MONOTONE FUNCTIONS MAPPING
THE SET OF RATIONAL NUMBERS ON ITSELF

(IN MEMORIAM FELIX A. BEHREND)

B. H. NEUMANN and R. RADO
(received 25 October 1962)

1.
The functions f defined by
x
He) = cx+1—c¢
or by
z—1
He) = ——

for ¢ rational and less than 4 1 map the set of rational numbers between 0
and 1 one-to-one onto itself; and they are the only fractional linear functions
with this property. Miss Tekla Taylor recently raised the question * whether
these are the only differentiable functions with the stated property. In the
present note we show, by two different constructions, that the answer is
negative; in each case much freedom remains, which could be used to make
the functions in question have various additional properties.

2.

Let P denote the set of all rational numbers, R the set of all real num-
bers, and C the set of all complex numbers.

THEOREM 1. There is a function f : R — R with the following propertics.

(i) f is differentiable and monotone increasing in R, in fact f'(x) =1 for
all real x;

(ii) f(P) = P, that is to say, { maps the set of rational numbers onto itself,

(iii) 7 4s not (entire) linear, that is o say, to all a, be R there is an xe R
such that f(x) # ax + b;

* Oral communication. A related but simpler problem, proposed by D. G. Northcott and
communicated to us by I. D. Macdonald, is solved in a note by Peter M. Neumann in IN-
VARIANT [the journal of the Oxford University Invariant Society] 1, 9—11 (1961). Subse-
quently one of us jointly with H. A. Heilbronn obtained a more general result (not published).
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(iv) f s “locally linear’” at every rational point, in the sense that to each
p € P there are numbers o, 8, € P, & > 0, such that for all xe[p—9, p+ ],

f(x) = ax + B.

An immediate consequence of (iv) is that f is not properly fractional
linear (that is of the form f(x) = (ax + b)/(cx + ) with ¢ # 0) in any
real open interval.

THEOREM 2. There is a function f: C — C with the following properties.

(i) f s differentiable on C, that is to say, an entire function;

(il) {(R) =R and f(P) = P, that is to say, | maps the sets of real numbers
and of rational numbers onto themselves;

(iii) f ¢s monotone increasing on the real line, in fact, {'(x) =1 for all xe R;

(iv) f s not a polynomial.

The montoneity of these functions f on R implies that they map R, and
thus also P, one-to-one. Miss Taylor’s question is answered by the function ¢
defined by

_ @) —1(0)
1) —1©0)’

where £ is the function either of Theorem 1 or of Theorem 2.

The proof of Theorem 1 is quite simple and short and occupies § 3. The
proof of Theorem 2 is more elaborate, as it requires the construction of an
analytic function, not just a real once differentiable function; it is given
in § 4.

p(z)

3. Proof of Theorem 1

Let
P= {Po:PpPz» t }

be an enumeration of the rational numbers. It is possible to define, by
simultaneous induction, integers A(n) = 0, closed intervals I,, C R of positive
length and with irrational endpoints, rational numbers «,, 8,, and differen-
tiable functions f,: R - R, for # =0, 1, 2, -+ -, such that, let us say

A0) = 0,1, = [py— /2, po+ V2], 09 = 2, By = 0, fo(z) = 2%
and such that, further, with the abbreviation
Ja=lewlu---Ul,_,,

we have for n =1,2,3,---
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(1) I.n]J, =0,

(@) fol@) = f,3(x) for all ze],,
(3) fa(2) =,z + B, forall zel,
4) «, % «, for m<<mn,

(5) [fn(®) — froa(®)] < 27 for all zeR.

Finally, we stipulate that

(@) if n=2,4,6,--- then A(n) is the least integer A = 0 such that
pr#J,, and I, is so chosen that py,€l,;

(o) if »=1,83,5,--- then A(n) is the least integer A =0 such that
paéfua(J,), and then I, a,, B, are so chosen that py(,) € f.({,).

We first remark that from the definition of f, and from (5) we have

(6) 1<fi(x)<3 for n=0,1,2,--+ and all zeR;

moreover, still by (5), lim, . f, exists uniformly in R. Also, by repeated
application of (2)
fﬂ(PO) = fﬂ(PO) for n = 0, 1; 21 Tt

so that lim,_ . /.(pe) (trivially) exists. Hence

lim f, = f

fn->co

exists on R and is differentiable, and

f(z) =limf,(x) =1 for all zeR.

=00
This proves (i).
Next, if pe P, then there is an integer m = 0 such that pel,,, by (a).
Then for all n = m,

in(P) = fm(P) = tpp + fm ep,
by repeated application of (2), (3), and the choice of «,,, B, € P; thus

f(p) = lim £,(p) = fu(p) € P,

n->00

and it follows that f(P) C P.
Again, if o € P, then there is an integer k = 0 such that o € f(I,), by (b).
Thus there is p € I, such that

U=akp+ﬂk,

and as a, # 0 ~ an obvious consequence of (3) and () — we have pe P.
Again we have as before f,(p) = fi(p) for » = k, and
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Hp) = lim f,(p) = Ji(p) = o,
7n-300

and it follows that PC f(P), completing the proof of (ii). Property (iii) is a
consequence of (4), and (iv) follows from the fact that the endpointsof all I,
have been chosen irrational. This completes the proof of Theorem 1.

4. Proof of Theorem 2

We adopt the convention that x ranges over the real numbers, z over the
complex numbers, and m, # over the non-negative integers.

Let two sequences of (not necessarily distinct) rational numbers
(7 Wy =0,7;,7, - and @, =2,a;,a5, "
be chosen so that for m = 1
(8) —m=n,=m and 0<aqa, =< (2m)"""‘"“2.
We define polynomials p,, 4, #5, - -and fg, fi, fo, - - - by

ple) = 2z —m) (z—1m3) - - (2—mm,),
o= 2 tnu:

Then we have, for m = 1 and [z] = m,
) |@npm(2)] < apmm+t(@m)m < 27" < 277,

8D (2)] < @((m2 + V)™ (2m)™ + m™ 1 m (2m)™1)

10 < apm™ (2m)™iE < 2-m* < 9-m,

Hence we may define a function f: C — C by

o0
f=1lm/, =2“m1’m»
n-»00 m=0

and as (9) ensures the uniform convergence in every circle, this function
is entire. Also, by (10), we have

o0
f= hmf:» = zam?;n'
700 m=0

We note that the only powers of the variable that actually occur in p,,
are among those with exponents m2 4- 1, m2 + 2, -+, m® + m + 1, and
the last of these has coefficient 1; hence the different ,, contribute distinct
powers of the variable to f, and in the power series expansion of f about the
origin, infinitely many powers occur with non-zero coefficients. It follows
that f is not a polynomial.
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Next we note that $,,, Pmi1, Pmse, - - - all vanish at z = =x,,, whence
(11) Hn) = falm,) for m=n+1;

this is a rational number, and if we ensure that all rational numbers occur
among the =,,, then we shall have f(P) C P.

However, before carrying this out, we prove that f is monotone on the
real line; to this end we show by induction that

(12) fol) =1+ 2™ for all zeR.

As fo = P, is defined by f,(z) = 2z, (12) is true for » = 0. Let now m = 0
be fixed and assume (12) is valid for # = m. Then, if [x| < m + 1, we apply
(10) and obtain

ﬂn+1 () = fr(x) + am+11’;n+1 () = 142" —2"71 = 142771

If || > m + 1, then p,,,,(z) > O since p,,,, is a monic polynomial of odd
degree whose roots are real and contained in the interval |—m — 1,m 4 1].
Hence

fma(®) = o) + “m+175:n+1 (x) = 14+27+0=142""1

This proves (12) for » = m -+ 1, and thus (12) is true for all #. The monoto-
neity of f follows at once:

f(x) =limfi(x) =1 for all zeR.

700

It only remains to specialize the sequences (7) of rational numbers, subject
to (8), so that

(13) /(P) = P.

Let again, as in the proof of Theorem 1,

(14) P ={py, py, pa, - *}

be an enumeration of the rational numbers, which we now choose so that
|pml =m for all m = 0.

Recall that =, = 0 and a4, = 2, so that p, and f, are already given. The
coefficients a, for m = 1 can be chosen arbitrarily; let us put

a, = (2m)~™"-m~2 for m = 1.

We define =z, inductively as follows. Suppose =,, =, - * *, ®,_, have been
determined, where # is fixed, » = 1; then p,, and f,, are defined for m <#.

Case 1. Let n = 3k+ 1. We put n, = p,. Then |r,| <k <, as required
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by (8). We thus ensure that all rational numbers occur among the =, and
thus that

(15) HP)C P.

Case 2. Let n = 3k + 2; we then define both x, and =,,,. Determine
£ e R from the equation

fn—1(§) = Pk-

There is precisely one such &, and as |p,] < k2 < %, and as f,_,(0) = 0 and
foa(z) > 1forall z e R (see (12)), also &} < .

Case 2a. Let & e P. Then we put #, ==,,, =& Then [z,| =n and
[psal = n + 1, as required by (8); and, by (11),

(16) Hmn) = toa(ma) = pa.
Case 2b. Let & be irrational. Define a function F by
tfaa(®) —ps
Fl@) = ————— 4.
O = e T

This function exists and is continuous in a neighbourhood of ¢, that is for
|z — & < & with a suitable 4 > 0; and

[F(&) = & < m.

Hence there is a p € P such that |p| <% and |F(p)| < ». Note that also
F(p) e P. We put

Ry = F(P)’ Tpt1 = P-

Then |n,| < # and |n, 4| = n + 1, as required by (8); and
faca(p) —pi

P> Pus(p)

P = fn—l(P) + anpzn—lpn—l(P) (P—nn) = fn—l(P) +a'npn(P) = fﬂ(P);
thus, using (11),

n, = F(p) = +p,

(17) f(nn+1) = fn(nn+1) = fn(p) = P
Now (16) and (17) combine to show that every rational number is of the
form

Pr = [(sxea) OT pr = f(7arya),
and so

PC{(P).

In conjunction with (15) this shows (13) and completes the proof of Theorem 2.
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