RAMIFICATION GROUPS OF ABELIAN LOCAL FIELD EXTENSIONS

MURRAY A. MARSHALL

1. Introduction. Let k be a local field; that is, a complete discrete-valued field having a perfect residue class field. If L is a finite Galois extension of k, then L is also a local field. Let G denote the Galois group $G_{L|k}$. Then the *n*th ramification group G_n is defined by

$$G_n = \{ \sigma \in G : \sigma a - a \in P_L^{n+1} \text{ for all } a \in O_L \}, \qquad n \in \mathbb{Z}, n \ge 0,$$

where O_L denotes the ring of integers of L, and P_L is the prime ideal of O_L . The ramification groups form a descending chain of invariant subgroups of G:

(1)
$$G \supseteq G_0 \supseteq G_1 \supseteq G_2 \supseteq \ldots \supseteq G_s = 1.$$

In this paper, an attempt is made to characterize (in terms of the arithmetic of k) the ramification filters (1) obtained from abelian extensions L|k.

For real $x, x \ge 0$, let $\varphi(x) = \varphi_{L|k}(x)$ denote the function given by

$$\varphi(x) = \sum_{i=1}^{n} \frac{1}{(G_0:G_i)} + \frac{x-n}{(G_0:G_{n+1})},$$

where *n* is the integer satisfying $n \leq x < n + 1$. For real *x*, $n - 1 < x \leq n$, we define $G_x = G_n$, and we define the *x*th ramification group (in the upper numbering) by

$$G^x = G_{\varphi^{-1}(x)}, \qquad x \text{ real, } x \ge 0.$$

In this way we obtain a filtration

(2)
$$G \supseteq G^0 \supseteq G^1 \supseteq G^2 \supseteq \ldots \supseteq G^t = 1.$$

By the important theorem of Hasse and Arf [3; 1; 13, pp. 101–104], $G_n \supset G_{n+1} \Rightarrow \varphi(n)$ is an integer. Because of this theorem, the function φ and the filter (1) can be recovered from (2). Thus, it is enough to characterize the filters (2) obtained from abelian extensions L|k.

If $k \subseteq L \subseteq N$, and if L|k and N|k are finite Galois extensions, then the natural restriction $G_{N|k} \to G_{L|k}$ carries $G_{N|k}^x$ onto $G_{L|k}^x$ for all real $x \ge 0$; see [4; 2]. In view of this result, if M|k is any (possibly infinite) Galois extension, we define the *x*th ramification group (upper numbering) by inverse limits:

$$G_{M|k}^{x} = \operatorname{inv} \lim_{L} (G_{L|k}^{x}), \qquad x \text{ real, } x \ge 0,$$

where L runs through all finite Galois extensions of k in M.

Received June 5, 1970.

In particular, let $A_k = G_{ka|k}$, where k_a denotes the maximal abelian extension of k. Thus A_k has a ramification filter

(3)
$$A_k \supseteq A_k^0 \supseteq A_k^1 \supseteq A_k^2 \supseteq \dots$$

The finite abelian extensions L of k are in one-to-one correspondence with the open subgroups U of A_k . If L corresponds to U, then $U = G_{k_a|L}, G_{L|k} \cong A_k/U$, and $G_{L|k}^x \cong A_k^x U/U$. In this way, the filtrations (2) coming from abelian extensions L|k can all be obtained from (3). Thus, the original problem reduces to the problem of characterizing the ramification filter (3) as a topological filtered group.

In Theorem 1, we examine the filtration (3) in the case that the residue class field \bar{k} is algebraically closed. This result is a direct application of Serre's local class field theory [12]. Theorems 1, 2, and 3 prepare the way for Theorem 4 in which we examine the filtration (3) in the general case. Theorem 5 shows how the properties of (3) given in Theorem 4 actually characterize this filtration, provided the homology group $H_1(g, S_K[p])$ is zero.

In Theorem 6, we examine the ramification filter of an arbitrary finite abelian extension L|k; in Theorem 7 we show that, provided $H_1(g, S_{\kappa}[p]) = 0$, the properties given in Theorem 6 characterize the ramification filters of finite abelian extensions of k. In this regard, the interested reader should consult [8], where a somewhat weaker solution is obtained, but for non-abelian extensions; also see [6, Appendix 2].

Theorem 8 (together with the remark following it) gives various interpretations of the condition $H_1(g, S_{\kappa}[p]) = 0$; also see [7].

2. Preliminary concepts and terminology.

(a) Cohomology and homology of profinite groups. Let G be a profinite group, and let A be a topological G-module. The topological group $A^{G}(A_{G})$ is defined to be the largest submodule (quotient module) of A which is fixed by G. If A is a discrete G-module satisfying

$$A = \operatorname{dir} \lim_{U} (A^{U})$$

(where U runs through all open subgroups of G), then the discrete cohomology groups

$$H^q(G, A), \qquad q \ge 0,$$

may be defined as in [5] or [14]. Dually, if A is a compact G-module satisfying

$$A = \operatorname{inv} \lim_{U} (A_{U}),$$

then the compact homology groups

$$H_q(G, A), \qquad q \ge 0,$$

may be simply defined by Pontryagin duality [10]:

$$H_q(G, A) = \chi H^q(G, \chi(A)).$$

RAMIFICATION GROUPS

(b) Fields. If k is any field, then k_a will denote the maximal abelian extension of k, and A_k will denote the Galois group $G_{k_a|k}$. k_+ will denote the additive group of k, and $k^{\times} = k - \{0\}$, the multiplicative group. If n is a positive integer, we let $S_k[n]$ denote the group of nth roots of unity in k. If n_1 is a multiple of n_2 , then there is a canonical "index" mapping $S_k[n_1] \rightarrow S_k[n_2]$ given by $x \rightarrow x^i$, where $i = (S_k[n_1]: S_k[n_2])$. We define S_k to be the inverse limit of the groups $S_k[n]$ under the above mappings. If L|k is a Galois extension with Galois group G, then the groups $S_L[n]$ and S_L are compact G-modules, and one may verify that

$$(S_L[n])_G \cong S_k[n]$$
 and $(S_L)_G \cong S_k$.

(c) Local fields. In this paper, a local field is defined as a complete discretevalued field with perfect residue class field. If k is a local field, then \bar{k} will denote the residue class field of k, and p will denote the characteristic of \bar{k} . We define e = v(p), where v denotes the normalized valuation on k. Thus $e = e_k$ satisfies $0 < e \leq \infty$. $f = f_k$ will denote the function defined by

$$f(n) = \min\{np, n+e\}, \qquad n \in \mathbb{Z}, n > 0$$

3. The algebraically closed case. The ramification structure in this case is given by Serre [12]. The results we will need are stated in the following theorem.

THEOREM 1. Let K be a local field whose residue class field \overline{K} is algebraically closed. Let $A_{\kappa} = A_{\kappa}^{0} \supseteq A_{\kappa}^{1} \supseteq A_{\kappa}^{2} \supseteq \ldots$ denote the filter of ramification subgroups of A_{κ} . Then we have the following:

(i) $A_{\kappa}/A_{\kappa}^{1} \cong S_{\overline{\kappa}}$ (canonically);

(ii) If p = 0, then $A_{\kappa}^{1} = 0$.

If $p \neq 0$, and $n \geq 1$, then

(iii) $A_{\kappa}^{n}/A_{\kappa}^{n+1} \cong \chi(\bar{K}_{+})$, the character group of \bar{K}_{+} ;

(iv) The mapping $\sigma \to \sigma^p$ carries A_{κ}^n into $A_{\kappa}^{f(n)}$.

Let

$$\bar{p}_n: A_{\kappa}^n / A_{\kappa}^{n+1} \to A_{\kappa}^{f(n)} / A_{\kappa}^{f(n)+1}$$

denote the homomorphism derived from (iv). Then

(v) \bar{p}_n is bijective if $n \neq e/(p-1)$;

(vi) If n = e/(p-1), we have the exact sequence

$$0 \to A_{\kappa}^{n} / A_{\kappa}^{n+1} \xrightarrow{\bar{p}_{n}} A_{\kappa}^{f(n)} / A_{\kappa}^{f(n)+1} \to S_{\kappa}[p] \to 0.$$

Proof. Let U_{K}^{n} , $n \ge 0$, denote the higher unit groups of K, and let π_{i} , $i \ge 0$, denote the homotopy functors. By [12], $A_{K}^{n} \cong \pi_{1}(U_{K}^{n})$ for all $n \ge 0$. Recall [11] that if we apply homotopy to an exact sequence of pro-algebraic groups

$$0 \to G' \to G \to G'' \to 0$$

we obtain a 6-term exact homotopy sequence

$$0 \to \pi_1(G') \to \pi_1(G) \to \pi_1(G'') \to \pi_0(G') \to \pi_0(G) \to \pi_0(G'') \to 0.$$

If we consider the 6-term homotopy sequence corresponding to the sequence

$$0 \to U_{\kappa}^{n+1} \to U_{\kappa}^{n} \to U_{\kappa}^{n}/U_{\kappa}^{n+1} \to 0,$$

and recall that $\pi_0(U_K^{n+1}) = 0$, we see that

$$A_{K}^{n}/A_{K}^{n+1} \cong \pi_{1}(U_{K}^{n}/U_{K}^{n+1}), \qquad n \ge 0.$$

Now $U_{\kappa}^{0}/U_{\kappa}^{1}$ is isomorphic to the multiplicative group \vec{K}^{\times} in a canonical way, and so $A_{\kappa}/A_{\kappa}^{1} \cong \pi_{1}(\vec{K}^{\times}) \cong S_{\vec{K}}$ (canonically). If $n \ge 1$, then $U_{\kappa}^{n}/U_{\kappa}^{n+1} \cong \vec{K}_{+}$, and so $A_{\kappa}^{n}/A_{\kappa}^{n+1} \cong \pi_{1}(\vec{K}_{+})$. If p = 0, then $\pi_{1}(\vec{K}_{+}) = 0$. Otherwise $\pi_{1}(\vec{K}_{+}) \cong \chi(\vec{K}_{+})$ canonically. Thus we have proved (i), (ii), and (iii).

If $n \ge 1$, then the higher unit groups U_K^n satisfy:

 $(\mathrm{iv})' (U_{\kappa}^{n})^{p} \subseteq U_{\kappa}^{f(n)}.$

Let $\bar{p}_n: U_{\kappa}^{n}/U_{\kappa}^{n+1} \to U_{\kappa}^{f(n)}/U_{\kappa}^{f(n)+1}$ denote the homomorphism derived from (iv)'. Then

(v)' \bar{p}_n is bijective if $n \neq e/(p-1)$;

(vi)' If n = e/(p - 1), we have the exact sequence

$$0 \to S_{\kappa}[\rho] \to U_{\kappa}^{n}/U_{\kappa}^{n+1} \to U_{\kappa}^{f(n)}/U_{\kappa}^{f(n)+1} \to 0.$$

(See Serre [12, § 1.7] for all these results.)

(iv) and (v) follow immediately on applying π_1 to the results (iv)' and (v)'. Now suppose that n = e/(p - 1). Taking the 6-term sequence corresponding to (vi)', and noting that $\pi_1(S_K[p]) = 0$, $\pi_0(S_K[p]) = S_K[p]$, and $\pi_0(U_K^n/U_K^{n+1}) = 0$, we obtain the exact sequence of (vi).

Remark 1. Since *n* takes only integral values, condition (vi) will be vacuous if e/(p-1) is not an integer. It is known that e/(p-1) is an integer if and only if $S_{\kappa}[p] \neq 0$; see [12, § 1.7].

Remark 2. The mappings of the previous Theorem 1 may be given explicitly as follows.

(1) $A_K/A_{K^1} \cong S_{\overline{K}}$. Let *n* be a positive integer prime to *p*, and let π be a prime of *K*. If $\sigma \in A_K$, then $\sigma \sqrt[n]{\pi}/\sqrt[n]{\pi} \in S_K[n] = S_{\overline{K}}[n]$. The mapping $A_K/A_{K^1} \to S_{\overline{K}}$ may be defined by $\overline{\sigma} \to (\sigma \sqrt[n]{\pi}/\sqrt[n]{\pi})_n$ where *n* runs through all positive integers prime to *p*. This mapping is actually independent of the choice of π .

(2) $A_{\kappa}^{n}/A_{\kappa}^{n+1} \cong \chi(\bar{K}_{+}), n \ge 1$. Let L|K be a finite abelian extension. Then we have an exact sequence

$$0 \to G_{L|K}{}^n/G_{L|K}{}^{n+1} \to U_L{}^{\psi(n)}/U_L{}^{\psi(n)+1} \to U_K{}^n/U_K{}^{n+1} \to 0;$$

https://doi.org/10.4153/CJM-1971-027-9 Published online by Cambridge University Press

274

see [12 or 13]. Choosing uniformizing elements in L and K, this sequence reduces to

$$0 \to G_{L|K}^{n}/G_{L|K}^{n+1} \to \bar{K}_{+} \xrightarrow{f} \bar{K}_{+} \to 0,$$

where f is an additive polynomial. Let $\chi \in \chi(G_{L|K}^n/G_{L|K}^{n+1})$. From the theory of additive polynomials [9], there exists a unique additive polynomial g and a unique element $u \in \overline{K}$ such that the diagram

commutes. (Here \mathscr{P} denotes the additive polynomial $x \to x^p - x$, and $u: \bar{K}_+ \to \bar{K}_+$ denotes the scalar multiplication $x \to ux$.) In this way, we obtain an injective homomorphism $\chi(G_{L|K}{}^n/G_{L|K}{}^{n+1}) \to \bar{K}_+$ given by $\chi \to u$. Proceeding to the inverse limit, we obtain an injective homomorphism $\chi(A_K{}^n/A_K{}^{n+1}) \to \bar{K}_+$ which is, in fact, an isomorphism, by [12]. Dualizing yields the required isomorphism.

(3) Assume that $s = ep/(p-1) \in \mathbb{Z}$. Then the mapping $A_K{}^s/A_K{}^{s+1} \to S_K[p]$ may be given by $\bar{\sigma} \to \sigma \sqrt[p]{\pi}/\sqrt[p]{\pi}$, where π is a prime of K. This mapping is independent of the choice of π .

4. The general case. Now let k be an arbitrary local field. We wish to study the ramification filter

$$A_k \supseteq A_k^0 \supseteq A_k^1 \supseteq A_k^2 \supseteq \dots$$

To utilize the results of Theorem 1, we let K denote the maximal unramified extension of k. Thus K is a discrete-valued field with an algebraically closed residue class field. Although K is not complete, it is Henselian; thus the ramification groups A_{κ}^{n} , $n \geq 0$, may be identified with the ramification groups $A_{\tilde{\kappa}}^{n}$, $n \geq 0$, where \tilde{K} denotes the completion of K. Thus, the results of Theorem 1 apply to A_{κ} .

Let $g = G_{K|k}$; then g acts on the groups A_K^n , $n \ge 0$, through inner automorphism:

$$\sigma \to \tilde{\tau}\sigma\tilde{\tau}^{-1}$$
 for all $\sigma \in A_K^n$ and $\tau \in g$.

(Here, $\tilde{\tau}$ denotes any extension of τ to K_a .) In this way, the groups A_{κ}^{n} , $A_{\kappa}^{n}/A_{\kappa}^{n+1}$, $n \geq 0$, become compact g-modules. g also acts on the groups $S_{\overline{K}}, \chi(\overline{K}_{+})$, and $S_{\kappa}[p]$ in the natural way, and one may verify that the mappings given in Theorem 1 are g-module homomorphisms. (For Theorem 1 (iii), one should be more precise and say that the isomorphism $A_{\kappa}^{n}/A_{\kappa}^{n+1} \cong \chi(\overline{K}_{+})$ will be a g-module isomorphism provided that the prime used to define the isomorphism $U_{\kappa}^{n}/U_{\kappa}^{n+1} \cong \overline{K}_{+}$ is a prime from k.)

The natural restriction $A_K \to A_k$ is a g-module homomorphism, and since g operates trivially on A_k , we obtain a derived homomorphism $(A_K)_g \to A_k$.

THEOREM 2. The sequence

$$0 \to (A_K)_g \to A_k \to A_{\bar{k}} \to 0$$

is split-exact.

Proof. At this point we introduce a notation which will also be used later: If G is a profinite group and l is a prime integer, then G(l) will denote the maximal pro-l-factor of G. In particular, if G is abelian, then the natural mapping $G \to \prod_{l} G(l)$ will be an isomorphism.

To prove Theorem 2, it is enough to show that, for each prime l, the sequence

(4)
$$0 \to (A_K)_g(l) \to A_k(l) \to A_{\bar{k}}(l) \to 0$$

is split-exact. We note immediately that $(A_K)_g(l) = (A_K(l))_g$. Let $H = G_{K_g|k}$. Then we have the exact sequence

$$0 \to A_K \to H \to g \to 0.$$

Applying the dualized form of the 5-term exact sequence [5, p. 160], we obtain

$$\to H_2(g, \mathbf{Z}_l) \to H_1(A_K, \mathbf{Z}_l)_g \to H_1(H, \mathbf{Z}_l) \to H_1(g, \mathbf{Z}_l) \to 0.$$

Since $H_1(G, \mathbb{Z}_l)$ is the maximal abelian pro-*l*-factor group of G, this reduces to (5) $\rightarrow H_2(g, \mathbb{Z}_l) \rightarrow (A_K(l))_q \rightarrow A_k(l) \rightarrow A_{\bar{k}}(l) \rightarrow 0.$

In case l = p, g has cohomological p-dimension not greater than one [5, p. 203], and so $H_2(g, \mathbb{Z}_p) = 0$. Further, $A_{\overline{k}}(p)$ is a free abelian pro-p-group; thus the mapping $A_k(p) \to A_{\overline{k}}(p)$ splits. If $l \neq p$, then $A_{K^1}(l) = 0$, and hence $A_K(l) = (A_K/A_{K^1})(l) \cong S_{\overline{K}}(l)$; thus $(A_K(l))_g \cong (S_{\overline{K}}(l))_g = (S_{\overline{K}})_g(l)$. Thus (5) takes the form

(6)
$$S_{\overline{k}}(l) \xrightarrow{\gamma} A_k(l) \to A_{\overline{k}}(l) \to 0.$$

Let π be a prime of k, and suppose that \bar{k} contains a primitive l^n th root of unity. Then $k(l\sqrt[p^n]{\pi})$ is cyclic of degree l^n over k, and $\alpha_n: \sigma \to \sigma \sqrt[p^n]{\pi}/\sqrt[p^n]{\pi}$ defines a homomorphism from A_k onto $S_{\bar{k}}[l^n]$. In this way, we obtain a homomorphism $\alpha: A_k(l) \to S_{\bar{k}}(l)$. One checks immediately that $\alpha\gamma = 1$; thus (6) (and hence (4)) is split-exact.

THEOREM 3. $(A_{\kappa}^{n})_{g} \cong A_{k}^{n}$ and $(A_{\kappa}^{n}/A_{\kappa}^{n+1})_{g} \cong A_{k}^{n}/A_{k}^{n+1}$ for all $n \ge 0$.

Proof. By the previous theorem we have $(A_{\kappa}^{0})_{\rho} \cong A_{k}^{0}$. If p = 0, then $A_{\kappa}^{n} = A_{k}^{n} = 0$ for $n \ge 1$, and the result is trivial. Assume that $p \ne 0$ and that we have already proved $(A_{\kappa}^{n})_{\rho} \cong A_{k}^{n}$. Then from the exact sequence

$$0 \to A_{\kappa}^{n+1} \to A_{\kappa}^{n} \to A_{\kappa}^{n}/A_{\kappa}^{n+1} \to 0$$

we obtain the homology sequence

$$H_1(g, A_K^{n}/A_K^{n+1}) \xrightarrow{\delta_n} (A_K^{n+1})_g \to A_k^{n} \to (A_K^{n}/A_K^{n+1})_g \to 0.$$

If n > 0, then $A_{\kappa}^{n}/A_{\kappa}^{n+1} \cong \chi(\vec{K}_{+})$; thus $H_{1}(g, A_{\kappa}^{n}/A_{\kappa}^{n+1}) = 0$ by additive Galois cohomology. On the other hand, $(A_{\kappa}^{0}/A_{\kappa}^{1})(p) = 0$; hence also $H_{1}(g, A_{\kappa}^{0}/A_{\kappa}^{1})(p) = 0$. But $(A_{\kappa}^{1})_{g}$ is a pro-*p*-group. Thus δ_{0} must be trivial. Hence for all $n \ge 0$, δ_{n} is trivial, and so we have the exact sequence

(7)
$$0 \to (A_{\kappa}^{n+1})_{\mathfrak{g}} \to A_{k}^{n} \to (A_{\kappa}^{n}/A_{\kappa}^{n+1})_{\mathfrak{g}} \to 0.$$

Since the image of $(A_{\kappa}^{n+1})_{\mathfrak{g}}$ in A_{k}^{n} is A_{k}^{n+1} (by ramification theory), we have $(A_{\kappa}^{n+1})_{\mathfrak{g}} \cong A_{k}^{n+1}$. Comparing (7) with the exact sequence

$$0 \to A_k^{n+1} \to A_k^n \to A_k^n / A_k^{n+1} \to 0,$$

we see that $(A_{\kappa}^{n}/A_{\kappa}^{n+1})_{g} \cong A_{k}^{n}/A_{k}^{n+1}$. Thus, by induction, the result is true for all $n \ge 0$.

THEOREM 4. Let k be a local field. Then the ramification filter

 $A_k \supseteq A_k^0 \supseteq A_k^1 \supseteq A_k^2 \supseteq \dots$

satisfies the following:

- (i) A_k is a profinite abelian group, A_k^n is a closed subgroup of A_k for all $n \ge 0$, and $\bigcap_{n=0}^{\infty} A_k^n = 0$;
- (ii) $A_k/A_k^0 \cong A_{\bar{k}}$ (topologically), and the exact sequence

$$0 \to A_k^0 \to A_k \to A_{\overline{k}} \to 0$$

splits by a topological homomorphism;

(iii) A_{k^0}/A_{k^1} is topologically isomorphic to $S_{\bar{k}}$;

(iv) If p = 0, then $A_k^1 = 0$.

If $p \neq 0$, and if $n \geq 1$, then

(v) A_k^n / A_k^{n+1} is topologically isomorphic to $\chi(\bar{k}_+)$;

(vi) The mapping $\sigma \to \sigma^p$ maps A_k^n into $A_k^{f(n)}$.

Let $\bar{p}_n: A_k^n / A_k^{n+1} \to A_k^{f(n)} / A_k^{f(n)+1}$ denote the homomorphism derived from (vi); then:

(vii) \bar{p}_n is bijective if $n \neq e/(p-1)$;

(viii) If n = e/(p - 1), then we have the exact sequence

$$0 \to H_1(g, S_{\mathcal{K}}[p]) \to A_k^n / A_k^{n+1} \xrightarrow{p_n} A_k^{f(n)} / A_k^{f(n)+1} \to S_k[p] \to 0$$

Proof. (i) is well-known, and (ii) follows immediately from Theorem 2. To prove (iii) and (v), note that $A_k{}^n/A_k{}^{n+1} \cong (A_K{}^n/A_K{}^{n+1})_g$, by Theorem 3. If n = 0, then $A_K{}^n/A_K{}^{n+1} \cong S_{\overline{K}}$ by Theorem 1, and since $(S_{\overline{K}})_g = S_{\overline{k}}$, (iii) follows. If $n \ge 1$, then $A_K{}^n/A_K{}^{n+1} \cong \chi(\overline{K}_+)$ by Theorem 1. Also, $(\chi(\overline{K}_+))_g = \chi(\overline{K}^g) = \chi(\overline{k}_+)$. Thus (v) follows. (vi) is immediate from Theorem 1 together with the surjectivity of the homomorphism $A_K{}^n \to A_k{}^n$. (vii) follows from Theorem 1 together with the isomorphism $A_k{}^n/A_k{}^{n+1} \cong (A_K{}^n/A_K{}^{n+1})_g$. To prove (viii), consider the exact sequence of Theorem 1 (vi). Applying homology and Theorem 3, this yields the exact sequence

$$\rightarrow H_1(g, A_K^{f(n)}/A_K^{f(n)+1}) \rightarrow H_1(g, S_K[p]) \rightarrow A_k^n/A_k^{n+1} \rightarrow A_k^{f(n)}/A_k^{f(n)+1} \rightarrow S_k[p] \rightarrow 0.$$

MURRAY A. MARSHALL

Since $A_{\kappa}^{f(n)}/A_{\kappa}^{f(n)+1} \cong \chi(\bar{K}_{+})$, the group $H_1(g, A_{\kappa}^{f(n)}/A_{\kappa}^{f(n)+1}) = 0$. This yields (viii).

THEOREM 5. Suppose that $H_1(g, S_K[p]) = 0$, or that p = 0. Then properties (i)-(viii) of Theorem 4 completely characterize A_k as a topological filtered group. (That is, if $A \supseteq A^0 \supseteq A^1 \supseteq A^2 \supseteq \ldots$ is another topological filtered group satisfying (i)-(viii), then A is topologically and filter-isomorphic to A_k .)

Proof. If p = 0, then $A_k \cong A_{\bar{k}} \times A_k^0 \cong A_{\bar{k}} \times S_{\bar{k}}$, and our proof is complete. If $p \neq 0$, then let I denote the set of integers i satisfying 0 < i < ep/(p-1), (p, i) = 1. Choose topological generators \bar{x}_j , $j \in J$ for $\chi(\bar{k})$ so that $\chi(\bar{k}) = \prod_{j \in J} \langle \bar{x}_j \rangle$ (direct product). Thus J is the dimension of \bar{k} as a vector space over $\mathbb{Z}/p\mathbb{Z}$. If $i \in I$, we have $A_k{}^i/A_k{}^{i+1} \cong \chi(\bar{k})$; thus there is a continuous homomorphism $\beta_i: A_k{}^i \to \chi(\bar{k})$. Choose a continuous function $\varphi_i: \chi(\bar{k}) \to A_k{}^i$ such that $\beta_i \varphi_i = 1$ (see [5, p. 166]), and define $x_{ij} = \varphi_i(\bar{x}_j)$ for all $j \in J$. Let $X = \{x_{ij}: i \in I, j \in J\}$. (If $S_k[p] \neq 1$, let s = ep/(p-1); we enlarge X to include an additional element $x_s \in A_k{}^s$ such that the image of x_s under the canonical mapping $A_k{}^s \to S_k[p]$ generates $S_k[p]$.) The set X converges to zero as in [5, p. 198]. The surjectivity properties of the mappings \bar{p}_n assures us that X generates $A_k{}^1$ topologically. Further, the injectivity of the \bar{p}_n (since $H_1(g, S_K[p]) = 0$), assures us that X is a set of free generators for $A_k{}^1$. Thus $A_k{}^1 = \prod_{x \in X} \langle x \rangle$ (direct product), where $\langle x \rangle \cong Z_p$ denotes the closed subgroup of $A_k{}^1$ generated by x.

Define $X^n = \{x_{ij}^{p^{n(i)}} : i \in I, j \in J\}$, where n(i) is the minimal integer such that $n \leq f^{n(i)}(i)$. (If $S_k[p] \neq 1$, we adjoin to X^n the element $x_s^{p^{n(s)}}$, where n(s) is the minimal integer such that $n \leq f^{n(s)}(s)$.) One sees immediately that $A_k^n = \prod_{y \in X^n} \langle y \rangle$ (direct product). These remarks show that the filter $A_k^1 \supseteq A_k^2 \supseteq \ldots$ is completely characterized by properties (v)-(viii) of Theorem 4.

On the other hand, since $A_{k^{1}}$ is a pro-*p*-group whereas $A_{k^{0}}/A_{k^{1}}$ is prime to *p*, we see that the sequence

$$0 \to A_k{}^1 \to A_k{}^0 \to A_k{}^0/A_k{}^1 \to 0$$

splits. Taking this together with property (ii), we see that $A_k \cong A_k/A_k^0 \times A_k^0/A_k^1 \times A_k^1 \cong A_{\bar{k}} \times S_{\bar{k}} \times A_k^1$. This completes the proof.

5. Applications to finite abelian extensions.

THEOREM 6. Let L|k be any finite abelian extension, and let G denote the Galois group $G_{L|k}$. Then the filter of ramification subgroups

$$G \supseteq G^0 \supseteq G^1 \supseteq G^2 \supseteq \ldots \supseteq G^r = 1$$

has the following properties:

(i) There is a continuous homomorphism $\varphi: A_{\bar{k}} \to G$ such that the derived homomorphism $\bar{\varphi}: A_{\bar{k}} \to G/G^0$ is surjective;

- (ii) G^0/G^1 is cyclic; the number $m = (G^0:G^1)$ being such that \bar{k} contains a primitive mth root of unity;
- (iii) If p = 0, then $G^1 = 1$.
- If $p \neq 0$, and if $n \geq 1$, then
 - (iv) Gⁿ/Gⁿ⁺¹ is an elementary p-group whose rank is not greater than the dimension of the vector space k̄ over Z/pZ;
 (v) (Gⁿ)^p ⊆ G^{f(n)}.
- Let $\bar{p}_n: G^n/G^{n+1} \to G^{f(n)}/G^{f(n)+1}$ denote the homomorphism derived from (v). Then (vi) \bar{p}_n is surjective if $n \neq e/(p-1)$;
 - (vii) If n = e/(p-1), then the cokernel of \bar{p}_n is isomorphic to a subgroup of $S_k[p]$.

Proof. The natural restriction homomorphism $A_k \to G$ carries A_k^n onto G^n for all $n \ge 0$. Thus Theorem 6 follows immediately from Theorem 4.

THEOREM 7. Suppose that either $H_1(g, S_K[p]) = 0$ or p = 0 and that

$$G \supseteq G^0 \supseteq G^1 \supseteq G^2 \supseteq \ldots \supseteq G^r = 0$$

is any finite abelian filtered group which satisfies conditions (i)–(vii) of Theorem 6. Then there exists a finite abelian extension L|k and an isomorphism $\gamma: G_{L|k} \to G$ such that $\gamma(G_{L|k}^n) = G^n$ for all $n \ge 0$.

Proof. It is enough to construct a continuous homomorphism $\psi: A_k \to G$ (onto) such that $\psi(A_k^n) = G^n$ for all $n \ge 0$. (For if such ψ is given, we can choose L to be the fixed field of the kernel of ψ .) By Theorem 4 (ii), $A_k \cong A_k^0 \times A_{\overline{k}}$. Thus it is enough to construct $\psi_0: A_k^0 \to G^0$ such that $\psi_0(A_k^n) = G^n$ for all $n \ge 0$. For if such ψ_0 is given, then combining with φ given by (i), we can define $\psi: A_k \to G$ by $\psi(\alpha, \beta) = \psi_0(\alpha)\varphi(\beta)$. Similar considerations show that we can reduce the problem another stage: It is enough to construct a continuous homomorphism $\psi_1: A_k^1 \to G^1$ such that $\psi_1(A_k^n) = G^n$ for all $n \ge 1$.

If p = 0, then $A_k^{1} = G^1 = 1$, and our proof is complete. Otherwise, we define a subset $Y \subseteq G$ analogous to the X defined in the proof of Theorem 5. We define Y to consist of the elements y_{ij} , $i \in I$, $j \in J$, where $y_{ij} \in G^i$ for all $j \in J$, and such that the cosets $\bar{y}_{ij} \in G^i/G^{i+1}$, $j \in J$, generate G^i/G^{i+1} . (If $S_k[p] \neq 1$, we include an additional element y_s such that $y_s \in G^s$ and \bar{y}_s generates $G^{ep/(p-1)}/(G^{e/(p-1)})^p$.) The surjectivity properties of the mappings $\bar{p}_n: G^n/G^{n+1} \to G^{f(n)}/G^{f(n)+1}$ assures us that Y generates G; and if Y^n is defined analogously to X^n , we see that Y^n generates G^n . The natural mapping $X \to Y$ yields a continuous homomorphism $\psi_1: A_k^1 \to G^1$ (since A_k^1 is a free abelian pro-p-group on X). Since X^n maps onto Y^n , we see that $\psi_1(A_k^n) = G^n$, $n \ge 1$. Thus, the proof is complete.

Remark 3. Theorem 7 holds even if $H_1(g, S_K[p]) \neq 0$, provided we deal only with groups G satisfying $G^{ep/(p-1)} = 1$.

Remark 4. In applying Theorem 7 or Remark 3, condition (i) of Theorem 6 is certainly the least pleasing since, among all the conditions, it is non-arithmetic. A rather drastic cure would be to restrict our attention to totally ramified extensions: then condition (i) becomes vacuous (this is certainly permissible when \bar{k} is algebraically closed). In a similar vein, if we restrict our attention to *p*-extensions, then (by additive Kummer Theory), condition (i) may be replaced by:

(i)' The rank of the *p*-group G/G^0 is not greater than the dimension of $\bar{k}/\mathscr{P}(\bar{k})$ over $\mathbf{Z}/p\mathbf{Z}$.

An important special case is when \bar{k} is quasi-finite [13]. In this case, $g \cong \operatorname{inv} \lim_n \mathbb{Z}/n\mathbb{Z}$, and condition (i) may be replaced by the simple condition: (i)'' G/G^0 is cyclic.

Example. Let L|k be a cyclic extension, and let $i_1 < i_2 < \ldots < i_r$ be the set of (upper) jumps of L|k which are larger than zero. Define I as before, namely, I consists of all positive integers less than ep/(p-1) which are not divisible by p (if $S_k[p] \neq 1$, then we enlarge I to include ep/(p-1)). Then by straightforward computation we see that: Conditions (v), (vi), and (vii) of Theorem 6 (or 7) are equivalent to

 $(\mathbf{v})' i_1 \in I$, and

(vi)' if $n \ge 1$, then either $i_{n+1} \in I$ and $i_{n+1} > f(i_n)$, or $i_{n+1} = f(i_n)$. In particular, if $i_n \ge e/(p-1)$, then $i_{n+1} = i_n + e$. Thus the ramification

eventually "stabilizes" if $e < \infty$, and it may even stabilize immediately as in the case e = 1.

6. The condition $H_1(g, S_K[p]) = 0$. Let $G_k = G_{k_s|k}$, where k_s denotes the maximal separable extension of k. In view of [7], we can now prove the following interesting result.

THEOREM 8. Suppose that $p \neq 0$. Then the following statements are equivalent: (i) $A_k(p)$ is a free abelian pro-p-group;

- (ii) A_{k}^{1} is a free abelian pro-p-group;
- (iii) $H_1(g, S_K[p]) = 0;$
- (iv) $G_k(p)$ is a free pro-p-group.

Proof. Taking *p*-factors of Theorem 4 (ii), we obtain

(8)
$$0 \to A_{k^{1}} \to A_{k}(p) \to A_{\bar{k}}(p) \to 0.$$

Since $A_{\bar{k}}(p)$ is a free abelian pro-*p*-group, (8) splits, and we obtain $A_k(p) \cong A_{\bar{k}}^1 \times A_{\bar{k}}(p)$. Thus the torsion part of $A_k(p)$ is the same as that of A_k^1 . Hence, the equivalence of (i) and (ii).

To prove the equivalence of (ii) and (iii), we note that, if $H_1(g, S_K[p]) = 0$, then (ii) follows from the proof of Theorem 5. Conversely, if $H_1(g, S_K[p]) \neq 0$, then by Theorem 4 (viii), there exists $\sigma \in A_k^{e/(p-1)} - A_k^{e/(p-1)+1}$ such that $\sigma^p \in A_k^{ep/(p-1)+1}$. But since $\bar{p}_n: A_k^n/A_k^{n+1} \to A_k^{n+e}/A_k^{n+e+1}$ is surjective for all n > e/(p-1), we deduce that $A_k^{ep/(p-1)+1} = (A_k^{e/(p-1)+1})^p$. Thus there is an element $\tau \in A_k^{e/(p-1)+1}$ such that $\tau^p = \sigma^p$. Thus $\sigma \tau^{-1}$ is a non-trivial torsion element of A_k^1 , and so A_k^1 is not a free abelian pro-*p*-group.

Finally, we note that the equivalence of (iii) and (iv) is a direct consequence of the results in [7].

Remark 5. A concrete interpretation of the group $H_1(g, S_{\kappa}[p])$ is given in [7] and in [6, p. 101]. Specifically, we have

- (i) If e/(p-1) is not an integer (i.e. e/(p-1) is rational or ∞), then $H_1(g, S_K[p]) = 0$;
- (ii) If e/(p − 1) is an integer, then H₁(g, S_K[p]) corresponds to a certain class C of extension fields of degree p over k, and H₁(g, S_K[p]) = 0 if and only if C = Ø. If S_k[p] ≠ 1, then C is precisely the class of cyclic extensions of degree p over k. If S_k[p] = 1, then C consists of certain non-Galois extensions. An important corollary is: If k is quasi-finite and if S_k[p] = 1, then H₁(g, S_K[p]) = 0.

References

- C. Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1-44.
- 2. E. Artin and J. Tate, Class field theory (Benjamin, New York-Amsterdam, 1968).
- 3. H. Hasse, Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper, J. Fac. Sci. Tokyo 2 (1934), 477-498.
- 4. J. Herbrand, Sur la théorie des groupes de décomposition, d'inertie, et de ramification, J. Math. Pures Appl. Sér. 9 10 (1931), 481-498.
- 5. S. Lang, Rapport sur la cohomologie des groupes (Benjamin, New York-Amsterdam, 1967).
- 6. M. Marshall, The ramification filters of abelian extensions of a local field, Ph.D. Thesis, Queen's University, Kingston, Ontario, 1969.
- 7. The maximal p-extension of a local field (Can. J. Math., to appear).
- 8. E. Maus, Die gruppentheoretische Struktur der Verzweigungsgruppenreihen, J. Reine Angew. Math. 230 (1968), 1-28.
- 9. O. Ore, Additive polynomials, Trans. Amer. Math. Soc. 35 (1933), 559-584.
- L. S. Pontryagin, *Topological groups*, translated from the second Russian edition by Arlen Brown (Gordon and Breach, New York-London-Paris, 1966).
- 11. J.-P. Serre, Groupes proalgébriques, Inst. Hautes Études Sci. Publ. Math. No. 7 (1960), 67 pp.
- 12. —— Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France 89 (1961), 105–154.
- Corps locaux, Publications de l'Institut de Mathématique de l'Université de Nancago, VIII, Actualités Sci. Indust., No. 1296 (Hermann, Paris, 1962).
- Cohomologie galoisienne, Cours au Collège de France, 1962-1963. Seconde édition, with a contribution by Jean-Louis Verdier, Lecture Notes in Mathematics 5 (Springer-Verlag, Berlin-Heidelberg-New York, 1964).

University of Saskatchewan, Saskatoon, Saskatchewan