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ASYMPTOTICAL SMOOTHNESS AND ITS APPLICATIONS

WlESLAWA KACZOR AND STANISLAW PRUS

In this paper we introduce the notion of asymptotical smoothness of a Banach space
and show that it is strongly related to the Kadec-Klee property. This notion is then
applied to obtain new theorems about weak convergence of almost orbits of three
various types of semigroups of mappings.

1. INTRODUCTION

Geometrical properties of Banach spaces play crucial role in many problems of metric
fixed point theory. This includes the Kadec-Klee property, the Opial property, and
their various modifications (see [23]). Actually, some authors attribute the first of these
properties to M. Radon and F. Riesz (see [2, p. 133]), so they call it the Radon-Riesz
property. It is also called property (H) (see [5, p. 112]). The idea of the Opial property
comes from [21].

These properties are defined in terms of weakly convergent sequences. However, in
some applications we deal with nets. According to the terminology of [4], the counterpart
of the Kadec-Klee property for nets is called the Kadec property.

In some papers concerning nonlinear ergodic theory, to get weak convergence of
suitable sequences or nets in a Banach space X, authors use the Kadec-Klee property
and the Kadec property (respectively) of the dual space X* (see, for example, [7] and
[10, 11, 12]). In the next section of our paper we introduce the notion of asymptotical
smoothness and prove that it is partially dual to the Kadec property.

In other papers dealing with ergodic theory, a Banach space X is assumed to have
either the Opial property for sequences or the Opial property for nets [16]. This leads
to the general problem: under what assumptions one can replace sequences by nets in a
given condition concerning weakly convergent sequences. A solution of this problem for
the Kadec-Klee property can be found in [14] (see also [1, p. 113]). In this paper we find
a more general result in this direction. It shows in particular that if X is reflexive, then
the Opial property for sequences is equivalent to the Opial property for nets.

The last section of our paper is devoted to the study of weak convergence of almost
orbits of three types of right reversible semitopological semigroups in uniformly convex
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406 W. Kaczor and S. Prus [2]

and asymptotically smooth Banach spaces. Namely, we consider nonexpansive, asymp-
totically nonexpansive commutative and asymptotically nonexpansive-type semigroups.

2. ASYMPTOTICALLY SMOOTH SPACES

In this paper we shall consider only infinite dimensional real Banach spaces. How-
ever, our results hold also for complex spaces. This case requires only minor modifications
of some proofs. Let X be a Banach space. Its closed unit ball and the unit sphere will be
denoted by Bx and Sx, respectively. By B we denote the family of all closed subspaces
of X with finite codimension. Given t ^ 0 and i 6 Sx, we put

5(t\ x) = inf sup ||x + ty\\ - 1.
EeB yeSE

This coefficient was introduced in [19]. It is easy to see that t t-t 6(t;x) is a continuous
nonnegative function such that 6(t;x)/t is nondecreasing.

D E F I N I T I O N 2.1: We say that the space X is asymptotically smooth if

t->o t

for every x G Sx-

It is worth while to mention here that for some spaces the coefficient 5(t; x) can be
described in explicit terms ([19]). Namely, S(t;x) = (1 + ip)1 / p - 1, t ^ 0, if X = L, or

/oo \

more generally, if X — I J2 Xn I where 1 ^ p < oo and (Xn) is a sequence of finite

dimensional spaces. Moreover, if X — Co, then 5(t; x) — 0 for 0 ^ t < 1 and S(t; x) = t— 1
/ oo \

for i ^ 1. The same formulae hold for the space X = \^,Xn\ where (Xn) is a sequence
\»=1 / Co

of finite dimensional spaces. Thus CQ and /p with p ̂  1 are asymptotically smooth but ^
lacks this property.

To state our first result, recall that the norm of X is said to be Frechet differentiate
(see, for example, [23]) if for every x G S*,

1lim sup ty\\-\\x\\)-4>x(y) = 0,
t

where <j>x € X* is the Gateaux derivative of the norm at x.

PROPOSITI ON 2 . 1 . If the norm ofX is Frechet differentiate, then X is asymp-
totically smooth.

PROOF: Given x G Sx, we take x* G X* such that x*(x) = 1 = ||x*|| and put
Eo = kerrc'. Then \\x + ty\\ ^ x*(x + ty) = 1 if y € Eo. This shows that <j>x(y) > 0.
Consequently, <j>x{y) — 0 for every y € Eo. It follows that

1 , , ^
sup ty\\-\)-4>x{y) sup U

t
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[3] Asymptotical smoothness 407

for every t > 0, and since the norm of X is Frechet differentiable, we see that \\m6(t;x)/t

= o. ' " ° D
On the other hand, c$ is asymptotically smooth while its norm is not even Gateaux

differentiable.

Asymptotical smoothness can be characterised in terms of nets. Given a Bauach

space X, x € Sx and t ^ 0, we put

5o(t\ x) = sup{limsup \\x + tea|| — l } ,
a€A

where the supremum is taken over all weakly null nets {xa)a&A in Bx and

Si(t;x) = supjliminf liminf||x + t(xa - xp)\\ - 1 >,

where the supremum is taken over all nets (xa)aGA in Bx-

THEOREM 2 . 2 . Let X be a Banach space, x e Sx and t ^ 0. Tien

So(t;x)=S(t;x)

and

PROOF: We first show that 5(t; x) ^ SQ(t; x). To this end we consider the set B with
the order given as follows: E\ < E2 if E2 C E\ where Ei,E2 € B. Given e > 0, for each
E 6 B we find ys € 5 ^ so that

-1 >S(t;x)-e.

It is easy to see that the net {VEJEZB converges weakly to 0. Therefore,

8(t\x) — e ^ lim sup ||a: + tyE\\ — 1 < 6Q(t;x).
EB

Since e > 0 is arbitrary, we get the desired inequality.

Let now (xa)aeA be a weakly null net in Bx- Then

lim \\x + txa\\ ^ lim inf lim inf || x + t(xa — xp)\\ ^ 5\(t;x) + 1

provided that the limit on the left hand side exists. This shows that 6o(t\x) ^ 6i(t;x),

which in view of the first part of the proof gives S(t;x) ^ 6i(t;x).

Our next aim is to prove that 5\{t\x) ^ 5(2t;x). Given e > 0, we find a subspace
E € B so that | |x+2ty | | - l ^ 5(2t; x)+e for every y € 5^. Let us put m = codim E. There

m
are elements z\,..., zm 6 Sx and functional z\,...,z*m € X* such that E — f] ker z*,
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z*k(zk) = 1 and z*k(zi) = 0 for every i = l , . . . , m and k ^ i. Given a weakly null net

(xa)aeA in Bx, we set
m

Then z*k(ya) = 0 for k — 1 , . . . , m, which shows that ?/Q € £". Moreover, \\ya - yp\\
m

< \\xa - x^ll + da0 ^ 2 + dQ/3 where da/3 = £|z,*(xo) ~ zt{xp)\- ^ follows that
i

whenever ya ^ y^. Hence

||z + i(j/a - 1//3) || - 1 ^ <5(2i; x) + e + tda/3,

which holds also in the case when ya = y$. Consequently,

||a; + t(xa-ar^) | | - 1 < \\x + t(ya - y0)\\ - l + tda0 ^ S(2t;x) + e + 2tdafS

for all a,/3 € A. Passing to a subnet, we can assume that limz*(:rQ) exists for i

= 1, . . . , m. Then lim lim dag = 0. This shows that
PeAaeA ^

liminfliminf||x + f(xQ -i / j) | | - 1 < S(2t;x) +e.

It follows that 6i(t;x) < S(2t;x) + e. Passing to the limit with e -> 0, we obtain
5i{t; x) ^ S(2t; x). A straightforward modification of the last part of the proof gives the
inequality S0(t; x) ^ 5(t\ x), which concludes the proof. D

Recall that the James space J is defined as the space of all real sequences x = (xn)
converging to 0 such that

, m- l v 1/2

11*11 = SUP f } 2 IX»*+1 "
 S". P + lX"m " ^ 1 I' ) < ° ° '

where the supremum is taken over all sequences of positive integers nx < n2 < ...
< nm (see [8]). In [19], it is mentioned that in this case S(t;x) = (1 + t2)1'2 - 1 for
all x € Sj and t ^ 0, which is not true. Indeed, consider the sequence of vectors
en = ( 0 , . . . , 0 ,1 ,0 , . . . ) / \ /2 , where 1 is the nth coordinate. Clearly, (en) is weakly null,
| |en| | = 1 and ||ex - ten\\ = 1 + t for every n and t ^ 0. In view of Theorem 2.2 this
shows that 6(t;ei) = t. Consequently, J is not asymptotically smooth. It may however
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be renormed to have this property. The appropriate norm was defined in [22]. Namely,

given i = ( i n ) 6 J , we put

1/2

N i l = ( J2 I I' + 2l I' J
, m x 1/2

^ J t = l '

where the supremum is taken over all sequences of positive integers ri\ < n2 < ...
< n2m+i- Then ||:r||/\/3 ^ ||x||i ^ 2||x|| for every x £ J, so the norm || • ||i is equivalent
to || • ||. Moreover, if x e span{efc}^=1 and y € span{efc}fc>n, then

It follows that in the space J considered with the norm || • ||i we have 6(t;x) ^ (1
+ 2t2)ll2 - 1 for all x € J with \\x\\x = 1 and t > 0.

In the next section we give an application of asymptotical smoothness to fixed point
theory. Our main tool will be the following lemma.

LEMMA 2 . 3 . Let X be an asymptotically smooth Banach space, ( x Q ) a e ^ be a

bounded net in X and x,y be weak limit points of subnets of(xa)aeA. If the limit

exists for each t G [0,1], then x — y.

PROOF: It suffices to consider the case when y — 0. Suppose, contrary to our claim,
that x ^ 0 and put u = x/||:r||, ua = xQ/||:z;|| and

h(t) = lim 11*1*0, + (1 - t)u||.

Since u is a weak cluster point of (ua)aeA, 1 '= ||w|| ^ h(t) for every t 6 [0,1]. But
(ua)aeA has a weakly null subnet. From Theorem 2.2 we therefore see that

for every t £ [0,1), where c = supQ€y4 ||ua||. Hence

which contradicts the assumption that X is asymptotically smooth. D

The idea of Lemma 2.3 goes back to a result due to J. Garcia Falset [7], where it
was proved only for sequences under the assumption that X is uniformly convex and its
dual has the Kadec-Klee property (see also [17]). In [9], the Garcia Falset lemma was
generalised for nets in reflexive Banach spaces whose duals have the Kadec-Klee property.
We shall show that this property is strongly related to asymptotical smoothness. Let us
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first establish terminology concerning the Kadec-Klee property. It/coincides with that of

[4]-
A Banach space X has the Kadec property provided that if {xa)a5A is a net in

Sx converging weakly to i € Sx, then (xa)aeA converges to x in norm. Restricting
this definition to sequences, we obtain the definition of the Kadec-Klee property. Next,
replacing X by X* and weak convergence by weak* convergence, we get the definitions
of the w'Kadec and the w*Kadec-Klee property. Obviously, the Kadec property means
that the restriction of the weak topology to Sx coincides with the norm topology. A
characterisation of the Kadec property in terms of a geometric modulus can be found in
[19].

THEOREM 2 . 4 . Let X be a Banach space.

(i) If X* is asymptotically smooth, then X has the Kadec property.

(ii) If X* has the w*Kadec property, then X is asymptotically smooth.

PROOF: Assume first that X* is asymptotically smooth and X does not have the
Kadec property. Then there exist a net (xQ)aeA in 5* and e > 0 such that (xa)a€A

converges weakly to x 6 Sx and \\xa — x\\ > e for every a. We find x* e SX' with
x*(x) = 1 and a net (x*a)aeA in SX' such that x*a(xQ — x) > s for every a. Then

\\x* + t(x*a - x*p)\\ > x*(xa) + tx*a(xa -x)- tx}(xQ -x)+ tx*Q(x) - tx'0(x)

^ x*(xa) +te- tx}(xa -x)+ tx'a(x) - tx}(x)

for every t ^ 0 and all a, 0. Since, passing to a subnet if necessary, we can assume that
lim:r*(2;) exists, it follows that

l+et = x*{x) +et^ liminf liminf||.x* + t(x*a - x})\\ ^ <$i(t;x*) + 1.

Here Si corresponds to the space X*. In view of Theorem 2.2 this shows that e

^ 6(2t; x*)/t for every t > 0, which contradicts our assumption.

Assume now that X* has the w*Kadec property. We take x € Sx, a weakly null net

(xa)aeA in Bx and t > 0. For each a there is x*a £ Sx- such that x*a(x + txa) — \\x + txa\\.

Passing to subnets, we can assume that lim ||x + teQ|| exists and (x* ) a e A converges weak*

to some x* € Bx- • We have

lim ||x + txa\\ = lima:*(:E + txa)
aeA a€A

= x'(x)+t\im{x*a-x
t)(xa) < ||x-|| + tliminf \\x*a - x'\\.

a£A a£A

In view of Theorem 2.2 it is enough to show that for each e > 0 there exists t > 0 such
that

(1) lim||z + tao|| ^ 1+et.
a£A

To this end we put a = liminf \\x*a - x*|| and consider two cases.
Qg4
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I. a ^ e. Then (1) holds for every t > 0.

II. a > e. In this case by our assumption we have ||x*|| < 1 and it suffices to

- e ) . •
We shall consider some examples related to Theorem 2.4. It is easy to see that the

space c of convergent sequences is not asymptotically smooth. The same is therefore true
for lx. On the other hand, l\ has the Kadec property. This shows that the implication
(i) can not be reversed and the w'Kadec property can not be replaced by the Kadec
property in (ii).

Let now wi be the first uncountable ordinal. The space C([0, wj) admits an equiv-
alent Frechet differentiable norm || • ||i (see [25] or [6, p. 313]). By Proposition 2.1,
C([0, u>i\) considered with this norm is asymptotically smooth. Given a € [0,Wi], we put
fa{x) = x(a) where x € C([0,wi]). Then there exist a constant c > 0 and an increasing
sequence (an) of ordinals in [0, wi) such that ||/Qn ||i = c for every n and | | /a | | i = c where
a = lim an (see [25] or [6, p. 313]). Clearly, fa is the weak* limit of the sequence (/„„)•

n-»oo

It follows that C([0, wi]) does not have the iu*Kadec property. This shows that the
implication opposite to (ii) is not true.

In some cases a property formulated in terms of sequences can be extended to nets.
For instance, if a space X is reflexive, then the Kadec-Klee property is equivalent to the
Kadec property (see [1], p. 113 and [14]). Another result of this kind was obtained in
[18]. Let us recall that a family {etjteT of vectors of a Banach space X is called an
M-basis of X if there exist functionals e* 6 X*, t € T such that

Jo ateT\{s}
1̂1 \it = s

and {et}teT is linearly dense in X. If in addition {e*}ter is linearly dense in X*, then

the M-basis {e t } ( e r is said to be shrinking. Given x € span{e t } t e r , we put suppx = {t

€ T : e*(x) 7̂  0 } . Clearly, for any set T the space co(F) has a shrinking M-basis. Let us

also point out tha t all reflexive spaces have shrinking M-bases (see [24, p. 716]). In [18],

it was shown tha t if a Banach space X has a shrinking M-basis, then

5(t;x) = supj inf ||x + ix n | | — l }

for each t ^ 0 and each x € Sx, where the supremum is taken over all weakly null

sequences (a;n)n6N in Sx- It is easy to see that infimum can be replaced by limsup in this

formula. Moreover, the supremum can be taken over all weakly null sequences (xn)n6N in

Bx as well. This shows tha t for spaces with shrinking M-bases the formula in Theorem 2.2

can be reduced to sequences. We shall give a general method of establishing results of

this kind.
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LEMMA 2 . 5 . Let (xa)aeA be a bounded weakly null net in a Banach space X. If
X has a shrinking M-basis or the set {xa} is relatively weakly compact, then there exists
an increasing sequence ( a n ) n 6 N such that (xan)n€w converges weakly to zero.

PROOF: Assume that X has a shrinking M-basis {et}teT- By induction we choose
an increasing sequence (an)n6N and a sequence (t/n)neN in Y = span{e(} in such a way
that supp yi n supp 2/j: = 0 if i ^ j and ||a;Qn — yn\\ < \/n for every n. To this end we take
an arbitrary «i and find yi €. Y for which ||a;Ql — yi\\ < 1. Next, having a\,..., a n - i a n d

n - l
2 / i , . . . , j / n _ i , we set Z = \J suppy* and c = (l + max ||e(*||) J2 \\et\\- There is /? such that

i=\ t€Z tez

if a ^ /?, then |e*(a;a)| < l/(2cn) for every t £ Z. We take arbitrary an ^ /? and find
y € y such that ||xQn - y\\ < l/(2cn). Then |e*(y)| < (l + ||e*||)/(2cn) for every t e Z.
We set j / n = y - Yl et (v)et- Clearly, supp yn D supp yt = 0 for i = 1 , . . . , n - 1 and

llSa- -2/nlKIK,- 2/II + b ~Vn\\<\.

Moreover, it is easy to see that (j/n)ngN converges weakly to zero and so does (£Qn)neN-

Consider now the case when X is arbitrary and {xa} is relatively weakly compact.
If lim \\xa\\ = 0, then we find an increasing sequence (an)n6N so that lim ||xQn|| = 0. In
the other case the proof hinges on the well known Mazur method of constructing basic
sequences (see [3]). Since (xa)a€A does not converge to zero, passing to a subnet, we
can assume that infaeA \\xa\\ > 0. Then, using Mazur's technique, we find an increasing
sequence (an)ngN so that (xan)n^ is a basic sequence. Recall that induction is used
in this technique, so having an,... , a n _ i , we get /? such that an can be chosen as an
arbitrary element of the set {a € A: a ^ /?}. The sequence (xan)ne^ has a weakly
convergent subsequence. Since it is a basic sequence, its weak limit equals zero. D

REMARK 2.1. A result analogous to Lemma 2.5 holds for bounded weak* null nets
(Xa)aeA m X*. Namely, if X has a shrinking M-basis or the set {x*} is relatively weak*
sequentially compact, then there exists an increasing sequence (an)n£N such that {x*an)n^
converges weak* to zero.

Using Lemma 2.5, we can extend the aforementioned result on the Kadec-Klee prop-
erty given in [14].

COROLLARY 2 . 6 . Let X be a Banach space with the Kadec-Klee property and

(xa)aeA be a net in Sx weakly converging to x 6 Sx- If X has a shrinking M-basis or

{xa} is relatively weakly compact, then {xa)a€A converges to x in norm.

P R O O F : Passing to a subnet, we can assume that the limit c = lim \\xa - x\\ exists.
a£A

Following the reasoning given in the proof of Lemma 2.5, one can find a sequence Qi
^ a2 ^ -. . such that the sequence (zan)n€N converges weakly to x and lim | | i o —ill = c.

n-*oo
By assumption, c = 0, which concludes the proof. D
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Corollary 2.6 gives us the first part of the following result. The second one can be

obtained in a similar way.

PROPOSITION 2 . 7 . Let X be a Banach space with a shrinking M-basis. Then

1. X has the Kadec property if and only if X has the Kadec-Klee property.

2. X* has the w'Kadec property if and only if X* has the w*Kadec-Klee

property.

Combining Theorem 2.4 and Proposition 2.7 leads to the following corollary.

COROLLARY 2 . 8 . Let X be a reflexive space. Then X is asymptotically smooth

if and only if X* has the Kadec-Klee property.

Let us mention another property with many applications in metric fixed point theory.

A Banach space X has the Opial property if

l imsup ||a;n|| < l imsup \\xn — x\\
n—too n—foo

whenever (xn)neN is a weakly null sequence in X and x ^ 0. Some authors (see [13])
consider a condition obtained from the above definition by replacing sequences (xn)n£^
by nets. A reasoning similar to that in the proof of Corollary 2.6 yields the following
result.

PROPOSITION 2 . 9 . Let X be a Banach space with the Opial property, (xa)aeA

be a weakly null net in X and x G X, x ^ 0. If X has a shrinking M-basis or {xa} is
relatively weakly compact, then

limsup \\xa\\ < limsup ||a;Q — x||.
a£A a€A

3. W E A K CONVERGENCE OF ALMOST ORBITS

In this section we give some results about weak convergence of almost orbits of three
different types of semigroups. We start with some definitions and notations.

Throughout this section C denotes a weakly compact subset of a Banach space X.
Let G be a semitopological semigroup, that is, G is a semigroup with a Hausdorff topology
such that for each s € G the mappings s >-> t• s and s *-¥ s-t from G to G are continuous.
G is said to be right reversible if any two closed left ideals of G have nonvoid intersection.
In this case (G, ^ ) is a directed system where the binary relation "^" on G is defined
by: s ^ t if and only if {s} U ~G~s D {t} UGt for s,t e G. Now let 5 = {T(t): t G G} be

a family of self-mappings of C.

Then S is said to be an asymptotically nonexpansive-type semigroup on C if the
following conditions are satisfied:

(i) the mapping (s,x) *-t T(s)x from G x C into C is continuous o n G x C
furnished with the product topology,
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(ii) T(ts)x - T(t)T(s)x for all *, s £ G and x £ C,
(iii) for each t £ G and x £ C there exists r(t, x) > 0 such that

\\T(t)x-T(t)y\\^\\x-y\\+r(t,x)

for all y £ C with
\imr(t,x) = 0.
UiG '

If the third assumption is replaced by

(iii') there exists a net {kt)t^a of positive numbers such that

lim k, = 1
tec

and
\\T(t)x-T(t)y\\^kt\\x-y\\

for alH € G and x,y £ C,

then 5 is said to be an asymptotically nonexpansive semigroup on C.

If in (iii') kt = 1 for t £ G, we simply say that 5 is a nonexpansive semigroup.

We denote by Fix(S) the set of all common fixed points of S, that is, Fix(S)

= nF«(T(*)).
We say that a function u(-): G —> C is an almost orbit of the semigroup 5 if

= 0.

If u is an almost orbit of the semigroup S, then u>w(u) denote the set of all weak limit
points of subnets of the net (u(t))t Q.

To prove our next result we need the following three lemmas. The first two of them
are due to Li [15].

LEMMA 3 . 1 . Let X be a uniformly convex Banach space and C be a nonempty

bounded closed convex subset of X. Let S — {T(t): t £ G} be a right reversible

semitopological semigroup of asymptotically nonexpansive-type on C with nonempty

Fix(S). Ifu(-) is an almost orbit of S and f € Fix(5), then lim||u(i) - / | | exists.

LEMMA 3 . 2 . Let X be a uniformly convex Banach space and C be a nonempty

bounded closed convex subset of X. Let S = {T(t): t £ G} be a right reversible

semitopological semigroup of asymptotically nonexpansive-type on C with nonempty

Fix(S). Suppose that 0 < A < 1 and f £ Fix(S). Then for any e > 0 there exists

so = so(A, f,e)£G such that

limsup|T(t)(Au(s) + (1 - A)/) - (AT(i)u(s) + (1 - A)/) |

for all s ^ s0.
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The above lemma allows us to prove the next one.

LEMMA 3 . 3 . Let X be a uniformly convex Banach space and C be a nonempty
bounded closed convex subset of X. Let S = {T(t): t £ G} be a right reversible
semitopological semigroup of asymptotically nonexpansive-type on C with nonempty
Fix(S). Ifu(-) is an almost orbit ofS, 0 < A < 1 and f,g 6 Fix(S), then

exists.

PROOF: Take e > 0. By Lemma 3.2 there exists s0 S G such that

limsup|T(t)(A«(s) + (1 - A)/) - (AT(i)u(a) + (1 - A)/) | | < e

for all s ^ sQ. Hence we get

\\Xu(ts) + (1 - A)/ - g\\ ^ \\Xu(ts) - XT(t)u(s)\\

+ \\T(t){Xu(s) + (1 - A)/) - (AT(t)u(a) + (1 - A)/

Asup||u(/is)-T(/i)u(s)||

+ \\xT(t)u(s) + (1 - A)/ - r(t)(Au(s) + (1 - A)/)||

Therefore we have

limsup||Au(t) + (1 - A) / - g\\ ^ sup| |u(/is) - T(/ i )u(s) | | + e + ||Au(s) + (1 - A ) / - g\\,
t€G h&G

and finally,

limsupllAu(t) + (1 - A) / - 5II < e + liminfllAu(s) + (1 - A) / - pll.
<6G S €G

Since e > 0 is arbitrary, we obtain

limsup||Au(*) + (1 - A)/ - 5 | | ^ liminf||Au(s) + (1 - A)/ - g\\,

which concludes the proof. D

Using the above lemmas we can prove the following theorem.

THEOREM 3 . 4 . Let X be a uniformly convex and asymptotically smooth Banach

space, and let C be a nonempty bounded closed convex subset ofX. IfS — {T(t): t 6 G}

is a right reversible semitopological semigroup of asymptotically nonexpansive-type on

C with nonempty Fix(S) and u(-) is an almost orbit ofS, then the following statements

are equivalent:

https://doi.org/10.1017/S0004972700040260 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040260


416 W. Kaczor and S. Prus [12]

(1) w-\imu(t) = p£ Fix(S);

(2) uw{u) c Fix(S).

PROOF: We only need to show that (2) = > (1). Taking f,g € OJW(U) we get

f,g £ Fix(5). By Lemmas 3.1 and 3.3 this implies that

tfcG

exists for each 0 ^ A < 1. To end the proof it suffices to apply Lemma 2.3 and Theo-
rem 2.4. D

It is known that each commutative semigroup G is right reversible. In this case we
use the standard notation, that is, we replace the operation • by +. Then the order is
simply defined in the following way: s $J t if and only if there is q £ G with s + q = t

and we additionally assume that 0 € G and T(0)x = x for all x £ C.

For asymptotically nonexpansive semigroups we first recall the following result due
to Oka [20].

THEOREM 3 . 5 . Let X be a uniformly convex Banach space and C be a nonempty
bounded closed convex subset of X. Let S — {T(i): t £ G} (where G is a commutative
semigroup with an identity) be an asymptotically nonexpansive semigroup on C. If u is
an almost orbit of S and

w-\im {u(t + h)-u (<)) = 0
tfzG

for each h £ G, then

UJW (u) C Fix (5).
Now we rewrite the result from [9] in terms of asymtotical smoothness and to make

the paper self-contained we also present its proof.

THEOREM 3 . 6 . Let X be a uniformly convex and asymptotically smooth Banach
space and C be its nonempty bounded closed convex subset. Let S = {T(t): t £ G}
(where G is a commutative semigroup with an identity) be an asymptotically nonexpan-
sive semigroup on C. Ifu(-) is an almost orbit of S, then the following statements are
equivalent:

(1) tu-limu(t) =p£ Fix(S);

(2) uw(v) C Fix(S);

(3) w- lim (u(t + h) — u(t)) = 0 for every h £ G, that is, u is weakly asymptot-

ically regular.

P R O O F : By Theorem 3.4, (1) and (2) are equivalent. It follows from the above
theorem that (3) => (2). The implication (1) ==» (3) is obvious. D

In [13] and [16] the authors use the Opial property for nets. In view of Proposition

2.9 we can reformulate the first result in the following way.
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THEOREM 3 . 7 . Suppose that X has the Opial property. Let C be a weakly
compact subset of X, G be a right reversible semitopological semigroup and S — {T(t): t
€ G} be a nonexpansive semigroup on C. Ifu(-) is an almost orbit of S, then {n(t): t
e G] is weakly convergent (to a fixed point) if and only if it is weakly asymptotically
regular.

The second result is about commutative semigroups. Recall that a Banach space X
has the uniform Kadec-Klee (UKK for short) property whenever for any e > 0 there is
S > 0 such that if a; is a weak limit of a sequence (xn)neN in Bx with inf{| | i n - zm| | : n
^ m} > e, then ||a;|| ^ 1 - 6.

THEOREM 3 . 8 . Suppose that X has the Opial property and the norm of X is
UKK. Let C be a weakly compact and convex subset of X, S = {T(t): t € G} be a
commutative semigroup of asymptotically nonexpansive-type on C, and let u(-) be an
almost orbit of S. Then {u(t): t £ G} is weakly convergent (to a Bxed point) if and only
if it is weakly asymptotically regular.
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