $d(a, 1)<\delta_{1}$ and $d\left(b, \lambda^{\prime}\right)<\delta_{2}$. Since $\lambda^{\prime} \in E_{\psi}(f)$ there exists $g^{\prime} \in G$ such that

$$
\mu\left(C \cap g^{\prime-1} C \cap\left\{x: d\left(\psi\left(g^{\prime}, x\right), 1\right)<\delta_{1}\right\} \cap\left\{x: d\left(f\left(g^{\prime}, x\right), \lambda^{\prime}\right)<\delta_{2}\right)>0 .\right.
$$

Let $D=C \cap g^{\prime-1} C \cap\left\{x: d\left(\psi\left(g^{\prime}, x\right), 1\right)<\delta_{1}\right\} \cap\left\{x: d\left(f\left(g^{\prime}, x\right), \lambda^{\prime}\right)<\delta_{2}\right\}$. Then $\mu(D)>0$ and there exists a $g \in G$ such that $\mu\left(D \cap g^{-1} D \cap\left\{x: d(\psi(g, x), 1)<\delta_{1}\right\} \cap\right.$ $\left.\left\{x: d(f(g, x), \lambda)<\frac{\epsilon}{2}\right\}\right)>0$. Since,

$$
\begin{aligned}
& D \cap g^{-1} D \cap\left\{x: d(\psi(g, x), 1)<\delta_{1}\right\} \cap\left\{x: d(f(g, x), \lambda)<\frac{\epsilon}{2}\right\} \subseteq \\
& \quad C \cap\left(g^{\prime} g\right)^{-1} C \cap\left\{x: d\left(\psi\left(g^{\prime} g, x\right), 1\right)<\epsilon\right\} \cap\left\{x: d\left(f\left(g^{\prime} g, x\right), \lambda+\lambda^{\prime}\right)<\epsilon\right\},
\end{aligned}
$$

it follows that

$$
\mu\left(C \cap\left(g^{\prime} g\right)^{-1} C \cap\left\{x: d\left(\psi\left(g^{\prime} g, x\right), 1\right)<\epsilon\right\} \cap\left\{x: d\left(f\left(g^{\prime} g, x\right), \lambda+\lambda^{\prime}\right)<\epsilon\right\}\right)>0 .
$$

Therefore, $\lambda+\lambda^{\prime} \in E_{\psi}(f)$. Now, let $\lambda \in E_{\psi}(f)$. Note that $\psi\left(g^{-1}, g x\right)=\psi(g, x)^{-1}$, and $f\left(g^{-1}, g x\right)=-\psi(g, x)^{-1} f(g, x)$ for all $g \in G$. So that $d\left(\psi\left(g^{-1}, g x\right), 1\right)=$ $d\left(\psi(g, x)^{-1}, 1\right)=d(1, \psi(g, x))$, and

$$
\begin{aligned}
d\left(f\left(g^{-1}, g x\right),-\lambda\right) & =d\left(-\psi(g, x)^{-1} f(g, x),-\lambda\right) \\
& \leq d\left(-\psi(g, x)^{-1} f(g, x),-\psi(g, x)^{-1} \lambda\right)+d\left(-\psi(g, x)^{-1} \lambda,-\lambda\right) \\
& =d\left(\psi(g, x)^{-1} f(g, x), \psi(g, x)^{-1} \lambda\right)+d\left(\psi(g, x)^{-1} \lambda, \lambda\right)
\end{aligned}
$$

Choose $\delta_{1}, \delta_{2}<\frac{\epsilon}{2}$ such that $d(a b, \lambda)<\frac{\epsilon}{2}$ whenever $d(a, 1)<\delta_{1}$ and $d(b, \lambda)<\delta_{2}$. For any set C in X of positive measure and for all $g \in G$, we have

$$
\begin{aligned}
& g\left(C \cap g^{-1} C \cap\left\{x: d(\psi(g, x), 1)<\delta_{1}\right\} \cap\left\{x: d(f(g, x), \lambda)<\delta_{2}\right\}\right) \subseteq \\
& C \cap g C \cap\left\{x: d\left(\psi\left(g^{-1}, x\right), 1\right)<\delta_{1}\right\} \cap\left\{x: d\left(f\left(g^{-1}, x\right),-\lambda\right)<\epsilon\right\}
\end{aligned}
$$

Since $\lambda \in E_{\psi}(f)$ and the G action is nonsingular, there exists $g \in G$ such that

$$
\mu\left(C \cap g C \cap\left\{x: d\left(\psi\left(g^{-1}, x\right), 1\right)<\delta_{1}\right\} \cap\left\{x: d\left(f\left(g^{-1}, x\right),-\lambda\right)<\epsilon\right\}\right)>0 .
$$

Therefore, $-\lambda \in E_{\psi}(f)$. The fact that $E_{\psi}(f)$ is closed is clear.
PROPOSITION 2.2. Iff and h are ψ-cohomologous ψ-cocycles, then $\bar{E}_{\psi}(f)=\bar{E}_{\psi}(h)$.
Proof. Suppose $f(g, x)=\beta(x)+h(g, x)-\psi(g, x) \beta(g x)$, where $\beta: X \rightarrow B$ is a measurable function. Let $\epsilon>0$ be given, and choose $0<\delta<\epsilon$ such that $d(b, a b)<\frac{\epsilon}{3}$
whenever $d(1, a)<\delta$. Since B is a Lindelöf space, there exist a sequence $\left\{b_{n}\right\}$ in B and a countable cover $\left\{U_{n}\right\}$ of X with $U_{n}=\left\{b \in B: d\left(b, b_{n}\right)<\frac{\epsilon}{6}\right\}$. Let $C \subseteq X$ with $\mu(C)>0$. For each $n \in \mathbb{N}$, let $C_{n}=\left\{x \in X: \beta(x) \in U_{n}\right\}$. Since $C=\cup_{n} C_{n}$, it follows that there exists $n \in \mathbb{N}$ such that $\mu\left(C_{n}\right)>0$. For any $\lambda \in B$ and $g \in G$ we have

$$
\begin{align*}
d(f(g, x), \lambda) & =d(\beta(x)+h(g, x)-\psi(g, x) \beta(g x), \lambda) \tag{*}\\
& \leq d(h(g, x), \lambda)+d(\beta(x), \beta(g x))+d(\beta(g x), \psi(g, x) \beta(g x))
\end{align*}
$$

Now, let $\lambda \in E_{\psi}(h)$. There exists $g \in G$ such that

$$
\mu\left(C_{n} \cap g^{-1} C_{n} \cap\{x: d(\psi(g, x), 1)<\delta\} \cap\left\{x: d(h(g, x), \lambda)<\frac{\epsilon}{3}\right\}\right)>0 .
$$

It follows from (*) that

$$
\mu\left(C \cap g^{-1} C \cap\{x: d(\psi(g, x), 1)<\epsilon\} \cap\{x: d(f(g, x), \lambda)<\epsilon\}\right)>0 .
$$

Therefore, $\lambda \in E_{\psi}(f)$, i.e., $E_{\psi}(g) \subseteq E_{\psi}(f)$. The reverse containment is proved similarly, so that $E_{\psi}(g)=E_{\psi}(f)$. Now, let $\infty \in \bar{E}_{\psi}(g)$ and $\epsilon_{1}>0$ be so that $\frac{\epsilon_{1}}{1-\epsilon_{1}^{2}}<\epsilon$. Choose $0<\delta_{1}, \delta_{2}<\epsilon$ so that $d\left(b, a b^{\prime}\right)<\epsilon_{1}$ whenever $d(a, 1)<\delta_{1}$ and $d\left(b, b^{\prime}\right)<\delta_{2}$. Let $C \in \mathcal{B}$ be of positive measure, we can find for some $n \in \mathbb{N}$ an element $b_{n} \in B$ so that the set $C_{n}=\left\{x \in C: d\left(\beta(x), b_{n}\right)<\frac{\delta_{2}}{2}\right\}$ has positive measure. Let $g \in G$ be such that

$$
\mu\left(C_{n} \cap g^{-1} C_{n} \cap\left\{x: d(\psi(g, x), 1)<\delta_{1}\right\} \cap\left\{x: d(h(g, x), 0)>\frac{1}{\epsilon_{2}}\right\}\right)>0 .
$$

Since

$$
d(f(g, x), 0) \geq d(h(g, x), 0)-d(\beta(x), \psi(g, x) \beta(g x))>\frac{1}{\epsilon_{1}}-\epsilon_{1}>\frac{1}{\epsilon}
$$

it follows that

$$
\mu\left(C \cap g^{-1} C \cap\{x: d(\psi(g, x), 1)<\epsilon\} \cap\left\{x: d(f(g, x), 0)>\frac{1}{\epsilon}\right\}\right)>0 .
$$

Proposition 2.3. If $\lambda \in E_{\psi}(f)$ for some $\lambda \neq 0$, then (ψ, f) is recurrent.
Proof. Let $\epsilon>0$ and $C \in \mathcal{B}$ with $\mu(C)>0$. Choose $0<\delta_{1}, \delta_{2}<\frac{\epsilon}{2}$ so that $d(a b, \lambda)<\frac{\epsilon}{2}$ whenever $d(a, 1)<\delta_{1}$ and $d(b, \lambda)<\delta_{2}$. Since $\lambda \neq 0$ there exists $g^{\prime} \in G$, $g^{\prime} \neq e$ such that

$$
\mu\left(C \cap g^{\prime-1} C \cap\left\{x: d\left(\psi\left(g^{\prime}, x\right), 1\right)<\frac{\epsilon}{2}\right\} \cap\left\{x: d\left(f\left(g^{\prime}, x\right), \lambda\right)<\delta_{2}\right\}\right)>0
$$

Let $D=C \cap g^{\prime-1} C \cap\left\{x: d\left(\psi\left(g^{\prime}, x\right), 1\right)<\frac{\epsilon}{2}\right\} \cap\left\{x: d\left(f\left(g^{\prime}, x\right), \lambda\right)<\delta_{2}\right\}$. By Rohlin lemma we can choose a subset D^{\prime} of D of positive measure such that $D^{\prime} \cup g^{\prime} D^{\prime} \subseteq D$ and $\mu\left(D^{\prime} \cap g^{\prime} D^{\prime}\right)=\mu\left(D^{\prime} \cap g^{\prime-1} D^{\prime}\right)=0$. Since $-\lambda \in E_{\psi}(f)$ and $\lambda \neq 0$, there exists $g \notin\left\{e, g^{\prime}, g^{\prime-1}\right\}$ such that

$$
\mu\left(D^{\prime} \cap g^{-1} D^{\prime} \cap\left\{x: d(\psi(g, x), 1)<\delta_{1}\right\} \cap\left\{x: d(f(g, x),-\lambda)<\frac{\epsilon}{2}\right\}\right)>0 .
$$

Now, for $x \in D^{\prime} \cap g^{-1} D^{\prime} \cap\left\{x: d(\psi(g, x), 1)<\delta_{1}\right\} \cap\left\{x: d(f(g, x),-\lambda)<\frac{\epsilon}{2}\right\}$, we have
(i) $x \in C \cap\left(g^{\prime} g\right)^{-1} C$,
(ii) $d\left(\psi\left(g^{\prime} g, x\right), 1\right)=d\left(\psi(g, x) \psi\left(g^{\prime}, g x\right), 1\right) \leq d\left(\psi\left(g^{\prime}, g x\right), 1\right)+d(\psi(g, x), 1)<\epsilon$,
(iii) $d\left(f\left(g^{\prime} g, x\right), 0\right)=d\left(f(g, x)+\psi(g, x) f\left(g^{\prime}, g x\right), 0\right) \leq d(f(g, x),-\lambda)+$ $d\left(\psi(g, x) f\left(g^{\prime}, g x\right), \lambda\right)<\epsilon$.
Thus,

$$
\mu\left(C \cap\left(g^{\prime} g\right)^{-1} C \cap\left\{x: d\left(\psi\left(g^{\prime} g, x\right), 1\right)<\epsilon\right\} \cap\left\{x: d\left(f\left(g^{\prime} g, x\right), 0\right)<\epsilon\right\}\right)>0 .
$$

Therefore, (ψ, f) is recurrent.
Proposition 2.4. If ψ is cohomologous to ϕ with transfer function α and f is $a \psi$ cocycle, then $E_{\psi}(f)=B$ if and only if $E_{\phi}\left(\alpha^{-1} f\right)=B$, and $\infty \in \bar{E}_{\psi}(f)$ if and only if $\infty \in \bar{E}_{\phi}\left(\alpha^{-1} f\right)$.

Proof. Let $\lambda \in B$ be any element, and let $\epsilon>0$ be given. There exist $0<\delta_{1}$, $\delta_{2}<\frac{\epsilon}{2}$ such that $d\left(a b, a^{\prime} b^{\prime}\right)<\frac{\epsilon}{2}$ whenever $d\left(a, a^{\prime}\right)<\delta_{1}$ and $d\left(b, b^{\prime}\right)<\delta_{2}$. Choose a sequence $\left\{a_{n}\right\}$ in A such that sequence of neighborhoods $\left\{V_{n}\right\}$, with $V_{n}=\{a \in A$: $\left.d\left(a, a_{n}\right)<\frac{\delta_{1}}{2}\right\}$, covers A. Let $C \in \mathcal{B}$ with $\mu(C)>0$; there exists $n \in \mathbb{N}$ such that the set $C_{n}=\left\{x \in C: \alpha^{-1}(x) \in V_{n}\right\}$ has positive measure. Since $a_{n}^{-1} \lambda \in E_{\psi}(f)$ there exists $g \in G$ such that

$$
\mu\left(C_{n} \cap g^{-1} C_{n} \cap\left\{x: d(\psi(g, x), 1)<\frac{\delta_{1}}{2}\right\} \cap\left\{x: d\left(f(g, x), a_{n}^{-1} \lambda\right)<\delta_{2}\right\}\right)>0 .
$$

For $x \in C_{n} \cap g^{-1} C_{n} \cap\left\{x: d(\psi(g, x), 1)<\frac{\delta_{1}}{2}\right\} \cap\left\{x: d\left(f(g, x), a_{n} \lambda\right)<\delta_{2}\right\}$ we have

$$
d\left(\alpha^{-1}(x) f(g, x), \lambda\right) \leq d\left(\alpha^{-1}(x) f(g, x), \alpha^{-1}(x) a_{n}^{-1} \lambda\right)+d\left(\alpha^{-1}(x) a_{n}^{-1} \lambda, \lambda\right)<\epsilon
$$

and

$$
\begin{aligned}
d(\phi(g, x), 1) & =d\left(\alpha(x)^{-1} \psi(g, x) \alpha(g x), 1\right) \\
& \leq d(\psi(g, x), 1)+d\left(\alpha^{-1}(x), \alpha^{-1}(g x)\right)<\frac{\delta_{1}}{2}+\delta_{1}<\epsilon
\end{aligned}
$$

Therefore $\lambda \in E_{\phi}\left(\alpha^{-1} f\right)$. The converse is proved similarly. Also a similar proof shows that $\infty \in E_{\phi}(f)$ if and only if $\infty \in E_{\phi}\left(\alpha^{-1} f\right)$.

We now look at the algebraic connection between $E(\psi, f), E_{\psi}(f)$, and $E(\psi)$. We first consider the split exact sequence $0 \rightarrow B \xrightarrow{\iota} A \propto B \xrightarrow{\pi} A \rightarrow 1$, where $\iota(b)=(1, b)$ and $\pi(a, b)=a$. Let $E_{f}(\psi)=\pi(E(\psi, f))=\{a \in E(\psi):(a, b) \in E(\psi, f)$ for some $b \in B\}$, and $E_{f}^{\prime}(\psi)=\{a \in E(\psi):(a, 0) \in E(\psi, f)\}$. Both $E_{f}(\psi)$ and $E_{f}^{\prime}(\psi)$ are subgroups of $E(\psi)$. We now give an equivalent definition of $E_{f}^{\prime}(\psi)$.

PROPOSITION 2.5. $a \in E_{f}^{\prime}(\psi)$ if and only if $(a, b) \in E(\psi, f)$ for all $b \in E_{\psi}(f)$.
Proof. Let $a \in E_{f}^{\prime}(\psi)$, then $(a, 0) \in E(\psi, f)$. For any $b \in E_{\psi}(f)$ we have $(1, b) \in$ $E(\psi, f)$. Since $E(\psi, f)$ is a group, then $(a, b)=(1, b) \circ(a, 0) \in E(\psi, f)$. The converse is trivial since $0 \in E_{\psi}(f)$.

PROPOSITION 2.6. The group $\boldsymbol{E}(\psi, f)$ is an extension of $E_{f}(\psi)$ by $E_{\psi}(f)$.
Proof. We need to show that the sequence $0 \rightarrow E_{\psi}(f) \xrightarrow{\iota} E(\psi, f) \xrightarrow{\pi} E_{f}(\psi) \rightarrow 1$ is short exact. Here ι and π denote the restrictions to the appropriate subgroups. By definition $E_{f}(\psi)=\pi(E(\psi, f))$, so that π is surjective. Clearly ι is injective and $\pi \iota(b)=b$ for all $b \in E_{\psi}(f)$.

The following lemma shows that the group $E_{f}(\psi)$ acts on the group $E_{\psi}(f)$, and the action is inherited from that of A on B.

Lemma 2.7. If $a \in E_{f}(\psi)$ and $b \in E_{\psi}(f)$, then $a b \in E_{\psi}(f)$.
Proof. We need to show that $(1, a b) \in E(\psi, f)$. Since $a \in E_{f}(\psi)$, there exists $b^{\prime} \in B$ such that $\left(a, b^{\prime}\right) \in E(\psi, f)$. Also $(1, b) \in E(\psi, f)$, so that $(1, a b)=\left(a, b^{\prime}\right) \circ(1, b) \circ\left(a, b^{\prime}\right)^{-1} \circ$ $\left(1, b^{\prime}\right)^{-1} \in E(\psi, f)$.

Notation. We denote by $E_{f}(\psi) \propto E_{\psi}(f)$, the semidirect product of $E_{\psi}(f)$ by $E_{f}(\psi)$ relative to the above inherited action.

Proposition 2.8. If $E_{f}(\psi)=E_{f}^{\prime}(\psi)$, then $E(\psi, f)=E_{f}(\psi) \propto E_{\psi}(f)$.
Proof. For this it suffices to show that the sequence $0 \rightarrow E_{\psi}(f) \xrightarrow{\iota} E(\psi, f) \xrightarrow{\pi}$ $E_{f}(\psi) \rightarrow 1$ is split exact. From the given, we have that $(a, 0) \in E(\psi, f)$ for every $a \in$ $E_{f}(\psi)$. Define $\alpha: E_{f}(\psi) \rightarrow E(\psi, f)$ by $\alpha(a)=(a, 0)$. Then, $\pi \alpha(a)=a$ for all $a \in E_{f}(\psi)$, and hence the above sequence splits. Therefore, $E(\psi, f)=E_{f}(\psi) \propto E_{\psi}(f)$.

Corollary 2.9. If $E_{\psi}(f)=B$, then $E(\psi, f)=E_{f}(\psi) \propto E_{\psi}(f)$.
Proof. For any $(a, b) \in E(\psi, f)$, we have $(1, b) \in E(\psi, f)$ so that $(a, 0)=(1, b)^{-1} \circ$ $(a, b) \in E(\psi, f)$. This shows that $E_{f}(\psi)=E_{f}^{\prime}(\psi)$ and hence by Proposition 2.8, $E(\psi, f)=$ $E_{f}(\psi) \propto E_{\psi}(f)$.

Corollary 2.10. If $E_{f}^{\prime}(\psi)=A$, then $E(\psi, f)=E_{f}(\psi) \propto E_{\psi}(f)$.
Proof. Follows immediately from Proposition 2.8 , since in this case $E_{f}^{\prime}(\psi)=$ $E_{f}(\psi)$.

Let $Z_{\psi}(X, G, B, \mu)$ be the set of ψ-cocycles which is a group under pointwise addition. Let $B_{\psi}(X, G, B, \mu)$ be the subgroup of ψ-coboundaries (we identify those that agree μ a.e.). We topologize Z_{ψ} and B_{ψ} by defining the following notion of convergence: $f^{(n)} \rightarrow f$ if and only if for each $g \in G, f^{(n)}(g,.) \rightarrow f(g,$.$) in measure. It is well known that the$ topology of convergence in measure is given by the metric: $\bar{d}\left(\beta, \beta^{\prime}\right)=\int_{X} \frac{d\left(\beta(x), \beta^{\prime}(x)\right)}{1+d\left(\beta(x), \beta^{\prime}(x)\right)} d \mu$, where $\beta, \beta^{\prime}: X \rightarrow B$ are measurable. Let $M(X, G, A, \mu)$ be the set of equivalence classes of multiplicative A valued cocycles on X.

Let $\mathcal{C}=\left\{C_{n}: n \in \mathbb{Z}\right\}$ be a countable dense collection in the measure algebra. The following lemma gives a necessary condition for an element of B to be in the essential range of a ψ-cocycle by reducing the verifications to members of \mathcal{C} only (see [CHP], [D]). This will be used in Section 4. Denote by ω, the Radon-Nikodym derivative μ i.e., $\omega(g, x)=\frac{d \mu \circ g}{d \mu}(x)$, where $\mu \circ g(A)=\mu(g A)$. Let $[G]$ denote the full group of G. That is,
[G] consists of all bimeasurable automorphisms $V: X \rightarrow Y$ such that for each $x \in X$ there exists $g \in G$ such that $V x=g x$. For $V \in[G]$, set $\omega(V, x)=\omega(g, x), \psi(V, x)=\psi(g, x)$, and $f(V, x)=f(g, x)$ where $V x=g x$.

LEMMA 2.11. If there exists $a<K<1$ such that for every $\epsilon>0$ and for every $C \in \mathcal{C}$

$$
\begin{aligned}
& \sup _{V \in[G]} \mu\left(C \cap V^{-1} C \cap\{x:|\omega(V, x)-1|<\epsilon\}\right. \\
&\left.\cap\{x: d(\psi(V, x), 1)<\epsilon\} \cap\left\{x: f(V, x) \in B_{\epsilon}(\lambda)\right\}\right)>K \mu(C)
\end{aligned}
$$

then $\lambda \in \bar{E}_{\psi}(f)$.
Proof. Let $\epsilon>0$ and $E \subseteq X$ with $\mu(E)>0$. Let $c(\epsilon, K)=\frac{(1-\epsilon) K}{(1-\epsilon)(K+1)+1}$. Choose $C \in \mathcal{C}$ such that $\mu(E \Delta C)<c(\epsilon, K) \mu(E)$. By hypothesis, there exists $V \in[G]$ such that

$$
\begin{aligned}
\mu\left(C \cap V^{-1} C \cap\{x\right. & :|\omega(V, x)-1|<\epsilon\} \\
& \left.\cap\{x: d(\psi(V, x), 1)<\epsilon\} \cap\left\{x: f(V, x) \in B_{\epsilon}(\lambda)\right\}\right)>K \mu(C) .
\end{aligned}
$$

Let $\bar{C}=C \cap V^{-1} C \cap\{x:|\omega(V, x)-1|<\epsilon\} \cap\{x: d(\psi(V, x), 1)<\epsilon\} \cap\{x: f(V, x) \in$ $\left.B_{\epsilon}(\lambda)\right\}$, then

$$
\mu(\bar{C})>K \mu(C) \geq K \mu(E \cap C) \geq K(\mu(E)-\mu(E \Delta C))>\mu(E)(K-K c(\epsilon, K))>0
$$

Let $\bar{E}=C \cap \bar{C}$. Then $\mu(\bar{E})=\mu(\bar{C})-\mu(\bar{C} \backslash E) \geq \mu(\bar{C})-\mu(C \Delta E)>\mu(E)(K-$ $(K+1) c(\epsilon, K))>0$, and $\mu(V \bar{E}) \geq(1-\epsilon) \mu(\bar{E})>(1-\epsilon) \mu(E)(K-(K+1) c(\epsilon, K))$. Since $V \bar{E} \subseteq C$, we have

$$
\begin{aligned}
\mu(E \cap V \bar{E}) & =\mu(V \bar{E})-\mu(V \bar{E} \backslash E) \\
& \geq \mu(V \bar{E})-\mu(C \Delta E) \\
& >\mu(E)((1-\epsilon) K-c(\epsilon, K)((1-\epsilon)(K+1)+1)) \geq 0
\end{aligned}
$$

by nonsingularity of μ with respect to V, it follows that $\mu\left(V^{-1} E \cap \bar{E}\right)>0$ and hence

$$
\begin{aligned}
& \mu\left(E \cap V^{-1} E \cap\{x:|\omega(V, x)-1|<\epsilon\}\right. \\
& \\
& \left.\cap\{x: d(\psi(V, x), 1)<\epsilon\} \cap\left\{x: f(V, x) \in B_{\epsilon}(\lambda)\right\}\right)>0 .
\end{aligned}
$$

Therefore, $\lambda \in \bar{E}_{\psi}(f)$.
Lemma 2.12. For each $\lambda \in \bar{E}_{\psi}(f)$ and for each $k, m, n \in \mathbb{N}$, the map

$$
\begin{aligned}
& f: \rightarrow \sup _{V \in[G]} \mu\left(C_{k} \cap V^{-1} C_{k} \cap\left\{x:|\omega(V, x)-1|<\frac{1}{m}\right\}\right. \\
&\left.\cap\left\{x: d(\psi(V, x), 1)<\frac{1}{n}\right\} \cap\left\{x: f(V, x) \in B_{1 / n}(\lambda)\right\}\right)
\end{aligned}
$$

is lower semicontinuous.
Proof. The result follows from the fact that for each $V \in[G]$ the map

$$
\begin{aligned}
& f: \rightarrow \mu\left(C_{k} \cap V^{-1} C_{k} \cap\left\{x:|\omega(V, x)-1|<\frac{1}{m}\right\}\right. \\
&\left.\cap\left\{x: d(\psi(V, x), 1)<\frac{1}{n}\right\} \cap\left\{x: f(V, x) \in B_{1 / n}(\lambda)\right\}\right)
\end{aligned}
$$

is continuous (see [D]).

3. Invariance under orbit equivalence.

THEOREM 3.1. Let G_{i} be a nonsingular free action on $\left(X_{i}, \mathcal{B}_{i}, \mu_{i}\right), i=1,2$. If the actions of G_{1} and G_{2} are orbit equivalent, then there exists a topological group isomorphism $\Lambda: M\left(X_{1}, G_{1}, A, \mu_{1}\right) \rightarrow M\left(X_{2}, G_{2}, A, \mu_{2}\right)$ such that for every $\psi \in M\left(X_{1}, G_{1}, A, \mu_{1}\right)$ the following hold:
(a) If ϕ is cohomologous to $\Lambda(\psi)$, then $Z_{\psi}\left(X_{1}, G_{1}, A, \mu_{1}\right) \cong Z_{\phi}\left(X_{2}, G_{2}, A, \mu_{2}\right)$ and $B_{\psi}\left(X_{1}, G_{1}, A, \mu_{1}\right) \cong B_{\phi}\left(X_{2}, G_{2}, A, \mu_{2}\right)$ (as topological groups),
(b) under the isomorphism of (a), recurrence, ∞ in the essential range, and full essential range are preserved.

Proof. Let $F: X_{1} \rightarrow X_{2}$ denote the isomorphism that gives the orbit equivalence. For g_{2}, G_{2} and $x_{2} \in X_{2}$, set $\Lambda(\psi)\left(g_{2}, x_{2}\right)=\psi\left(g_{1}, x_{1}\right)$, where $x_{2}=F\left(x_{1}\right)$ and $g_{2} F\left(x_{1}\right)=F\left(g_{1} x\right)$. Let $\psi \in M\left(X_{1}, G_{1}, A, \mu_{1}\right)$ and $\phi\left(g_{2}, x_{2}\right)=\alpha\left(x_{2}\right) \Lambda(\psi)\left(g_{2}, x_{2}\right) \alpha\left(g_{2} x_{2}\right)^{-1}$, where $\alpha: X_{2} \rightarrow A$ is measurable. For $f \in Z_{\psi}\left(X_{1}, G_{1}, A, \mu_{1}\right)$, set $\bar{f}\left(g_{2}, x_{2}\right)=\alpha\left(x_{2}\right) f\left(g_{1}, x_{1}\right)$. Then \bar{f} is a ϕ cocycle. Since if $g_{2}, g_{2}^{\prime} \in G_{2}$ and $x_{2} \in X_{2}$, then there exists an $x_{1} \in X_{1}$ and $g_{1}, g_{1}^{\prime} \in G_{1}$ such that $F\left(x_{2}\right)=x_{1}, F\left(g_{1} x_{1}\right)=g_{2} x_{2}$, and $F\left(g_{1}^{\prime} g_{1} x_{1}\right)=g_{2}^{\prime} g_{2} x_{2}$. Then,

$$
\begin{aligned}
\bar{f}\left(g_{2}^{\prime} g_{2}, x_{2}\right) & =\alpha\left(x_{2}\right) f\left(g_{1}^{\prime} g_{1}, x_{1}\right) \\
& =\alpha\left(x_{2}\right)\left(f\left(g_{1}, x_{1}\right)+\psi\left(g_{1}, x_{1}\right) f\left(g_{1}^{\prime}, g_{1} x_{1}\right)\right) \\
& =\alpha\left(x_{2}\right) f\left(g_{1}, x_{1}\right)+\alpha\left(x_{2}\right) \Lambda(\psi)\left(g_{2}, x_{2}\right) f\left(g_{1}^{\prime}, g_{1} x_{1}\right) \\
& =\alpha\left(x_{2}\right) f\left(g_{1}, x_{1}\right)+\phi\left(g_{2}, x_{2}\right) \alpha\left(g_{2} x_{2}\right) f\left(g_{1}^{\prime}, g_{1} x_{1}\right) \\
& =\bar{f}\left(g_{2}, x_{2}\right)+\phi\left(g_{2}, x_{2}\right) \bar{f}\left(g_{2}^{\prime}, g_{2} x_{2}\right) .
\end{aligned}
$$

If $f\left(g_{1}, x_{1}\right)=\beta\left(x_{1}\right)-\psi\left(g_{1}, x_{1}\right) \beta\left(g_{1} x_{1}\right)$, then

$$
\begin{aligned}
\bar{f}\left(g_{2}, x_{2}\right) & =\alpha\left(x_{2}\right) f\left(g_{1}, x_{1}\right)=\alpha\left(x_{2}\right)\left(\beta\left(x_{1}\right)-\psi\left(g_{1}, x_{1}\right) \beta\left(g_{1} x_{1}\right)\right) \\
& =\alpha\left(x_{2}\right) \beta\left(F^{-1} x_{2}\right)-\phi\left(g_{2}, x_{2}\right) \alpha\left(g_{2} x_{2}\right) \beta\left(F^{-1} g_{2} x_{2}\right)
\end{aligned}
$$

i.e., \bar{f} is a ϕ-coboundary with ϕ-transfer function βF^{-1}. This proves (a). For part (b), proofs similar to those of Propositions 1.2, 2.2, and 2.4 show that (ψ, f) is recurrent if and only if (ϕ, \bar{f}) is recurrent, $\infty \in \bar{E}_{\psi}(f)$ if and only if $\infty \in \bar{E}_{\phi}(\bar{f})$, and $E_{\psi}(f)=B$ if and only if $E_{\phi}(\bar{f})=B$.
4. A generic model: the binary odometer. Let $X=\prod_{i=1}^{\infty}\{0,1\}_{l}$, which is a group under addition, and let \mathcal{F} be the Borel σ-algebra. Let Γ be the subgroup of X consisting of all those sequences with finitely many nonzero coordinates only. Then Γ acts on X by coordinatewise addition $(x \xrightarrow{\gamma} \gamma+x)$. Let μ be any nonsingular measure on X which is ergodic with respect to the Γ action. It is well known that the action of Γ on X is orbit equivalent to the binary odometer with respect to the measure μ, and for any nonsingular ergodic hyperfinite action of a countable group G on a Lebesgue probability space Y, there exists a measure μ on X which is nonsingular and ergodic for the Γ action such that the actions of G on Y and Γ on X are orbit equivalent (see [S1] §8).

Let $S: X \rightarrow X$ be the left shift, and for $n \geq 0$ let Γ_{n} be the finite subgroup of Γ whose members consist of all $\gamma \in \Gamma$ such that $\gamma_{m}=0$ for all $m>n\left(\Gamma_{0}=\{\overline{0}=(0,0, \ldots)\}\right)$. Denote by $\bar{\Gamma}_{n}$ the subgroup of Γ consisting of all those elements whose first n coordinates are all zeros. For $x \in X$, let $x^{(n)}=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right)$ and $x_{(n)}=\left(0, \ldots, 0 x_{n+1}, x_{n+2}, \ldots\right)$, then $x^{(n)} \in \Gamma_{n}, x_{(n)} \in \bar{\Gamma}_{n}$ and $x=x^{(n)}+x_{(n)}$. For $a_{1}, a_{2}, \ldots, a_{n} \in A$ we denote the product $a_{1} a_{2} \cdots a_{n}$ by $\prod_{l=1}^{n} a_{l}$. The following proposition is a generalization of Theorem 3.1 in [SP] for A abelian.

Proposition 4.1. For any cocycle $\psi: \Gamma \times X \rightarrow A$ there exists a sequence of measurable maps $\alpha_{k}: X \rightarrow A$ such that for each $n \geq 1$ and every $\gamma \in \Gamma_{n}$,

$$
\begin{equation*}
\psi(\gamma, x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)^{-1} \tag{*}
\end{equation*}
$$

Conversely, for any sequence of measurable maps $\alpha_{k},(*)$ defines a cocycle.
Proof. For $n \geq 1$, let $\psi_{n}(x)=\psi\left(x^{(n)}, x_{(n)}\right)$. Note that if $\gamma \in \Gamma_{n}$, then $\gamma^{(n)}=\gamma$ and $\gamma_{(n)}=(0,0, \ldots)$.

Claim (i). For any $\gamma \in \Gamma_{n}, \psi(\gamma, x)=\psi_{n}(x)^{-1} \psi_{n}(\gamma+x)$.
PROOF OF Claim (i). Note that $(\gamma+x)^{(n)}=\gamma+x^{(n)}$ and $(\gamma+x)_{(n)}=x_{(n)}$; hence the cocycle identity gives

$$
\begin{aligned}
\psi_{n}^{-1}(x) \psi_{n}(\gamma+x) & =\psi\left(x^{(n)}, x_{(n)}\right)^{-1} \psi\left((\gamma+x)^{(n)},(\gamma+x)_{(n)}\right) \\
& =\psi\left(x^{(n)}, x_{(n)}\right)^{-1} \psi\left(x^{(n)}, x_{(n)}\right) \psi\left(\gamma, x^{(n)}+x_{(n)}\right) \\
& =\psi\left(\gamma, x^{(n)}+x_{(n)}\right)=\psi(\gamma, x) .
\end{aligned}
$$

CLAIM (ii). For any $\gamma \in \Gamma_{n}$ we have,

$$
\psi_{n}(\gamma+x) \psi_{n+1}(\gamma+x)^{-1}=\psi_{n}(x) \psi_{n+1}(x)^{-1} .
$$

Proof of Claim (ii).

$$
\begin{aligned}
\psi_{n+1}(x)^{-1} \psi_{n+1}(\gamma+x) & =\psi\left(x^{(n+1)}, x_{(n+1)}\right)^{-1} \psi\left((\gamma+x)^{(n+1)},(\gamma+x)_{(n+1)}\right) \\
& =\psi\left(x^{(n+1)}, x_{(n+1)}\right)^{-1} \psi\left(\gamma+x^{(n+1)}, x_{(n+1)}\right) \\
& =\psi\left(\gamma, x^{(n+1)}+x_{(n+1)}\right)=\psi(\gamma, x)=\psi_{n}(x)^{-1} \psi_{n}(\gamma+x) .
\end{aligned}
$$

This shows that $\psi_{n}(\gamma+x) \psi_{n+1}(\gamma+x)^{-1}=\psi_{n}(x) \psi_{n+1}(x)^{-1}$. Thus for each $n \geq 1$, the function $\psi_{n} \psi_{n+1}^{-1}$ is independent of the first n coordinates, and hence there exists a measurable function $\alpha_{n}: X \rightarrow A$ such that $\alpha_{n} \circ S^{n}(x)=\psi_{n}(x) \psi_{n+1}(x)^{-1}$. Set $\alpha_{0}(x)=\psi_{1}(x)^{-1}$, then for $n \geq 1$ and any $\gamma \in \Gamma_{n}$ we have

$$
\psi(\gamma, x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)^{-1}
$$

Conversely, let $\left\{\alpha_{k}\right\}$ be a sequence of measurable maps defined on X with values in A. For $n \geq 1$ and $\gamma \in \Gamma_{n}$ set $\psi(\gamma, x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)^{-1}$, and let $\psi(\overline{0}, x)=1$. We claim that ψ is a cocycle. Let $\gamma \in \Gamma_{n}$ and $\gamma^{\prime} \in \Gamma_{m}$. Assume with no loss of generality that $m \geq n$, then $\gamma^{\prime}+\gamma \in \Gamma_{m}$. Also for each $i>n-1$ we have $\alpha_{l} \circ S^{\prime}(x)=\alpha_{l} \circ S^{l}(\gamma+x)$, so that

$$
\begin{aligned}
\psi\left(\gamma^{\prime}+\gamma, x\right)= & \left(\prod_{k=0}^{m-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{m-1} \alpha_{k} \circ S^{k}\left(\gamma^{\prime}+\gamma+x\right)\right)^{-1} \\
= & \left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)^{-1}\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right) \\
& \left(\prod_{k=n}^{m-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)\left(\prod_{k=0}^{m-1} \alpha_{k} \circ S^{k}\left(\gamma^{\prime}+\gamma+x\right)\right)^{-1} \\
= & \left(\prod_{k=0}^{n} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)^{-1} \\
& \left(\prod_{k=0}^{m-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)\left(\prod_{k=0}^{m-1} \alpha_{k} \circ S^{k}\left(\gamma^{\prime}+\gamma+x\right)\right)^{-1} \\
= & \psi(\gamma, x) \psi\left(\gamma^{\prime}, \gamma+x\right) .
\end{aligned}
$$

REmark. We refer to the sequence $\left\{\alpha_{k}\right\}$ as the sequence associated with ψ.
Lemma 4.2. Let ψ be an A valued cocyle, let $\left\{\alpha_{k}\right\}$ be its associated sequence. If $n \geq 1$ and $\beta: X \rightarrow B$ is a measurable map satisfying $\beta(x)=\psi(\gamma, x) \beta(\gamma+x)$ for all $\gamma \in \Gamma_{n}$, then there exists a measurable map $\beta^{\prime}: X \rightarrow B$ such that

$$
\beta(x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right) \beta^{\prime} \circ S^{n}(x)
$$

Conversely, suppose $\beta(x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right) \beta^{\prime} \circ S^{n}(x)$ for some measurable function β^{\prime}, then $\beta(x)=\psi(\gamma, x) \beta(\gamma+x)$ for all $\gamma \in \Gamma_{n}$.

Proof. Suppose that $\beta(x)=\psi(\gamma, x) \beta(\gamma+x)$ for all $\gamma \in \Gamma_{n}$, Proposition 4.1 gives

$$
\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)^{-1} \beta(x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)^{-1} \beta(\gamma+x)
$$

Then the function $\left(\prod_{k=0}^{n-1} \beta_{k} \circ S^{k}\right)^{-1} \beta$ is independent of the first n coordinates of $x \in X$, hence there exists a measurable function $\beta^{\prime}: X \rightarrow B$ such that $\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)^{-1} \beta(x)=$ $\beta^{\prime} \circ S^{n}(x)$. This shows that

$$
\beta(x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right) \beta^{\prime} \circ S^{n}(x)
$$

Conversely, suppose that $\beta(x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right) \beta^{\prime} \circ S^{n}(x)$. For $\gamma \in \Gamma_{n}, \beta^{\prime} \circ S^{n}(x)=$ $\beta^{\prime} \circ S^{n}(\gamma+x)$ and

$$
\begin{aligned}
\psi(\gamma, x) \beta(\gamma+x)= & \left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right)^{-1} \\
& \left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(\gamma+x)\right) \beta^{\prime} \circ S^{n}(\gamma+x) \\
= & \left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right) \beta^{\prime} \circ S^{n}(x)=\beta(x) .
\end{aligned}
$$

Proposition 4.3. Iff: $\Gamma \times X \rightarrow B$ is a ψ-cocycle, then there exists a sequence of measurable maps $\beta_{n}: X \rightarrow B$ such that for $n \geq 1$,

$$
\begin{equation*}
\psi(\gamma, x) \beta_{n}(\gamma+x)=\beta_{n}(x) \text { for } \gamma \in \Gamma_{n} \tag{**}
\end{equation*}
$$

and for $\gamma \in \Gamma$,
$(* * *)$

$$
f(\gamma, x)=\sum_{n=0}^{\infty} \psi(\gamma, x) \beta_{n}(\gamma+x)-\beta_{n}(x) .
$$

Conversely, if $\beta_{n}: X \rightarrow B$ is a sequence of measurable maps satisfying ($(* *)$, then ($* * *$) defines a ψ-cocycle.

Proof. Let $\left\{\alpha_{k}: X \rightarrow A\right\}$ be the sequence associated with the cocycle ψ. Let f be a ψ-cocycle, for $n \geq 1$ set

$$
f_{n}(x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}\left(x_{(n)}\right)\right)^{-1} f\left(x^{(n)}, x_{(n)}\right)
$$

If $\gamma \in \Gamma_{n}$, then $\gamma^{(n)}=\gamma$ and $\gamma_{(n)}=(0,0, \ldots)$, so that

$$
\begin{aligned}
& \psi(\gamma, x) f_{n}(\gamma+x)-f_{n}(x) \\
&=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}\left(x_{(n)}\right)\right)^{-1} f\left(\gamma+x^{(n)}, x_{(n)}\right) \\
& \quad-\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}\left(x_{(n)}\right)\right)^{-1} f\left(x^{(n)}, x_{(n)}\right) \\
&=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right)\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}\left(x_{(n)}\right)\right)^{-1} \psi\left(x^{(n)} x_{(n)}\right) f(\gamma, x) \\
&= f(\gamma, x) .
\end{aligned}
$$

Using similar calculations as the above, one can show that for $\gamma \in \Gamma_{n}$

$$
\psi(\gamma, x) f_{n+1}(\gamma+x)-f_{n+1}(x)=f(\gamma, x)=\psi(\gamma, x) f_{n}(\gamma+x)-f_{n}(x) .
$$

So that for each $n \geq 1$, the function $f_{n+1}-f_{n}$ satisfies

$$
\psi(\gamma, x)\left(f_{n+1}(\gamma+x)-f_{n}(\gamma+x)\right)=f_{n+1}(x)-f_{n}(x)
$$

By Lemma 4.2 for each $n \geq 1$ there exists a measurable function β_{n}^{\prime} such that

$$
f_{n+1}(x)-f_{n}(x)=\left(\prod_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right) \beta_{n}^{\prime} \circ S^{n}(x) .
$$

Let $\beta_{n}(x)=f_{n+1}(x)-f_{n}(x)$, then for $\gamma \in \Gamma_{n}, \psi(\gamma, x) \beta_{n}(\gamma+x)=\beta_{n}(x)$. Set $\beta_{0}(x)=\beta_{0}^{\prime}(x)=$ $f_{1}(x)$. Let $\gamma \in \Gamma_{n}$, then

$$
\begin{aligned}
\sum_{k=0}^{\infty} \psi(\gamma, x) \beta_{k}(\gamma+x)-\beta_{k}(x)= & \sum_{k=0}^{n-1} \psi(\gamma, x) \beta_{k}(\gamma+x)-\beta_{k}(x) \\
= & \psi(\gamma, x) f_{1}(\gamma+x)-f_{1}(x) \\
& +\psi(\gamma, x) \sum_{k=1}^{n-1}\left(f_{k+1}(\gamma+x)-f_{k}(\gamma+x)\right) \\
& \quad-\sum_{k=1}^{n-1}\left(f_{k+1}(x)-f_{k}(x)\right) \\
= & \psi(\gamma, x) f_{1}(\gamma+x)-f_{1}(x) \\
& +\psi(\gamma, x)\left(f_{n}(\gamma+x)-f_{1}(\gamma+x)\right) \\
& \quad-\left(f_{n}(x)-f_{1}(x)\right) \\
= & \psi(\gamma+x) f_{n}(\gamma+x)-f_{n}(x)=f(\gamma, x) .
\end{aligned}
$$

Conversely, let $\left\{\beta_{k}: X \rightarrow B\right\}$ be a sequence of measurable maps satisfying $(* *)$. Let f be as defined in $(* * *)$ and let $\gamma_{1}, \gamma_{2} \in \Gamma$. There exists $m \geq 1$ such that $\gamma_{1}, \gamma_{2} \in \Gamma_{m}$, then $\gamma_{1}+\gamma_{2} \in \Gamma_{m}$ and

$$
\begin{aligned}
f\left(\gamma_{1}+\gamma_{2}, x\right)= & \sum_{n=0}^{m-1} \psi\left(\gamma_{1}+\gamma_{2}, x\right) \beta_{n}\left(\gamma_{1}+\gamma_{2}+x\right)-\beta_{n}(x) \\
= & \psi\left(\gamma_{1}, x\right) \sum_{n=0}^{m-1}\left(\psi\left(\gamma_{2}, \gamma_{1}+x\right) \beta_{n}\left(\left(\gamma_{2}+\left(\gamma_{1}+x\right)\right)-\beta_{n}\left(\gamma_{1}+x\right)\right)\right. \\
& \quad+\sum_{n=0}^{m-1}\left(\psi\left(\gamma_{1}, x\right) \beta_{n}\left(\gamma_{1}+x\right)-\beta_{n}(x)\right) \\
= & \psi\left(\gamma_{1}, x\right) f\left(\gamma_{2}, \gamma_{1}+x\right)+f\left(\gamma_{1}, x\right) .
\end{aligned}
$$

Therefore, $(* * *)$ defines a ψ-cocycle.
Notation. Let f be a ψ-cocycle and $\left\{\beta_{n}\right\}$ the sequence satisfying $(* *)$ and $(* * *)$. Then by Lemma 4.2 for each $n \geq 1$ there exists a measurable map β_{n}^{\prime} such that $\beta_{n}(x)=$
$\left(\Pi_{k=0}^{n-1} \alpha_{k} \circ S^{k}(x)\right) \beta_{n}^{\prime} \circ S^{n}(x)$, and $\beta_{0}=\beta_{0}^{\prime}$. We refer to $\left\{\beta_{n}\right\}$ and $\left\{\beta_{n}^{\prime}\right\}$ as the sequence and tail sequence of f respectively. Let $Z_{\psi}^{\prime}(X, \Gamma, B, \mu)$ be the subgroup of all ψ-cocycles f such that each member in the tail sequence of f depends on finitely many coordinates only. We denote by $F(X, \mu, B)$ the set of all equivalence classes of measurable maps on X with values in B (two functions are identified if they agree μ a.e.). We let $F^{\prime}(X, \mu, B)$ be the subset consisting of the measurable maps depending on finitely many coordinates only. We give $F(X, \mu, B)$ the topology of convergence in measure.

Proposition 4.4. The set $Z_{\psi}^{\prime}(X, \Gamma, \mu)$ is dense in $Z_{\psi}(X, \Gamma, \mu)$.
Proof. Let f be any ψ-cocycle and $\left\{\beta_{n}\right\},\left\{\beta_{n}^{\prime}\right\}$ its associated sequence and tail sequence. Let $\epsilon>0$ be given, by joint continuity of the A action on B there exist sequences of real numbers $\left\{\delta_{n}\right\}$ and $\left\{\delta_{n}^{\prime}\right\}$ such that
(i) for $n \geq 0,0<\delta_{n}<\frac{\epsilon}{2^{+n}}$,
(ii) for $n \geq 0, d\left(a b, a b^{\prime}\right)<\frac{\epsilon}{2^{+n}}$ whenever $d\left(b, b^{\prime}\right)<\delta_{n}$.

Since $F^{\prime}(X, \mu, B)$ is dense in $F(X, \mu, B)$, it follows that for any finite set $\left\{\gamma^{(i)} \in \Gamma\right.$: $1 \leq i \leq m\}$ there exists a sequence $\left\{\tilde{\beta}_{k}\right\}$ of measurable maps each depending on finitely many coordinates only such that
(i) $\bar{d}\left(\beta_{0}, \tilde{\beta}_{0}\right)<\delta_{0}$ and $\bar{d}\left(\beta_{0} \circ \gamma^{(t)}, \tilde{\beta}_{0} \circ \gamma^{(t)}\right)<\delta_{0}$ for $1 \leq i \leq m$,
(ii) $\bar{d}\left(\beta_{k}^{\prime} \circ S^{k}, \tilde{\beta}_{k} \circ S^{k}\right)<\delta_{k}$ and $\bar{d}\left(\beta_{k}^{\prime} \circ S^{k} \circ \gamma^{(i)}, \tilde{\beta}_{k} \circ S^{k} \circ \gamma^{(t)}\right)<\delta_{k}$ for $1 \leq i \leq m$ and $k \geq 1$.
Thus, for $1 \leq i \leq m$ and $k \geq 1$ we have
(a) $\bar{d}\left(\psi\left(\gamma^{(t)}\right.\right.$, .) $\left.\beta_{0} \circ \gamma^{(i)}, \psi\left(\gamma^{(t)},.\right) \tilde{\beta}_{0} \circ \gamma^{(t)}\right)<\frac{\epsilon}{2^{4}}$,
(b) $\bar{d}\left(\left(\prod_{j=0}^{k-1} \alpha_{J} \circ S^{\prime}\right) \beta_{k}^{\prime} \circ S^{k},\left(\prod_{j=0}^{k-1} \alpha_{J} \circ S^{\prime}\right) \tilde{\beta}_{k} \circ S^{k}\right)<\frac{\epsilon}{2^{k+4}}$,
(c) $\bar{d}\left(\psi\left(\gamma^{(t)},.\right)\left(\prod_{\jmath=0}^{k-1} \alpha_{\jmath} \circ S^{\prime} \circ \gamma^{(t)}\right) \beta_{k}^{\prime} \circ S^{k} \circ \gamma^{(t)}, \psi\left(\gamma^{(t)},.\right)\left(\prod_{\jmath=0}^{k-1} \alpha_{\jmath} \circ S^{\prime} \circ \gamma^{(l)}\right) \tilde{\beta}_{k} \circ S^{k} \circ \gamma^{(l)}\right)<$ $\frac{2^{\epsilon}+}{2^{k+4}}$.
Then the measurable function $\beta(x)=\left(\beta_{0}(x)-\tilde{\beta}_{0}(x)\right)+\sum_{k=1}^{\infty}\left(\prod_{\jmath=0}^{k-1} \alpha_{\jmath} \circ S^{\prime}(x)\right)\left(\beta_{k}^{\prime} \circ S^{k}(x)-\right.$ $\left.\tilde{\beta}_{k} \circ S^{k}(x)\right)$ is well defined. Set

$$
\begin{aligned}
\tilde{f}(\gamma, x)= & \psi(\gamma, x) \tilde{\beta}_{0}(\gamma+x)-\tilde{\beta}_{0}(x) \\
& +\sum_{k=1}^{\infty} \psi(\gamma, x)\left(\prod_{J=0}^{k-1} \alpha_{J} \circ S^{\prime}(\gamma+x)\right) \tilde{\beta}_{k} \circ S^{k}(\gamma+x) \\
& -\left(\prod_{J=0}^{k-1} \alpha_{J} \circ S^{\prime}(x)\right) \tilde{\beta}_{k} \circ S^{k}(x),
\end{aligned}
$$

then \tilde{f} defines a ψ-cocycle. Also $f(\gamma, x)=\tilde{f}(\gamma, x)+\psi(\gamma, x) \beta(\gamma+x)-\beta(x)$, and for $1 \leq i \leq m$,

$$
\bar{d}\left(f\left(\gamma^{(l)}, .\right), \tilde{f}\left(\gamma^{(l)}, .\right)\right)=\bar{d}\left(\psi\left(\gamma^{(l)}, .\right) \beta \circ \gamma^{(l)}, \beta\right)<\epsilon
$$

REMARK 4.5. Let $\mathcal{C}=\left\{C_{n}: n \in \mathbb{N}\right\}$ be a countable dense collection in the measure
algebra and fix some $0<K<1$. For $k, m, n \in \mathbb{N}$ and $0 \neq \lambda \in \bar{B}$, set

$$
\begin{aligned}
N_{\lambda}(k, m, n ; \psi)=\{f & \in Z_{\psi}(X, \Gamma, B, \mu): \sup _{V \in[\Gamma]} \mu\left(C_{k} \cap V^{-1} C_{k}\right. \\
& \cap\left\{x:|\omega(V, x)-1|<\frac{1}{m}\right\} \cap\left\{x: d(\psi(V, x), 1)<\frac{1}{n}\right\} \\
& \left.\left.\cap\left\{x: f(V, x) \in B_{1 / n}(\lambda)\right\}\right)>K \mu\left(C_{k}\right)\right\} .
\end{aligned}
$$

By Lemma 2.12, $N_{\lambda}(k, m, n ; \psi)$ is open. Note that Lemma 2.11 implies

$$
\bigcap_{k, m, n} N_{\lambda}(k, m, n ; \psi)=\left\{f \in Z_{\psi}(X, \Gamma, B, \mu): \lambda \in \bar{E}_{\psi}(f)\right\}
$$

If $\left\{\lambda_{p}: p \in \mathbb{N}\right\}$ is a dense sequence in B, then

$$
\bigcap_{k, m, n, p} N_{\lambda_{p}}(k, m, n ; \psi)=\left\{f \in Z_{\psi}(X, \Gamma, \mu): E_{\psi}(f)=B\right\}
$$

This shows that $\left\{f \in Z_{\psi}(X, \Gamma, B, \mu): \lambda \in \bar{E}_{\psi}(f)\right\}$ and $\left\{f \in Z_{\psi}(X, \Gamma, \mu): E_{\psi}(f)=B\right\}$ are G_{δ} sets in $Z_{\psi}(X, \Gamma, B, \mu)$.

Notation. We denote by $M^{\prime}(X, \Gamma, A, \mu)$ the set of cocycles $\psi \in M(X, \Gamma, A, \mu)$ that recurs simultaneously with ω, the Radon-Nikodym derivative, and whose associated sequence $\left\{\alpha_{k}\right\}$ depends on finitely many coordinates only. Then, for every $\epsilon>0$ and for any $C \in \mathcal{F}$ with $\mu(C)>0$, there exist a $\gamma \in \Gamma, \gamma \neq \overline{0}$ such that $\mu\left(C \cap \gamma^{-1} C \cap\right.$ $\{x:|\omega(\gamma, x)-1|<\epsilon\} \cap\{x: d(\psi(\gamma, x), 1)<\epsilon\})>0$.

Proposition 4.6. For each $\psi \in M^{\prime}(X, \Gamma, A, \mu)$ and for each $k, m, n \in \mathbb{N}$, the set $N_{\infty}(k, m, n ; \psi)$ is dense in $Z_{\psi}(X, \Gamma, B, \mu)$.

Proof. Let $\left\{\alpha_{k}\right\}$ be the sequence associated with ψ, where each α_{k} depends on finitely many coordinates only. Choose a positive sequence $\left\{\epsilon_{n}\right\}$ such that $\epsilon_{n}<\frac{1}{n}$, and $d(a b, b)<\frac{1}{n}$ wherenver $d(a, 1)<\epsilon_{n}$. Let U be any nonempty open set in $Z_{\psi}(X, \Gamma, B, \mu)$, then by Proposition 4.4 there exists $f \in Z_{\psi}^{\prime}(X, \Gamma, B, \mu)$ with $f \in U$. Since f is an interior point of U there is an $\epsilon>0$ and $\gamma^{(1)}, \ldots, \gamma^{(K)} \in \Gamma$ such that

$$
W=\left\{h \in Z_{\psi}(X, \Gamma, B, \mu): \bar{d}\left(h\left(\gamma^{(i)}, .\right), f\left(\gamma^{(i)}, .\right)\right)<\epsilon, 1 \leq i \leq K\right\} \subseteq U .
$$

Let $\left\{\beta_{k}^{\prime}\right\}$ be the tail sequence of f. Since $f \in Z_{v}^{\prime}(X, \Gamma, B, \mu)$ each β_{k}^{\prime} depends only on finitely many coordinates, and for $\gamma \in \Gamma$

$$
f(\gamma, x)=\sum_{n=0}^{\infty} \psi(\gamma, x) \beta_{n}(\gamma+x)-\beta_{n}(x)
$$

where $\beta_{k}(x)\left(\Pi_{i=0}^{k-1} \alpha_{i} \circ S^{i}(x)\right) \beta_{k}^{\prime} \circ S^{k}(x)$ depends only on finitely many coordinates. Then we can find integers $M_{1}<M_{2}$ such that for each $0 \leq j<M_{1}$ and every $1 \leq i<K$ we have $\alpha_{j} \circ S^{j}, \beta_{j}$ depend only on the first M_{2} coordinates

$$
f\left(\gamma^{(i)}, x\right)=\sum_{j=0}^{M_{1}} \psi\left(\gamma^{(i)}, x\right) \beta_{j}\left(\gamma^{(i)}+x\right)-\beta_{j}(x) .
$$

Using the simultaneous recurrence of ω and ψ and Rohlin lemma, we can find $\delta^{(1)} \in \Gamma$ different from the identity and a subset $B_{1} \subseteq C_{k}$ of positive measure such that: $\delta^{(1)} \in \bar{\Gamma}_{M_{2}}$, $B_{1} \cap \delta^{(1)} B_{1}=\emptyset, B_{1} \cup \delta^{(1)} B_{1} \subseteq C_{k}$, and for $x \in B_{1} \cup \delta^{(1)} B_{1}$ we have $\left|\omega\left(\delta^{(1)}, x\right)-1\right|<\frac{1}{m}$, and $d\left(\psi\left(\delta^{(1)}, x\right), 1\right)<\epsilon_{1}<1$. Since $\delta^{(1)} \neq \overline{0}$ there exist positive integers k_{1}, N_{1} such that $M_{2}<k_{1} \leq N_{1}, \delta^{(1)} \in \bar{\Gamma}_{M_{2}} \cap \Gamma_{N_{1}}$, and $\left(\delta^{(1)}\right)_{k_{1}}=\left(\delta^{(1)}\right)_{N_{1}}=1$. By hypothesis, we can find an integer $\bar{N}_{1}>N_{1}$ such that $\alpha_{J} \circ S^{\prime}$ depends on the first \bar{N}_{1} coordinates only for $j \leq N_{1}$. If $\mu\left(C_{k} \backslash B_{1} \cup \delta^{(1)} B_{1}\right)>0$, then using again the simultaneous recurrence of ω and ψ and Rohlin lemma, we can find $\delta^{(2)} \in \Gamma$ different from the identity, and a subset $B_{2} \subseteq C_{k} \backslash B_{1} \cup \delta^{(1)} B_{1}$ of positive measure such that: $\delta^{(2)} \in \bar{\Gamma}_{\bar{N}_{1}}, B_{2} \cap \delta^{(2)} B_{2}=\emptyset$, $B_{2} \cup \delta^{(2)} B_{2} \subseteq C_{k} \backslash B_{1} \cup \delta^{(1)} B_{1}$, and for $x \in B_{2} \cup \delta^{(2)} B_{2}$ we have $\left|\omega\left(\delta^{(2)}, x\right)-1\right|<\frac{1}{m}$, and $d\left(\psi\left(\delta^{(2)}, x\right), 1\right)<\epsilon_{2}<\frac{1}{2}$. Since $\delta^{(2)} \neq \overline{0}$ there exist positive integers k_{2}, N_{2} such that $\bar{N}_{1}<k_{2} \leq N_{2}, \delta^{(2)} \in \bar{\Gamma}_{\bar{N}_{1}} \cap \Gamma_{N_{2}}$, and $\left(\delta^{(2)}\right)_{k_{2}}=\left(\delta^{(2)}\right)_{N_{2}}=1$. Let $\bar{N}_{2}>N_{2}$ be such that $\alpha_{J} \circ S^{\prime}$ depends on the first \bar{N}_{2} coordinates only $j \leq N_{2}$. We continue by an exhasutive argument to find a sequence $\left\{B_{r}\right\}$ of subsets of C_{k}, sequences of positive integers $\left\{k_{r}\right\}$, $\left\{N_{r}\right\},\left\{\bar{N}_{r}\right\}$, and a sequence $\left\{\delta^{(r)}\right\}$ in Γ such that:
(i) $\bar{N}_{r-1}<k_{r} \leq N_{r}<\bar{N}_{r} ; \bar{N}_{0}=M_{2}$,
(ii) for $0 \leq j \leq N_{r}, \alpha_{J} \circ S^{\prime}$ depends only on the first \bar{N}_{r} coordinates,
(iii) $\delta^{(r)} \in \bar{\Gamma}_{N_{r-1}} \cap \Gamma_{N_{r}}$, and $\left(\delta^{(r)}\right)_{k_{r}}=\left(\delta^{(r)}\right)_{N_{r}}=1$,
(iv) $B_{r} \cap \delta^{(r)} B_{r}=\emptyset, B_{r} \cup \delta^{(r)} B_{r} \subseteq C_{k} \backslash \bigcup_{J<r} B_{j} \cup \delta^{(1)} B_{J}$, and $\mu\left(C_{k} \backslash \bigcup_{r=1}^{\infty} B_{r} \cup \delta^{(r)} B_{r}\right)=0$,
(v) For $x \in B_{r} \cup \delta^{(r)} B_{r}$, we have $\left|\omega\left(\delta^{(r)}, x\right)-1\right|<\frac{1}{m}$, and $d\left(\psi\left(\delta^{(r)}, x\right), 1\right)<\epsilon_{n}<\frac{1}{n}$. Define $V \in[\Gamma]$ by

$$
V x= \begin{cases}\delta^{(r)}+x & \text { if } x \in B_{r} \cup \delta^{(r)} B_{r} \text { for some } r \geq 1 \\ x & \text { otherwise. }\end{cases}
$$

Using condition (ii) above, we can choose for each $j \geq 1$ an element $b_{J} \in B$ such that for $x \in X, d\left(\left(\prod_{t=0}^{J-1} \alpha_{l} \circ S^{t}(x)\right) b_{j}, 0\right)>n+\frac{3}{n}$. Then for any $a \in A$ such that $d(a, 1)<\epsilon_{n}$ we have $d\left(a\left(\prod_{t=0}^{j-1} \alpha_{l} \circ S^{t}(x)\right) b_{j}, 0\right)>n+\frac{2}{n}$. For $j \geq 1$, let $\beta^{\prime}: X \rightarrow B$ be given by

$$
\beta_{J}^{\prime}(x)= \begin{cases}b_{J} & \text { if } x_{1}=0 \\ 0 & \text { if } x_{1}=1\end{cases}
$$

and let $\rho_{J}(x)=\left(\Pi_{l=0}^{-1} \alpha_{l} \circ S^{l}(x)\right) \beta_{J}^{\prime} \circ S^{\prime}(x)$. Define $h \in Z_{\psi}(X, \Gamma, \mu)$ by

$$
h(\gamma, x)=\sum_{r=1}^{\infty} \psi(\gamma, x) \rho_{N_{r}-1}(\gamma+x)-\rho_{N_{r}}(x)
$$

For a.e. $x \in C_{k}$ we have that $x \in B_{r} \cup \delta^{(r)} B_{r}$ for some $r \geq 1$. Now, either $\rho_{N_{r^{-1}}}\left(\delta^{(r)}+x\right)=0$ and $\rho_{N_{r},}(x)=\left(\prod_{l=0}^{N_{r}-2} \alpha_{l} \circ S^{l}(x)\right) b_{N_{r}}$, or $\rho_{N_{r},}\left(\delta^{(r)}+x\right)=\left(\prod_{l=0}^{N_{r}-2} \alpha_{l} \circ S^{t}(x)\right) b_{N_{r},}$ and $\rho_{N_{r-1}}(x)=0$. Also, for $1 \leq l \leq r-1, \rho_{N_{l} 1}\left(\delta^{(r)}+x\right)=\rho_{N_{l-1}}(x)$ so that

$$
h(V, x)=h\left(\delta^{(r)}, x\right)=\sum_{l=1}^{r} \psi\left(\delta^{(r)}, x\right) \rho_{N_{l-1}}\left(\delta^{(r)}+x\right)-\rho_{N_{l},}(x)
$$

and

$$
\begin{aligned}
& d(h(V, x), 0) \geq d\left(\psi\left(\delta^{(r)}, x\right) \rho_{N_{r^{-1}}}\left(\delta^{(r)}+x\right)-\rho_{N_{r^{-1}}}(x), 0\right) \\
&-d\left(\sum_{l=1}^{r-1} \psi\left(\delta^{(r)}, x\right) \rho_{N_{l-1}}\left(\delta^{(r)}+x\right)-\rho_{N_{l-1}}(x), 0\right) \\
&= d\left(\psi\left(\delta^{(r)}, x\right) \rho_{N_{r-1}}\left(\delta^{(r)}+x\right), \rho_{N_{r^{-1}}}(x)\right) \\
&-d\left(\psi\left(\delta^{(r)}, x\right) \sum_{l=1}^{r-1} \rho_{N_{l-1}}(x), \sum_{l=1}^{r-1} \rho_{N_{l-1}}(x)\right) \\
&>n+\frac{2}{n}-\frac{1}{n}=n+\frac{1}{n} .
\end{aligned}
$$

Also, for each $1 \leq i \leq K$, we have $h\left(\gamma^{(i)}, x\right)=0$. Let

$$
\bar{f}(\gamma, x)=\sum_{j=0}^{M_{1}} \psi(\gamma, x) \beta_{j}(\gamma+x)-\beta_{j}(x)+h(\gamma, x) .
$$

Then, for $1 \leq i \leq K \bar{f}\left(\gamma^{(i)}, x\right)=f\left(\gamma^{(i)}, x\right)$ so that $\bar{f} \in U$. Let $x \in B_{r} \cup \delta^{(r)} B_{r}$, since $M_{2} \leq \bar{N}_{r-1}$ we have for $1 \leq j \leq M_{1} \beta_{j}\left(\delta^{(r)}+x\right)=\beta_{j}(x)$. Hence,

$$
d\left(\sum_{j=0}^{M_{1}} \psi\left(\delta^{(r)}, x\right) \beta_{j}\left(\delta^{(r)}+x\right)-\beta_{j}(x), 0\right)=d\left(\psi\left(\delta^{(r)}, x\right) \sum_{j=0}^{M_{1}} \beta_{j}(x), \sum_{j=0}^{M_{1}} \beta_{j}(x)\right)<\frac{1}{n} .
$$

Thus,

$$
d(\bar{f}(V, x), 0) \geq d\left(h\left(\delta^{(r)}, x\right), 0\right)-d\left(\sum_{j=0}^{M_{1}} \psi\left(\delta^{(r)}, x\right) \beta_{j}\left(\delta^{(r)}+x\right)-\beta_{j}(x), 0\right)>n
$$

This shows that $\bar{f} \in N_{\infty}(k, m, n ; \psi) \cap U$ and therefore, $N_{\infty}(k, m, n ; \psi)$ is dense.
Corollary 4.7. If $\psi \in M^{\prime}(X, \Gamma, A, \mu)$, then the set $\left\{f \in Z_{\psi \cdot}(X, \Gamma, B, \mu): \infty \in\right.$ $\left.\bar{E}_{\psi}(f)\right\}$ is a dense G_{δ}.

Corollary 4.7, Theorem 3.1, and the orbit equivalence of the \mathbb{Z} action by powers of T with the Γ action above ($[\mathrm{S} 1] \S 8$), together give the following theorem:

Theorem 4.8. Let T be a nonsingular ergodic automorphism of a Lebesgue probability space (Y, \mathcal{B}, ν). Then for each $\psi \in M^{\prime}(Y, \mathbb{Z}, A, \nu)$, the set $\left\{f \in Z_{\ell \cdot}(Y, \mathbb{Z}, B, \nu): \infty \in\right.$ $\left.\bar{E}_{\psi}(f)\right\}$ is a dense G_{δ}.

REMARK 4.9. (i) Using similar techniques and notation as in Lemma 2.11 and Lemma 2.12 one can show that:
(a) If for $\epsilon>0$ and for every C_{k} (in a countable dense collection in the measure algebra)

$$
\begin{array}{r}
\sup _{V \in[\Gamma]} \mu\left(C_{k} \cap V^{-1} C_{k} \cap\{x:|\omega(V, x)-1|<\epsilon\} \cap\{x: d(\psi(V, x), 1)<\epsilon\}\right. \\
\cap\{x: d(f(V, x), 0)<\epsilon\} \cap\{x: V x \neq x\})>K \mu\left(C_{k}\right),
\end{array}
$$

then (ψ, f) is recurrent.
(b) For each $k, m, n \in \mathbb{N}$ the map

$$
\begin{aligned}
& f \rightarrow \sup _{V \in[\Gamma]} \mu\left(C_{k} \cap V^{-1} C_{k} \cap\left\{x:|\omega(V, x)-1|<\frac{1}{m}\right\}\right. \\
& \cap\left\{x: d(\psi(V, x), 1)<\frac{1}{n}\right\} \cap\left\{x: d(f(V, x), 0)<\frac{1}{n}\right\} \\
&\cap\{x: V x \neq x\}),
\end{aligned}
$$

is lower semicontinuous,
(ii) Let $R(k, m, n ; \psi)$ be the set of $f \in Z_{\psi}(X, \Gamma, B, \mu)$ such that

$$
\begin{aligned}
\sup _{V \in[\Gamma]} \mu\left(C_{k} \cap V^{-1} C_{k} \cap\left\{x:|\omega(V, x)-1|<\frac{1}{m}\right\} \cap\left\{x: d(\psi(V, x), 1)<\frac{1}{n}\right\}\right. \\
\left.\cap\left\{x: d(f(V, x), 0)<\frac{1}{n}\right\} \cap\{x: V x \neq x\}\right)>K \mu\left(C_{k}\right),
\end{aligned}
$$

Then (i) part (b) implies that $R(k, m, n ; \psi)$ is open, and hence the set

$$
\left\{f \in Z_{\psi}(X, \Gamma, B, \mu):(\psi, f) \text { is recurrent }\right\}=\bigcap_{k, m, n} R(k, m, n ; \psi)
$$

is a G_{δ}.
(iii) If in the proof of Proposition 4.6 we define $h_{1}(\gamma, x)=\sum_{r=1}^{\infty} \psi(\gamma, x) \rho_{N_{r}}(\gamma+x)-$ $\rho_{N_{r}}(x)$, then for $x \in B_{r} \cup \delta^{(r)} B_{r}$ we have

$$
\begin{aligned}
d\left(h_{1}(V, x), 0\right) & =d\left(h_{1}\left(\delta^{(r)}, x\right), 0\right)=d\left(\sum_{J=1}^{r-1} \psi\left(\delta^{(r)}, x\right) \rho_{N_{j}}\left(\delta^{(r)}+x\right)-\rho_{N_{j}}(x), 0\right) \\
& =d\left(\psi\left(\delta^{(r)}, x\right) \sum_{j=1}^{r-1} \rho_{N_{j}}(x), \sum_{J=1}^{r-1} \rho_{N_{J}}(x)\right)<\frac{1}{n} .
\end{aligned}
$$

Also,

$$
d\left(\sum_{J=0}^{M_{1}} \psi\left(\delta^{(r)}, x\right) \beta_{J}\left(\delta^{(r)}+x\right)-\beta_{J}(x), 0\right)=d\left(\psi\left(\delta^{(r)}, x\right) \sum_{j=0}^{M_{1}} \beta_{J}(x), \sum_{j=0}^{M_{1}} \beta_{J}(x)\right)<\frac{1}{n} .
$$

Set

$$
\bar{f}_{1}(\gamma, x)=\sum_{j=0}^{M_{1}} \psi(\gamma, x) \beta_{J}(\gamma+x)-\beta_{J}(x)+h_{1}(\gamma, x) .
$$

For $x \in B_{r} \cup \delta^{(r)} B_{r}, d\left(\bar{f}_{1}(V, x), 0\right)=d\left(\bar{f}_{1}\left(\delta^{(r)}, x\right), 0\right)<\frac{1}{n}$; thus $\bar{f}_{1} \in R(k, m, n ; \psi) \cap$ U. Therefore, $R(k, m, n ; \psi)$ is dense. Again using orbit equivalence to the Γ action this proves:

ThEOREM 4.10. Let T be a nonsingular ergodic automorphism of a Lebesgue probabulity space (Y, \mathcal{B}, ν). Then for each $\psi \in M^{\prime}(Y, \mathbb{Z}, A, \nu)$ the set $\left\{f \in Z_{\imath}(Y, \mathbb{Z}, \nu):(\psi, f)\right.$ ıs recurrent and $\left.\infty \in \bar{E}_{\psi}(Y, \mathbb{Z}, \nu)\right\}$ is a dense G_{δ}.

Acknowledgement. The author would like to thank Professor Robert Zimmer for suggesting this work. Also Professor E. A. Robinson for his encouragment and tıme during the preparation of the manuscript.

References

[CHP] J R Choksı, J M Hawkıns and V S Prasad, Abelıan cocycles for nonsingular transformatıons and generictty of type $I I I_{1}$ transformations, Mh Math 102(1987), 187-205
[D] D G Dajanı, Genericity of nontrivial H-superrecurrent H-cocycles, Trans Amer Math Soc 323(1991), 111-132
[HO] T Hamachı and M Osıkawa, Ergodic groups of automorphisms and Krieger's Theorem, Sem Math Sc1 3(1981)
[K] W Knieger, On the Araka-Woodasymptotic ratıo set and nonsingular transformations of a measure space, Contributions to ergodic theory and probabılity, Lect Notes Math 160(1970), 158-177
[MF] C Moore and J Feldman, Ergodıc equivalence relatıons, cohomology and von Neumann algebras I, Trans Amer Soc 234(1977), 289-324
[PS] K R Parthasarathy and K Schmidt, On the cohomologyofhyperfinite actıon, Mh Math 84(1977), 37-48
[S1] K Schmidt, Cocycles of ergodic transformatıon group, MacMillan Lectures in Math New Delhı MacMıllan, India, (1977)
[S2] __ On Recurrence, Z Wahrscheinlichkeitstheone verw Geb 68(1984), 75-95
[S3] __ Algebraıc Ideas in Ergodic Theory, AMS Regıonal Conference Series in Math 76(1990)
[Z] R J Zimmer, Ergodic theorv and semisimple groups, Monographs in Math, Birkhauser, (1984)

University of North Carolina
Chapel Hill North Carolina 27599-3250

University of South Alabama

Mobile, Alabama 36608

