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Experiments on the Richtmyer–Meshkov instability (RMI) in a dual driver vertical
shock tube (DDVST) are described. An initially planar, stably stratified membraneless
interface is formed by flowing air from above and sulfur hexafluoride from below the
interface location using the method of Jones & Jacobs (Phys. Fluids, vol. 9, issue 1997,
1997, pp. 3078–3085). A random three-dimensional, multi-modal initial perturbation
is imposed by vertically oscillating the gas column to produce Faraday waves. The
DDVST design generates two shock waves, one originating above and one below the
interface, with these shocks having independently controllable strengths and interface
arrival times. The shock waves have nominal strengths of ML = 1.17 and MH = 1.18 for
the shock wave originating in the light and heavy gas, respectively, with these strengths
chosen to result in arrested bulk interface motion following reshock. The influence of
the length of the shock-to-reshock time, as well as the order of shock arrival, on the
post-reshock RMI is examined. The mixing layer width grows according to h ∝ tθ , where
θH = 0.36 ± 0.018 (95 %) and θL = 0.38 ± 0.02 (95 %) for heavy and light shock first
experiments, respectively, indicating no strong dependence on the order of shock wave
arrival. Volume integrated specific turbulent kinetic energy (TKE) in the mixing layer
versus time is found to decay according to Etot/ρ̄ ∝ tp with pH = −0.823 ± 0.06 (95 %)
and pL = −1.061 ± 0.032 (95 %) for heavy and light shock first experiments, respectively.
Notably, the 95 % confidence intervals do not overlap. Analysis on the influence of the
shock-to-reshock time on turbulent length scales, transition criteria, spectra and mixing
layer anisotropy are also presented.
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1. Introduction

The Richtmyer–Meshkov instability (RMI) is a fluid instability that occurs when a
perturbed interface between two fluids of differing density is impulsively accelerated,
usually by a shock wave. The RMI was first described by Richtmyer (1960), and later
studied experimentally by Meshkov (1969). The interaction of a planar shock wave with
perturbations on the interface between the two fluids produces a misalignment of pressure
and density gradients that in turn results in the deposition of vorticity at the interface.
The flow field induced by this vorticity leads to the formation of spikes of heavy fluid
penetrating into the light fluid, and bubbles of light fluid propagating in to the heavy fluid.
These spikes and bubbles eventually form mushroom-like structures as they continue to
grow. They eventually begin to interact with neighbouring structures, potentially resulting
in turbulence and increased mixing between the two fluids (Jacobs & Krivets 2005).

The RMI appears in many notable areas of research ranging from astrophysics to
combustion in SCRAMJETs (Arnett et al. 1989; Zhou et al. 2021). Most notably, the RMI
appears during the implosion stages of inertial confinement fusion (ICF) experiments,
such as those performed at the National Ignition Facility (NIF). The ICF experiments at
the NIF are performed by irradiating a gold hohlraum with intense laser light resulting in
the emission of x-rays that illuminate a spherical capsule containing deuterium–tritium
(DT) gas and ice suspended within its centre. The intense x-ray radiation causes the
ablation of the capsules’ outer surface, producing an outwards flux of momentum and
a corresponding inward directed force that causes the core of the capsule to undergo
compression. The laser drive is commonly designed to produce multiple shock waves that
are sent through the capsule, interacting with density interfaces formed at the intersection
of layers of the different material components forming the capsule and fuel (Lindl,
Mccrory & Campbell 1992; Lindl et al. 2014). Importantly, the density interfaces are
typically subject to interactions with multiple shock waves originating from both the outer
surface of the capsule as well from the reflections of shock waves from the centre of
the capsule, resulting in shock wave impacts from both sides of the interfaces. These
additional shock wave impacts, initiating a regime known as reshock, drive the RMI to
a more energetic turbulent state, resulting in enhanced material mixing. This enhanced
mixing in turn leads to an undesirable temperature loss in the plasma core at the centre of
the capsule leading to a reduced fusion yield (Smalyuk et al. 2019).

Substantial work has been performed to study the RMI in reshock experimentally in
various configurations. These have included cases where the interface between the heavy
and light gases is initially formed using thin membranes or a splitter plate (Brouillette
& Sturtevant 1989, 1994; Vetter & Sturtevant 1995; Zaitsev, Titov & Chebotareva 1996;
Puranik et al. 2004; Leinov et al. 2008, 2009), membraneless interfaces (Jacobs et al.
2013; Noble et al. 2020a,b; Sewell et al. 2021; Noble et al. 2023), inclined membraneless
interfaces (McFarland et al. 2014; Reilly 2015; Mohaghar et al. 2017, 2019) and laminar gas
cylinders or gas curtains (Balakumar et al. 2008a,b; Orlicz et al. 2009; Balasubramanian
et al. 2012; Balakumar et al. 2012; Orlicz et al. 2015). These reshock studies have focused
on examining different aspects of the RMI in reshock, including the influence of changing
the length of time between the arrival of the incident shock and reshock, the absolute and
relative strengths of the incident shock and reshock, and the order of arrival of the two
shock waves, as well as examining the ways in which the turbulent nature of the RMI
changes following reshock.

One notable aspect of the RMI in reshock is a rapid increase in the growth rate of the
mixing layer following the passage of the second shock. Early experiments by Brouillette
& Sturtevant (1989) examined the RMI in reshock utilizing a shock tube with a thin
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Influence of the shock-to-reshock time on the RMI in reshock

membrane initially separating the two gases. In that work, they note a rapid increase in the
growth rate of the mixing layer following reshock. Additionally, they found linear growth
of the mixing layer with time following reshock, and note that this growth rate appears to
decrease following subsequent interactions with additional shock waves. Similar results
showing a rapid, although still linear, increase in the growth rate of the mixing layer
were found by Brouillette & Sturtevant (1994), Vetter & Sturtevant (1995), Zaitsev et al.
(1996) and Leinov et al. (2008, 2009). A linear growth rate of the RMI in reshock was
also found by Jacobs et al. (2013), with those experiments utilizing a membraneless
interface technique instead of the membrane used in previous experiments. Linear growth
following reshock in membraneless experiments was also observed in the experiments of
Mohaghar et al. (2017, 2019) as well as Noble et al. (2020a,b). A similar increase in the
growth rate following reshock was also found for gas curtain experiments. A potential
departure from linear growth at the latest times in reshock was observed by Balakumar
et al. (2008a), Balakumar et al. (2008b), Balakumar et al. (2012) and Balasubramanian
et al. (2012), though only a small number of data points were captured in that regime,
making the conclusion of nonlinear growth difficult. Simulations have also found linear
growth in reshock (Schilling & Latini 2010; Lombardini et al. 2011), including simulations
with initial perturbations based on experiments (Schilling, Latini & Don 2007; Latini &
Schilling 2020). A number of models of the RMI in reshock likewise predict linear growth
(Richtmyer 1960; Brouillette & Sturtevant 1989; Mikaelian 1989; Charakhch’yan 2001;
Lombardini et al. 2011). Later experiments by Sewell et al. (2021) examined the RMI
in reshock with both a low and high amplitude initial perturbation. In contrast with the
previous work, those experiments found that the post-reshock mixing layer grew according
to a power law of the form h ∝ tθ , where θ = 0.50 ± 0.07 and θ = 0.33 ± 0.07 for the low
and high amplitude initial perturbations, respectively. Of particular note, these experiments
suggest that, given sufficient time, the RMI in reshock grows with a power law of h ∝ tθ
much like the singly shocked RMI. This observation is in agreement with the simulations
of Thornber et al. (2011, 2012), who also found the mixing layer width in reshock to
grow with a power law with an exponent of θ = 0.28 to 0.36. Similar nonlinear growth
with a power of 2/7 ≈ 0.28 was found by Tritschler et al. (2014). Some models also
consider nonlinear growth with a power law similar to the singly shocked RMI (Mikaelian
2011, 2015), while other models permit both linear and power law growth following
reshock (Morán-López & Schilling 2013, 2014; Mikaelian & Olson 2020; Schilling 2024).
Morán-López & Schilling (2014) found that a model calibrated to produce power law
growth with θ = 0.3 before reshock best matched the experimental data of Leinov et al.
(2008, 2009), although these models can be tuned to a range of values of θ .

Several experimental studies of the RMI in reshock have considered not only the more
typical configuration where the incident shock arrives from the light gas, but also the
case where the incident shock arrives from the heavy gas. Brouillette & Sturtevant (1989)
utilized a thin membrane to initially separate the two gases in shock tube experiments.
This allowed them to form the heavy-over-light interface while also maintaining a thin
interface, albeit with the complications associated with the use of a membrane to form the
initial interface. They found the interface grew linearly with time, and the growth rate was
similar for the two cases. Puranik et al. (2004) also considered the case where the incident
shock arrives from the heavy gas. In that work, they formed the heavy-over-light interface
utilizing a thin plate to initially separate the two gases, with this plate being quickly
withdrawn just prior to the experiment. Notably, the heavy-over-light interface was allowed
to evolve as a Rayleigh–Taylor unstable layer for a short period of time prior to shock wave
arrival. While they did not observe the RMI in reshock, the allowance of Rayleigh–Taylor
growth of the mixing layer prior to shock wave arrival does create a similar state to what
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one might expect in an RMI reshock experiment. In those experiments, they note the
phase inversion of the initial perturbations following the passage of the shock wave, which
is a phenomenon unique to the heavy incident shock case. They also found qualitative
agreement between their mixing layer width versus time measurements and a power law of
the form h ∝ tθ , where θ = 1/3, though they note that the large amount of scatter in their
data makes quantitative assessment difficult. Li et al. (2020) also considered the case of a
heavy-to-light incident shock wave in a convergent geometry. This configuration utilized a
soap film to initially separate the heavy and light gases. Notably, each of the experiments
that have examined reshock where the incident shock wave arrives from the heavy gas in a
single interface RMI experiment have utilized some form of membrane to initially separate
the two gases. Membranes that are broken by the arrival of a shock can potentially alter
the characteristics of the flow, obscure schlieren and shadowgraph techniques, and make
laser-based diagnostics impossible (Jones & Jacobs 1997). Therefore, there is utility in
examining reshock where the incident shock wave arrives from the heavy gas without the
use of membranes or splitter plates.

Studies on the RMI in reshock have also considered how the characteristics of the flow
are changed by reshock. This includes rapid increases in the amounts of turbulent kinetic
energy (TKE) in the mixing layer, an increase in the Reynolds number and increased
material mixing (Zhou 2017b). One particularly notable change is that reshock appears
to induce a rapid breakdown of previously ordered structures in the mixing layer following
reshock. This has been observed in numerous experiments (Balakumar et al. 2008a, 2012;
Balasubramanian et al. 2012; Mohaghar et al. 2017, 2019; Sewell et al. 2021), though
Balasubramanian et al. (2012) notes that in their gas curtain experiments there appears to
be a persistent imprint of the initial conditions that lasts to late time. Mohaghar et al. (2017)
similarly notes that there appears to be a memory of long wavelength initial perturbations
following reshock, but little memory of small-scale initial structures. Analysis of the
mixing layer following reshock has also demonstrated a rapid transition to turbulence and
the formation of an inertial range of scales (Balakumar et al. 2008a, 2012; Schilling &
Latini 2010; Balasubramanian et al. 2012; Mohaghar et al. 2017, 2019; Sewell et al. 2021).
Balasubramanian et al. (2012) suggests that an interface with a more complicated structure
will also exhibit a more rapid breakdown of coherent structures and increased amounts of
mixing following reshock.

A logical extension of the observation of a rapid breakdown of previously ordered
structures following reshock is that this may also result in the RMI in reshock more
closely resembling isotropic turbulence. This has been examined in simulations (Thornber
et al. 2011, 2012; Ristorcelli, Gowardhan & Grinstein 2013; Tritschler et al. 2014; Oggian
et al. 2015; Thornber et al. 2017; Groom & Thornber 2018, 2023), as well as measured
in experiments as a function of time (Sewell et al. 2021), as a function of space at a
small number of fixed time instants (Balakumar et al. 2012; Balasubramanian et al. 2012;
Mohaghar et al. 2017) and through analysis of probability density functions (Orlicz et al.
2015). Interestingly, there is some disagreement on the late-time trends of anisotropy in
the RMI, with some work finding a persistence of anisotropy for a long time following
reshock, while others observe a trend towards isotropy at late times after reshock. The
anisotropy of the flow as a function of scale size in an RMI mixing layer has also been
studied by Mohaghar et al. (2017) as well as Soulard et al. (2018), where they find a
trend towards isotropy for small-scale structures, though large-scale structures remain
anisotropic. This rapid breakdown of scales and trends towards isotropy may also suggest
that the spectrum of TKE with wavenumber, k, might develop an inertial range with a k−5/3

Kolmogorov-type scaling, though Zhou (2001) suggests that an RMI flow may expect
to scale closer to k−3/2, instead. Indeed, both of these scalings have been observed in
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simulation (Thornber et al. 2011; Tritschler et al. 2014; Oggian et al. 2015) and experiment
(Mohaghar et al. 2017, 2019; Sewell et al. 2021).

The influence of changing the time that the RMI is allowed to evolve in the singly
shocked regime prior to reshock has been examined in numerous experiments as well.
One option to control the length of time between the arrival of the incident shock and
reshock is by controlling the length of the region into which the transmitted shock wave
propagates after impacting the interface. This has the effect of controlling the time taken
for the transmitted shock wave to reflect off of the shock tube end wall and return to the
interface to initiate reshock. This was the approach used in the experiments of Leinov et al.
(2008, 2009), where a false or movable end wall could be adjusted to control the length of
the heavy gas portion of the test section, and thereby control the arrival time of reshock at
the interface. Balasubramanian et al. (2012) and Balakumar et al. (2012) likewise varied
the shock-to-reshock time in a gas curtain experiment using an adjustable end wall to
control the arrival time of the reflected shock wave at the interface. The use of a false
end wall has been used in numerous other studies to achieve a desired shock-to-reshock
time, even though the studies themselves did not examine the influence of changing this
parameter (Balakumar et al. 2008b; Jacobs et al. 2013; Sewell et al. 2021; Zhang et al.
2023). As will be discussed in more detail in § 2.1, this approach necessarily couples the
length of the shock-to-reshock time to the length of the post-reshock observational window
and complicates attempts to study a range of shock-to-reshock times while maintaining a
long observational window in reshock.

The influence of the reflected shock Mach number on the RMI in reshock has also
been studied. The experiments of Leinov et al. (2008, 2009) considered the influence of
decoupling the strength of the incident and secondary (reshock) shock waves by utilizing
compressible foams to remove energy from the reflected shock wave, though the degree of
control over the strength of reshock was limited by the range and consistency of available
foams. Mohaghar et al. (2019) also considered the influence of the shock wave Mach
number on the RMI in reshock. In each of these cases, they find that an increase in Mach
number results in increased RMI growth rates, the amount of TKE, turbulent mixing and
Reynolds numbers, as well as a more rapid transition to turbulence following reshock.

These previous experimental studies provide the context for the goals of this study. The
present work has three major goals to examine aspects of the RMI that have previously
been difficult to study simultaneously in experiment:

(i) Examine the influence of the order of arrival of the two shock waves on the
post-reshock development of the RMI.

(ii) Examine the influence of changing the length of time between the arrival of the
incident shock and reshock at the interface on the post-reshock development of the
RMI.

(iii) Achieve both of the previous goals with as long of an observational window as is
possible in order to examine the development of the RMI at late times after reshock.

This work will be presented in the following sections. Section 2 outlines the experimental
configurations and diagnostics used for this work, including a description of the dual driver
vertical shock tube (DDVST) used as part of this study. Section 3 describes analysis of the
experiments conducted as part of this study, including examination of mixing layer growth
rate, rate of TKE decay, Reynolds number and anisotropy of the mixing layer. Finally, § 4
presents the conclusions of this study.
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Figure 1. Solid model rendering of the DDVST with section lengths indicated. Also shown is the path of the
counterflow gas streams, as well as the location of the diaphragm clamping and forcing mechanisms.

2. Experimental configuration

2.1. Apparatus
The present work has been carried out in a DDVST that has been constructed at the
University of Arizona. A solid model representation of this shock tube is shown in figure 1.
The DDVST consists of two driver and driven sections oriented on opposite sides of a test
section. The lengths of each driver and driven section were optimized so as to achieve the
longest period in which the RMI can be observed in reshock within the constraints imposed
by cost, laboratory space and manufacturability. This optimized shock tube design consists
of a 2.25 m long light driver section, a 3.20 m long light driven section, a 2.23 m long
heavy driven section and a 2.36 m long heavy driver section, for a total length of 10 m.
The drivers are cylindrical, with a 101.6 mm (4 inch) internal diameter. The driven and test
sections are square, with a 88.9 mm (3.5 inch) internal dimension. All tube sections are
made of extruded aluminum.

A pneumatic clamping mechanism, used to secure the diaphragms, is located
between each driver and driven section. These are indicated as the ‘clamping and
forcing mechanism’ in figure 1. The detail view area contains a labelled schematic of
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this mechanism. The mechanism consists of a rubber bladder located below a plastic ring
on one surface, and a metal disk with a compliant rubber gasket on the mating surface.
A diaphragm is placed onto the plastic ring, and the driver is lowered onto it. The two
surfaces are locked together using a rotating locking ring that is secured using four metal
posts. The bladder is then inflated with compressed air to 50 p.s.i., pushing the plastic
ring upwards into the mating surface, securing the diaphragm in place. This method for
securing the diaphragms was chosen as it provides a greater amount of clamping force and
with greater consistency than previous clamping mechanism designs in our lab that use
toggle clamps or threaded clamping rings.

This shock tube uses the method of Jones & Jacobs (1997) to form the interface. Streams
of heavy and light gases enter the shock tube through the clamping and forcing assembly
on the low pressure sides of the diaphragms, with the light gas stream entering at the top
of the light driven section, and the heavy gas stream entering at the bottom of the heavy
driven section. These gas streams meet at a set of nine 1.6 mm (1/16 inch) diameter holes
drilled in the clear test section, where they flow out, forming a stable, stratified interface.
The holes remain open during the experiment, and the number and size of the holes was
chosen to result in a minimal influence on the development of the RMI. This gas column
is then oscillated vertically using a forcing mechanism consisting of a pair of subwoofers
attached to the clamping and forcing assembly. The oscillation of the gas column produces
Faraday waves that form a semi-random initial perturbation on the interface. The clamping
and forcing assembly is shown in greater detail in the detail view of figure 1. Previous
work utilizing this forcing method by Jacobs et al. (2013) as well as Sewell et al. (2021) has
shown that the behaviour of the RMI can be influenced by the root-mean-square amplitude
of the initial perturbations at the time of incident shock arrival. Additionally, statistical
repeatability of the initial perturbations helps to reduce run-to-run variability in the results.
To control for these factors, the frequency and amplitude of the sinusoidal signal used to
drive the speakers, the length of time that the interface is forced prior to an experiment and
the phase of the forcing signal when diaphragm rupture is triggered, is controlled using
an Arduino Due microcontroller in order to increase statistical repeatability of the initial
perturbations from experiment to experiment.

Figure 2 depicts an x–t diagram for a typical experiment in the DDVST. This diagram
can be used to trace the progression of an experiment. The main interactions of interest
here are as follows:

Points (a,b) The two diaphragms are suddenly ruptured with a controlled time delay
between the first and second rupture.

Point (c) The two shock waves arrive at the interface location with a temporal
separation that is controlled by the delay between the firing of the two drivers.
A number of interactions take place in rapid succession and are depicted in
greater detail in the inset of figure 2.
Point (1) The incoming light shock wave impacts the interface, initiating the

RMI. This results in a transmitted and reflected shock wave.
Point (2) The transmitted light shock wave then interacts with the incoming

heavy shock wave, again producing a reflected and transmitted
shock wave.

Point (3) The transmitted heavy shock wave from this interaction then
impacts the interface from the opposite side as the initial light shock
wave impact, initiating reshock. A transmitted shock wave and a
reflected expansion wave are generated from this interaction.
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Figure 2. The x–t diagram corresponding to a dual driver shock tube, with colours added for illustrative
purposes. (a) The heavy driver is fired first, emitting the heavy shock wave towards the interface and an
expansion wave in to the heavy driver. (b) The light driver is fired a few milliseconds later, emitting the
light shock wave towards the interface and an expansion wave in to the light driver. (1) The light shock wave
impacts the interface, resulting in a transmitted and reflected shock. (2) This transmitted shock impacts the
incoming heavy shock wave, again resulting in a transmitted and reflected shock. (3) The reflected shock
from the previous interaction impacts the interface from the opposite direction of the initial impact, initiating
reshock. This results in a transmitted shock and reflected expansion wave. (d) The interface has zero bulk
interface motion following the second shock until the expansion waves reflected from the ends of the drivers
return to the interface.

Point (d) The RMI then continues to develop in reshock until the expansion waves that
are generated at diaphragm rupture and are subsequently reflected from each
driver end wall arrive at the interface location, ending the RMI portion of the
experiment.

These interactions highlight how the addition of the second driver provides additional
capability to control various aspects of the experiment more simply than would be possible
in a single driver design.

Firstly, the pressurization of each driver can be independently controlled in a dual
driver design, thereby allowing the strength of the shock wave generated by each driver
to be specified. This, in turn, allows for the relative strength of the incident shock and
reshock, and consequently the post-reshock bulk interface velocity, to be prescribed. The
post-reshock bulk interface velocity was chosen to be halted for this study as indicated by
the vertical line connecting points (3) and (d) in figure 2, but in practice any post-reshock
bulk velocity can be prescribed by controlling the pressurization of the two drivers.

Secondly, the relative time of arrival of the two shock waves at the interface in this
design can be controlled by simply delaying the firing of one driver compared with the
other. This permits the time between the arrival of the first and second shock waves at the
interface to be prescribed. This additionally enables the delay between the firing of the two
drivers to be adjusted such that the order of arrival of the two shock waves at the interface
may be reversed.

A third strength of the dual driver design is that the driven section containing the heavy
gas has been effectively lengthened to include the entirety of the heavy driven section
and heavy driver section. The reflected expansion wave produced by the heavy-to-light
shock wave impact can be observed near point (3) in figure 2. In a single driver design this
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Parameter Group 1 Group 2 Group 3

Light gas Air Air Air
Heavy gas SF6 SF6 SF6
Imaging rate 1500 Hz dual frame 1500 Hz dual frame 7500 Hz sequential
Inter-frame time 100 μs 100 μs 1/7500 ≈ 133 μs
Camera resolution 4× @ 1024 px

(H) 1024 px (W)
4× @ 1024 px

(H) 1024 px (W)
1× @ 1952 px

(H) 1536 px (W)
Camera arrangement 2 × 2 grid 4 × 1 stack —
min(�ts→rs) +0.14 ms −4.01 ms −0.76 ms
max(�ts→rs) +0.96 ms +3.85 ms +0.87 ms
PIV vector field size 480 (H) × 480 (W) 874 (H) × 231 (W) 473 (H) × 327 (W)
PIV vector spacing 0.18 mm vector−1 0.37 mm vector−1 0.26 mm vector−1

No. of experiments 21 58 10

Table 1. List of parameters for the experimental groups in this study.

expansion wave would travel back in to the heavy gas, reflect off of the end wall of the
shock tube and return to the interface, accelerating it and ending the purely RMI portion
of the experiment. As the time taken for this expansion wave to return to the interface is
related to the same geometry that sets the shock-to-reshock time, it becomes difficult, if
not impossible, to decouple the shock-to-reshock time and the length of the post-reshock
observational window. In a dual driver design, however, this reflected expansion wave
must travel to the end of the heavy driver section and back before it can return to the
interface. This process will take significantly longer than the time for the expansion waves
from either driver generated at the time of diaphragm rupture to reach the interface. Thus,
a dual driver design allows the full length of the heavy driven and driver sections to be
available to remove the influence of the reflected expansion wave, thus allowing for a
long post-reshock observational window regardless of the shock-to-reshock time of the
experiment. A similar set of conditions is true for the case where the incident shock wave
arrives from the heavy gas and the second shock wave arrives from the light gas, meaning
that a long post-reshock observational window is maintained regardless of the order of
shock wave arrival. In practice, the post-reshock observational window lasts approximately
10 ms in the DDVST experiments described here. This is a substantially longer period of
time than the 2–4 ms of post-reshock growth that has been possible with the single driver
designs used in our laboratory (Jacobs et al. 2013; Sewell et al. 2021).

2.2. Experiment description
The experiments presented here have been carried out in three primary experimental
groups, totaling 89 experiments. These groups and their relevant parameters are given
in table 1. The mean Mach number of the shock wave generated by the light driver is
ML = 1.17 with a standard deviation of σ = 0.007, and the mean Mach number of the
shock wave generated by the heavy driver is MH = 1.18 (σ = 0.004), with these statistics
taken across all experiments presented here. The bulk interface velocity arising from
these shock waves is uH,I = 58.68(σ = 2.14) m s−1 and uH,R = −0.87(σ = 3.00) m s−1

in the singly shocked and reshocked regimes for the heavy shock first experiments,
and uL,I = −61.27 (σ = 3.80) m s−1 and uL,R = −2.66 (σ = 1.62) m s−1 in the singly
shocked and reshocked regimes for the light shock first experiments, respectively.
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All experiments in this work utilize air as the light gas and sulfur hexafluoride (SF6) as
the heavy gas, yielding an Atwood number of At ≡ (ρSF6 − ρair)/(ρSF6 + ρair) = 0.67.
Atmospheric pressure and temperature in the laboratory were gathered prior to each
experiment using a Bosch BMP280 combination barometer and thermometer. The mean
atmospheric pressure was 93.1 (σ = 0.25) kPa and the mean atmospheric temperature
was 24.7 (σ = 1.1) ◦C. These values yield mean densities of ρair = 1.09 × 10−3 (σ =
0.01 × 10−3) g cm−3 and ρSF6 = 5.49 × 10−3 (σ = 0.03 × 10−3) g cm−3. The dynamic
viscosities of the heavy and light fluids are μH = 1.53 × 10−4 g (cm s)−1 and μL =
1.82 × 10−4 g (cm s)−1, respectively. An average kinematic viscosity of the two fluids
is found as νavg = (μH + μL)/(ρH + ρL) = 0.051 cm2 s−1. Suzuki (1982) finds the
diffusion coefficient of nitrogen and sulfur hexafluoride to be D = 0.0945 cm2 s−1.
A Schmidt number for air and sulfur hexafluoride in the present experiments is estimated
from these quantities as Sc = νavg/D ≈ 0.54.

The shock-to-reshock time, �ts→rs, is a measure of the length of time between the
arrival of the incident shock and reshock at the interface. This quantity is varied in this
study in order to examine its influence on the post-reshock growth characteristics of the
RMI. In addition, both the configuration with the shock wave from the light gas arriving
first followed by the shock wave from the heavy gas, as well as the opposite order of arrival
of the two shocks, will be considered in this study. Therefore, in order to distinguish the
two cases, a positive shock-to-reshock time is defined to indicate the case where the shock
wave from the light gas arrives first, followed by reshock from the heavy gas. By similar
logic, a negative shock-to-reshock time is defined as the shock wave from the heavy gas
arriving first, followed by the shock wave from the light gas.

The length of the shock-to-reshock time period, as well as the Mach numbers of each
shock wave, are determined using the output of four PCB Piezotronics 112A22 high-speed
pressure transducers, two located in the light driven section and two in the heavy
driven section, combined with atmospheric pressure and temperature in the laboratory
as measured prior to each experiment. The time that a shock passes each pair of pressure
transducers, together with the known spacing of each pressure transducer pair, allows the
velocities of both the heavy and light shock waves to be determined for each experiment,
and the properties of each gas allow a Mach number of each shock to be calculated. The
arrival time of each shock wave at the interface location is calculated from the measured
shock wave speeds along with the known distance between the pressure transducers and the
interface location. The shock wave that arrives soonest is identified as the incident shock
wave. In calculating the arrival time of the second shock wave at the interface, the bulk
interface velocity imparted to the interface by the incident shock wave must be accounted
for. This is found using the exact Riemann solver presented in Toro (2009). The difference
between the arrival times of the two shock waves at the interface are then used to calculate
the shock-to-reshock time of each experiment.

The gas properties and measured shock wave strengths described in the previous
paragraphs can be used with the exact Riemann solver of Toro (2009) to estimate the
change in Atwood number following the impact of the first (incident) and second (reshock)
shock waves. A post-incident shock Atwood number of AtH,I = 0.68(σ = 0.0005) and
AtL,I = 0.695(σ = 0.001) is found for the heavy and light shock first experiments,
respectively. Both groups of experiments have a post-reshock Atwood number of AtH,R =
AtL,R = 0.705(σ = 0.001).

Finally, the cameras used to image the RMI are triggered based on the passage of a shock
wave by the pressure transducer closest to the heavy driver section. This transducer is
chosen as it is the first to sense a shock wave passage for a wide range of shock-to-reshock
times.
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2.3. Imaging and diagnostics
The experiments in this work utilize the two-dimensional, two-component particle image
velocimetry (PIV) technique to obtain measurements of the velocity field. Particle
image velocimetry is a non-intrusive optical diagnostic technique that allows for the
reconstruction of a flow field by taking two images of tracer particles seeded into the flow
with a known temporal separation. The seeding particles used in this study are vegetable
glycerin droplets produced in the seeding apparatus described by Sewell et al. (2021).
One apparatus is used for each gas, and the particles are added just before the fluids
enter the shock tube. The power applied to each apparatus is controlled so as to generate
an appropriate number of particles for PIV. The density of the particles in each gas is
attempted to be as closely matched as possible. The particle diameter is approximately
2 μm, measured using an in situ measurement based on the acceleration of the particles
following the passage of a shock wave (Adrian & Westerweel 2011; Sewell et al. 2021).
Application of the analysis of Adrian and Westerweel also finds that particles of this size
will track the flow with ≈ 95 % accuracy at the maximum temporal frequency resolvable
with the present diagnostics.

The experiments presented in this work were captured in three groups corresponding to
different configurations of the cameras used to image the experiment. Configurations that
utilized multiple cameras were set up such that an overlap of ≈ 10 % of the image width
existed between the field of view of each camera to facilitate merging of the individual
PIV results from each camera into one composite vector field during post-processing.
Experimental groups 1 and 2 captured PIV image pairs using a set of four Photron APX-RS
Fastcam cameras at a rate of 1500 image pairs per second, with 100 μs separation between
the first and second images in each pair. The cameras in experimental group 1 were
arranged in a 2 × 2 grid, with each camera capturing a square area with a dimension
just over half of the test section width at a resolution of 1024 × 1024 pixels. This resulted
in an approximately square total imaging area with width and height roughly equaling
the test section width, yielding a resolution of approximately 1900 pixels across the test
section width. This allowed for images to be captured at high resolution, but with the
limitation that only a relatively small range of shock-to-reshock times could be visualized.
The cameras in experimental group 2 also operated at 1024 × 1024 pixels, but the cameras
were instead oriented in a vertical 4 × 1 stack, with each camera imaging a square area
approximately equal to the test section width. This resulted in a spatial resolution that
was approximately half of the resolution of group 1, with approximately 1000 pixels
across the test section width. The 4 × 1 orientation, however, allowed for a wider range
of shock-to-reshock times to be visualized than was possible in the group 1 configuration.
Experimental group 3 utilized a single Phantom v2640. The imaging area was rectangular,
and the captured images had a resolution of 1952 pixels in height by 1536 pixels across
the test section width, resulting in a slightly lower spatial resolution than the 2 × 2 camera
configuration of experimental group 1. This reduction in resolution was chosen as it
allowed the camera to be operated at a much higher imaging rate than was possible with
the APX-RS cameras while maintaining the same spatial extents as experimental group
1 and utilizing only a single camera. Additionally, the increased frame rate results in an
inter-frame time of 1/7500 ≈ 133 μs between subsequent images, which is similar to the
100 μs inter-frame time used in experimental groups 1 and 2. This allowed the PIV fields
to be calculated using sequential images rather than image pairs as in groups 1 and 2,
thereby greatly increasing temporal resolution of the experiments.

The particles within the test section are illuminated by a Photonics Industries DM527-50
70W Nd:YLF high-speed pulsed laser. The laser beam is first focused through the use of
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a long focal length spherical lens. The beam is then passed through cylindrical lenses to
expand it in to a sheet with a height that is sufficient to image the entirety of the camera
view(s). The laser sheet then enters the test section through the transparent side wall,
perpendicular to the camera views.

The raw image pairs captured from an experiment are post-processed using the PIV
post-processing functionality in LaVision’s DaVis software in order to reconstruct the flow
velocity field. The post-processing in the present work utilizes DaVis’s iterative ‘adaptive
PIV’ method. This utilizes successively decreasing window sizes, with the results at
the previous iteration used to deform the interrogation window of the next iteration to
provide more robust results and reduce spurious vector correlations. A final window size of
16 × 16 pixels with a 75 % overlap was chosen. This results in one velocity field per camera
per time instant. If multiple cameras were used for the experiment, each individual velocity
field is then merged in to a single composite field that represents the entire observation
window.

3. Results

3.1. Interface perturbations
Given the known sensitivity of the behaviour of the RMI to the perturbations on the
interface (Zhou 2017b), it is important to quantify the initial interface perturbations in
these experiments, including the determination of whether the perturbations are single
mode, narrowband or broadband in a spectral sense. These definitions have previously
been introduced by Thornber et al. (2011, 2012) to define an initial interface perturbation
spectrum with a single wavelength, a narrow spectral bandwidth or a wide spectral
bandwidth, respectively. The spectrum of the initial perturbation in these experiments is
quantified by choosing 12 representative experiments that had a relatively large difference
in particle seeding density between the heavy and light gases, making the interface
between them possible to detect. Ideally, the seeding between the two gases should be
similar in order to produce the best PIV data, and so most experiments had well-matched
particle seeding densities such that visual interface detection was not possible, limiting
the number of experiments that could be analysed in this fashion. Nonetheless, the initial
interface spectra from these experiments with a larger difference in seeding density
between the two gases should be similar to those with well-matched seeding density. The
last image captured prior to the arrival of the incident shock wave is selected from each
experiment to best capture the state of the interface at incident shock arrival. A single
representative image from this set is shown in figure 3. The initial interface profile is
detected utilizing the process described by Sewell et al. (2021) in which a strong Gaussian
blurring operation is utilized to make the image intensity in each gas more uniform, and a
Sobel edge-detection algorithm is used to identify the interface between the two gases in
each column of pixels.

The spectrum of the initial perturbation for each of the initial interface profiles is
found by applying a Hanning window to the profile and then taking the fast Fourier
transform (FFT) of each profile, yielding one initial perturbation spectrum per experiment.
The magnitude of each Fourier coefficient is then averaged across all 12 chosen
experiments to produce a single average initial perturbation spectrum. This averaged
spectrum is presented in figure 4 plotted as a function of wavenumber, k. Analysis of
this spectrum reveals that ≈60 % of the energy in the initial perturbation spectrum is
located at wavenumbers of k � 0.7 2π mm−1, with the spectrum being relatively constant
in magnitude over this wavenumber range. This range is indicated by the red dashed line
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Figure 3. Experimental image depicting the initial perturbations just prior to incident shock arrival. Note that
the contrast on this image has been increased to make the initial interface shape easier to identify. The distorted
regions on the edge of the image are caused by the exhaust holes in the test section walls.
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Figure 4. The averaged spectrum of the initial perturbation of the interface just prior to the arrival of the
incident shock. This average is taken across 12 experiments.

in figure 4. The wavenumber range of 0.7 � k � 6.9 2π mm−1 contains another 39 % of
the total energy, and the spectrum decays approximately according to k−2 in this range.
This range is indicated by the blue dashed line in figure 4. These two wavenumber ranges
therefore contain 99 % of the total energy in this spectrum. A significantly steeper rate of
decay is observed for k � 6.9 2π mm−1, with the remaining 1 % of the spectrum energy
contained in these scales. Additionally, while this method of quantification of the interface
does not capture the diffusion thickness of the two gases, work by Morgan (2014) in a
configuration similar to this one suggests that the diffusion layer should be approximately
6 mm in thickness based on Rayleigh scattering measurements of a flat air–SF6 interface.

This spectrum is slightly steeper than the ∼ k−1.5 spectrum found in the experiments
of Sewell et al. (2021) that was also used as the initial conditions for the simulations of
Groom & Thornber (2023). Those simulations also considered initial spectra of the form
k−0.5 and k−1. The present perturbation spectrum is also steeper than the k−1 utilized
for the simulations of Thornber et al. (2011). The jet-based initial condition of Weber
et al. (2014) (and others in that facility (Reese et al. 2014, 2018; Noble et al. 2020a,b,
2023)) had a spectrum based on scalar variance that was proportional to k−1 at low
wavenumbers and transitions to a k−3 and later k−5 decay at middle and high wavenumbers
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in their experiments. A relatively flat low wavenumber component and a ∼ k−2 spectrum
at higher wavenumbers was also observed in the (tilt-compensated) initial condition of
Mohaghar et al. (2017, 2019), with this spectrum similarly based on scalar fluctuations.
Finally, gas curtain experiments have a much more regular and single-mode interface
owing to the method of their formation (Jacobs 1993; Jacobs et al. 1993, 1995; Balakumar
et al. 2008a,b; Orlicz et al. 2009; Balakumar et al. 2012; Balasubramanian et al. 2012;
Orlicz et al. 2015).

3.2. Experimental progression
As discussed in previous sections, the PIV technique utilized in this work only resolves
the velocity field of this flow as opposed to a concentration or density field. Therefore,
methods of assessing the state and evolution of the RMI must be similarly velocity based.
One useful metric for a velocity-based analysis is the magnitude of the component of
vorticity normal to the image plane, ω = (∇ × u) · n̂. Considering that the passage of a
shock wave through the interface results in deposited vorticity, and that there is no mean
vorticity elsewhere in the test section, this metric will naturally highlight the regions where
RMI-induced vorticity is present. Vorticity is calculated in the present work using the
DaVis software package in which the gradients are calculated using a central difference
scheme involving the four closest neighbours (i.e. the vectors above, below, left and right)
of a given vector.

A montage of vorticity pseudocolour plots from an example experiment is shown in
figure 5. The experiment presented in this montage is a heavy shock first experiment from
experimental group 2. These composite images are the result of merging the individual
PIV vector fields from four cameras oriented in a vertical stack to form one composite
vector field. The experimental images used to generate these fields are captured at a rate
of 1500 image pairs per second. Therefore, the time between each image in this montage
is 1/1500 ≈ 0.66 ms.

The interface location is initially at the bottom of the viewable area, which is indicated
by the dashed line in figure 5(a). The interface is then impacted by the incident shock
wave in figure 5(b), travelling upward from the heavy gas into the light gas, causing
the interface to travel upward and initiating the RMI in the incident shock regime. The
RMI then develops in figure 5(b–e) as the interface continues to travel upwards in the
tube. The interface is impacted a second time by the shock wave arriving from the light
gas travelling downwards into the heavy gas in figure 5( f ), with this impact taking place
approximately �ts→rs = 3.0 ms after the incident shock arrival. The second shock wave
arrival initiates the RMI in the reshock regime, as indicated by the increased intensity of
vorticity on this fixed colour scale and the development of finer scales of turbulent motion
as compared with the pre-reshock flow. This rapid transition from relatively ordered
structures pre-reshock to a more disorganized structure has been observed in previous
experiments (Balakumar et al. 2008a, 2012; Balasubramanian et al. 2012; Mohaghar et al.
2017, 2019; Sewell et al. 2021). The RMI is then allowed to evolve in the reshock regime
in figure 5(g–r). It can be observed that the bulk interface velocity is approximately
halted, and the mixing layer is stationary in space as it evolves following the second
shock interaction. Some large-scale structures may be observed in these images, though
the randomness in the initial perturbation results in the spatial distribution of these larger
structures being different for each experiment. The RMI continues to evolve in reshock for
approximately 8 ms in this experiment. During this time, viscosity acts to dissipate energy
in the mixing layer, indicated by the decreasing colour intensity on the fixed colour scale
used here.
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Figure 5. A montage of PIV fields resulting from images captured during a single heavy shock first experiment
from experimental group 2. The colour scale is shown at the bottom of the figure and is fixed across all
images. Times of each image relative to reshock are (a) −2.90 ms, (b) −2.23 ms, (c) −1.56 ms, (d) −0.90 ms,
(e) −0.23 ms, ( f ) 0.43 ms, (g) 1.10 ms, (h) 1.76 ms, (i) 2.43 ms, ( j) 3.10 ms, (k) 3.76 ms, (l) 4.43 ms, (m) 5.10 ms,
(n) 5.76 ms, (o) 6.43 ms, (p) 7.10 ms, (q) 7.76 ms, (r) 8.43 ms.

Aside from the RMI itself, there are a number of other features observable in figure 5
that are interesting to note. One immediately noticeable feature is the apparent thickness
of the shock waves observed in the images. This occurs due to the transit of the shock
wave between the first and second images in the PIV image pair. A similar phenomenon
was also observed by Sewell et al. (2021).

Another feature worth pointing out in these images are the noticeable lines of vorticity
lying below the mixing layer following reshock. There are both larger diagonal lines
approximately the width of the test section, as well as smaller wedge-like structures visible.
These lines of vorticity represent vortex sheets produced by velocity shear across the
slip lines connected to triple points formed as the refracted shock wave passes through
the mixing layer. The largest structures that span the test section width as well as the
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dome-shaped structures near the left and right walls are likely caused by the interaction of
the incident shock wave with the boundary layers along the shock tube walls. These vortex
sheets persist for the remainder of the experiment observation time. The smaller vortex
sheets appear to be correlated with the location of the largest structures in the mixing layer
at the time of reshock, suggesting that they are formed by the refraction of the shock wave
as it transits the mixing layer. These structures are quickly obscured by the growing mixing
layer shortly following reshock.

A final observation of importance in these images is the presence and growth of
boundary layers on the side walls of the test section. The boundary layers are visible in
these images as the camera fields of view capture the flow all the way to the test section
walls. The boundary layers are initially very thin such that they are not visible in the
incident shock regime and become significantly thicker, as well as potentially transitioning
to turbulence, following reshock. This is more noticeable in the heavy gas region owing to
the significantly lower kinematic viscosity there, resulting in a larger Reynolds number.

3.3. Mixing layer width
An important measurement in the study of the RMI is the growth of the width of the
mixing layer versus time. Normally, the mixing layer width is defined by a concentration
distribution of the two gases. However, as discussed above, the PIV diagnostic only
resolves the velocity field and so methods for detecting the mixing layer must similarly
be velocity based.

Sewell et al. (2021) used a method that identified the mixing layer as the region where
spanwise-averaged TKE is greater than 5 % of its maximum value. A similar approach
is utilized here to determine the extent of the mixing layer using elevated levels of
spanwise-averaged plane normal enstrophy instead of TKE. Enstrophy was chosen for this
work over TKE as the fact that there is no mean shear in this flow makes the separation of
the fluctuating part of the field unnecessary and simplifies this stage of analysis. Spanwise
averaging is required for this stage of the analysis as the changing shock-to-reshock times
of these experiments, the run-to-run variation in shock wave strengths and the lack of
density or concentration measurements make the methods for spatially aligning the results
across different experiments for ensemble averaging imprecise. Previous simulations by
Groom & Thornber (2023) have shown that the mixing layer width defined using TKE
will tend to be larger than the volume fraction based mixing layer width. Given that the
enstrophy-based metric used in this work is similarly based on velocity, it is reasonable
to expect that these mixing layer widths are also greater than the volume fraction based
mixing layer width.

The mixing layer is identified through a series of steps. Figure 6 illustrates this
automated process of identifying the mixing layer for a single frame in a single experiment.
Figure 6(a) shows the vorticity field output from PIV processing. The left and right 2-3 mm
of the field is cropped to remove edge effects near the shock tube walls (black dashed line),
with the cropped area set by the specific camera configuration used for the experiment.
The image-plane normal component of vorticity is then squared to obtain enstrophy (ω2),
shown in figure 6(b). This enstrophy field is then averaged along the x axis to generate a
one-dimensional spanwise-averaged profile as shown in figure 6(c). Note that this profile
has elevated values where the mixing layer is located and low values elsewhere. A boxcar
moving average with a window size of 10 points (≈3 mm) of the spanwise-averaged profile
is then taken to smooth the fluctuations in the data, shown as the red line in figure 6(d).
This step is done to reduce the influence of noise in the data on the detection of the
edge of the mixing layer, and provides smoother overall results. The maximum value
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Figure 6. (a) A single vorticity field from a PIV experiment. (b) Enstrophy field calculated from the vorticity
field in (a). (c) The resulting row-averaged enstrophy profile. (d) Moving average profile (red) and locations of
maximum value and mixing layer edges associated with moving average dropping below 5 % of the maximum
value.

of this smoothed profile and its corresponding position is then found, indicated by the
green vertical line in figure 6(c). The search for the maximum value is restricted to a
region visually identified as the mixing layer in the vorticity pseudocolour images, with
this step performed to increase the robustness of the automated algorithm against random
imperfections in the data far away from the mixing layer location (e.g. a small pocket of
unseeded gas drifting into the camera view). Finally, the edges of the mixing layer are
found by starting at the location of this maximum value and marching outwards until the
value of the smoothed profile is less than 5 % of the maximum value. These locations,
indicated by the pink and blue vertical lines in figure 6(c), are used to define the edges of
the mixing layer, and the mixing layer width is defined as the distance between these edges.
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Figure 7. Measured interface mixing layer width from a single PIV experiment with a shock-to-reshock time
of �ts→rs = 2.0 ms on (a) linear and (b) log–log axes. The red line indicates the fit of h(t) ∝ tθ to the data,
where θ = 0.314 ± 0.025 (95 %) is found for this experiment. Data points indicated by a black cross were
excluded from the fit and points indicated by a blue cross in (a) correspond to the incident shock regime.

The influence of the choice of the 5 % threshold used here on the mixing layer width results
is discussed in Appendix A.

The result of this width finding process for a single experiment is shown as the black dots
in figure 7. Note that this data appears to follow a power law of the form h(t) ∝ tθ (Alon
et al. 1994). The parameter θ is found in the present work by plotting the logarithm of width
versus the logarithm of time and fitting a line to the result. It should be acknowledged
that utilizing a fit of this form implicitly assumes that h = 0 at t = 0, which is clearly
not the case here, but is necessary due to complications that arise from attempting to fit
a more general model equation that accounts for this discrepancy (e.g. (h − h0) = a(t −
t0)θ ) where unique solutions are often difficult to obtain. As a consequence, these fits focus
on late-time data where the influence of this assumption is small. The result of this fit is
shown in figure 7 using the red dashed line, which yields a value of θ = 0.314 ± 0.025
at 95 % confidence for this particular experiment. Points early in the experiment were
excluded from this fit as these points do not appear to be well described by the model
equation.

Prior studies have suggested a wide range of values for θ , from as high as 2/3 (Barenblatt
1983) to as low as 0.18 (Zhou 2017a), though many of these studies did not consider the
reshock case. As noted in § 1, a great deal of previous experimental work, models and
simulations have observed or predicted linear growth of the RMI in reshock, making the
observation of power law growth behaviour of the RMI in reshock in these experiments
noteworthy. Other work has found power law growth of the RMI in reshock. Simulations by
Tritschler et al. (2014) found power law growth of the RMI in reshock where θ = 2/7 ≈
0.285, while Thornber et al. (2011) found θ in the range of 0.28 for narrow bandwidth
initial conditions to 0.36 for broad bandwidth initial conditions. Power law growth of
the RMI in reshock in an experiment was observed by Sewell et al. (2021), who found
values of θ between 0.33 and 0.5 in reshock for high and low amplitude experiments,
respectively. Power law growth of the reshocked RMI has also been predicted by models
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Figure 8. Values of θ found via a linear least-squares fit of enstrophy width for each experiment versus that
experiment’s shock-to-reshock time. The horizontal lines indicate average values of θ , separated by heavy
shock first and light shock first experiments, and the shaded areas represent the 95 % confidence interval of the
associated mean.

(Mikaelian 2011; Morán-López & Schilling 2013, 2014; Mikaelian 2015; Mikaelian &
Olson 2020; Schilling 2024). The present experiments generally agree well with this
previous work, particularly the broad bandwidth simulations of Thornber et al. (2011),
as well as the high amplitude initial perturbation experiments of Sewell et al. (2021).
The simulations of Groom & Thornber (2023), which were based on the shock tube
experiments of Sewell et al., have found that θ found from a velocity-based mixing layer
width agreed well with those based on integral or volume fraction based measurements,
particularly for relatively broadband initial conditions as in these experiments.

Given the capabilities of the DDVST it is interesting to consider how the value of θ

varies with shock-to-reshock time. The result of this process is shown in figure 8. The
black dots shown are the values of θ found from fits of individual experiments, and
the error bars show the 95 % confidence interval of the fits. Only fits that have N > 4
points and r2 > 0.75 are included in this plot to remove experiments with too little data to
properly fit the model equation and which would yield large confidence intervals, as well
as cases where the fit poorly describes the data. These fits show a significant amount of
scatter owing to the sensitivity of the curve fitting process. Overall, despite this scatter,
the average values of θ obtained from the heavy shock first experiments appear to be
very similar to values obtained from the light shock first experiments. Furthermore, if it is
assumed that the value of θ is, in an average sense, constant for each set of experiments,
but that it has a different value for heavy shock first and light shock first experiments, a
comparison can be made of the two cases. An average value of θavg,H = 0.365 ± 0.018
(95 %) is found for the heavy shock first experiments and θavg,L = 0.381 ± 0.020 (95 %)
is found for the light shock first experiments. The standard deviation of the values of θ is
0.082 and 0.057 for the heavy shock first and light shock first experiments, respectively. In
this comparison, the 95 % confidence interval is the uncertainty of the mean owing to data
scatter, and does not include the uncertainty in the fits of each constituent measurement.
The average value of θ for the heavy shock first cases is indicated by the red dashed line in
figure 8, and for the light shock first cases by the blue dashed lines on figure 8. The shaded
areas indicate the 95 % confidence bound of the respective mean values. The average
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value of these two cases are similar, and both averages lie within the 95 % confidence
interval of the other average. This result is qualitatively in agreement with the results of
Brouillette & Sturtevant (1989), who found that the heavy and light shock first experiments
had slightly different linear growth rates but that these differences were also within the
uncertainty bounds. Previous experiments by Sewell et al. (2021) found θ = 0.33 ± 0.07
and θ = 0.50 ± 0.07 in reshock for their high and low amplitude initial perturbation,
respectively. The present work agrees well with the high amplitude results, though the
value of θ is slightly lower than the low amplitude initial perturbation results. Additionally,
the relatively short post-reshock observational period in those results could also influence
this comparison. The simulations of Thornber et al. (2011, 2012) found θ = 0.28 to
θ = 0.36 for narrowband and broadband initial conditions, respectively, with the latter
case agreeing well with the relatively broadband perturbations in these experiments.

3.4. Rate of decay of TKE
Many turbulent flows have a constant source of energy input such that the amount of TKE
per unit mass will grow with time until eventually the rate of energy addition is matched
by the rate that it is dissipated by viscosity. This is not the case with RMI, in which the
entirety of the energy is added as the shock wave passes through the interface. The energy
then freely decays in time until it is entirely dissipated by viscosity. For this reason, it is
useful to examine the total amount of TKE within the mixing layer as it decreases with
time and the rate at which this energy decays.

The TKE per unit mass is calculated from the fluctuating components of the turbulent
velocity. Variables in turbulent flows can be decomposed in to a mean component plus a
component representing fluctuations about that mean. Therefore, the total velocity resolved
by the PIV diagnostic must be decomposed into its mean and fluctuating components in
order to calculate TKE. In uniform density flows this is performed using the Reynolds
decomposition, defined as f = f̄ + f ′, where f̄ is the mean and f ′ is the fluctuations of f
about f̄ . For non-uniform density flows, such as the RMI, this decomposition is instead
commonly performed using the Favre, or mass-weighted, decomposition to account for
spatial variations in density. Importantly, however, the Favre decomposition requires the
density field that can not be obtained using the PIV diagnostic, and so the Reynolds
decomposition must be used for the present analysis. It should be noted that variable
density flows introduce a number of complexities to a turbulent flow stemming from
the non-uniform density field (Charonko & Prestridge 2017; Lai, Charonko & Prestridge
2018). As a consequence, the influence of Reynolds averaging on these results should be
considered. Work by Mohaghar et al. (2017) as well as Charonko & Prestridge (2017)
has shown that while a Reynolds averaging approximation does introduce a small error
versus a Favre average, this difference is only a few percent of the total value. The TKE is
defined here as one half of the trace of the Reynolds stress tensor (Pope 2000). The TKE
corresponding to the three components of the flow velocity is

ku = 1
2 (u − ū)2 = u

′2, kv = 1
2 (v − v̄)2 = v

′2, kw = 1
2 (w − w̄)2 = w

′2, (3.1a–c)

where the mean part of each velocity component is defined as the average value of that
velocity component within the mixing layer. This method of determining the mean flow
was chosen due to the difficulties associated with ensemble averaging noted in § 3.3. The
TKE field is defined in terms of these components as

K = ku + kv + kw. (3.2)
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Figure 9. Volume integrated specific TKE versus time for a single PIV experiment on (a) linear and (b) log–log
axes. The red dashed line indicates a fit of Etot ∝ tp to the data, where p = −0.834 ± 0.077 at 95 % confidence
for this experiment. Black crosses indicate data points that were excluded from the fit.

Another aspect to consider in this analysis is that the two-dimensional PIV technique used
in this study does not resolve the out-of-plane horizontal component of velocity, w. To
address this, an assumption is made that, in a statistical sense, the in-plane (resolved)
horizontal component of fluctuating velocity is similar to the out-of-plane (unresolved)
horizontal component of fluctuating velocity, i.e. u′ ≈ w′. This assumption has been
used in other experiments with a two-dimensional PIV diagnostic to account for the
out-of-plane component of velocity (Mohaghar et al. 2017, 2019; Sewell et al. 2021). The
assumption of statistical homogeneity along the horizontal axes in RMI flows is common
in simulations (for example, Thornber et al. 2011, 2012; Tritschler et al. 2014; Oggian et al.
2015; Groom & Thornber 2018, 2019, 2023). Therefore, TKE in this study is defined as

K = 2ku + kv. (3.3)

Volume integrated specific TKE is then calculated by integrating K over the mixing layer,

Etot

ρ̄
= Lz

∫∫
K dx dy, (3.4)

where Lz = 88.9 mm is the out-of-plane depth of the test section and x and y are the
cross-stream and streamwise directions as indicated in figure 6. Volume integrated specific
TKE is used here due to the lack of density measurements in these experiments. The decay
of volume integrated specific TKE is presented in log–log form for a single experiment in
figure 9. Here the black dots represent the value of Etot at each time instance for this
particular experiment. The experimental data appears to fall in a straight line on this
log–log plot, suggesting that the volume integrated specific TKE in the mixing layer decays
according to a power law. Thus, a form for this decay of Etot ∝ tp will be assumed, where
a and p are coefficients to be found from a fit to the data. The fit is performed identically to
the fit of mixing layer width versus time described above, with the data plotted as log(Etot)
vs log(t) and a straight line fit to the result. The fit for this particular experiment is indicated
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by the red dashed line, and has a slope of p = −0.834 with a 95 % confidence interval of
the fitted value of ±0.077.

Thornber et al. (2010) has shown that the decay exponent of TKE, p, for RMI can
be related to the growth exponent, θ , deriving the expression p = 3θtke − 2, where the
subscript in θtke is meant to differentiate this value of θ from the one found from the
mixing layer width. A similar result for volume integrated TKE was also found by
Schilling (2021). This allows a comparison between these results and those in § 3.3,
though it should be noted that the definition of TKE used by Thornber et al. (2010) to
find θ from TKE decay contains a spatially varying density profile, whereas the present
results do not have this density data available. The experiment shown in figure 9, for
example, has a fitted slope of TKE decay of p = −0.834 ± 0.077, which corresponds to
θtke = (−0.834 ± 0.077 + 2)/3 ≈ 0.388 ± 0.026.

As with the mixing layer width measurements, it is interesting to consider the effect of
shock-to-reshock time on the volume integrated specific TKE decay rate. Figure 10 shows
values of the slope of volume integrated specific TKE decay, p, versus shock-to-reshock
time indicated by the black dots along with the equivalent values of θtke = ( p + 2)/3
on the right axis. As in figure 8, the 95 % confidence interval of each fit is indicated
by the error bars. There is again a significant amount of scatter that can be observed
in this data. However, the amount of scatter along with the size of the error bars are
noticeably smaller than was observed for the width-based measurements in figure 8.
A major source of uncertainty in the mixing layer width measurements is believed to arise
from the emergence of large-scale flow structures, such as a single large mushroom ejected
from the mixing layer. The mixing layer width finding process will detect the emergence of
these larger structures as the edge of the mixing layer and, consequently, the measurement
of mixing layer width will be overly influenced by these structures. Thus, one might expect
a larger run-to-run variation in θ measurements depending on the presence of the larger
structures. On the other hand, the total amount of TKE, and the rate at which it decays,
is arguably less influenced by the emergence of new structures in the flow. This results in
less run-to-run variation in the volume integrated specific TKE decay measurements, as
well as less uncertainty in the fit of the data from each experiment.

Similar to as was done for the mixing layer growth exponent, the assumption may
be made that p has a constant value for the heavy shock first and light shock first
experiments, but that these values may be different for the two cases. This allows a mean,
and associated 95 % confidence interval of that mean, to be found for each of the two
groups of experiments. The mean value for the heavy shock first experiments is indicated
by the red dashed line and for the light shock first experiments is indicated by the blue
dashed line in figure 10. The 95 % confidence intervals of each mean are indicated by the
shaded areas. The rate of decay of volume integrated specific TKE for the heavy shock first
experiments is found to be pavg,H = −0.823 ± 0.06 (95 %) and, for the light shock first
experiments, pavg,L = −1.061 ± 0.032 (95 %). The standard deviation in the values of p is
0.175 and 0.127 for the heavy shock first and light shock first experiments, respectively. As
with the average values of θ from mixing layer width measurements, the 95 % confidence
interval here arises from the 95 % confidence of the mean and does not include the
uncertainty of the fit of the constituent points. These average values of p correspond to
values of θtke of θtke,avg,H = 0.392 ± 0.02 (95 %) and θtke,avg,L = 0.313 ± 0.011 (95 %)
for the heavy and light shock first experiments, respectively. Notably, the 95 % confidence
interval of θtke,avg,H overlaps with the 95 % confidence band of θavg,H = 0.365 ± 0.018
from the mixing layer width in the heavy shock first case, though a similar overlap is not
observed in the light shock first case. Note that the average values of p found here are more
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Figure 10. Values of the rate of TKE decay and corresponding values of θtke found via a linear least-squares fit
of volume integrated specific TKE in the mixing layer versus time for each experiment versus that experiment’s
shock-to-reshock time. The horizontal lines indicate average values of p, separated by heavy shock first and light
shock first experiments, and the shaded areas represent the 95 % confidence interval of the associated mean.

negative than the values of phigh = −0.62 and plow = −0.14 for high and low amplitude
initial conditions found by Sewell et al. (2021), though this is likely at least in part due to
the much longer post-reshock observational window in these experiments. One important
difference between figures 10 and 8 is that there is now a significant difference between the
heavy shock first and light shock first volume integrated specific TKE decay measurements
and that this difference exceeds the 95 % confidence values of the mean.

It is important to recognize that the difference in the values of p between the two groups
could be the result of the lack of density/concentration measurements in these experiments.
Recall in (3.4) that (1) Favre averaging was not used when calculating the TKE field, and
(2) a density field is not used in calculating the TKE. As a consequence, there is an implicit
assumption that the relationship between the distributions of density and velocity over time
is the same for the light shock first and heavy shock first cases. It should also be noted that
the influence of variable density effects may also produce different behaviours in the heavy
shock first and light shock first cases and contribute to this observed behaviour (Charonko
& Prestridge 2017; Lai et al. 2018). Further examination of the rate of decay of TKE in this
configuration, particularly where the first shock arrives from the heavy gas, via simulation,
or experiment with the addition of density measurements, would help clarify this.

3.5. Reynolds number
The Reynolds number is a dimensionless parameter defined as the ratio of inertial to
viscous forces, commonly defined in RMI type flows as Re = hḣ/ν, though alternative
definitions have been proposed for different phases of RMI growth (Orlicz et al. 2015).
Here, h is the mixing layer width, ḣ is the growth rate of the mixing layer and ν = νavg is
the average kinematic viscosity of the two pure fluids on either side of the mixing layer.
Each of these quantities can be found through known properties of the two pure fluids
(ρ and μ, ∴ νavg) or from direct measurements of the data (h, ḣ). The determination of
the growth rate, ḣ is complicated slightly by the fact that it requires taking a derivative
of noisy experimental data, which in turn tends to result in still noisier derivatives.
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Figure 11. Reynolds number versus time for a single experiment with a shock-to-reshock time of �ts→rs =
−0.76 ms. The red dashed line indicates a fit of a power law of the form atr to the data, where a =
5.79 × 104 and r = −0.20. The blue dotted line indicates the expected decay of the Reynolds number assuming
self-similarity (i.e. h ∝ tθ , Re = hḣ/νavg ∴ Reθ ∝ t2θ−1), where θ = 0.37.

This is somewhat mitigated in this work by using a line fit to multiple neighbouring points
to determine ḣ, which will smooth the high frequency noise in the Reynolds number while
retaining the low frequency behaviour, though noisy results remain a consistent issue.

Figure 11 shows a plot of Reynolds number versus time for a single experiment. Note
that there are large fluctuations in the value of the Reynolds number observed in this
plot that is due to the use of a numerical derivative of noisy data as discussed above.
The Reynolds number is Re ≈ 6 × 104 shortly after reshock in this case, and decays to a
somewhat smaller value of Re ≈ 3 × 104 towards the end of the experiment, though the
scatter in the data makes a precise value difficult to determine. Two reference lines are
also indicated on this plot. The red dashed line arises from a fit of a power law of the
form Re ∝ tr to this data, where r = −0.20 is the fitted value. The blue dotted line arises
from the expected decay of Reynolds number with time arising from the assumption of
self-similarity (i.e. h ∝ tθ , Re = hḣ/νavg ∴ Reθ ∝ t2θ−1), where a value of θ = 0.37 is
used based on the average value of θ found in figure 8.

In order to assess the effect of shock-to-reshock time, the value of the Reynolds number
may also be examined in a similar manner to as how the influence of the shock-to-reshock
time on mixing layer growth and volume integrated specific TKE decay were analysed.
An average Reynolds number may be found for each experiment by taking the average
of all data points in the first 5 ms following reshock. An uncertainty in this value can
also be calculated from the uncertainty of the mean, which captures the influence of
the level of noise present in the underlying data as well as the decay in the value of
the Reynolds number over the 5 ms window. Figure 12 shows this average value of the
Reynolds number for each experiment versus that experiment’s shock-to-reshock time.
The error bars indicate the associated 95 % confidence interval of the value of the
average. It can be observed in this figure that experiments with shorter shock-to-reshock
times of |�ts→rs| � 1.0 ms demonstrate a sharp decrease in average Reynolds number
as shock-to-reshock time decreases, approaching a minimum at simultaneous shock and
reshock arrival, i.e. when �ts→rs approaches zero. Some experiments in this limit were
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Figure 12. Average value of Reynolds number versus shock-to-reshock time for the first 5 ms post-reshock.
Error bars represent the 95 % confidence interval of the mean. The blue and red lines indicate the suggested
critical Reynolds numbers for transition to turbulence from Dimotakis (2000) and Zhou (2007), respectively.

observed to demonstrate a very low growth of the mixing layer, with this behaviour
attributed to the cancellation of vorticity owing to the short period of time between the
arrival of the incident and secondary shock waves (Mikaelian 1985, 1989). An example
of such an experiment in the present dataset is presented in Appendix B. In contrast,
experiments with a shock-to-reshock time of |�ts→rs| � 1.0 ms achieve a similar average
value of the Reynolds number of Reavg ≈ 1 × 105, with this value observed across a
range of shock-to-reshock times. While the observed trend towards a minimum value of
average Reynolds number for small shock-to-reshock times is unsurprising as one may
expect less growth of the mixing layer in this limit, it is interesting to note that the
Reynolds number does not continue to increase with increasing shock-to-reshock time for
|�ts→rs| > 1.0 ms. A possible explanation for this behaviour is that the growth of short
wavelength perturbations in the incident shock regime saturate relatively quickly. This
would result in the amplitudes of the perturbations just prior to reshock changing relatively
little beyond a certain shock-to-reshock time, and this may in turn result in relatively little
change of the post-reshock Reynolds number as well. Finally, the post-reshock outer-scale
Reynolds number appears to be insensitive to the order of arrival of the two shock
waves, with experiments having both positive and negative values of shock-to-reshock
time achieving approximately the same value of average Reynolds number.

The Reynolds number is a useful metric to establish whether these experiments have
achieved a fully turbulent state. Dimotakis (2000) indicates that an outer-scale Reynolds
number with a value greater than Re > 1 × 104 is required in order to achieve the
transition to turbulent mixing, with this relationship having been found by considering
a number of different turbulent flows, not just the RMI. Zhou (2007) suggests a critical
Reynolds number for the transition to turbulent mixing to be 1.6 × 105 for time-dependent
laboratory-scale flows. This value was determined by calculating the minimum Reynolds
number required to generate an inertial range with sufficient separation between the large
and small scales such that some part of the developing inertial range would be unaffected
by either the largest or smallest scales of the flow. These critical values suggested by
Dimotakis and Zhou are indicated in figure 12 by the blue and red lines, respectively.
The Reynolds numbers observed in the present study are in excess of the Reynolds
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number suggested by Dimotakis. On the other hand, the average Reynolds number for most
experiments in the present study fall below the value suggested by Zhou. This suggests that
while the present experiments may be approaching a turbulent state, they are not ‘fully
turbulent’ according to the definition provided by Zhou (2007).

3.6. Turbulent length scales
Another method to assess the degree to which a flow is turbulent involves estimating the
size of the largest and smallest scales in the inertial range. The present work considers the
scales defined by Dimotakis (2000) and Zhou, Robey & Buckingham (2003), which are
given by

λL 	 5Re−1/2h,

λD 	 C(νt)1/2,

λν 	 50Re−3/4h,

λK 	 Re−3/4h,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

where these scales are in order of decreasing size for a fully turbulent flow. Here, λL is the
Liepmann–Taylor scale, λD is the time-dependent outer-scale viscous shear layer scale, λν
is the inner viscous scale and λK is the Kolmogorov scale.

These length scales may be utilized to quantify the transition to turbulence in several
ways. Three possible criteria will be considered here. The first criterion is λL > λν ,
suggested by Dimotakis (2000), and is arrived at by noting that the largest scales in
the inertial range, λL, must be greater than the smallest scales in the inertial range,
λν , in order to have an inertial range and, thus, fully developed turbulence. The second
criterion is the Zhou–Robey criterion, λL,min ≡ min(λL, λD) > λν , defined by noting that
the time-dependent outer-scale viscous shear layer scale, λD, introduced by Zhou et al.
(2003) adds an additional scale by which the upper bound of the inertial range may be
specified. Therefore, Zhou et al. defined the upper bound of the inertial range to be the
smaller of the two scales. The time dependence of λD and, therefore, of this transition
criterion, is of particular note as it suggests that a transition to turbulence can still occur
even after the shock wave has passed through the interface and the RMI has begun to
decay due to the time needed to form these scales of motion. Third, Lombardini, Pullin &
Meiron (2012) suggests that the ratio required for a full separation of scales and transition
to turbulence is λL/λν ≥ 10, and notes that this threshold was only met for M ≥ 3 in their
simulations.

Estimates of the turbulent length scales given in (3.5) were computed for all
experiments presented in this work. The length scale size estimates for experiments with
a shock-to-reshock time of |�ts→rs| > 1.0 ms are shown pointwise in figure 13(a) and in
a moving average sense in figure 13(b). The length scale size estimates for experiments
with a shock-to-reshock time of |�ts→rs| > 1.0 ms are shown pointwise in figure 13(c)
and in a moving average sense in figure 13(d). Also shown in figure 13(b,d) are estimated
length scale sizes based on the assumption of self-similarity (i.e. h ∝ tθ , Re = hḣ/νavg ∴
Reθ ∝ t2θ−1) in (3.5), where a value of θ = 0.37 is used based on the average value of θ

found in figure 8. Notably, the average length scales do appear to be well described by the
self-similar growth assumption, particularly at middle to late times in the experiment.

As described above, there are three transition criteria to consider when viewing this
data. It is clearly observable for both groups of experiments in figure 13, particularly in
the moving average sense, that the transition criterion of Dimotakis is satisfied for the
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Figure 13. Length scale size versus time for experiments where (a,b) 1.0 ≥ |�ts→rs| > 0.3 ms and (c,d)
|�ts→rs| > 1.0 ms, in a (a,c) pointwise and (b,d) moving average sense. Colours correspond to h (black), λL
(red), λν (blue), λD (green) and λK (cyan). The window size of the moving average is 1/1500 s. The coloured
dashed lines in (b) and (d) indicate predicted length scales based on self-similarity (i.e. h ∝ tθ , Re = Reθ )
where θ = 0.37, and the horizontal black dashed line indicates the average experimental resolution, �xavg =
0.27 mm vector−1.

duration of the experiment, though the experiments with a short shock-to-reshock time
have noticeably less separation between these two scales than the experiments with a
long shock-to-reshock time. The moving average data for the experiments with a short
shock-to-reshock time suggests that the Zhou–Robey transition criteria is not satisfied for
this group of experiments. In contrast, the experiments with a long shock-to-reshock time
do satisfy the Zhou–Robey transition criteria for a short period of time, approximately
3–4 ms after reshock. The pointwise data, however, shows that individual experiments
in both groups may satisfy this transition criteria for a longer period of time than the
moving average data would suggest. It is important to note, however, that even though
the Zhou–Robey transition criteria is satisfied, there is only minimal separation between
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the largest and smallest scales in the inertial range. The third criterion is λL/λν > 10 as
suggested by Lombardini et al. (2012). This ratio is found to be between approximately
1.5 and 1.8 for experiments with a short and long shock-to-reshock time, respectively, and
so does not satisfy this criterion. It should be noted, however, that Orlicz et al. (2015)
finds almost an order of magnitude difference in estimates of λL/λν in their gas curtain
experiments depending on whether these length scales were estimated from the outer-scale
Reynolds number or from measured values of the Taylor and Kolmogorov length scales
and relationships between these scales and λL and λν . They note that this ambiguity could
lead to different conclusions depending on the scaling used, indicating ambiguity in the
definition of a transition to turbulence using only Reynolds numbers. Thus, further analysis
via the spectra of flow scales is useful to examine if, and to what degree, this flow has
formed an inertial range of scales.

3.7. Spectrum of TKE
The spectrum of TKE is a tool by which the energy content of a turbulent flow as a function
of scale size may be examined. One method by which the TKE spectrum may be calculated
is through the use of the FFT algorithm. The procedure used here for calculating this
spectrum for a single time instance follows the one described by Latini, Schilling & Don
(2007), except that the calculations in this case are not weighted by density. This is also
similar to the calculation performed by Sewell et al. (2021). The FFT of the fluctuating part
of each component of velocity is taken in the x direction, across the test section, at each
y position in the mixing layer. The component FFTs are then multiplied by their complex
conjugates to obtain the spectrum of each component of TKE,

k̂u = û′ û′ ∗
, k̂v = v̂

′
v̂

′ ∗
, (3.6a,b)

where k̂u is the spectrum of TKE magnitude of the horizontal component of velocity, u, (̂·)
indicates a Fourier transform and (·)∗ indicates a complex conjugate. A similar definition
for the vertical component of velocity, k̂v is also defined. The values from each velocity
component are then combined to form the TKE spectrum as

K̂ = (
2k̂u + k̂v

)
, (3.7)

where the factor of 2 on k̂u is used to account for the out-of-plane component of horizontal
velocity, which is assumed to be similar to the in-plane component. This follows similar
logic as that used for adding the factor of 2 to the u component of TKE in the calculation of
volume integrated specific TKE in § 3.4. This process is then repeated for all y positions
in the mixing layer to obtain one TKE spectrum per y position. The magnitude of each
Fourier coefficient is then averaged at each wavenumber across the mixing layer, resulting
in an average one-dimensional TKE spectrum for each time instant,

¯̂K =
(

2k̂u + k̂v

)
, (3.8)

where (·) indicates an average over the mixing layer. These spectra are further ensemble
averaged across groups of experiments, with ensemble averages indicated using angle
brackets, 〈·〉. In order to ascertain the effects of the shock-to-reshock time and the order
of arrival of the two shock waves on the spectrum of TKE, the present experimental
results are divided into four groups. These groups correspond to a large negative
shock-to-reshock time (�ts→rs ≤ −1.0 ms), a small negative shock-to-reshock time
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(−1.0 < �ts→rs ≤ −0.3 ms), a small positive shock-to-reshock time (0.3 ≤ �ts→rs <

1.0 ms) and a large positive shock-to-reshock time (�ts→rs ≥ 1.0 ms). An ensemble
average of the anisotropy ratio of the experiments in each group are then taken, with
ensemble averages indicated using angle brackets, 〈·〉. The ensemble average is calculated
using a boxcar moving average to translate all experimental data points on to a common
set of time and wavenumber coordinates. In addition, this process only averages the data
that falls within a specified window of time and wavenumber about a given point, and no
interpolation of the data is performed. The half-width of the temporal window is 1/3000 s,
corresponding to a total temporal window size equivalent to the lowest imaging frame rate
of 1500 frames per second. The half-width of the wavenumber window is π115/85 mm−1,
corresponding to half of the spectral resolution of the lowest resolution experiments.
The range of wavenumbers used in these averages is likewise limited to the resolvable
range of the lowest resolution experiments. Each TKE spectrum from each experiment is
normalized by the total energy of the spectrum prior to averaging.

The ensemble-averaged spectrum of TKE, compensated by the Kolmogorov k−5/3

scaling, over the four ranges of shock-to-reshock time are presented in figure 14. This
compensation results in regions of the spectra that follow a Kolmogorov-type k−5/3 scaling
with wavenumber appearing as a flat, horizontal line. A fiducial representing a k−3/2 type
spectrum as suggested by Zhou (2001) is also shown in each plot as a red dashed line. Each
greyscale line represents the ensemble-averaged TKE amplitude spectrum for a single time
instant in the ensemble. The grey value of each line represents the length of time elapsed
past reshock, with black representing the latest time in the experiment.

There are several aspects of note in the plots shown in figure 14. First, all four groups
of experiments exhibit a ≈ −3/2 type scaling at early times after reshock, in agreement
with the suggested decay rate for an RMI-induced turbulent flow of Zhou (2001). The
experiments with a longer shock-to-reshock time (plots a,c) then shift towards a ≈ −5/3
decay rate at later times in the experiment as indicated by the TKE spectrum flattening
and becoming horizontal over time in these compensated plots. Interestingly, such a shift
in the spectral content of the mixing layer is not observed for experiments with a shorter
shock-to-reshock time (plots b,d), where a ≈ −3/2 spectrum is maintained for the duration
of the experiment. These observations are consistent with the observation from figure 13
that shows the scales representing the upper and lower bounds of the inertial range are
beginning to separate in the experiments with longer shock-to-reshock times, while such
a separation is not as evident in experiments with shorter shock-to-reshock times. The
appearance of nearly a decade of wavenumbers following a k−5/3 decay at later times
in the long shock-to-reshock time experiments is interesting to note, as this indicates
the formation of an inertial range of scales and a transition to turbulence that was not
suggested by the Reynolds number or length scale analyses in §§ 3.5 and 3.6. This echoes
the ambiguity noted by Orlicz et al. (2015) who suggested that an RMI flow may not be
‘fully turbulent’ as defined by a Reynolds number-based analysis while at the same time
the turbulent spectra indicate the formation of an inertial range of scales, suggesting the
flow is in fact ‘fully turbulent.’ Similar results depicting a k−5/3 decay of TKE have been
noted in other experiments (Mohaghar et al. 2017; Sewell et al. 2021), though a slightly
steeper rate of decay of −1.8 to −2.2 was found by Mohaghar et al. (2019). A k−3/2 to
k−5/3 decay has also been observed in simulation (Thornber et al. 2011; Tritschler et al.
2014; Oggian et al. 2015).

3.8. Anisotropy
Isotropy is often considered of importance in many turbulent flows, and turbulence
is often studied under the idealization of a homogeneous, isotropic turbulent flow
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Figure 14. Ensemble-averaged compensated spectra for four groups of experiments. These four groups
correspond to (a) large negative, (b) small negative, (c) large positive and (d) small positive shock-to-reshock
times. The red dashed lines indicate a −3/2 slope of decay of TKE with wavenumber as suggested by Zhou
(2001), and the blue dashed lines indicate a Kolmogorov −5/3 slope of decay.

(Kolmogorov 1991a,b). However, many flow phenomena, such as the RMI, are inherently
anisotropic by virtue of their physical configuration, having mean density, pressure or
velocity gradients that exist in only one direction. The degree of anisotropy in a reshocked
RMI mixing layer has been studied in a number of simulations and experiments as noted
in § 1. There is some disagreement in the overall trends of anisotropy versus time in
these studies. Simulations by Thornber et al. (2011) found that the mixing layer remains
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anisotropic at late times after reshock, with a different asymptotic degree of anisotropy
for broadband and narrowband initial conditions. Groom & Thornber (2018) observed
a trend towards isotropy in their simulations, but found the flow nonetheless remains
anisotropic for a long time following reshock. Sewell et al. (2021) found the mixing
layer to be initially strongly anisotropic following reshock and decreasing anisotropy
over time, though the experiment did not extend late enough following reshock to
observe steady-state behaviour. Other studies, such as those of Balakumar et al. (2012),
Balasubramanian et al. (2012) and Orlicz et al. (2015) found a late-time trend towards
isotropy for the RMI mixing layer. It is therefore of interest in the present work to examine
the temporal trends of anisotropy and how these trends change with shock-to-reshock time.

The anisotropy of the RMI may be quantified in more than one way. One common
measure of anisotropy is the anisotropy ratio, which is defined as the ratio of the sum of
the vertical and horizontal components of TKE. This may be defined in three dimensions in
cases where all three components of velocity are available (Cook, Cabot & Miller 2004);
however, the present experiments resolve only two components of velocity, and so the
two-dimensional definition of Thornber et al. (2011) will be used instead,

AR =
∑

kv∑
ku

, (3.9)

where the summations are over all values within the mixing layer. An isotropic state is
represented by AR = 1, with AR > 1 indicating more energy in the vertical direction than
the horizontal and AR < 1 indicating more energy in the horizontal direction than the
vertical.

In order to ascertain the effects of the shock-to-reshock time and the order of arrival of
the two shock waves on anisotropy, the present experimental results are divided in to the
same four groups based on shock-to-reshock time as presented in figure 14. The ensemble
average is calculated using a boxcar moving average to translate all experimental data
points on to a common set of coordinates. The moving average window has a half-width
of 1/3000 s, corresponding to a total window size equivalent to the slowest imaging frame
rate across all of the present experiments. In addition, this process only averages the data
that falls within a specified window of time about a given point, and no interpolation
of the data is performed. The resulting ensemble-averaged anisotropy ratio of the four
groups is shown in figure 15. Also shown for comparison are horizontal bands representing
asymptotic values of AR = 1.8 ± 0.2 and AR = 1.7 ± 0.1 found from the simulations by
Thornber et al. (2011) for broadband and narrowband initial conditions, respectively.

Several trends may be observed in the data in figure 15. The mixing layer for all
four groups begins initially very anisotropic with vertical TKE significantly exceeding
horizontal TKE. The anisotropy for all four groups then trends towards, although does
not reach, an isotropic state at early times following reshock. The experimental groups
with the longest shock-to-reshock times demonstrate a more rapid trend towards isotropy
than those with a shorter shock-to-reshock time. No significant difference is observed
between the heavy shock first and light shock first cases with similar shock-to-reshock
times. All four groups reach a minimum anisotropy ratio of approximately 1.1. The four
groups all reach a nearly equal degree of anisotropy at around 3-4 ms after reshock, and
demonstrate increasing anisotropy for the remainder of the experiment. The experiments
approach a quasi-steady value of 1.6 � AR � 1.8 at the latest times, although the length
of time that this quasi-steady value is observable is relatively short. The experiments with
the longest positive shock-to-reshock time approach a quasi-steady value of AR ≈ 1.8, and
the experiments with the shortest shock-to-reshock time approach a quasi-steady value of
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Figure 15. Anisotropy ratio versus time for four groupings of experiments corresponding to large negative,
small negative, small positive and large positive shock-to-reshock times. Shaded areas indicate the range of
anisotropy ratio found from simulation (Thornber et al. 2011).

AR ≈ 1.6 for both the heavy and light shock first cases. The heavy shock first experiments
with the longest shock-to-reshock times do not appear to approach a quasi-steady value by
the end of these experiments.

The data presented in figure 15 suggest that, while experiments with a longer
shock-to-reshock time approach an isotropic state more rapidly than those with a shorter
shock-to-reshock time, there does not appear to be an influence of the order of arrival of
the two shock waves. This result suggests that the degree of anisotropy of the mixing layer
is primarily influenced by the length of the shock-to-reshock time, and the direction of
traversal of reshock does not appear to have a significant influence on the post-reshock
degree of anisotropy. The tendency for experiments with a long shock-to-reshock time
to more rapidly approach an isotropic state after reshock compared with those with a
short shock-to-reshock time is consistent with the simulations of Ristorcelli et al. (2013),
who found that an increase in mixing layer width prior to reshock, which is equivalent
to an increased shock-to-reshock time here, would result in a decrease in the degree of
anisotropy in a reshocked mixing layer, although they did not examine the heavy shock
first case. Additionally, at later times (t � 3.0 ms) in the present experiments there appears
to be only limited influence of the shock-to-reshock time and the order of arrival of the
two shock waves, with all four groups demonstrating a similar degree of anisotropy with
the primary difference between the four groups being the quasi-steady value obtained at
the end of the experiments.

There is a notable qualitative departure in behaviour of anisotropy ratio versus time
between the data presented in figure 15 and data presented by Thornber et al. (2011)
as well as summarized by Zhou (2017b) (and others presented within that work). The
quasi-steady values of AR ≈ 1.6 − 1.8 obtained from the present experiments at the latest
times generally agree with the results found in simulations by Thornber. However, those
simulations show qualitatively different temporal behaviour of anisotropy, with the value
of the anisotropy ratio approaching its final value monotonically without the initial dip and
subsequent increase observed in the present experiments. There has been other work that
shows a qualitatively similar behaviour of anisotropy versus time as is observed here, with
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anisotropy ratio approaching a minimum value at early times, followed by an increase at
later times (Ristorcelli et al. 2013; Oggian et al. 2015; Soulard et al. 2018). The reasons
for this behaviour may be related to changes in the dominance of small and large scales
of the flow over time. Kolmogorov (1991b) suggests that a turbulent flow should become
isotropic at small scales. Mohaghar et al. (2017) finds that, at late time, the small-scale
components of the flow do indeed trend towards isotropy. Soulard et al. (2018) suggests
further that an RMI flow with a decreasing amount of energy in the large scales should
become increasingly isotropic, and that a trend towards isotropy in the RMI appears to
be driven by the emergence of small-scale flow structures. It may be argued from these
suggestions that the behaviour observed in the present experiments is the result of a change
in the energy content of the smallest relative to the largest scales in the flow, and the
difference in the isotropy of those scales, as the RMI develops in reshock. To further
develop this idea, it is useful to consider the spectrum of anisotropy to examine anisotropy
as a function of scale size.

The spectrum of anisotropy is calculated in a similar manner to the spectrum of TKE
discussed previously in § 3.7. Equation (3.6a,b) is again used to calculate the spectrum
of TKE for each component of velocity. In this case, however, each component is treated
separately instead of being combined to form a single TKE spectrum. The spectra k̂u and
k̂v , corresponding to the spectrum of TKE in the horizontal and vertical directions from
(3.6a,b), are calculated and the average spectrum across the mixing layer is found for each
component. The ratio of these two average spectra is then calculated on a per-wavenumber
basis to obtain a value of the anisotropy ratio as a function of wavenumber,

ÂR = k̂v

k̂u

, (3.10)

where ÂR is the spectrum of the anisotropy ratio. This can be viewed as the equivalent
of (3.9) in a spectral sense. The anisotropy ratio spectra are then ensemble averaged in
the same manner as the TKE spectra. Plots of this ensemble-averaged anisotropy ratio
spectrum versus wavenumber for the same four groups of experiments shown in figure 14
is presented in figure 16. Again, each curve in the plot has a grey value corresponding to
the time of the curve relative to reshock, with black representing the latest times in the
experiment.

It is observed in these plots that, in agreement with the results of Mohaghar et al.
(2017) as well as Soulard et al. (2018), the lowest wavenumber contributions to this
flow appear to be anisotropic, while the higher wavenumber contributions trend towards
isotropy. Experiments with a long shock-to-reshock time (plots a,c) appear to show a
time dependence of the anisotropy at low wavenumbers, with the longer wavelength
components initially isotropic, but becoming increasingly anisotropic with time. There
does not appear to be any similar temporal trend at high wavenumber, however.
Very little time dependence is observed over all wavelengths of the spectrum in the
short shock-to-reshock time groups (plots b,d). Additionally, only the length of the
shock-to-reshock time, and not the order of shock wave arrival, appears to influence these
observed behaviours.

Finally, it is worth considering whether the observed scale dependence of the anisotropy
ratio as shown in figure 16, together with the shift in scale sizes as a function of time shown
in figures 13 and 14, can be utilized to explain the change in anisotropy ratio as a function
of time shown in figure 15. To do this, the centroid wavenumber of the ensemble-averaged
TKE spectra are calculated at each time in the ensemble. The value of the anisotropy ratio
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Figure 16. Anisotropy versus wavenumber for four groups of experiments: (a) large negative, (b) small
negative, (c) large positive and (d) small positive shock-to-reshock times. The red dashed line in each plot
is a reference line indicating isotropy.

at the centroid wavenumber is found from the spectrum of anisotropy at the same time
in the ensemble. This quantity will be termed the spectral centroid anisotropy ratio and
written as AR,c to differentiate it from the anisotropy ratio defined in (3.9). The plot of the
spectral centroid anisotropy ratio versus time calculated using this approach is shown in
figure 17. It is notable that, although the values of the spectral centroid anisotropy ratio
found using this method are slightly less than those found in figure 15, the temporal trends
are similar. This indicates that the trends in the anisotropy ratio versus time observed in
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Figure 17. Spectral centroid anisotropy ratio versus time for four groups of experiments. This is calculated
by finding the centroid of the ensemble-averaged TKE spectrum in figure 14 at each time instant, and then
finding the corresponding value of anisotropy ratio for that time instant and centroid location from the
ensemble-averaged anisotropy spectrum in figure 16.

figure 15 do appear to be at least partially explained by the change in the dominance of
different scales of the flow, as well as the anisotropy of those scales, over time.

4. Conclusions

Experiments on the turbulent RMI in a novel DDVST have been presented. These
experiments, and the corresponding analysis, span a wide range of shock-to-reshock times,
including reversing the order of arrival of the two shock waves. The experiments have a
duration of approximately 10 ms after reshock, allowing ample time for trends in the RMI
over time to be quantified. The shock wave strengths from the two gases were chosen so as
to result in arrested bulk interface motion following reshock.

Several metrics of interest to the RMI are examined for the influence of the
shock-to-reshock time on their value. The first is the value of the mixing layer growth
exponent, θ . The mixing layer growth was observed to grow consistent with a power law
of the form h(t) ∝ tθ following reshock. No significant difference in the value of θ was
observed across a range of shock-to-reshock times, excluding very short shock-to-reshock
times. An average value of the growth exponent for heavy shock first experiments of
θH = 0.365 ± 0.018 (95 %) and for light shock first experiments of θL = 0.381 ± 0.02
(95 %) is found. A significant amount of scatter is observed in the value of θ between
individual experiments, however. These average values generally agree with the value of
θ ≈ 0.33 found by Sewell et al. (2021) for the high amplitude reshocked case. Thornber
et al. (2011) found θ in the range of 0.28 for narrow bandwidth initial perturbations to 0.36
for broad bandwidth initial perturbations. The latter result is in good agreement with the
results presented here, which also have a relatively broadband initial perturbation.

Another metric of interest included in this study is the rate of decay of volume integrated
specific TKE versus time, and the dependence of this value on the shock-to-reshock time.
When fitting a power law for volume integrated specific TKE decay of the form Etot/ρ̄ ∝
tp, an average value of the decay constant of pH = −0.823 ± 0.06 (95 %) is found for
the heavy shock first experiments and pL = −1.061 ± 0.032 (95 %) for the light shock
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first experiments. Notably, the 95 % confidence interval of the average value of p for the
light shock first experiments lies outside of the 95 % confidence interval of the heavy
shock first result. This suggests that, on average, the TKE decay constant has a statistically
significant dependence on the order of shock wave arrival. A possible explanation for the
difference between the heavy shock first and light shock first experiments is offered by
considering that TKE as defined in this work does not include density and, thus, includes
an implicit assumption that the relationship between the density and velocity of the mixed
fluid is similar for the two cases. Previous work by Charonko & Prestridge (2017), Lai
et al. (2018) and Mohaghar et al. (2017) has shown that the variable density nature of the
RMI can have a number of influences on the results. Further study of the rate of decay of
TKE in this configuration, particularly in the case where the first shock arrives from the
heavy gas using simulation or experiment with density data, will be needed to evaluate the
influence of variable density factors on this result.

The volume integrated specific TKE decay constant found here differs slightly from the
asymptotic reshock values of p = −0.92 to p = −1.16 found by Thornber et al. (2011)
for the broadband and narrowband cases, respectively. However, it should be noted that
their simulations only considered the light shock first configuration, with reshock from the
heavy gas. Interestingly, while the best agreement with the results of Thornber et al. with
respect to the mixing layer width was observed for the broadband case, the narrowband
case appears to match the data in the present work more closely when considering TKE
decay. The volume integrated specific TKE decay constant observed in the present study
is more negative than the values of phigh = −0.62 and plow = −0.14 for the high and low
amplitude initial conditions in reshock observed by Sewell et al. (2021), though this is
likely due to the fact that those experiments were only able to observe a relatively short
period of time following reshock.

The experiments presented here have an average outer-scale Reynolds number, Re =
hḣ/νavg of Re ≈ 1 × 105 for experiments with a shock-to-reshock time |�ts→rs| � 0.5 ms,
with no apparent dependence on the order of shock wave arrival. The average value of
the Reynolds number decreases sharply for experiments when a shock-to-reshock time
approaches zero, when |�ts→rs| � 0.5 ms. The transition to turbulence is considered using
criteria based on critical Reynolds numbers suggested by Dimotakis (2000) and Zhou
(2007). The observed maximum average value of Reynolds number measured here is
well in excess of the critical value for a transition to turbulence of Re > 104 proposed by
Dimotakis (2000). However, it does not quite satisfy the time-dependent transition criteria
of Re > 1.6 × 105 proposed by Zhou (2007).

This outer-scale Reynolds number is used to estimate the sizes of a range of scales
that describe a turbulent flow in order to assess whether these experiments achieved a
turbulent state. Three length scaled based transition criteria as suggested by Dimotakis
(2000), Zhou et al. (2003) and Lombardini et al. (2012) are considered. The present
experiments are shown to satisfy the length scale requirements for turbulent transition
suggested by Dimotakis (2000). The second transition criteria, suggested by Zhou et al.
(2003), is found to be satisfied for a short period of time on average, although examination
of the pointwise data reveals that individual experiments may satisfy this transition criteria
for longer than is suggested by the average data. Lastly, the ratio of the size of the integral
scale to the inner viscous scale is found to be between 1.5 and 2, falling short of the ratio
of 10 suggested by Lombardini et al. (2012).

Finally, the anisotropy of the mixing layer is examined. It was observed that experiments
begin in a highly anisotropic state following reshock and quickly trend towards, though
do not reach, an isotropic state at early times after reshock, with the experiments with
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the longest shock-to-reshock times transitioning more rapidly than those with a shorter
shock-to-reshock time. Additionally, no difference in the anisotropy ratio of the mixing
layer is observed based on the order of shock wave arrival at this early time. At later
times the four groups of experiments trend towards similar values of anisotropy ratio,
demonstrating an increasing level of anisotropy for the remainder of the experiment.
Quasi-steady values of the anisotropy ratio from 1.6 − 1.8 are observed at the latest times
for three of the four groups of experiments, which is in good agreement with previous
simulation data (Thornber et al. 2011).
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Appendix A. Influence of threshold value on mixing layer width

As discussed in § 3.3, the calculation of the mixing layer width requires a choice of
threshold value of enstrophy to determine the edges of the mixing layer. A threshold
value of 5 % of the maximum value of enstrophy at each time was chosen for the results
presented in this work, but it is worthwhile to examine the sensitivity of the presented
results to this choice. To examine this, the same experiment as presented in figure 7 was
re-analysed with threshold values of 1 % and 10 %. The results of this analysis are shown
in figure 18. It can be observed in this figure that, unsurprisingly, decreasing the threshold
used to determine the mixing layer edges results in an increase in mixing layer width, and
increasing the threshold results in a decrease in mixing layer width. The 1 % threshold is
approximately 4.25 mm greater than the 5 % threshold value of enstrophy width, and the
10 % threshold is approximately 2.75 mm less than the 5 % threshold value of enstrophy
width on average. Also of note is that the 1 % threshold has significant noise at later times
due to failure to successfully detect the mixing layer edges. This is likely a consequence
of the decaying magnitude of enstrophy in the flow resulting in the 1 % threshold value
lowering into the background noise and causing erroneous determination of mixing layer
edges at later times. Finally, the values of θ1 % = 0.310 and θ10 % = 0.329 found from fits
to the 1 % and 10 % threshold data are both within the 95 % confidence bound of the fit
to the 5 % threshold data of θ5 % = 0.314 ± 0.025, suggesting that the choice of threshold
value does not significantly influence the determined value of θ .

Appendix B. Near-simultaneous shock arrival

A unique behaviour was observed for experiments with a vanishingly small
shock-to-reshock time. This specifically refers to the case where the first and second shock
waves arrive nearly simultaneously at the interface. These experiments are observed to
exhibit a very low growth rate of the mixing layer, and correspondingly low values of
vorticity and TKE. Qualitatively, the perturbations do not appear to become turbulent for
the duration of the experiment. These experiments are also much more difficult to process
due to their low signal-to-noise ratio. Images of the vorticity field for one of these low
growth experiments is shown in figure 19. It can be clearly observed in this figure that
these low growth experiments demonstrate a qualitatively different behaviour from others
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Figure 18. Mixing layer width versus time determined using 1 %, 5 % and 10 % of the maximum value of
enstrophy.

−1.5 0 1.5

Vorticity (ms–1)

(b)(a) (c) (d )

Figure 19. Pseudocolour plots of the vorticity field from an example experiment with very low post-reshock
growth. The colour scale has been reduced from other experiments shown in this work to make data visible.
Times of each image relative to reshock are (a) ≈ 0.9 ms, (b) ≈ 3.57 ms, (c) t ≈ 6.23 ms, (d) t ≈ 12.8 ms.

presented here (cf. figure 5). Individual structures from the initial perturbations remain
perceptible for the duration of the experiment. This is in contrast to the other experiments
presented here where the form of the initial perturbation is lost due to the ensuing turbulent
flow. For this reason, these experiments have been excluded from the results presented
above as they behave demonstrably differently than the rest of the experiments. This
corresponds to excluding six experiments of the total set of 89 experiments. To the best
of the authors’ knowledge, these are the first experiments with near-simultaneous arrival
of two shocks from opposite directions and a long post-shock observational period. The
concept of freeze out using shocks arriving from opposite directions with a prescribed
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strength has also been explored experimentally using reflected shock waves by Chen et al.
(2023) as well as Schill et al. (2024)

Notably, this low growth behaviour could not be reproduced on demand as it is extremely
sensitive to the exact arrival times of the two shock waves. The mechanical jitter in the
time of diaphragm rupture of the two drivers in the DDVST is large enough that simply
setting a specific driver firing separation time would still not guarantee that the first and
second shock waves arrive with a sufficiently small temporal separation to generate this
behaviour.

The idea that conditions may be prescribed such that the RMI does not grow following
the passage of a shock wave has been described previously. Mikaelian (1985) proposed
a situation where the growth rate of the interface imparted by the passage of the first
shock is cancelled by the passage of the second by having the two shock waves arrive
at the interface with a prescribed temporal separation, which he termed ‘freeze out’. The
near-simultaneous arrival of the two shock waves has the effect that the second shock
wave arrival effectively cancels the vorticity deposited on the interface by the first shock
wave. Vorticity is deposited on the interface according to the cross-product of ∇ρ and
∇p. One can conclude that, given a short enough time between shock and reshock, the
interface shape, which in turn specifies ∇ρ, has not significantly changed. Therefore, the
only difference between the arrival of the first and second shock waves is the sign of ∇p,
which will be opposite in direction to the initial shock, and whose magnitude is set by the
strength of the second shock. The strength of this second shock may be controlled such
that ∇ρ × ∇p takes on values that are equal in magnitude but opposite in sign for the first
and second shock waves when considering the change in Atwood number and interface
shape following the first shock.
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