RAMIFIGATION GROUPS OF ABELIAN LOCAL FIELD EXTENSIONS

MURRAY A. MARSHALL

1. Introduction. Let k be a local field; that is, a complete discrete-valued field having a perfect residue class field. If L is a finite Galois extension of k, then L is also a local field. Let G denote the Galois group $G_{L \mid k}$. Then the nth ramification group G_{n} is defined by

$$
G_{n}=\left\{\sigma \in G: \sigma a-a \in P_{L}^{n+1} \text { for all } a \in O_{L}\right\}, \quad n \in \mathbf{Z}, n \geqq 0,
$$

where O_{L} denotes the ring of integers of L, and P_{L} is the prime ideal of O_{L}. The ramification groups form a descending chain of invariant subgroups of G :

$$
\begin{equation*}
G \supseteq G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \ldots \supseteq G_{s}=1 \tag{1}
\end{equation*}
$$

In this paper, an attempt is made to characterize (in terms of the arithmetic of k) the ramification filters (1) obtained from abelian extensions $L \mid k$.
For real $x, x \geqq 0$, let $\varphi(x)=\varphi_{L \mid k}(x)$ denote the function given by

$$
\varphi(x)=\sum_{i=1}^{n} \frac{1}{\left(G_{0}: G_{i}\right)}+\frac{x-n}{\left(G_{0}: G_{n+1}\right)},
$$

where n is the integer satisfying $n \leqq x<n+1$. For real $x, n-1<x \leqq n$, we define $G_{x}=G_{n}$, and we define the x th ramification group (in the upper numbering) by

$$
G^{x}=G_{\varphi^{-1}(x)}, \quad x \text { real, } x \geqq 0 .
$$

In this way we obtain a filtration

$$
\begin{equation*}
G \supseteq G^{0} \supseteq G^{1} \supseteq G^{2} \supseteq \ldots \supseteq G^{t}=1 \tag{2}
\end{equation*}
$$

By the important theorem of Hasse and Arf [3; 1; 13, pp. 101-104], $G_{n} \supset G_{n+1} \Rightarrow \varphi(n)$ is an integer. Because of this theorem, the function φ and the filter (1) can be recovered from (2). Thus, it is enough to characterize the filters (2) obtained from abelian extensions $L \mid k$.

If $k \subseteq L \subseteq N$, and if $L \mid k$ and $N \mid k$ are finite Galois extensions, then the natural restriction $G_{N \mid k} \rightarrow G_{L \mid k}$ carries $G_{N \mid k}^{x}$ onto $G_{L \mid k}{ }^{x}$ for all real $x \geqq 0$; see $[4 ; 2]$. In view of this result, if $M \mid k$ is any (possibly infinite) Galois extension, we define the x th ramification group (upper numbering) by inverse limits:

$$
G_{M \mid k}^{x}=\operatorname{inv} \lim _{L}\left(G_{L \mid k}^{x}\right), \quad x \text { real, } x \geqq 0
$$

where L runs through all finite Galois extensions of k in M.

Received June 5, 1970.

In particular, let $A_{k}=G_{k \mid k}$, where k_{a} denotes the maximal abelian extension of k. Thus A_{k} has a ramification filter

$$
\begin{equation*}
A_{k} \supseteq A_{k}^{0} \supseteq A_{k}^{1} \supseteq A_{k}^{2} \supseteq \ldots \tag{3}
\end{equation*}
$$

The finite abelian extensions L of k are in one-to-one correspondence with the open subgroups U of A_{k}. If L corresponds to U, then $U=G_{k_{a} \mid L}, G_{L \mid k} \cong A_{k} / U$, and $G_{L \mid k}{ }^{x} \cong A_{k}{ }^{x} U / U$. In this way, the filtrations (2) coming from abelian extensions $L \mid k$ can all be obtained from (3). Thus, the original problem reduces to the problem of characterizing the ramification filter (3) as a topological filtered group.

In Theorem 1, we examine the filtration (3) in the case that the residue class field \bar{k} is algebraically closed. This result is a direct application of Serre's local class field theory [12]. Theorems 1, 2, and 3 prepare the way for Theorem 4 in which we examine the filtration (3) in the general case. Theorem 5 shows how the properties of (3) given in Theorem 4 actually characterize this filtration, provided the homology group $H_{1}\left(g, S_{K}[p]\right)$ is zero.

In Theorem 6, we examine the ramification filter of an arbitrary finite abelian extension $L \mid k$; in Theorem 7 we show that, provided $H_{1}\left(g, S_{K}[p]\right)=0$, the properties given in Theorem 6 characterize the ramification filters of finite abelian extensions of k. In this regard, the interested reader should consult [8], where a somewhat weaker solution is obtained, but for nonabelian extensions; also see [6, Appendix 2].

Theorem 8 (together with the remark following it) gives various interpretations of the condition $H_{1}\left(g, S_{K}[p]\right)=0$; also see [7].

2. Preliminary concepts and terminology.

(a) Cohomology and homology of profinite groups. Let G be a profinite group, and let A be a topological G-module. The topological group $A^{G}\left(A_{G}\right)$ is defined to be the largest submodule (quotient module) of A which is fixed by G. If A is a discrete G-module satisfying

$$
A=\operatorname{dir} \lim _{U}\left(A^{U}\right)
$$

(where U runs through all open subgroups of G), then the discrete cohomology groups

$$
H^{q}(G, A), \quad q \geqq 0
$$

may be defined as in [5] or [14]. Dually, if A is a compact G-module satisfying

$$
A=\operatorname{inv} \lim _{U}\left(A_{U}\right)
$$

then the compact homology groups

$$
H_{q}(G, A), \quad q \geqq 0
$$

may be simply defined by Pontryagin duality [10]:

$$
H_{q}(G, A)=\chi H^{q}(G, \chi(A))
$$

(b) Fields. If k is any field, then k_{a} will denote the maximal abelian extension of k, and A_{k} will denote the Galois group $G_{k a \mid k}$. k_{+}will denote the additive group of k, and $k^{\times}=k-\{0\}$, the multiplicative group. If n is a positive integer, we let $S_{k}[n]$ denote the group of nth roots of unity in k. If n_{1} is a multiple of n_{2}, then there is a canonical "index" mapping $S_{k}\left[n_{1}\right] \rightarrow S_{k}\left[n_{2}\right]$ given by $x \rightarrow x^{i}$, where $i=\left(S_{k}\left[n_{1}\right]: S_{k}\left[n_{2}\right]\right)$. We define S_{k} to be the inverse limit of the groups $S_{k}[n]$ under the above mappings. If $L \mid k$ is a Galois extension with Galois group G, then the groups $S_{L}[n]$ and S_{L} are compact G-modules, and one may verify that

$$
\left(S_{L}[n]\right)_{G} \cong S_{k}[n] \quad \text { and } \quad\left(S_{L}\right)_{G} \cong S_{k}
$$

(c) Local fields. In this paper, a local field is defined as a complete discretevalued field with perfect residue class field. If k is a local field, then \bar{k} will denote the residue class field of k, and p will denote the characteristic of \bar{k}. We define $e=v(p)$, where v denotes the normalized valuation on k. Thus $e=e_{k}$ satisfies $0<e \leqq \infty . f=f_{k}$ will denote the function defined by

$$
f(n)=\min \{n p, n+e\}, \quad n \in \mathbf{Z}, n>0 .
$$

3. The algebraically closed case. The ramification structure in this case is given by Serre [12]. The results we will need are stated in the following theorem.

Theorem 1. Let K be a local field whose residue class field \bar{K} is algebraically closed. Let $A_{K}=A_{K}{ }^{0} \supseteq A_{K}{ }^{1} \supseteq A_{K}{ }^{2} \supseteq \ldots$ denote the filter of ramification subgroups of A_{K}. Then we have the following:
(i) $A_{K} / A_{K^{1}} \cong S_{\bar{K}}$ (canonically);
(ii) If $p=0$, then $A_{K}{ }^{1}=0$.

If $p \neq 0$, and $n \geqq 1$, then
(iii) $A_{K}{ }^{n} / A_{K}{ }^{n+1} \cong \chi\left(\bar{K}_{+}\right)$, the character group of \bar{K}_{+};
(iv) The mapping $\sigma \rightarrow \sigma^{p}$ carries $A_{K}{ }^{n}$ into $A_{K}{ }^{f(n)}$.

Let

$$
\bar{p}_{n}: A_{K}{ }^{n} / A_{K}{ }^{n+1} \rightarrow A_{K}^{f(n)} / A_{K}{ }^{f(n)+1}
$$

denote the homomorphism derived from (iv). Then
(v) \bar{p}_{n} is bijective if $n \neq e /(p-1)$;
(vi) If $n=e /(p-1)$, we have the exact sequence

$$
0 \rightarrow A_{K}^{n} / A_{K} \xrightarrow{n+1} \xrightarrow{\bar{p}_{n}} A_{K}^{f(n)} / A_{K}^{f(n)+1} \rightarrow S_{K}[p] \rightarrow 0 .
$$

Proof. Let $U_{K}{ }^{n}, n \geqq 0$, denote the higher unit groups of K, and let $\pi_{i}, i \geqq 0$, denote the homotopy functors. By [12], $A_{K}{ }^{n} \cong \pi_{1}\left(U_{K}{ }^{n}\right)$ for all $n \geqq 0$. Recall [11] that if we apply homotopy to an exact sequence of pro-algebraic groups

$$
0 \rightarrow G^{\prime} \rightarrow G \rightarrow G^{\prime \prime} \rightarrow 0
$$

we obtain a 6 -term exact homotopy sequence

$$
0 \rightarrow \pi_{1}\left(G^{\prime}\right) \rightarrow \pi_{1}(G) \rightarrow \pi_{1}\left(G^{\prime \prime}\right) \rightarrow \pi_{0}\left(G^{\prime}\right) \rightarrow \pi_{0}(G) \rightarrow \pi_{0}\left(G^{\prime \prime}\right) \rightarrow 0
$$

If we consider the 6 -term homotopy sequence corresponding to the sequence

$$
0 \rightarrow U_{K}^{n+1} \rightarrow U_{K}^{n} \rightarrow U_{K}^{n} / U_{K}^{n+1} \rightarrow 0
$$

and recall that $\pi_{0}\left(U_{K}{ }^{n+1}\right)=0$, we see that

$$
A_{K}{ }^{n} / A_{K}^{n+1} \cong \pi_{1}\left(U_{K}^{n} / U_{K}^{n+1}\right), \quad n \geqq 0
$$

Now $U_{K}{ }^{0} / U_{K}{ }^{1}$ is isomorphic to the multiplicative group \bar{K}^{\times}in a canonical way, and so $A_{K} / A_{K}{ }^{1} \cong \pi_{1}\left(\bar{K}^{\times}\right) \cong S_{\bar{K}} \quad$ (canonically). If $n \geqq 1$, then $U_{K}{ }^{n} / U_{K}{ }^{n+1} \cong \bar{K}_{+}$, and so $A_{K}{ }^{n} / A_{K}{ }^{n+1} \cong \pi_{1}\left(\bar{K}_{+}\right)$. If $p=0$, then $\pi_{1}\left(\bar{K}_{+}\right)=0$. Otherwise $\pi_{1}\left(\bar{K}_{+}\right) \cong \chi\left(\bar{K}_{+}\right)$canonically. Thus we have proved (i), (ii), and (iii).

If $n \geqq 1$, then the higher unit groups $U_{K}{ }^{n}$ satisfy:
(iv) ${ }^{\prime}\left(U_{K}{ }^{n}\right)^{p} \subseteq U_{K}{ }^{f(n)}$.

Let $\bar{p}_{n}: U_{K}{ }^{n} / U_{K}{ }^{n+1} \rightarrow U_{K}{ }^{f(n)} / U_{K}{ }^{f(n)+1}$ denote the homomorphism derived from (iv) ${ }^{\prime}$. Then
(v) ${ }^{\prime} \bar{p}_{n}$ is bijective if $n \neq e /(p-1)$;
(vi) $)^{\prime}$ If $n=e /(p-1)$, we have the exact sequence

$$
0 \rightarrow S_{K}[p] \rightarrow U_{K}^{n} / U_{K}^{n+1} \rightarrow U_{K}^{f(n)} / U_{K}^{f(n)+1} \rightarrow 0
$$

(See Serre [12, § 1.7] for all these results.)
(iv) and (v) follow immediately on applying π_{1} to the results (iv)' and (v)'. Now suppose that $n=e /(p-1)$. Taking the 6 -term sequence corresponding to (vi)', and noting that $\pi_{1}\left(S_{K}[p]\right)=0, \pi_{0}\left(S_{K}[p]\right)=S_{K}[p]$, and $\pi_{0}\left(U_{K}{ }^{n} / U_{K}{ }^{n+1}\right)=0$, we obtain the exact sequence of (vi).

Remark 1. Since n takes only integral values, condition (vi) will be vacuous if $e /(p-1)$ is not an integer. It is known that $e /(p-1)$ is an integer if and only if $S_{K}[p] \neq 0$; see $[12, \S 1.7]$.

Remark 2. The mappings of the previous Theorem 1 may be given explicitly as follows.
(1) $A_{K} / A_{K}{ }^{1} \cong S_{\bar{K}}$. Let n be a positive integer prime to p, and let π be a
 $A_{K} / A_{K}{ }^{1} \rightarrow S_{\bar{K}}$ may be defined by $\bar{\sigma} \rightarrow(\sigma \sqrt[n]{\pi /} / \sqrt[n]{\pi})_{n}$ where n runs through all positive integers prime to p. This mapping is actually independent of the choice of π.
(2) $A_{K}{ }^{n} / A_{K}{ }^{n+1} \cong \chi\left(\bar{K}_{+}\right), n \geqq 1$. Let $L \mid K$ be a finite abelian extension. Then we have an exact sequence

$$
0 \rightarrow G_{L \mid K}^{n} / G_{L \mid K}^{n+1} \rightarrow U_{L}{ }^{\psi(n)} / U_{L}^{\psi(n)+1} \rightarrow U_{K}^{n} / U_{K}^{n+1} \rightarrow 0 ;
$$

see [12 or 13]. Choosing uniformizing elements in L and K, this sequence reduces to

$$
0 \rightarrow G_{L \mid K}^{n} / G_{L \mid K}^{n+1} \rightarrow \bar{K}_{+} \xrightarrow{f} \bar{K}_{+} \rightarrow 0,
$$

where f is an additive polynomial. Let $\chi \in \chi\left(G_{L \mid K}{ }^{n} / G_{L \mid K}{ }^{n+1}\right)$. From the theory of additive polynomials [9], there exists a unique additive polynomial g and a unique element $u \in \bar{K}$ such that the diagram

commutes. (Here \mathscr{P} denotes the additive polynomial $x \rightarrow x^{p}-x$, and $u: \bar{K}_{+} \rightarrow \bar{K}_{+}$denotes the scalar multiplication $x \rightarrow u x$.) In this way, we obtain an injective homomorphism $\chi\left(G_{L \mid K}{ }^{n} / G_{L \mid K}^{n+1}\right) \rightarrow \bar{K}_{+}$given by $\chi \rightarrow u$. Proceeding to the inverse limit, we obtain an injective homomorphism $\chi\left(A_{K}{ }^{n} / A_{K}{ }^{n+1}\right) \rightarrow \bar{K}_{+}$which is, in fact, an isomorphism, by [12]. Dualizing yields the required isomorphism.
(3) Assume that $s=e p /(p-1) \in \mathbf{Z}$. Then the mapping $A_{K}{ }^{s} / A_{K}{ }^{s+1} \rightarrow S_{K}[p]$ may be given by $\bar{\sigma} \rightarrow \sigma \sqrt[p]{\pi /} \sqrt[p]{\pi}$, where π is a prime of K. This mapping is independent of the choice of π.
4. The general case. Now let k be an arbitrary local field. We wish to study the ramification filter

$$
A_{k} \supseteq A_{k}^{0} \supseteq A_{k}^{1} \supseteq A_{k}^{2} \supseteq \ldots
$$

To utilize the results of Theorem 1, we let K denote the maximal unramified extension of k. Thus K is a discrete-valued field with an algebraically closed residue class field. Although K is not complete, it is Henselian; thus the ramification groups $A_{K}{ }^{n}, n \geqq 0$, may be identified with the ramification groups $A_{\tilde{K}}{ }^{n}, n \geqq 0$, where \widetilde{K} denotes the completion of K. Thus, the results of Theorem 1 apply to A_{K}.

Let $g=G_{K \mid k}$; then g acts on the groups $A_{K^{\prime}}{ }^{n}, n \geqq 0$, through inner automorphism:

$$
\sigma \rightarrow \tilde{\tau} \sigma \tilde{\tau}^{-1} \quad \text { for all } \sigma \in A_{K}{ }^{n} \text { and } \tau \in g
$$

(Here, $\tilde{\tau}$ denotes any extension of τ to K_{a}.) In this way, the groups $A_{K}{ }^{n}$, $A_{K}{ }^{n} / A_{K}{ }^{n+1}, n \geqq 0$, become compact g-modules. g also acts on the groups $S_{\bar{K}}, \chi\left(\bar{K}_{+}\right)$, and $S_{K}[p]$ in the natural way, and one may verify that the mappings given in Theorem 1 are g-module homomorphisms. (For Theorem 1 (iii), one should be more precise and say that the isomorphism $A_{K}{ }^{n} / A_{K}{ }^{n+1} \cong \chi\left(\bar{K}_{+}\right)$ will be a g-module isomorphism provided that the prime used to define the isomorphism $U_{K}{ }^{n} / U_{K}{ }^{n+1} \cong \bar{K}_{+}$is a prime from k.)

The natural restriction $A_{K} \rightarrow A_{k}$ is a g-module homomorphism, and since g operates trivially on A_{k}, we obtain a derived homomorphism $\left(A_{K}\right)_{g} \rightarrow A_{k}$.

Theorem 2. The sequence

$$
0 \rightarrow\left(A_{K}\right)_{g} \rightarrow A_{k} \rightarrow A_{\bar{k}} \rightarrow 0
$$

is split-exact.
Proof. At this point we introduce a notation which will also be used later: If G is a profinite group and l is a prime integer, then $G(l)$ will denote the maximal pro-l-factor of G. In particular, if G is abelian, then the natural mapping $G \rightarrow \Pi_{l} G(l)$ will be an isomorphism.

To prove Theorem 2, it is enough to show that, for each prime l, the sequence

$$
\begin{equation*}
0 \rightarrow\left(A_{K}\right)_{\imath}(l) \rightarrow A_{k}(l) \rightarrow A_{\bar{k}}(l) \rightarrow 0 \tag{4}
\end{equation*}
$$

is split-exact. We note immediately that $\left(A_{K}\right)_{g}(l)=\left(A_{K}(l)\right)_{g}$. Let $H=G_{K_{a} \mid k}$. Then we have the exact sequence

$$
0 \rightarrow A_{K} \rightarrow H \rightarrow g \rightarrow 0
$$

Applying the dualized form of the 5 -term exact sequence [5, p. 160], we obtain

$$
\rightarrow H_{2}\left(g, \mathbf{Z}_{l}\right) \rightarrow H_{1}\left(A_{K}, \mathbf{Z}_{l}\right)_{g} \rightarrow H_{1}\left(H, \mathbf{Z}_{l}\right) \rightarrow H_{1}\left(g, \mathbf{Z}_{l}\right) \rightarrow 0
$$

Since $H_{1}\left(G, \mathbf{Z}_{l}\right)$ is the maximal abelian pro-l-factor group of G, this reduces to

$$
\begin{equation*}
\rightarrow H_{2}\left(g, \mathbf{Z}_{l}\right) \rightarrow\left(A_{K}(l)\right)_{g} \rightarrow A_{k}(l) \rightarrow A_{\bar{k}}(l) \rightarrow 0 \tag{5}
\end{equation*}
$$

In case $l=p, g$ has cohomological p-dimension not greater than one [5, p. 203], and so $H_{2}\left(g, \mathbf{Z}_{p}\right)=0$. Further, $A_{\bar{k}}(p)$ is a free abelian pro- p-group; thus the mapping $A_{k}(p) \rightarrow A_{\bar{k}}(p)$ splits. If $l \neq p$, then $A_{K}{ }^{1}(l)=0$, and hence $A_{K}(l)=$ $\left(A_{K} / A_{K}{ }^{1}\right)(l) \cong S_{\bar{K}}(l)$; thus $\left(A_{K}(l)\right)_{g} \cong\left(S_{\bar{K}}(l)\right)_{g}=\left(S_{\bar{K}}\right)_{g}(l)$. Thus (5) takes the form

$$
\begin{equation*}
S_{\bar{k}}(l) \xrightarrow{\gamma} A_{k}(l) \rightarrow A_{\bar{k}}(l) \rightarrow 0 . \tag{6}
\end{equation*}
$$

Let π be a prime of k, and suppose that \bar{k} contains a primitive l^{n} th root of unity. Then $k(l \sqrt[l^{n}]{\pi})$ is cyclic of degree l^{n} over k, and $\alpha_{n}: \sigma \rightarrow \sigma \sqrt[l n]{\pi /} \sqrt[l n]{\pi}$ defines a homomorphism from A_{k} onto $S_{\bar{k}}\left[l^{n}\right]$. In this way, we obtain a homomorphism $\alpha: A_{k}(l) \rightarrow S_{\bar{k}}(l)$. One checks immediately that $\alpha \gamma=1$; thus (6) (and hence (4)) is split-exact.

Theorem 3. $\left(A_{K}{ }^{n}\right)_{g} \cong A_{k}{ }^{n}$ and $\left(A_{K}{ }^{n} / A_{K}{ }^{n+1}\right)_{g} \cong A_{k}{ }^{n} / A_{k}{ }^{n+1}$ for all $n \geqq 0$.
Proof. By the previous theorem we have $\left(A_{K}{ }^{0}\right)_{0} \cong A_{k}{ }^{0}$. If $p=0$, then $A_{K}{ }^{n}=A_{k}{ }^{n}=0$ for $n \geqq 1$, and the result is trivial. Assume that $p \neq 0$ and that we have already proved $\left(A_{K}{ }^{n}\right)_{g} \cong A_{k}{ }^{n}$. Then from the exact sequence

$$
0 \rightarrow A_{K}{ }^{n+1} \rightarrow A_{K}{ }^{n} \rightarrow A_{K}{ }^{n} / A_{K}{ }^{n+1} \rightarrow 0
$$

we obtain the homology sequence

$$
H_{1}\left(g, A_{K}^{n} / A_{K}^{n+1}\right) \xrightarrow{\delta_{n}}\left(A_{K}^{n+1}\right)_{g} \rightarrow A_{k}^{n} \rightarrow\left(A_{K}^{n} / A_{K}^{n+1}\right)_{g} \rightarrow 0
$$

If $n>0$, then $A_{K}{ }^{n} / A_{K}{ }^{n+1} \cong \chi\left(\bar{K}_{+}\right)$; thus $H_{1}\left(g, A_{K}{ }^{n} / A_{K}{ }^{n+1}\right)=0$ by additive Galois cohomology. On the other hand, $\left(A_{K}{ }^{0} / A_{K}{ }^{1}\right)(p)=0$; hence also $H_{1}\left(g, A_{K}{ }^{0} / A_{K}{ }^{1}\right)(p)=0$. But $\left(A_{K}\right)_{g}$ is a pro-p-group. Thus δ_{0} must be trivial. Hence for all $n \geqq 0, \delta_{n}$ is trivial, and so we have the exact sequence

$$
\begin{equation*}
0 \rightarrow\left(A_{K}^{n+1}\right)_{g} \rightarrow A_{k}^{n} \rightarrow\left(A_{K}^{n} / A_{K}^{n+1}\right)_{g} \rightarrow 0 \tag{7}
\end{equation*}
$$

Since the image of $\left(A_{K}{ }^{n+1}\right)_{g}$ in $A_{k}{ }^{n}$ is $A_{k}{ }^{n+1}$ (by ramification theory), we have $\left(A_{K}{ }^{n+1}\right)_{g} \cong A_{k}{ }^{n+1}$. Comparing (7) with the exact sequence

$$
0 \rightarrow A_{k}{ }^{n+1} \rightarrow A_{k}{ }^{n} \rightarrow A_{k}{ }^{n} / A_{k}{ }^{n+1} \rightarrow 0
$$

we see that $\left(A_{K}{ }^{n} / A_{K}{ }^{n+1}\right)_{g} \cong A_{k}{ }^{n} / A_{k}{ }^{n+1}$. Thus, by induction, the result is true for all $n \geqq 0$.

Theorem 4. Let k be a local field. Then the ramification filter

$$
A_{k} \supseteq A_{k}^{0} \supseteq A_{k}^{1} \supseteq A_{k}^{2} \supseteq \ldots
$$

satisfies the following:
(i) A_{k} is a profinite abelian group, $A_{k}{ }^{n}$ is a closed subgroup of A_{k} for all $n \geqq 0$, and $\bigcap_{n=0}^{\infty} A_{k}{ }^{n}=0$;
(ii) $A_{k} / A_{k}{ }^{0} \cong A_{\bar{k}}$ (topologically), and the exact sequence

$$
0 \rightarrow A_{k}^{0} \rightarrow A_{k} \rightarrow A_{\bar{k}} \rightarrow 0
$$

splits by a topological homomorphism;
(iii) $A_{k}{ }^{0} / A_{k}{ }^{1}$ is topologically isomorphic to $S_{\bar{k}}$;
(iv) If $p=0$, then $A_{k}{ }^{1}=0$.

If $p \neq 0$, and if $n \geqq 1$, then
(v) $A_{k}{ }^{n} / A_{k}{ }^{n+1}$ is topologically isomorphic to $\chi\left(\bar{k}_{+}\right)$;
(vi) The mapping $\sigma \rightarrow \sigma^{p}$ maps $A_{k}{ }^{n}$ into $A_{k}{ }^{f(n)}$.

Let $\bar{p}_{n}: A_{k}^{n} / A_{k}^{n+1} \rightarrow A_{k}^{f(n)} / A_{k}^{f(n)+1}$ denote the homomorphism derived from (vi); then:
(vii) \bar{p}_{n} is bijective if $n \neq e /(p-1)$;
(viii) If $n=e /(p-1)$, then we have the exact sequence

$$
0 \rightarrow H_{1}\left(g, S_{K}[p]\right) \rightarrow A_{k}^{n} / A_{k}^{n+1} \xrightarrow{\bar{p}_{n}} A_{k}^{f(n)} / A_{k}^{f(n)+1} \rightarrow S_{k}[p] \rightarrow 0 .
$$

Proof. (i) is well-known, and (ii) follows immediately from Theorem 2. To prove (iii) and (v), note that $A_{k}{ }^{n} / A_{k}{ }^{n+1} \cong\left(A_{K}{ }^{n} / A_{K}{ }^{n+1}\right)_{g}$, by Theorem 3 . If $n=0$, then $A_{K_{K}}{ }^{n} / A_{K}{ }^{n+1} \cong S_{\bar{K}}$ by Theorem 1, and since $\left(S_{\bar{K}}\right)_{g}=S_{\bar{k}}$, (iii) follows. If $n \geqq 1$, then $A_{K}{ }^{n} / A_{K}{ }^{n+1} \cong \chi\left(\bar{K}_{+}\right)$by Theorem 1. Also, $\left(\chi\left(\bar{K}_{+}\right)\right)_{\rho}=$ $\chi\left(\bar{K}^{g}\right)=\chi\left(\bar{k}_{+}\right)$. Thus (v) follows. (vi) is immediate from Theorem 1 together with the surjectivity of the homomorphism $A_{K}{ }^{n} \rightarrow A_{k}{ }^{n}$. (vii) follows from Theorem 1 together with the isomorphism $A_{k}{ }^{n} / A_{k}{ }^{n+1} \cong\left(A_{K}{ }^{n} / A_{K}{ }^{n+1}\right)_{g}$. To prove (viii), consider the exact sequence of Theorem 1 (vi). Applying homology and Theorem 3, this yields the exact sequence

$$
\begin{aligned}
& \rightarrow H_{1}\left(g, A_{K}^{f(n)} / A_{K}^{f(n)+1}\right) \rightarrow H_{1}\left(g, S_{K}[p]\right) \rightarrow A_{k}^{n} / A_{k}^{n+1} \\
& \rightarrow \mathrm{~A}_{k}^{f(n)} / A_{k}^{f(n)+1} \rightarrow S_{k}[p] \rightarrow 0 .
\end{aligned}
$$

Since $A_{K}{ }^{f(n)} / A_{K}{ }^{f(n)+1} \cong \chi\left(\bar{K}_{+}\right)$, the group $H_{1}\left(g, A_{K}^{f(n)} / A_{K}^{f(n)+1}\right)=0$. This yields (viii).

Theorem 5. Suppose that $H_{1}\left(g, S_{K}[p]\right)=0$, or that $p=0$. Then properties (i)-(viii) of Theorem 4 completely characterize A_{k} as a topological filtered group. (That is, if $A \supseteq A^{0} \supseteq A^{1} \supseteq A^{2} \supseteq \ldots$ is another topological filtered group satisfying (i)-(viii), then A is topologically and filter-isomorphic to A_{k}.)

Proof. If $p=0$, then $A_{k} \cong A_{\bar{k}} \times A_{k}{ }^{0} \cong A_{\bar{k}} \times S_{\bar{k}}$, and our proof is complete. If $p \neq 0$, then let I denote the set of integers i satisfying $0<i<e p /(p-1)$, $(p, i)=1$. Choose topological generators $\bar{x}_{j}, j \in J$ for $\chi(\bar{k})$ so that $\chi(\bar{k})=$ $\prod_{j \in J}\left\langle\bar{x}_{j}\right\rangle$ (direct product). Thus J is the dimension of \bar{k} as a vector space over $\mathbf{Z} / p \mathbf{Z}$. If $i \in I$, we have $A_{k}{ }^{i} / A_{k}^{i+1} \cong \chi(\bar{k})$; thus there is a continuous homomorphism $\beta_{i}: A_{k}{ }^{i} \rightarrow \chi(\bar{k})$. Choose a continuous function $\varphi_{i}: \chi(\bar{k}) \rightarrow A_{k}{ }^{i}$ such that $\beta_{i} \varphi_{i}=1$ (see [5, p. 166]), and define $x_{i j}=\varphi_{i}\left(\bar{x}_{j}\right)$ for all $j \in J$. Let $X=\left\{x_{i j}: i \in I, j \in J\right\}$. (If $S_{k}[p] \neq 1$, let $s=e p /(p-1)$; we enlarge X to include an additional element $x_{s} \in A_{k}^{s}$ such that the image of x_{s} under the canonical mapping $A_{k}{ }^{s} \rightarrow S_{k}[p]$ generates $S_{k}[p]$.) The set X converges to zero as in [5, p. 198]. The surjectivity properties of the mappings \bar{p}_{n} assures us that X generates $A_{k}{ }^{1}$ topologically. Further, the injectivity of the \bar{p}_{n} (since $H_{1}\left(g, S_{K}[p]\right)=0$), assures us that X is a set of free generators for $A_{k}{ }^{1}$. Thus $A_{k}{ }^{1}=\Pi_{x \in X}\langle x\rangle$ (direct product), where $\langle x\rangle \cong Z_{p}$ denotes the closed subgroup of $A_{k}{ }^{1}$ generated by x.

Define $X^{n}=\left\{x_{i j}{ }^{p n(i)}: i \in I, j \in J\right\}$, where $n(i)$ is the minimal integer such that $n \leqq f^{n(i)}(i)$. (If $S_{k}[p] \neq 1$, we adjoin to X^{n} the element $x_{s}{ }^{p^{n(s)}}$, where $n(s)$ is the minimal integer such that $n \leqq f^{n(s)}(s)$.) One sees immediately that $A_{k}{ }^{n}=\Pi_{y \in X}{ }^{n}\langle y\rangle$ (direct product). These remarks show that the filter $A_{k}{ }^{1} \supseteq A_{k}{ }^{2} \supseteq \ldots$ is completely characterized by properties (v)-(viii) of Theorem 4.

On the other hand, since $A_{k}{ }^{1}$ is a pro- p-group whereas $A_{k}{ }^{0} / A_{k}{ }^{1}$ is prime to p, we see that the sequence

$$
0 \rightarrow A_{k}^{1} \rightarrow A_{k}^{0} \rightarrow A_{k}{ }^{0} / A_{k}{ }^{1} \rightarrow 0
$$

splits. Taking this together with property (ii), we see that $A_{k} \cong A_{k} / A_{k}{ }^{0} \times$ $A_{k}{ }^{0} / A_{k}{ }^{1} \times A_{k}{ }^{1} \cong A_{\bar{k}} \times S_{\bar{k}} \times A_{k}{ }^{1}$. This completes the proof.

5. Applications to finite abelian extensions.

Theorem 6. Let $L \mid k$ be any finite abelian extension, and let G denote the Galois group $G_{L \mid k}$. Then the filter of ramification subgroups

$$
G \supseteq G^{0} \supseteq G^{1} \supseteq G^{2} \supseteq \ldots \supseteq G^{r}=1
$$

has the following properties:
(i) There is a continuous homomorphism $\varphi: A_{\bar{k}} \rightarrow G$ such that the derived homomorphism $\bar{\varphi}: A_{\bar{k}} \rightarrow G / G^{0}$ is surjective;
(ii) G^{0} / G^{1} is cyclic; the number $m=\left(G^{0}: G^{1}\right)$ being such that \bar{k} contains a primitive mth root of unity;
(iii) If $p=0$, then $G^{1}=1$.

If $p \neq 0$, and if $n \geqq 1$, then
(iv) G^{n} / G^{n+1} is an elementary p-group whose rank is not greater than the dimension of the vector space \bar{k} over $\mathbf{Z} / p \mathbf{Z}$;
(v) $\left(G^{n}\right)^{p} \subseteq G^{f(n)}$.

Let $\bar{p}_{n}: G^{n} / G^{n+1} \rightarrow G^{f(n)} / G^{f(n)+1}$ denote the homomorphism derived from (v). Then
(vi) \bar{p}_{n} is surjective if $n \neq e /(p-1)$;
(vii) If $n=e /(p-1)$, then the cokernel of \bar{p}_{n} is isomorphic to a subgroup of $S_{k}[p]$.

Proof. The natural restriction homomorphism $A_{k} \rightarrow G$ carries $A_{k}{ }^{n}$ onto G^{n} for all $n \geqq 0$. Thus Theorem 6 follows immediately from Theorem 4 .

Theorem 7. Suppose that either $H_{1}\left(g, S_{K}[p]\right)=0$ or $p=0$ and that

$$
G \supseteq G^{0} \supseteq G^{1} \supseteq G^{2} \supseteq \ldots \supseteq G^{r}=0
$$

is any finite abelian filtered group which satisfies conditions (i)-(vii) of Theorem 6. Then there exists a finite abelian extension $L \mid k$ and an isomorphism $\gamma: G_{L \mid k} \rightarrow G$ such that $\gamma\left(G_{L \mid k^{n}}\right)=G^{n}$ for all $n \geqq 0$.

Proof. It is enough to construct a continuous homomorphism $\psi: A_{k} \rightarrow G$ (onto) such that $\psi\left(A_{k}{ }^{n}\right)=G^{n}$ for all $n \geqq 0$. (For if such ψ is given, we can choose L to be the fixed field of the kernel of ψ.) By Theorem 4 (ii), $A_{k} \cong A_{k}{ }^{0} \times A_{\bar{k}}$. Thus it is enough to construct $\psi_{0}: A_{k}{ }^{0} \rightarrow G^{0}$ such that $\psi_{0}\left(A_{k}{ }^{n}\right)=G^{n}$ for all $n \geqq 0$. For if such ψ_{0} is given, then combining with φ given by (i), we can define $\psi: A_{k} \rightarrow G$ by $\psi(\alpha, \beta)=\psi_{0}(\alpha) \varphi(\beta)$. Similar considerations show that we can reduce the problem another stage: It is enough to construct a continuous homomorphism $\psi_{1}: A_{k}{ }^{1} \rightarrow G^{1}$ such that $\psi_{1}\left(A_{k}{ }^{n}\right)=G^{n}$ for all $n \geqq 1$.

If $p=0$, then $A_{k}{ }^{1}=G^{1}=1$, and our proof is complete. Otherwise, we define a subset $Y \subseteq G$ analogous to the X defined in the proof of Theorem 5 . We define Y to consist of the elements $y_{i j}, i \in I, j \in J$, where $y_{i j} \in G^{i}$ for all $j \in J$, and such that the cosets $\bar{y}_{i j} \in G^{i} / G^{i+1}, j \in J$, generate G^{i} / G^{i+1}. (If $S_{k}[p] \neq 1$, we include an additional element y_{s} such that $y_{s} \in G^{s}$ and \bar{y}_{s} generates $G^{e p /(p-1)} /\left(G^{e /(p-1)}\right)^{p}$.) The surjectivity properties of the mappings $\bar{p}_{n}: G^{n} / G^{n+1} \rightarrow G^{f(n)} / G^{f(n)+1}$ assures us that Y generates G; and if Y^{n} is defined analogously to X^{n}, we see that Y^{n} generates G^{n}. The natural mapping $X \rightarrow Y$ yields a continuous homomorphism $\psi_{1}: A_{k}{ }^{1} \rightarrow G^{1}$ (since $A_{k}{ }^{1}$ is a free abelian pro- p-group on X). Since X^{n} maps onto Y^{n}, we see that $\psi_{1}\left(A_{k}{ }^{n}\right)=G^{n}, n \geqq 1$. Thus, the proof is complete.

Remark 3. Theorem 7 holds even if $H_{1}\left(g, S_{K}[p]\right) \neq 0$, provided we deal only with groups G satisfying $G^{e p /(p-1)}=1$.

Remark 4. In applying Theorem 7 or Remark 3, condition (i) of Theorem 6 is certainly the least pleasing since, among all the conditions, it is nonarithmetic. A rather drastic cure would be to restrict our attention to totally ramified extensions: then condition (i) becomes vacuous (this is certainly permissible when \bar{k} is algebraically closed). In a similar vein, if we restrict our attention to p-extensions, then (by additive Kummer Theory), condition (i) may be replaced by:
(i) ${ }^{\prime}$ The rank of the p-group G / G^{0} is not greater than the dimension of $\bar{k} / \mathscr{P}(\bar{k})$ over $\mathbf{Z} / p \mathbf{Z}$.
An important special case is when \bar{k} is quasi-finite [13]. In this case, $g \cong$ inv $\lim _{n} \mathbf{Z} / n \mathbf{Z}$, and condition (i) may be replaced by the simple condition:
(i) ${ }^{\prime \prime} G / G^{0}$ is cyclic.

Example. Let $L \mid k$ be a cyclic extension, and let $i_{1}<i_{2}<\ldots<i_{r}$ be the set of (upper) jumps of $L \mid k$ which are larger than zero. Define I as before, namely, I consists of all positive integers less than $e p /(p-1)$ which are not divisible by p (if $S_{k}[p] \neq 1$, then we enlarge I to include $e p /(p-1)$). Then by straightforward computation we see that: Conditions (v), (vi), and (vii) of Theorem 6 (or 7) are equivalent to
(v) ${ }^{\prime} i_{1} \in I$, and
(vi)' if $n \geqq 1$, then either $i_{n+1} \in I$ and $i_{n+1}>f\left(i_{n}\right)$, or $i_{n+1}=f\left(i_{n}\right)$.

In particular, if $i_{n} \geqq e /(p-1)$, then $i_{n+1}=i_{n}+e$. Thus the ramification eventually "stabilizes" if $e<\infty$, and it may even stabilize immediately as in the case $e=1$.
6. The condition $H_{1}\left(g, S_{K}[p]\right)=0$. Let $G_{k}=G_{k s \mid k}$, where k_{s} denotes the maximal separable extension of k. In view of [7], we can now prove the following interesting result.

Theorem 8. Suppose that $p \neq 0$. Then the following statements are equivalent:
(i) $A_{k}(p)$ is a free abelian pro- p-group;
(ii) $A_{k}{ }^{1}$ is a free abelian pro-p-group;
(iii) $H_{1}\left(g, S_{K}[p]\right)=0$;
(iv) $G_{k}(p)$ is a free pro- p-group.

Proof. Taking p-factors of Theorem 4 (ii), we obtain

$$
\begin{equation*}
0 \rightarrow A_{k}{ }^{1} \rightarrow A_{k}(p) \rightarrow A_{\bar{k}}(p) \rightarrow 0 \tag{8}
\end{equation*}
$$

Since $A_{\bar{k}}(p)$ is a free abelian pro- p-group, (8) splits, and we obtain $A_{k}(p) \cong A_{k}{ }^{1} \times A_{\bar{k}}(p)$. Thus the torsion part of $A_{k}(p)$ is the same as that of $A_{k}{ }^{1}$. Hence, the equivalence of (i) and (ii).

To prove the equivalence of (ii) and (iii), we note that, if $H_{1}\left(g, S_{K}[p]\right)=0$, then (ii) follows from the proof of Theorem 5. Conversely, if $H_{1}\left(g, S_{K}[p]\right) \neq 0$, then by Theorem 4 (viii), there exists $\sigma \in A_{k}^{e /(p-1)}-A_{k}^{e /(p-1)+1}$ such that $\sigma^{p} \in A_{k}^{e p /(p-1)+1}$. But since $\bar{p}_{n}: A_{k}{ }^{n} / A_{k}{ }^{n+1} \rightarrow A_{k}{ }^{n+e} / A_{k}{ }^{n+e+1}$ is surjective for all $n>e /(p-1)$, we deduce that $A_{k}{ }^{e p /(p-1)+1}=\left(A_{k}{ }^{e /(p-1)+1}\right)^{p}$. Thus there is an
element $\tau \in A_{k}^{e /(p-1)+1}$ such that $\tau^{p}=\sigma^{p}$. Thus $\sigma \tau^{-1}$ is a non-trivial torsion element of $A_{k}{ }^{1}$, and so $A_{k}{ }^{1}$ is not a free abelian pro- p-group.

Finally, we note that the equivalence of (iii) and (iv) is a direct consequence of the results in [7].

Remark 5. A concrete interpretation of the group $H_{1}\left(g, S_{K}[p]\right)$ is given in [7] and in [6, p. 101]. Specifically, we have
(i) If $e /(p-1)$ is not an integer (i.e. $e /(p-1)$ is rational or ∞), then $H_{1}\left(g, S_{K}[p]\right)=0$;
(ii) If $e /(p-1)$ is an integer, then $H_{1}\left(g, S_{K}[p]\right)$ corresponds to a certain class \mathscr{C} of extension fields of degree p over \bar{k}, and $H_{1}\left(g, S_{K}[p]\right)=0$ if and only if $\mathscr{C}=\emptyset$. If $S_{k}[p] \neq 1$, then \mathscr{C} is precisely the class of cyclic extensions of degree p over \bar{k}. If $S_{k}[p]=1$, then \mathscr{C} consists of certain non-Galois extensions. An important corollary is: If \bar{k} is quasi-finite and if $S_{k}[p]=1$, then $H_{1}\left(g, S_{K}[p]\right)=0$.

References

1. C. Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1-44.
2. E. Artin and J. Tate, Class field theory (Benjamin, New York-Amsterdam, 1968).
3. H. Hasse, Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper, J. Fac. Sci. Tokyo 2 (1934), 477-498.
4. J. Herbrand, Sur la théorie des groupes de décomposition, d'inertie, et de ramification, J. Math. Pures Appl. Sér. 910 (1931), 481-498.
5. S. Lang, Rapport sur la cohomologie des groupes (Benjamin, New York-Amsterdam, 1967).
6. M. Marshall, The ramification filters of abelian extensions of a local field, Ph.D. Thesis, Queen's University, Kingston, Ontario, 1969.
7. - The maximal p-extension of a local field (Can. J. Math., to appear).
8. E. Maus, Die gruppentheoretische Struktur der Verzweigungsgruppenreihen, J. Reine Angew. Math. 230 (1968), 1-28.
9. O. Ore, Additive polynomials, Trans. Amer. Math. Soc. 35 (1933), 559-584.
10. L. S. Pontryagin, Topological groups, translated from the second Russian edition by Arlen Brown (Gordon and Breach, New York-London-Paris, 1966).
11. J.-P. Serre, Groupes proalgébriques, Inst. Hautes Études Sci. Publ. Math. No. 7 (1960), 67 pp.
12. -_Sur les corps locaux à corps résiduel algébriquement clos, Bull. Soc. Math. France 89 (1961), 105-154.
13. -Corps locaux, Publications de l'Institut de Mathématique de l'Université de Nancago, VIII, Actualités Sci. Indust., No. 1296 (Hermann, Paris, 1962).
14. -_Cohomologie galoisienne, Cours au Collège de France, 1962-1963. Seconde édition, with a contribution by Jean-Louis Verdier, Lecture Notes in Mathematics 5 (SpringerVerlag, Berlin-Heidelberg-New York, 1964).

University of Saskatchewan,
Saskatoon, Saskatchewan

