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Abstract
The laser-induced relativistic shock waves are described. The shock waves can be created directly by a high irradiance

laser or indirectly by a laser acceleration of a foil that collides with a second static foil. A special case of interest is

the creation of laser-induced fusion where the created alpha particles create a detonation wave. A novel application is

suggested with the shock wave or the detonation wave to ignite a pre-compressed target. In particular, the deuterium–

tritium fusion is considered. It is suggested that the collision of two laser accelerated foils might serve as a novel

relativistic accelerator for bulk material collisions.
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1. Introduction

From the time when Hugoniot[1] completed the theory of

shock waves in 1887 this subject is active[2, 3] and it is a basic

field in many domains of science and applications. Since

the passage time of the shock wave is short in comparison

with the disassembly time of the shocked sample, one can do

shock wave research for any pressure that can be supplied by

a driver assuming that appropriate diagnostics are available.

This fact enables, for example, thermodynamic measure-

ments and equations of state (EOS) study at extremely high

pressures and temperatures relevant for many domains of

physics[4, 5].

We are interested in a laser driver[6, 7] and in particular

in very high irradiances[8, 9], IL > 1021 W cm−2, in order

to get relativistic shock waves. The theoretical founda-

tion of relativistic shock waves is based on relativistic

hydrodynamics[10] and on the appropriate Hugoniot relations

that were first analyzed by Taub[11].

The interaction of a high power laser with a planar target

creates a one-dimensional (1D) shock wave[7, 12]. The the-

oretical basis for laser-induced shock waves analyzed and

measured experimentally so far is based on plasma ablation.

For laser intensities 1012 W cm−2 < IL < 1016 W cm−2
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and nanoseconds pulse duration hot plasma is created. This

plasma exerts a high pressure on the surrounding material,

leading to the formation of an intense shock wave moving

into the interior of the target.

Using the ablation pressure in laser plasma interaction

maximum pressures of the order of 1 Gbar (=109 atmo-

spheres), have been obtained during the collision of a target

with an accelerating foil. In 1994 at the Livermore Labo-

ratory in the USA this pressure was created by the impact

of a gold foil accelerated with soft x-rays created from the

Nova laser system[13]. Planar foil of polystyrene doped with

0.4% (atomic) bromine were accelerated by direct drive to

1000 km s−1 at the Institute of Laser Engineering at Osaka

University in Japan[14] creating upon impact a pressure of

about 1 Gbar.

For the very high laser irradiances ultrahigh accelerations

of the order of 1020 cm s−2 were predicted for high den-

sity plasma blocks[15–18] created in sub-picosecond laser

pulses with more than terawatt power. This effect was

obtained by using two fluid simulations for laser plasma

interaction where the nonlinear ponderomotive force was

dominant[19, 20]. Ion acceleration by ponderomotive force

to relativistic velocities was also obtained using particles in

cell simulations[21, 22]. This acceleration is similar to the old

proposal to accelerate space ships to relativistic velocities by

laser pressure radiation[23].
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Figure 1. (a) Displays the capacitor model where the ponderomotive

force dominates the interaction; (b) shows the DL of the negative and

positive charges. (c) The shock wave description in the laboratory frame

of reference.

The shock wave created in a 1D target by the ponderomo-

tive force induced by very high laser irradiance, considered

in this paper, is summarized schematically in Figure 1. In

this domain of laser intensities the ponderomotive force

accelerates the electrons forward, so that the charge separa-

tion field forms a double layer (DL), in which the ions are

accelerated forward[24]. Figure 1(a) displays the capacitor

model for laser irradiances IL , where the ponderomotive

force dominates the interaction and λDL is the distance

between the positive and negative DL charges; Figure 1(b)

shows the negative and positive layers where ne and ni
are the electron and ion densities accordingly, Ex is the

electric field, and δ is the solid density skin depth of the

foil. The shock wave description in the laboratory frame of

reference is given in Figure 1(c). This DL acts as a piston

driving a shock wave[25, 26], moving in the unperturbed

plasma. This plasma has in general different ion and electron

temperatures.

In Section 2, we summarize the relativistic formalism for

shock waves in solid targets. Section 3 is designated to

calculate the laser acceleration of a micro-foil and the shock

wave created when this foil collides with a static target.

The fast ignition of deuterium–tritium (DT) fuel is given in

Section 4. In Section 5, the possibility to ignite a DT fuel by

a nuclear detonation wave is considered. We conclude with

a summary and perspective in Section 6.

2. Laser-induced relativistic shock wave

A relativistic or non-relativistic[3] shock wave is described

in the 1D geometry by five variables: particle density n (or

the density ρ = Mn where M is the particle mass), the

pressure P , the energy density e, the shock wave velocity

us and the particle flow velocity u p, assuming that we know

the initial condition of the target (ρ0, P0, e0 and the particle

flow velocity u0) before the shock arrival. The four equations

relating the shock wave variables are the three Hugoniot rela-

tions describing the conservation laws of energy, momentum

and particles and the EOS connecting the thermodynamic

variables of the state under consideration[3–5]. The fifth

equation necessary to solve the problem is obtained in

a model[26] where the pressure is induced by the laser

ponderomotive force and its strength is a function of the laser

pulse parameters[27].

Note that in the general 3-dimensional (3D) shock wave

case one has seven variables since velocities are a 3D vector.

In this case there are six Hugoniot relations describing

the conservation laws of energy, momentum and particles

and the EOS. The last equation is model dependent, or

if possible, is preferable that one parameter is measured

experimentally.

The relativistic hydrodynamic starting point is the energy–

momentum 4-tensor Tμν given by

Tμν = (e + P)UμUν + Pgμν, (1)

where Uμ (μ = 0, 1, 2, 3) is the dimensionless 4-velocity in

which the subscripts 0 is the time component and (1, 2, 3)

are the space (x , y, z) components accordingly, and gμν is

the metric tensor,

cUμ = (γ c, γ v1, γ v2, γ v3),

gμν : g00 = −1, g11 = g22 = g33 = 1,

gμν = 0 if μ �= ν,

γ = 1√
1− β2

; β = v

c
; v =

√
v2

1 + v2
2 + v2

3,

(2)

where c is the speed of light. The energy–momentum con-

servation, the particle number conservation and the EOS are

given accordingly (Einstein summation is assumed from 0 to

3 for identical indexes)

∂T ν
μ

∂xν
≡ ∂νT ν

μ = 0 for μ = 0, 1, 2, 3,

∂(nUμ)

∂xμ
≡ ∂μ(nUμ) = 0,

P = P(e, n).

(3)

The EOS taken here in order to calculate the shock wave

parameters is the ideal gas EOS
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e = ρc2 + P
Γ − 1

, (4)

where Γ is the specific heat ratio of constant pressure

to constant volume. Writing explicitly Equations (3) with

the ideal gas EOS Equation (4) in the laboratory frame of

reference yield

(i)
u p1

c
=
√

(P1 − P0)(e1 − e0)

(e0 + P1)(e1 + P0)
,

(ii)
us

c
=
√

(P1 − P0)(e1 + P0)

(e1 − e0)(e0 + P1)
,

(iii)
(e1 + P1)

2

ρ2
1

− (e0 + P0)
2

ρ2
0

= (P1 − P0)

[
(e0 + P0)

ρ2
0

+ (e1 + P1)

ρ2
1

]
,

(iv) e j = ρ j c2 + Pj

Γ − 1
; j = 0, 1.

(5)

The subscripts 0 and 1 define the flow and thermodynamic

parameters before and after shock wave arrival accordingly

and u p0 = uo = 0 has been assumed in this case.

The relativistic shock wave of Equations (5) with e =
ρc2 + ρE , where P and ρE are much smaller than ρc2,

the velocities v satisfy v/c � 1, yield the following non-

relativistic well-known Hugoniot equations,

(i) u p1 = (1/ρ0 − 1/ρ1)
1/2(P1 − P0)

1/2,

(ii) us = (1/ρ0)(1/ρ0 − 1/ρ1)
−1/2(P1 − P0)

1/2,

(iii) E1 − E0 = (1/2)(1/ρ0 − 1/ρ1)(P1 + P0),

(iv) E j =
(

1

Γ − 1

)(
Pj

ρ j

)
for j = 0, 1.

(6)

For the relativistic case we have to solve Equations (5)

together with the piston model equation[21, 27]

P1 = 2IL

c

(
1− β

1+ β

)
; β ≡ u p1

c
. (7)

Equations (5) and (7) are five equations with five unknowns:

us , u p1, P1, ρ1, e1 assuming that we know IL , ρ0, P0, Γ

and uo = 0. The calculations are conveniently done in the

dimensionless units defined by

ΠL ≡ IL

ρ0c3
; κ ≡ ρ1

ρ0
; κ0 ≡ Γ + 1

Γ − 1
; Π = P1

ρ0c2
;

Π0 = P0

ρ0c2
. (8)

Substituting the ideal gas EOS into the third of Equations (5)

we get the relativistic Hugoniot equation

{
Π2 + BΠ + C = 0

κ � 1,

Π =
(

1

2

)(
−B ±

√
B2 − 4C

)
,

B = (Γ − 1)2

Γ
(κ0κ − κ2)+Π0(Γ − 1)(1− κ2),

C = (Γ − 1)2

Γ
(κ − κ0κ

2)Π0 − κ2Π2
0 .

(9)

It is important to emphasize that if we take P0 = 0 then we

get only the κ > κ0 solutions.

The relativistic Hugoniot equation for an ideal gas EOS is

given by Equations (9) while the non-relativistic Hugoniot

equation for an ideal gas EOS is (from Equations (6))

Π =
(

κκ0 − 1

κ0 − κ

)
Π0. (10)

Figure 2 describes the transition between the relativistic

and non-relativistic Hugoniot, namely the transition between

Equations (10) and (9). In this transition domain, between

relativistic and non-relativistic shock waves, we have

10−9 � Π � 10−2 ⇔ κ = ρ

ρ0

= Γ + 1

Γ − 1
(= 4.00 for Γ = 5/3).

(11)

In the domain defined by Equation (11) we can use the first

two equations of Equations (6) for u p1/c < 0.03 in order to

get

u p1

c
=
√

2Π

Γ + 1
;

us

c
=
√

(Γ + 1)Π

2
.

(12)

Using now our piston model Equations (7) together with

Equations (12) we obtain in the intermediate domain be-

tween relativistic and non-relativistic shock waves

β = u p1

c
=
−ΠL +

√(
Γ+1

4

)
ΠL −Π2

L(
Γ+1

4

)
− 2ΠL

,

Π = 2ΠL

⎡
⎢⎢⎣
(

Γ+1
4

)
−ΠL −

√(
Γ+1

4

)
ΠL −Π2

L(
Γ+1

4

)
− 3ΠL +

√(
Γ+1

4

)
ΠL −Π2

L

⎤
⎥⎥⎦ .

(13)

Since ΠL < 10−2 we have to a good approximation in the

domain between relativistic and non-relativistic shock wave
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Figure 2. The shock wave compression κ = ρ/ρ0 as a function of the

dimensionless shock wave pressure Π = P/ρ0c2 for Γ = 5/3.

the following approximations

Π ≈ 2ΠL ⇒ P = 2IL

c
,

u p1

c
≈ 2

√
ΠL

Γ + 1
= 2

√
IL

(Γ + 1)ρ0c3
,

us

c
≈ √(Γ + 1)ΠL =

√
IL(Γ + 1)

ρ0c3
.

(14)

Under this approximation, the shock wave length ls by the

end of the laser pulse τL is

ls = (us − u p1)τL = (Γ − 1)cτL

√
ΠL

(Γ + 1)
. (15)

The laser cross-section SL = π R2
L is chosen RL = 1.5(us −

u p1)τL in order that the 1D laser-induced shock wave is

conceivable. Therefore, for a constant laser irradiation IL we

need a laser energy WL given by

WL = IL SLτL = 2.25π

[
(Γ − 1)2

Γ + 1

](
I 2

Lτ 3
L

ρ0c

)
. (16)

The numerical solutions of the exact relativistic Equa-

tions (5) and (7) are given in Figures 3 and 4. Figure 3

gives the Hugoniot dimensionless shock wave pressure

Π = P/(ρ0c2) versus the dimensionless laser irradiance

ΠL = IL/(ρ0c3) in the domain 10−4 < ΠL < 1. For

a better understanding of this graph and for the practical

proposal in the next section, the inserted table shows

numerical values in the area 10−4 < ΠL < 10−2. Figure 4

describes the dimensionless shock wave velocity us/c and

the particle velocity u p/c (u p1 ≡ u p) in the laboratory

frame of reference versus the dimensionless laser irradiance

Figure 3. The dimensionless shock wave pressure Π = P/(ρ0c2) versus

the dimensionless laser irradiance ΠL = IL/(ρ0c3) in the domain 10−4 <

ΠL < 1. The inserted table shows numerical values in the area 10−4 <

ΠL < 10−2.

Figure 4. The dimensionless shock wave velocity us/c and the particle

velocity u p/c in the laboratory frame of reference versus the dimensionless

laser irradiance ΠL = IL/(ρ0c3) in the domain 10−4 < ΠL < 1. The

inserted table shows numerical values in the area 10−4 < ΠL < 10−2.

ΠL = IL/(ρ0c3) in the domain 10−4 < ΠL < 1, while the

inserted table shows numerical values in the area 10−4 <

ΠL < 10−2. As a numerical example we take a target with

initial density ρ0 = 1 g cm−3 irradiated by a laser with

intensity IL = 5 × 1023 W cm−2, namely ΠL = 0.185.

In this case our relativistic equations yield a compression

κ = ρ/ρ0 = 4.09, a pressure P = 3.3 × 1014 bars, a shock

wave velocity us = 0.35c and a particle velocity u p = 0.27c
where c is the speed of light.
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The relativistic speed of sound cS (S is entropy) for an

ideal gas EOS is

cs

c
=
√(

∂ P
∂e

)
S
=
(

Γ P
e + P

)1/2

=
[

Γ (Γ − 1)Π

Γ Π + (Γ − 1)κ

]1/2

.

(17)

In the shocked medium the characteristic velocity of a

disturbance from the piston to the shock wave front equals

the rarefaction wave crw and is given by

crw = cS + u p

1+
(cSu p

c2

) . (18)

Figures 5(a) and 5(b) describe accordingly the speed of

sound in units of speed of light, cS/c, and the ratio of shock

velocity to the rarefaction velocity, us/crw, as a function of

the dimensionless laser irradiance ΠL = IL/(ρ0c3) in the

domain 10−4 < ΠL < 1. The inserted tables show numerical

values for 10−4 < ΠL < 10−2.

From Figures 4 and 5 (and the associated relativistic

equations describing these values) one can see that the

necessary conditions for a 1D shock wave stability are

satisfied. First the speed of sound increases with increasing

pressure (see Equation (17)). Secondly, a disturbance behind

the shock wave front cannot be slower than the shock

velocity, because in this case it will not be able to catch

the wave front and the shock would decay (i.e., unstable).

Thirdly, a small compressive disturbance ahead of the shock

wave must move slower than the shock front in order not to

create another shock wave.

3. Laser relativistic acceleration of a micro-foil and the
shock wave created by impact on a secondary foil

In this section, we first calculate the high power laser

acceleration of a micro-foil[23, 28] and secondly the shock

waves created upon impact between the accelerated foil and

a static target.

Physical quantities in the instantaneous rest frame of ref-

erence of the micro-foil are denoted by the subscript F while

their laboratory frame of reference values are written without

any subscript. For a laser irradiance IF [erg/(cm2 s)] =
cE2

F/(4π), where EF is the laser electromagnetic field in

the foil frame of reference, the radiation pressure is equal to

the ponderomotive pressure given by

P = PF = IF

c
(1+ RF − TF ) = 2IF RF

c
, (19)

where RF is the reflected laser and TF is the transmitted laser

through the foil which has to be taken into account for thin

foils and very high laser irradiances. The right hand side of

Equation (19) is obtained assuming the energy conservation

Figure 5. (a) The speed of sound in units of speed of light, cS/c and (b) the

ratio of shock velocity to the rarefaction velocity, us/crw as a function of

the dimensionless laser irradiance ΠL = IL/(ρ0c3).

equation: RF + TF = 1. Note that in this equation we have

used the fact that the radiation pressure P = PF if the foil is

moving in the laboratory frame of reference in the x direction

since for the force one has Fx = (FF )x . The laboratory laser

irradiance I is related to the laser irradiance in the micro-foil

rest frame IF through the Doppler effect (DE)

I = IF

(
ω

ωF

)2

= IF

(
1+ β f

1− β f

)
; β f = u f

c
, (20)

where u f is the micro-foil velocity in the laboratory. Using

Equations (19) and (20) for RF = 1 we get the ponderomo-

tive pressure as a function of laboratory frame quantities

P = 2I
c

(
1− β f

1+ β f

)
. (21)
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Figure 6. Micro-foil velocity as a function of laser pulse duration t in units of of τ = ρ0c2l/(2I ), where ρ0 is the initial density, l is the foil thickness and I
is the laser intensity [erg/(s cm2)]. (a) Laser pulse duration up to 15τ , (b) laser pulse duration up to 500τ .

This equation is identical to the piston model velocity of the

particle flow velocity as given in Equations (7). The Newton

law of motion for the foil in the laboratory frame of reference

is

dp f

dt
= P S ⇒

d
dt

⎡
⎣(ρ0lc)

β f√
1− β2

f

⎤
⎦ = 2I

c

(
1− β f

1+ β f

)
⇒

1

(1+ β f )1/2(1− β f )5/2

dβ f

dt
= 2I

ρ0c2l
,

(22)

in which we have used the momentum of the micro-foil p f =
M0 f γ f β f c where γ f = (1− β2

f )
−1/2 and the foil rest mass

is M0 f = ρ0Sl where ρ0 is the initial density, S the cross-

section area and l the thickness of the micro-foil. The force

accelerating the micro-foil is F = P S. For constant I this

equation is easily integrated

∫ β f

0

dx
(1− x)5/2(1+ x)1/2

=
(2− β f )

√
1− β2

f

3(1− β f )2
− 2

3

= 2I t
ρ0c2l

≡ t
τ

. (23)

From this solution one can see that β f (t/τ) → 1 for t/τ →
∞, namely the relativistic velocities are obtained if t/τ � 1

which implies a laser pulse duration much larger than τ =
ρ0c2l/(2I ) or equivalently I t � ρ0c2l/2. For an initial

density ρ0 = 1 g cm−3, l = 0.1 μm one gets the scaling

time τ = 45 and 0.45 fs for I = 1022 and 1024 W cm−2

accordingly. The micro-foil velocity as a function of the

laser pulse duration defined by t in this case is described

in Figure 6. The time scale in Figure 6 is τ = ρ0c2l/(2I ),
where ρ0 is the initial density, l is the foil thickness and I
is the laser intensity [erg/(s cm2)]. Figure 6(a) describes the

accelerated foil velocity β f for laser pulse durations up to

Figure 7. Flow (u p0, u p1 = u p2) and shock waves (us1, us2) velocities

after impact of flyer and target in the laboratory frame of reference. The

flow velocities (v0, v1, v2 = v1, v3 = v0) are also defined in the shock wave

reference frames S1 and S2. The lower figure shows a schematic picture

before collision.

15τ while Figure 6(b) gives β f as a function of the laser

pulse durations up to 500τ .

The shock waves upon impact of this accelerated foil with

a static target are now calculated. The shock waves variables

are defined in Figure 7. The flow particle velocities (u p0 =
u0 = 0, u p1 = u p2 ≡ u p) and the shock wave velocities (us1,

us2) after impact of the flyer and the target in the laboratory

frame of reference are pointed out in this figure. The flow

velocities (v0, v1, v2 = v1, v3 = v0) are also defined in the

shock wave reference frames S1 and S2. The lower figure

shows a schematic picture before collision.

The flyer has a known initial (before impact) velocity u f
in the laboratory frame of reference. This velocity can be

calculated from Equation (23) and it is possible to measure
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it experimentally by using the relativistic DE

longitudinal DE : λo

λs
= νs

νo
=
√

1+ β f

1− β f
;β f = u f

c
,

transversal DE : νs

νo
= γ f (1+ β f cos θo); γ f = 1√

1− β2
f

,

(24)

where s and o refer to observer and source frames of

reference accordingly, θo is the angle between the flyer

motion and the observer, λ and ν are the appropriate

wavelength and frequency of the electromagnetic wave. It

is interesting and might be experimentally useful to see the

relativistic effect νs/νo (θo = π/2) = γ f .

First we solve the relativistic symmetrical collision,

namely the target and the flyer are the same material. If

the 0 domain of the target is at rest in the laboratory frame of

reference, then in this frame of reference the shock velocity

us = −v0. (Note that v0 > 0 and us < 0 means that the

positive x coordinate is defined toward the back of the shock

wave.) Using the definitions, β0 = v0/c, β1 = v1/c and

β f = u f /c where u f is the flyer velocity in the laboratory

frame of reference while v0 and v1 are the flow velocities in

the shock wave frames of reference S1 and S2, we get the

shock waves velocities in the laboratory frame of reference

by using Equations (5) and relativistic addition of velocities

us1

c
= −β0 = −

√
(P1 − P0)(e1 + P0)

(e1 − e0)(e0 + P1)
,

us2

c
= β1 + β f

1+ β1β f
=

1+ β f

√
(e1 − e0)(e1 + P0)

(P1 − P0)(e0 + P1)

β f +
√

(e1 − e0)(e1 + P0)

(P1 − P0)(e0 + P1)

.

(25)

In the non-relativistic case, the Galilean transformations

yield for the particle velocity in the laboratory frame

u p1 = (v1 − v0) at the S1 surface singularity and u p1 =
−(v1 − v0) + u f at the S2 surface singularity. From these

two equations we get the well-known result: u f = 2u p1. We

now use the same procedure by using the relativistic Lorentz

transformation.

From Equations (5) we get at the S1 surface singularity

the particle flow velocity u p1 in the shocked area in the

laboratory frame of reference

u p1 = v01 = −c

√
(P1 − P0)(e1 − e0)

(e0 + P1)(e1 + P0)
. (26)

On the other hand, at the S2 surface singularity the particle

flow velocity u p1 = u p2 in the shocked area in the laboratory

frame of reference is

u p1 = v01 − u f

1− v01u f /c2
. (27)

Equations (26) and (27) we get

√
(P1 − P0)(e1 − e0)

(e0 + P1)(e1 + P0)
=

1−
√

1− β2
f

β f
. (28)

This relation yields the known result u f = 2u p1 in the non-

relativistic limit.

We calculate e1, P1 and ρ1 as a function of u f . The initial

conditions for our suggested impact are: P0, e0 = ρ0c2 +
P0/(Γ−1) for an initial density ρ0. Since in the impact under

consideration the initial pressure is extremely small we take

P0 = 0. This formalism implies the following solutions

P1

ρ0c2
=

1− β2
f /3−

√
1− β2

f

−1+ β2
f +

√
1− β2

f

,

P1

ρ0c2
=
(

(Γ − 1)2

Γ

)(
ρ1

ρ0

)2

−
(

Γ 2 − 1

Γ

)(
ρ1

ρ0

)
.

(29)

Now the relativistic asymmetrical collision is discussed,

namely the target and the flyer do not have the same initial

densities. Here it is also assumed that we can neglect the

initial pressure, namely we take P0 = 0. This constrain

yields compressions greater than (Γ + 1)/(Γ − 1) as stated

before.

The input data for our problem is: target initial flow veloc-

ity u0 = 0, initial densities ρ0t and ρ0 f and initial pressures

P0t P0 f of target and flyer accordingly and target and flyer

EOS parameters are appropriately Γt , Γ f . All variables

are described as a function of the foil velocity β f that is

measured experimentally. There are eight unknowns— ρ1,

ρ2, us1, us2, u p1, u p2, P1 and P2 with eight equations: The

two Hugoniot relations for target and flyer (indices 1 and 2

accordingly), four Hugoniot equations describing the mass

and momentum conservations for target and flyer that yield

the particle velocities u p1 and u p2 and the shock velocities

us1 and us2. These six equations yield

u p1 = −c
√

I1; u p2 = −c
(
β f −√I2

) (
1− β f

√
I2

)−1
,

us1 = −c
√

J1; us2 = −c
(
β f −√J2

) (
1− β f

√
J2

)−1
,

Ii = Πi [Πi + (2/3)(κi − 1)]
(Πi + 1)[Πi + (2/3)κi ] for i = 1, 2,

Ji = Πi [(2/3)κi +Πi ]
[(2/3)(κi − 1)+Πi ][1+Πi ] for i = 1, 2.

(30)

Finally, the following two continuum equations at the impact

between flyer and target are:

P1 = P2 ⇒ κ2
2 − 4κ2 = K [κ2

1 − 4κ1],
u p1 = u p2 ⇒ −√I1 + β f

√
I1 I2 = √I2 − β f ,

K ≡ ρ0t/ρ0 f .

(31)
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Figure 8. The compressions of the shocked target κ1 and the shocked flyer κ2 for ρ0t /ρ0 f = K = 1000.

Figure 9. The pressures of the dimensionless shocked target Π1 and the shocked flyer Π2 for ρ0t /ρ0 f = K = 1000.

Ii (i = 1, 2) are defined in Equations (30). We take Γt =
Γ f = 5/3 and Πi (i = 1, 2) is given in Equations (29).
The solutions of the compressions κ1 and κ2 are given in
Figure 8, the dimensionless pressures of the shocked target
and flyer are given in Figure 9 and the shock velocities us and
particle velocities u p are given in Figure 10, all these figures
for ρ0t/ρ0 f = K = 1000 (relevant for the fusion ignition
case). It is important to note that although the shock wave in
the flyer is relativistic, i.e., us2 ∼ c, the shock wave in the
target is not relativistic, us2 < c, namely us2 is smaller than
0.05c for a flyer velocity up to 0.9c. However, the relativistic
formalism is important even for the target since in this case
we get a target compression of 4 for finite pressures, of the
order of 1012 bars, while in the non-relativistic formalism
when using the ideal gas EOS (like in our case above) one
needs an infinite pressure for a compression of 4.

A crucial question in accelerating a foil to relativistic

velocity is its hydrodynamic stability. In particular, the

relativistic Rayleigh–Taylor instability was calculated[24, 29]

as described in the following equations

ξN R = Δx
x0
= exp

(
t

τN R

)

ξR = Δx
x0
= exp

[(
t

τR

)1/3
]

τR

τN R
=
(

1

3π

)(
L
l0

)(
IL

ρ0c3

)

1

τN R
=
[(

4π IL

ρcl L

)
tgh

(
2πl
L

)]1/2

.

(32)
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Figure 10. The shock and particle velocities accordingly, us and u p , for ρ0t /ρ0 f = K = 1000.

ξN R and ξR are accordingly the non-relativistic and relativis-

tic development of the instability for an initial disturbance

x0. L is the target dimension orthogonal to the x amplitude

and l is the initial foil thickness. We consider the following

example: L = 10 μm, x0 = 10 nm, ρ0 = 1 g cm−3, l =
0.1 μm, IL = 1024 W cm−2. Assuming that the foil breaks

for ξ = 10 (i.e., Δx ∼ l) then the foil breaks at 14.2 fs

(τN R = 6.2 fs) for the non-relativistic case while in the

relativistic regime the foil is stable during 90.5 fs (τR =
39.3 fs). This behavior is understood from the different time

dependence scaling of the RT instability in relativistic and

non-relativistic cases.

4. The DT fusion ignition

We analyze the nuclear fusion reactions

A1 + A2 → A3 + A4 + E f ,

E f = Eα + Eothers.
(33)

E f is the fusion energy in each reaction, Eα is α particles

energy usually deposited in part into the ignition domain

and Eothers is the energy contained in the other particles

and practically not contained in the ignition volume under

consideration. The ignition fusion power W f [erg/(cm3 s)]
is given by

W f

[ erg

cm3 s

]
= n1n2〈σv〉12 Eα, (34)

where n1 and n2 are the appropriate densities of particles A1

and A2, σ is the cross-section of Reaction (33), 〈σv〉12 is the

fusion rate of this reaction and Eα is α particles energy.

The equation describing the ignition requirement is given

by

W f −
∑

W (losses) � 0. (35)

The power density losses, W (losses), include the power

densities of the mechanical work (Wm), bremsstrahlung

radiation (WB) and the heat wave transport by electrons

(Whe). Calculating these terms[30] explicitly one gets the

ignition criterion for the deuterium (D)–tritium (T) fusion

yielding a neutron (n) and a helium nuclei particle (α):

D+ T → n+ α + 17.6 MeV

a(Te, Ti )(ρR)2 + b(Te, Ti )(ρR)+ c(Te) � 0,

a(Te, Ti ) = 8.07× 1040〈σv〉DT

− 8.63× 1021Te(eV)1/2

(
1+ 2Te(eV)

500 000

)
,

b(Te, Ti ) = −1.02× 1018[Te(eV)+ Ti (eV)]1.5,

c(Te) = −3.11× 109Te(eV)7/2

ln Λ
.

(36)

The numerical values of Equations (36) are obtained for

equal density numbers for deuterium and tritium nD and

nT , accordingly. 〈σv〉DT is the reactivity of the DT reaction

fitted in the domain of ion temperatures 1 keV < Ti <

100 keV by Ref. [31] given by

〈σv〉DT

[
cm3

s

]
= 6.4341× 10−14ζ−5/6

(
6.661

T 1/3
i

)2

× exp

[
−19.983

(
ζ

Ti

)1/3
]

, (37)

ζ = 1− 15.136Ti + 4.6064T 2
i − 0.10675T 3

i

1000+ 75.189Ti + 13.5T 2
i + 0.01366T 3

i
;

Ti in keV.

The solution of Equations (36) with 〈σv〉DT from Equa-

tions (37) and ln Λ = 3.5 is given in Figure 11. Contours of
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Figure 11. Contours of equal ρ · R as a function of ions and electrons

temperatures for DT.

equal ρ · R as a function of ions and electrons temperatures

for DT are displayed. It is seen that for temperatures Ti , Te
in the range 10–50 keV ρ · R < 1.

In the framework of the piston model, a shock wave is

generated in the target, with different ions and electrons tem-

peratures. The time development of the ion and electron tem-

peratures can be derived from the energy conservation Equa-

tions (38) coupled to the number density Equation (39),(
3

2

)
d
dt

(nekB Te) = ηd Wd +Wie −WB + fαη f W f ,(
3

2

)
d
dt

(ni kB Ti ) = (1− ηd)Wd −Wie + fα(1− η f )W f ,

(38)

dnD

dt
= dnT

dt
= −dnα

dt
= −nDnT 〈σv〉DT , (39)

where Wd [erg/(cm3 s)] is the power density deposited by

the laser piston,

Wk

V

[ erg

cm3

]
= (γ − 1)ρc2

(
t
τL

)
= 1

2
ρu2

p

(
t
τL

)
,

Wd = d
dt

(
Wk

V

)
= 1

2

(
ρu2

p

τL

)
,

IL

[
W

cm2

]
= 4× 103

Wd

[
erg

cm3 s

]
τL [s]

κ
,

(40)

where Wk is the kinetic energy of the flow in the shocked

volume and IL is the laser irradiance. In the first equation

of Equations (40) γ is the relativistic factor defined

in Equations (2) and the right hand side of this equa-

tion is the non-relativistic limit. ηd is the fraction of

the driver energy deposited in the electrons inside the

shocked volume, (1 − ηd) gives the fraction of the driver

energy deposited in the ions inside the shocked volume.

ηd is

ηd = λi

λi + λe
; Ei = 1

2
mi u2

p = 1250 (MeV)
(u p

c

)2
,

λi [cm] =
(

3× 1023

ni

)(
m p

mi

)
Ei [MeV],

λe [cm] =
(

5× 1022

ne ln Λ

)
Te [keV]3/2 Ei [MeV],

(41)

where λi and λe are the appropriate mean free paths of the

ions and electrons in plasma.

Wie [erg/(cm3 s)] is the ion–electron exchange power

density,

Wie

[ erg

cm3 s

]
=
(

3

2

)
kB(Ti − Te)

τeq
,

τeq = 3memi

8
√

2πni e4 ln Λ

(
kB Te

me
+ kB Ti

mi

)3/2

,

(42)

WB [erg/(cm3 s)], the electron bremsstrahlung power den-

sity losses

WB

[ erg

cm3 s

]
= 8.58×1021ρ2Te(eV)0.5

(
1+ 2Te(eV)

0.511× 106

)
,

(43)

and W f [erg/(cm3 s)], the fusion power density created

in the shocked volume. η f is the energy fraction that is

deposited in the electrons by the α-particles created in the

fusion under consideration and (1−η f ) describes the energy

fraction that is deposited in the ions by these α-particles.

η f is[32]

η f = 32

32+ Te (keV)
. (44)

fα is the fraction of the α-particles created and deposited

into the ignitor domain, while (1− fα) is the escape fraction

to the surrounding cold fuel. fα is given by

fα =

⎧⎪⎪⎨
⎪⎪⎩

3

2
xα − 4

5
x2
α xα <

1

2

1− 1

4xα

+ 1

160x3
α

xα � 1

2
,

xα(τ ) = R
Rα

; R = (us − u p)τL ,

Rα [cm] = 1

κρ0

[
1.5× 10−2Te (keV)5/4

1+ 8.2× 10−3Te (keV)5/4

]
.

(45)

Figure 12 display the results of the two temperatures model

for DT pre-compressed to density ρ0 = 600 g cm−3. The fast

ignition shock generated by irradiation with laser intensity of

7.5 × 1022 W cm−2, 1 ps pulse duration and energy 3.67 kJ

(see Equation (16)) induces a compression of κ = 4.
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Figure 12. Electrons Te and protons Ti temperatures as a function of time

for a DT case satisfying the ignition criterion.

5. Laser induced fusion detonation wave

Recently[33] a self-sustained 1D detonation wave was sug-

gested to be possible due to the heating by the alpha particles

generated in the laser-induced ignitor. This detonation wave

should sustain ignition in the remaining part of the target.

This fast ignition scheme is schematically described in

Figure 14. The ignitor operation was calculated in Section 4.

For the detonation we chose a laser yielding a particle

velocity behind the shock front of 1.0% the speed of light.

The theoretical treatment that we consider is based on

1D plane detonation wave under Chapman–Jouguet (CJ)

condition.

In the case of chemical-based detonation, the energetic

material entering the shock front is compressed and thus its

temperature rises. Under sufficient temperature the material

transforms exothermally into gaseous products releasing

energy per unit mass (Q) that supports the shock. The

governing parameter effecting reaction rate in the reaction

zone are the local density and temperature. Our detonation

is analogous to this description where the chemical energy

has been changed to nuclear fusion energy. In the DT fusion

one gets 17.6 MeV fusion energy per reaction but only the

3.52 Mev of the α particle is relevant to support the desired

steady state shock condition.

By using CJ formalism for the ideal gas case one can

obtain from the conservation equations the following useful

relations

(
ρ

ρ0

)
C J
= Γ + 1

Γ
; PC J = ρ0 D2

Γ + 1
,

u
D
= 1

Γ + 1
; cs

D
= Γ

Γ + 1
,

Q
D2

= 1

2(Γ 2 − 1)
,

(46)

where P [erg cm−3] is the pressure, ρ [g cm−3] is the den-

sity, ET [erg g−1] is the thermal energy, Q [erg g−1] is the

nuclear fusion energy deposited on the wave front, u is the

velocity of motion of the fluid [cm s−1] and D [cm s−1] is

the detonation wave velocity. The detonation wave is steadily

propagating with velocity D, namely all magnitudes P , ρ, u
and ET are functions of time t and space x only in the form

x−Dt . For the detonation wave we take[34] Γ = 3 implying

u
D
= 1

4
; cs

D
= 3

4
; Q

D2
= 1

16
. (47)

We can see that by determining the particle velocity u = u p
to equal 1.0% the speed of light we have determined the

nuclear energy needed to support a steady state CJ condition,

Q = 9 × 1012 J kg−1. As one can see from Figure 15 this

value of Q is achieved by our laser-induced detonator, where

Q in our model was calculated from

Q
[

J

kg

]
=
(

Eα

ρ

)∫ t=τL

0

dt
(

dnα

dt

)
1

2
(1+ fα), (48)

where fα is defined in Equations (45). In this case the nuclear

fusion ignition conditions for the pre-compressed DT plasma

are achieved along the detonation wave orbit.

6. Summary and perspective

In the physical domain where relativistic shock waves are

generated, mechanical interactions fully dominate over ther-

mal phenomena, because there is no time for thermal re-

laxation and expansion. As the laser photons momentum

is fully collimated, mechanical interactions are very much

obliged to follow that direction. On the contrary, fusion

ignition onset requires the thermal interactions to dominate,

although supra-thermal reactions can have a complementary

role. Such a conversion from a regime to another is reached

by a head-on crash, for instance, between two opposite shock

waves in the center of a pre-compressed micro-target.

The physics of inertial confinement fusion (ICF) is based

on compressing and igniting the plasma fuel[32, 35, 36]. In

order to ignite the fuel with less energy it was suggested to

separate the drivers that compress and ignite the target[37, 38].

This idea is called fast ignition. Many schemes have been

suggested to solve this issue[39].

In the previous section we described the condition of a

shock wave ignition scheme, where the ignition shock wave

is generated directly by the high irradiance laser or indirectly

by the impact of a laser accelerated micro-foil. This shock

wave is created in a pre-compressed target that was irradiated

by many laser beams. This fast ignition scheme induced

by the impact of a micro-foil is schematically described in

Figure 13.
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Figure 13. The fast ignition scheme by the impact of a high irradiance laser

accelerated foil. (a) The pre-compression by the nanosecond laser beams.

(b)–(d) The sequence of shock waves leading to the ignition hot spot.

The directly laser-induced shock wave velocity is in

the intermediate domain between the relativistic and non-

relativistic hydrodynamics as termed in Section 2 of this

paper. The laser intensities apply a ponderomotive force that

forms a DL[40] which acts as a piston driving this shock wave

moving in the pre-compressed target. This laser is described

in the literature as a ‘piston model’[21, 24, 25].

In this paper we calculate the high velocities achieved by

the laser acceleration of a micro-foil. This high velocity

foil collides with a second foil resulting in the creation

of the relativistic shock waves. The analytically derived

thermodynamic parameters in these collisions are enormous

and they might exist only in astrophysical phenomena or

nuclear collisions.

Due to the recent developments in high power lasers

in the multi Petawatt domain it is also suggested in this

paper to accelerate micro-foils to relativistic velocities. From

Figure 6 we learn that one can get a micro-foil with half

the speed of light for a laser pulse duration τ if I τ =
4.5× 108 J cm−2 (e.g., 0.5 fs laser with I = 1024 W cm−2)

for a flyer with initial density 1 g cm−3 and a foil thickness

of 0.1 μm. A cross-section area of 10 μm2 will require laser

energy of 45 J.

Furthermore, we suggest measuring experimentally the

flyer velocity using the relativistic DE, while the initial

density could be estimated experimentally using an x-ray

pulse created by a secondary laser beam.

Taking into account that during few femtoseconds one

can accelerate a micro-foil to relativistic velocities one can

achieve stable relativistic acceleration for laser irradiances of

the order of 1024 W cm−2.

The laser energy can be reduced significantly if we use

two lasers in order to accelerate two micro-foils in opposite

directions, thus causing them to collide. According to the law

of the addition of relativistic velocities, the relative impact

velocity between the foils is given by (β1 + β2)/(1+ β1β2).

For example, if β1 = β2 = 0.8 then the impact relative

velocity is 0.9756c; implying a very large reduction of

energy.

Today particles must be accelerated along many kilome-

ters in order to achieve high energies. In our scheme the foils

Figure 14. The fast ignition scheme of a detonation wave.
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Figure 15. The fusion energy Q per unit mass released in the shock wave

forward direction as a function of time in the shocked volume for (a) Γ = 3

and (b) Γ = 5/3.

are accelerated to relativistic velocities through a distance of

the order of 1 mm or less. We propose that these relativistic

collisions of two micro-foils accelerated by future lasers may

offer a new way of accelerating particles or nuclei in the

laboratory.
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