ON THE AUTOMORPHISMS OF INFINITE
CHEVALLEY GROUPS

J. E. HUMPHREYS*

In (8, § 3.2) Steinberg proved the following result.

THEOREM. Let K be a finite field, G' a simple Chevalley group (‘“‘normal type'’)
over K. Then every automorphism of G’ is the composite of inmer, graph, field,
and diagonal automorphisms.

For the meaning of these notions, see (8). Our aim in this note is to indicate
how the Theorem may be extended to arbitrary infinite fields K, provided
we replace G’ by the group denoted G in (5) and G in (8). This amounts to
proving the Theorem for automorphisms of G’ which are induced by auto-
morphisms of G; when K is finite, Steinberg’s results show that all auto-
morphisms of G’ arise in this way. As Steinberg points out, the sole use made
of the finiteness of K in his argument is in the proof of the following statement:
Let U be the subgroup of G’ corresponding to the set of positive roots, and
let o be any automorphism of G’; then U° is conjugate to U in G’. (For finite K,
this amounts to an application of one of the Sylow theorems.) Henceforth,
assume that K is infinite. We shall prove the following lemma, which, together
with Steinberg’s arguments (modified slightly), yields the above Theorem for G

LEMMA. Let U be the subgroup of G corresponding to the set of positive roots,
and let o be any automorphism of G. Then U’ is conjugate to U in G, and hence
(by an easy application of the Bruhat decomposition) in G'.

Before proving the Lemma we need to recall the relationship between
Chevalley’s earlier notion of algebraic linear group (4) and that of Weil;
see (1, § 2.4) for details. Let @ D K be a universal domain. If H C GL(#n, K)
is an algebraic linear group in the sense of (4), then its Zariski closure H* in
GL(n, 2) is an algebraic linear group defined over K, with K-rational points
(H*)x = H* N\ GL(n, K) equal to H. H is connected (solvable, etc.) if and
only if H* has the same property, and the dimension of H coincides with
dim H* (cf. 4, vol. 11, p. 113, proposition 5). In particular, let G (with derived
group G') be the group over K defined by Chevalley in (5), say G C GL(n, K).
According to a theorem of Ono (7, Theorem 2), G is an algebraic linear group
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*[ am indebted to G. B. Seligman and R. Steinberg for their critical comments on an earlier
version of the paper. A proof of Steinberg’s theorem for G’ (K any perfect field) appears in (9).
An analogous theorem for a much wider class of groups is to appear eventually in (3); Borel
informs me that he and Tits proved the main result of the present note some time ago
(unpublished).
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in the sense of (4), and G* = (G*)’ is the simple Chevalley group over @ of
the same type. Moreover, the group U above and the standard diagonal group
H are closed in G (7, Propositions 1-5); if B = H - U, then it follows readily,
using the structure theory of (6), that B¥* = H* - U* is a Borel subgroup of G*
with maximal torus H* and maximal connected unipotent group U¥*, all
defined over K (in fact, K-split).

Proof of the Lemma. Suppose that S is a solvable subgroup of G including
B; then its closure in G is also solvable. Thus, if B is not maximal solvable,
it lies in a larger closed solvable subgroup S, and S* O B* with S* solvable.
Since Borel groups are maximal solvable (6, 9-05) we conclude that S* = B¥*,

= (§*)x = (B*)x = B. This shows that B, and hence also B, is maximal
solvable; in particular, B is closed in G. For the remainder of the proof we
distinguish two cases.

(@) K has prime characteristic p. In this case, U is precisely the set of
p-elements in B (elements of order a power of p) since U* is unipotent and
H* is a torus. Thus, U is precisely the set of p-elements in B°. However, the
closure of U?, which lies in the closed group B?, evidently consists of p-elements,
and therefore U° is already closed.

Consider the standard decomposition U = wX,, r ranging over the m
positive roots, where m = dim U = dim U* (8, § 2). Let w, and w in N(H)
represent the symmetry with respect to 7 and the element of the Weyl group
which interchanges positive and negative roots, respectively. If 7 is a simple
root, then X, = U N w,wUw 1w, !, This implies that (X,)? is the intersection
of two closed groups, hence is closed. Since each root is conjugate under the
Weyl group to a simple root, we conclude that all (X,)? are closed. Evidently,
dim(X,)? = 1; this implies that dim U° = m, the product being semidirect.

Now the identity component of (U’)* is a connected unipotent group of
dimension at least m. Since U* is a maximal connected unipotent group, and
all such groups are conjugate, this forces dim U’ = m. Moreover, the identity
component of (U?)* is the unipotent radical of a Borel group of G* (namely,
its normalizer in G*), whence we see that (U?)* is already connected.

We next consider the dimension of H°. Let [ = dim H = dim H* be the
rank of G*. Since H* is a maximal torus and H is dense in H*, H must contain
a regular semisimple element x of G¥*; then H* = Z s (x), whence H = Z4(x)
and H° = Z4(x°). In particular, H? is closed. Now choose a large enough
power g of p so that #? = 1 for all unipotent matrices # in GL(#n, Q). In G*
the criterion for an element of H* to be regular is that each simple root have
value there different from 1; this implies at once that x? is again regular. Write
x° =s - u# as a product of commuting semisimple and unipotent elements
in G* (sand # need not be in G). Then (x?) = s%and H = Z4(x9), H* = Z¢(y),
where y = (x9)7 = s? is a semisimple element of H°. Now the identity com-
ponent Z of Zg(y) is connected and defined over K (2, § 2.15d), and of
maximal rank in G¥*; thus, Z includes a maximal torus 77 of G* defined over
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K (2, §2.14a). By (2, § 2.14c), the group of K-rational points 1" = (I")x is
dense in 77, i.e., T* = T’. However, T lies in Z4(y) = H?; thus, dim H° = .

Since the product B’ = H? - U° is semidirect, we conclude that (B?)*
has dimension at least / - m = dim B¥; it follows easily that (B“)* is a Borel
group, defined over K. According to (2, § 4.13), B* is conjugate to (B’)* by
an element of (G*)x = G. Itis clear that U* is taken to the unipotent radical
(U°)* of (B°)*; thus finally, U is conjugate to U in G, as required.

This completes the proof in case (a).

(b) K has characteristic 0. As before, let I = dim H = dim H*. We will use
some standard facts about Cartan subgroups valid for arbitrary fields of
characteristic 0 (4, vol. 111, chapitre VI; 1, § 20). In the first place, H* is a
Cartan subgroup of G* (6, 12-09, Theorem 2); therefore, H is a Cartan sub-
group of G (4, vol. 111, p. 224, Proposition 22). Since the definition of Cartan
subgroup is purely group-theoretic, H is also a Cartan subgroup. Now it
follows that H° is closed, connected, of dimension /; and that (H°)* is a
maximal torus of G*. In particular, H” consists of semisimple elements.

Since H’ is connected, it lies in the identity component of B°. From the
standard structural properties of G, notably the generation of G’ by copies of
PSL(2, K) (cf. 5, p. 47, Lemma 1), we find at once that B has no normal
subgroup of finite index including H except itself (thus, B’ has a similar
property and must already be connected), and that U is precisely the derived
group of B (thus, U’ is the derived group of B?). Now B is closed, connected,
and solvable; therefore, it lies in a Borel group, and its derived group U lies
in the unipotent radical of that Borel group. Since (H?)* is a torus, it is clear
that U° contains all the unipotent elements of B°: recall that in characteristic
0, G contains the semisimple and unipotent parts of its elements (4, vol. II,
p. 184, théoréme 18). The closure of U’ consists of unipotents (1, §6.3),
therefore, U° must be closed.

As in part (a), we can now argue that each (X,) is closed and then, that
dim U° = m. This makes (U?)* a maximal connected unipotent group (every
unipotent group is connected in characteristic 0), defined over K. From
(2, §8.2) it follows that this group is K-conjugate to U*, and finally U° is
conjugate to U in G.

Remark. The automorphism ¢ was merely assumed to be an automorphism
of G as an abstract group. Steinberg’s remark (8, p. 614) that the Lemma is
proved for algebraically closed K in (6) is therefore misleading, since the
“automorphisms’ discussed there are always required to be birational.
However, it is quite easy to give a direct proof of the Lemma when K is
algebraically closed, bypassing our complicated arguments above.
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