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Abstract. The Lindenstrauss formula

pX'(0= sup --8x(e),
0fifS2 2

which states a strong relationship between the (Clarkson) modulus of uniform convexity
8X of a Banach space X and the modulus of uniform smoothness px* of the conjugate
space X*, is well known. Following the idea of the definitions of nearly uniform smooth
space by S. Prus and modulus of uniform smoothness we define a modulus of nearly
uniform smoothness and prove some Lindenstrauss type formulae concerning this
modulus and the modulus of nearly uniform convexity for some measures of
noncompactness.

1. Introduction and notation. Let J be a Banach space. We denote by Bx =
{x E X: \\x || < 1} the closed unit ball of X, by Sx = {x e X: \\x || = 1} the unit sphere and
by A'* the conjugate space of X. The notion of uniform convexity has been very useful in
the geometric theory of Banach spaces and fixed point theory. We recall that X is said to
be uniformly convex (U.C.) if for every e > 0 there exists 8 > 0 such that \\x+y\\/2^
1 - 8 if x and y are in Bx and ||JC — y || > e. The function

8x{e) = inf j l - ^ ^ : x , y € B x , \\x - y || >

is called the (Clarkson) modulus of uniform convexity and the number eQ(X) = sup{e >0:
$x(e) = 0} is called the characteristic of convexity of X. It is clear that X is U.C. if and
only if eQ(X) = 0. The most important generalization of the concept of uniform convexity
in the fixed point theory is the notion of nearly uniform convexity. We recall [9] that X is
said to be nearly uniform convex (N.U.C.) if for every e > 0 there exists 8 > 0 such that
inf{||;c||: x E A}<1 — 8 for every convex subset A of Bx such that ix(A)>e, where /JL is a
measure of noncompactness. The function

AA>(e) = 1 ~sup{inf ||x||: x eA,A convex subset of Bx with /j(/l)5£}

is called the modulus of nearly uniform convexity of X for the measure JJL. This modulus
has been studied in [8] when JJL = a is the Kuratowski measure of noncompactness, i.e.
a(/4) = inf{e>0: A can be covered by finitely many sets with diameter less than e}, A
being a bounded subset of X. For fi = j3, the Hausdorff measure of noncompactness, i.e.
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144 TOMAS DOMINGUEZ BENAVIDES

fi(A) = inf{e>0: A can be covered by finitely many balls with radii less than e} this
modulus has been studied in [3]. For p.= a, the Istratescu measure of noncompactness,
i.e. <J{A) = sup{e > 0: there exists an e-separated sequence in A}, this modulus has been
studied in [7], where it is proved that, for reflexive spaces, AX<T coincides with the
Partington coefficient [10] of the uniform Kadec-Klee property, i.e. P(e) = 1 - sup{||x ||:
{xn} is a e-separated sequence in Bx converging weakly to x}. The characteristics of
convexity eOa(X), eOJ3(X), eo,^(X) are defined in a similar way as eo(X) and X is N.U.C.
if and only if eO)t(X) = 0 for p. = a or p. = /3 or /x = a.

On the other hand the dual notion of uniform convexity is the concept of uniform
smoothness. The space X is said to be uniformly smooth (U.S.) if lim f ~'P.Y(0 = 0, where

r—i-O

, ||s + ry|| + | |x-ry ||
Px(t) = r

The function px{t) is called the modulus of uniform smoothness. From the Lindenstrauss
formula

px.(t) = sup (--8x(

it easily follows that X is U.C. if and only if X* is U.S. Having in mind the above duality
property and the utility of the concept of uniform smoothness in the fixed point theory it
is natural that several authors tried to define nearly uniformly smooth (N.U.S.) spaces. In
[13,4]. N.U.S. spaces are defined as the conjugate spaces of N.U.C. spaces (in the
reflexive case in [4]). A clearly different definition (but equivalent to the definition in [13])
is the following, given in [12]. (We recall that a sequence {xn} in a Banach space is called
a basic sequence if it is a Schauder basis for the space which is spanned by {xn}.)

DEFINITION. A Banach space X is said to be N.U.S. if for every e > 0 there exists
•q > 0 such that for every / e [0,17) and every basic sequence {xn} in Bx there exists k e N
such that H*, + txk || < et + 1.

In this paper we define a modulus of nearly uniform smoothness (using the definition
of U.S. spaces and of N.U.S. spaces in [12]). We prove some Lindenstrauss type
inequalities for the modulus of nearly uniform smoothness of X* and the modulus Ax,o-
When X satisfies an Opial condition, we also prove Lindenstrauss inequalities with the
modulus A ^ . Finally we list some open questions concerning fixed point theory and
N.U.S. spaces.

2. The modulus of nearly uniform smoothness.

DEFINITION 1. Let X be a Banach space. We define the modulus of nearly uniform
smoothness of X as the function

"11 - 1: n > l} : {xn} basic sequence in Bx\

It is obvious from the definition that px(t) > Tx(t) for every t > 0. Then if X is U.S.
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NEARLY UNIFORM SMOOTHNESS 145

we obtain lim — — = 0. We shall give an equivalent definition for Tx(t) when X is a

reflexive space.

PROPOSITION 1. Let X be a reflexive Banach space. Then

Tx(t) = supj inf-j 1: n > 1 >: {xn} weakly null in Bx ).

Proof. Let

r » / \ !• rfl*i+<*>.ll + l l* i - t tn l l 1 N l l , , , , . . . B lTx(t) = supj inf j 1: n > 1 r. {xn} weakly null in Bx >.

Since X is reflexive, every basic sequence is weakly null. Thus F^(r) s rx(t). O n the other
hand, let {xn} be a weakly null sequence in Bx. If lim inf ||jcn || > 0 there exists a basic
subsequence {yn) of {*„} such that yi = xx. Thus

If lim inf \\xn || = 0 there exists a subsequence {yn} of {xn} such that y^ = *i and l i m ^ = 0.
Let TJ be an arbitrary number bigger than F ^ r ) . There exists an integer n0 such that
\\yn\\<v/tif n>n0. Then •

<inf

By (1) and (2) we obtain TJ > F^r) . Thus T'x(t) < Tx(t).

PROPOSITION 2. Let X be a Banach space. Then X is N. U.S. if and only if X is reflexive
and

limr~1FA-(f) = 0.
I--0

Proof. If lim f"^^(r ) = 0, for every e > 0 there exists r\ > 0 such that Tx(t) 2 te for
( - • 0

t E [0, rj]. Let {xn} be a basic sequence in Bx. Since X is reflexive, a similar argument as
in [12, after definition 2.1] proves that we can assume that {xn} is not norm convergent and

• c) ||*i - 2txn || + ||*! + 2txn. ||),
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where c > 1, 1 + c < (1 + 3?e)/(l + 2re) and {xnt} is a subsequence of {*„}. Then for some k
we have

Conversely if X is N.U.S., then X is reflexive. Let {*„} be a weakly null sequence. Then
for every e > 0 there exists TJ > 0 such that jjjcj + tzn\\^l + et for every n > 1, where {zn}
is a subsequence of {*„} with z, = Xj. Since the sequence {xu ~z2, ~z3,...} is also weakly
null we have ||x, - tzn\\^l + et for some n > 1 and every t E [0, TJ]. Thus

if ? e [0, TJ]. Hence lim r ' l V O = 0.
0(-.0

3. Lindenstrauss formulae. We shall prove some Lindenstrauss type inequalities for
the modulus of nearly uniform smoothness and the modulus of nearly uniform convexity
for the Istratescu measure of noncompactness, which can be considered as a quantitative
version of Theorem 2.4 in [12]. We recall the definition of the weak normal structure
coefficient given by [5].

WCS(X) = inf-j " " : {xn} is a weakly convergent sequence

which is not norm convergent |,

where ra{xn] is the asymptotic radius of {*„}; i.e. infjlimsup | |xn-y| | : y e co{xn}} and
diama{j:,,} is the asymptotic diameter of {xn}, i.e. diama{xo} = lim sup ||jcn-xm||. Using

k n,m^.k

some results of [6] and [11], it is proved in [7] that for any reflexive space X we have

WCS(X) = mil lim \\xn - xm ||: {*„} is a weakly null sequence,

lim \xn || = 1 and lim \xn - xm || exists .

We also recall that a Banach space X is said to satisfy the Opial condition if

lim inf ||jcn || < lim inf |JJC + xn ||

for each weakly null sequence {*„}.

THEOREM 1. Let X be a reflexive Banach space. Then

teWCS(X*)
sup T ^ ^ " A ^ ( e ) < ̂ . ( 0 < sup

Ostsa 4 Oseso

for every t>0, where a = (r(Bx). If, in addition, X* satisfies the Opial condition, then

sup ^-A^a(e)<r^.(r) .
O I
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NEARLY UNIFORM SMOOTHNESS 147

Proof. (1) Let {xn} be a sequence in Bx converging weakly to x, such that
||xn - xm|| s e for every n,m,n¥=m. Choose / e Sx* such that f(x) = \\x|| and for a given
17 > 0 choose an integer N such that \f(xn) - \\x\\ \ < 17 if n s N. Choose gn e Sx. such that
gn(xn-xn+1) = \\xn-xn+l\\. By reflexivity there exists a subsequence gnt converging
weakly to g. We can also assume that there exists lim \\gnk -g\\. For iVj large enough we
have \g(xn) - g(xn+1)\ < 17 if n > ty. Denote /zni =/and for /c > 2, /int = c~\gnk - g), where
c = 1 if A'* satisfies the Opial condition; otherwise c = (2 + r))/WCS(X*). Since

we have that {hnt} belongs to Bx> for k large enough either if X* satisfies the Opial
condition or if it does not. Since hnk is weakly null we have

Hence, there exists an integer k such that

Tx.(t) + 77 > i(||ABl + r/inj| + \\hni - r/znj|) - 1

s i(An, + ^BJ(xBt) + 5(/in, - «ftn,)(j:flt+i)

= \Klxnk + xnk+i) + hhnk(xnk - xnt+l) -

> i(2 II* || - 2T,) + ̂  r I K - xnt+11| - g

Thus

Since {xn} is an arbitrary sequence with cr({xn}) > e we have

Since 17>0 and O ^ e S a are arbitrary we obtain

teWCS(X*)
& sup

O
4

if A'* does not satisfy the Opial condition. Otherwise

Tx.(t)& sup I -A^e) .

(2) Let {x*} be a weakly null sequence in Bx.. Choose xn e Sx(n^.2) such that
\\x* + tx*\\ = (xf + tx*)(xn). Taking a subsequence we can assume that {xn} converges
weakly to JC. Denote e = o-({xn}). Taking again a subsequence, we can also assume
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148 TOM AS DOMINGUEZ BENAVIDES

e < \\xn - xm || < e + 17 for an arbitrary positive number 17. Choose 17 large enough such
that \xf(xn) ~ xf(x)\ < 1, \xt(x)\ < v- Then

\\xf + a* II - 1 = xf(xn) + tx*{xn) - 1
< xf(x) + tx*(xn - x) + (1 + t)V - 1

The same argument for \\x* - tx*\\ proves that

\\xf - tx*\\ - 1 ^ "

for some e' < a . Thus

_ te Ax,a(e) te1

2WCS(X) K )V 22WCS(X) K )V 2 2WCS(X)

~ sup l
Since 77 is arbitrary we obtain (2).

REMARK. The inclusion of the coefficient WCS(X) in the Lindenstrauss formula may
be surprising. However we note that the function TX'(t) is independent of any measure of
noncompactness, whereas, A^ ^(e) depends on the measure of noncompactness which we
are considering. The following example shows that when we use the Istratescu measure
WCS(X) cannot be removed in the inequality on the right side. However, Theorem 2 will
show that for the Hausdorff measure of noncompactness, we can obtain in the right side
an expression similar to that in the classical Lindenstrauss formula.

EXAMPLE. Let X be the Hilbert space P. If {xn} is a weakly null sequence, taking a
subsequence {yn} with y\- x^, it can be proved that we can assume supp yn n suppym = 0 ,
where suppyn = {k e N: yn . ek¥: 0}. Considering a block basis we can also assume yn = en.
Since

2

we have Tx(t) = V T + ? - 1. On the other hand A ^ e ) = 1 - Vl - e2/2. Hence

te (£

WCS(X) ~ x'^e'
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NEARLY UNIFORM SMOOTHNESS 149

A standard argument shows that

te . / e2

O
S U P ^ : ^ -

Thus

for every t > 0.

REMARK. It is clear from the Lindenstrauss formula that the function px(t)/t is
non-decreasing. The same result can be directly proved for Tx(t)/t. Indeed, for every
sequence {xn} and all positive numbers t, s with K j w e can choose hn,gn E Sx, such that
/!„(*•! + txn) = ||*, + txn || and gn(*i - txn) = \\Xi - txn ||. Then

11*1 + tXn || + ||*i - tXn 1| - 2 ^ /!„(*, + ttn) + gn(*! - tXn) ~ 2

2t 2t

-2 { {hn-gn)(xn)

7x 2

Since \{hn +gn)(*i) | < 2 we have

(hn+gn)(x,)-2Jhn+gn)(Xi)-2

2t 2s
T h u s

II*, + txn II + II*, - txn || - 2 II*, + sxn || + II*, - sxn II - 2
2r ~ 2s

COROLLARY. Let X be a reflexive Banach space. Then

Proof. Denote a = lim t~lTx.(t). For every TJ > 0 and t small enough we have
r->0

a + v eWCS(X*) A^,g(e)

for every e. Thus AA-o.(e)>0 for every e>4a/WC5(Ar*) + TJ. Since TJ is arbitrary we
have eOrT(X)^4a/WCS(X*). On the other hand for any T J > 0 and t small enough we
have
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Thus for some e(t) we have

WCS(X)
)

Hence e(t) > (a - T))WCS(X). Furthermore if c = AxA(a ~ v)WCS(X)) > 0, then
LXa{e(t))>c for every t. Letting r—»0 we obtain a - r, < —oo. Thus
*xA(a ~ v)WCS(X)) = 0 and e^{X) > aWCS(X).

When A' is a Banach space satisfying the Opial condition we can obtain Lindenstrauss
inequalities using the Hausdorff measures of noncompactness.

THEOREM 2. Let X be a reflexive Banach space satisfying the Opial condition. Then

teWCS(X)WCS(X*)
sup ^ — " A ^ t s M f S sup fe-A (̂e),

/or every f >0. // , in addition, X* satisfies the Opial condition

teWCS(X) A ' ^ , x

sup - ^ - A * > / 3 ( e ) < I V ( 0 .

Proof. Let {**} be a weakly null sequence in Bx*. Choose xn e Sx, n^.2 such that
\\x* + tx*\\ = (x* + tx*)(xn). Taking a subsequence and using Lemma 2.6 in [2] we can
assume that {*„} is j3-minimal (see [6] for definitions) and c = B({xn}) = lim ||jtn -Jt| |,
where x is the weak limit of {*„}• The argument used in the proof of Theorem 1 shows
that for an arbitrary 77 > 0 we have

||xf + tt*|| - 1 £ ||x|| + f ||*n - x | | + (1 + r)Tj - 1

^\\x\\+t€ + (2t+ 1)7,-1

for n large enough. A similar argument for \x* - fcc*|| - 1 lets us state that

T A - ( 0 - sup te-bXJ3(e).

On the other hand, by Proposition 7 in [1], (separability can be replaced by Opial
condition according to Lemma 2.6 in [2]), we have

hx,p(e) ~ mfft ~ II* II: ixn) e Bx converges weakly to x, /3({*n}) s e and {*„} satisfies P},

where P is any property such that every sequence {xn} in Bx has a subsequence satisfying
P. Let {*„} be a sequence in Bx such that {*„} converges weakly to x, lim \\xn -x\\ =
/3({xn})>e, and lim ||xn-jtm|| exists. Choose f e Sx. such that /(*) = ||JC|| and for

every n ^ 2 choose gn e 5A-. such that gn(jc) = \\xn -xn + 1 | | . Taking a subsequence we can
assume that {gn} converges weakly to g. Denote /i, = gj and hn = (gn - g)/c where c = 1 if
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A'* satisfies the Opial condition and c = 2/WCS(X*) otherwise. The argument in the
proof of Theorem 1 shows that for any 17 > 0 there exists an integer k such that

Tx.(t) + r, > ||x|| + - t \\xk -xk+,\\ - (2 + t)V - 1.

Assuming k large enough we have H**. — xk+x || > diamfl({xn}) - TJ. Thus

Yx.{t) > ||* || + ^ r diama({xn}) - (3 + 2t)v - 1

^ ||*n -x\\-(3 + 2t)r, -

> ||* || - 1 + ^ tWCS(X)e - (3 + 2t)V.

Thus

Since every sequence in Bx has a subsequence satisfying lim ||*n — *|| = /3 ({*„}) and there
exists lim ||*n -* m | | (see proof of Lemma 1.1 in [7]) the above definitions of AA-j8(e)

let us state that

Since TJ is arbitrary we obtain

, , tWCS(X)e

or
^ tWCS(X)e

if X* satisfies the Opial condition.

REMARK. Let A" be a reflexive Banach space with the Opial condition. If, in addition,
X* has a Schauder symmetric basis {en} (i.e. || 2 anen\\ = || 2 ±anen\\) then

nil n£l

Vx,(t) = sup re-AX/3(e).

Indeed, let {xn} a sequence in B* converging weakly to x and such that [5({xn}) =
lim ||*n - *|| = e. Choose gn e Sx. such that gn(xn - x) = ||*n - *||, and / e Sx. such that
/(*) = ||*||. Assume that {gn} converges weakly to g and denote hn = gn- g. Since X* has
a symmetric basis, this space satisfies the Opial condition. Thus hn belongs to Bx* for n
large enough. Since {hn} is weakly null, the coordinate functional e*(hn) converges to 0 for
every k eN. Hence we can assume, without loss of generality, that supp/ fl supp/in = 0
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for n large enough. (Here we denote suppf = {k eN: e*(/)^0}.) Thus \\f + thn\\ =
| |/ - thn || and we obtain for 17 arbitrary and n large enough

r*.(0 + TJ > | |/ + r/in || - 1 > (/ - thn){xn) - 1

>f(xn) + thn(xn-x)-tr)-l

> ||x|| - 1 + te - (2? + 1)TJ.

Since TJ is arbitrary we have

I V W ^ sup fe-AA-j^(e).

Then we obtain the equality

Thus changing the variable c by e' = 2e, i.e. if we consider diameters instead of radii in
the definition of the Hausdorff measure, we obtain the expression

„ . . te'
Tx.(t) = Qsup2 — - AA-,^(e'),

which is quite similar to the classical Lindenstrauss formula.
If, in addition, X has the j3-property (see [6] for definitions) we have

TxJt) = sup
WCS(X)

Indeed, we have by Lemma 1.1 in [7]

WCS(X) = inf j lim ||xn - xm ||: {xn} is a weakly null sequence,

lim ||xn || = 1 and lim \\xn - xm || exists |.

If X has the /3-property with constant /x, this quotient is a constant equal to 2//i. Since
/3 = MO-/2 we have Ax,,(2e/M) = AA-,;8(e) = Ax,a(WCS(X)e). Thus

^ . ( 0 = sup f e - A ^ ( e ) = sup A ( )

These conditions are satisfied, for instance, for every tp space (Kp < °°). Hence

A,, = (l + r T « = sup ^ A ( )
02"

OPEN QUESTIONS. (1) Does limrA-(f)//<l/2 imply reflexivity or the fixed point
r-»0

property?
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(2) In the general case, can we obtain Lindenstrauss formulae for ^x,^) an<^ Tx*(t)
with equalities?
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