
SUMS OF FUNCTIONS OF DIGITS 

B. M. STEWART 

1. Introduction. We generalize in several directions a paper by Porges 
(2) who considered the integer F (A) obtained from the positive integer .1 by 
taking the sum of the squares of the digits of A. Porges showed that if A > 99, 
then F (A) < A, so that under iteration of F (A) all the positive integers are 
divided into a finite number of classes, called orbits in the terminology of 
Isaacs (1), each containing a finite cycle. For his F (A) Porges showed there 
are only two orbits: one with the 1-cycle: 1 —» 1 ; and the other with the 
interesting 8-cycle: 4 -» 16 -> 37 -> 58 -» 89 - • 145 -> 42 -> 20 -> 4. 

Consider the set Z of non-negative integers and choose as a base of enumera
tion any desired integer B ^ 2 (not necessarily B = 10). Then only the 
"digits" 0, 1, 2, . . . , 5 — 1 are needed, in suitable multiplicity, to represent 
any A of Z. Suppose there is given an arbitrary function assigning to each 
digit a the value P(a) in Z. (In Porges' example the special function used is 
P(a) = a2.) Each A in Z has a unique representation to the base B, hence 
if F (A) is defined to be the sum of the values of P(a), summed over all the 
digits of A, then not only is F (A) well-defined, but also F (A) is an integer 
of Z, so F(F(A)) is meaningful and continued iteration is possible. 

More precisely, let a amd a* be restricted to the set 0, 1, 2, . . . , J5 — 1 
and let a/ be restricted to the subset 1, 2, . . . , B — 1. Then any integer .4 
in the range Bk :§ A < Bk+l, k > 0, has a unique representation 

0 

After P(a) has been given, we make the definitions 

F{a) = P(a), F(A) = P{al) + £ P(at), 
0 

and thus obtain the type of function which suggested the title of this paper. 
We propose to study the growth of the function F (A) and to exhibit certain 

regularities in the behaviour of F (A) despite the arbitrariness of P(a). For 
example, it proves easy to demonstrate (Theorem 1) the existence of an integer 
C such that F(C) ^ C and F(A) < A for every A > C. Then a more detailed 
analysis is presented, using an auxiliary constant 5, to construct an algorithm 
(Theorem 2) for the evaluation of C. As an aid in finding the value of 5, certain 
other constants / and L are introduced and they provide further interesting 
sidelights (Theorems 3, 4, 5) on the behaviour of F (A). 
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These general results are applied to the special case P(a) = a1 with con
siderable effectiveness (Theorems 6, 7, 8). 

A preliminary s tudy is made of the orbit- and cycle-numbers resulting from 
the iteration of F (A) and the fmiteness of these numbers is assured. T h e 
teasing irregularities of these numbers are shown by selected tables. 

Finally, a brief section is presented concerning products of functions of 
digits. 

2. Ex i s tence of C. If proving the existence of C is the only concern, we 
may assume merely t ha t P(z) is a complex function for which P(a) is defined 
for every a. Define F (A) as above. 

T H E O R E M 1. To any real e > 0 there corresponds an integer C = C(e) such 
that \F(C)\ ^ eC and such that \F(A)\ < eA for every A > C. 

Proof. Let P be the maximum value of | P ( a ) | . Since Bk/ (k + 1) is increasing 
and unbounded for k = 0, 1, 2, . . . , there exists K = K(e, P) such t h a t 
B*/(k + 1) > P/e when k > K. Ii B* ^ A < Bk+\ then \F(A)\ S (k + 1 )P 
< eBk ^ eA for all k > K. Also |F(0) | è 0. Hence C exists, 0 ^ C < BK+1. 

In the sequel our intention to s tudy iteration of F (A) leads us to insist 
t h a t the values of Pia) be in Z and to avoid painful details we discuss only 
the case e = 1. As an aside, note t ha t by the usual interpolation formula 
there exists a polynomial P\(x) with rational coefficients and degree a t most 
B — 1 which will take on for the set {a} the prescribed values {P(a)\. How
ever, it may be convenient to use polynomials of degree higher than B — 1, 
bu t of simpler s t ructure, as in the case P(a) = a1 when t ^ B. 

3. A l g o r i t h m for C. Let H (A) = F(A) - A and Ht(a) = P{a) - aBl 

for i ^ 0. If Bk S A < Bk+\ then for k > 0, 

H(A) =Hk(a'k)+ Ê Hi(at). 
0 

T h e properties defining C when e = 1 may now be res ta ted: 

H(C) ^ 0, H (A) < 0 for every A > C. 

Let mt be the maximum value of a for which Hi(a) is a maximum, and 
let m( be the maximum value of a' for which Hi(af) is a maximum. Then in 
the range Bk ^ A < Bk+l when k > 0, the maximum value Uu of H {A) is 
given by Uk = H(Mk), where 

Af* = mkB
k+ £ WtB ' ; 

o 

when jfe = 0, C/0 = # ( W ) . Define ?7_i = # ( 0 ) . 
Define the integer 5 by the conditions Us è 0 and f/fc < 0 for every k > S. 

T h e existence of 5 follows immediately from U-i = P(0) ^ 0 and from 
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Theorem 1, since H (A) < 0 for A > C implies Uk < 0 for every k > K. 
Hence — 1 ^ S ^ K. (In the next section we give much improved estimates 
of S.) These observations establish the following 

LEMMA. If S = - 1, C = 0. If S ^ 0, Bs ^ Ms S C < Bs+K 

To determine the exact value of C when S is known and 5 ^ 0 , consider 

Us = Hsim's) + É Hiinii). 
0 

Determine a maximum cs
f such that 

(1) Hs(c's) + US- Hsim's) §; 0. 

This selection is possible with B — 1 §: cs' ^ m s ^ 1, for at least the choice 
Cs — ms' makes (1) hold, since Us ^ 0. 

Next (assuming 5 > 0) determine a maximum cS-i such that 

Ha-i(cS-i) + Hs(c's) + US- Hsim's) ~ HS-i(ms-i) è 0. 

This choice is possible with B — 1 ^ cS-i ^ mS-i, for at least the choice 
cS-i = ms~i is valid, because of the previous step (1). 

Proceed recursively from i + 1 to i, S > i ^ 0, choosing a maximum c* 
such that 

(2) Htid) + Hi+1(ci+1) + ...+ Hs(c's) + Us 

- Hs(m's) - . . . - Hi+1(mi+1) - Ht(mt) è 0. 

This choice is possible with B — 1 ^ c* ^ w,, for at least ct = mt is a valid 
choice, because of the previous step in the algorithm. 

THEOREM 2. For 5 ^ 0 , Ze* 

0 

TTzew Q = C. 

Proof. When i = 0, the inequality (2) shows that H(Q) è 0. If 
Bk ^ A < Bk+1 and A > S, then i î ( ^ ) ^ £/* < 0, by the definitions of Uk 

and S. If every digit of Q is 5 - 1, it follows that C = Q = Bs+l - 1. 
Otherwise, suppose some digits of Q are less than B — 1. Then for each 

s-i 

A = a'sB
s + £ ViB* 

0 

in the range Q < A < Bs+l, there must be an index i, S ^ i ^ 0, such that 
either B — 1 ^ a / > cs

f; or a / = cs' and a^ = ĉ  when j > i, but 
B - 1 è o< > ct. 

In the first case, because of the maximum property of H^nti), 
s-i 

H(A) g Hsia's) + £ Hi(mt) = ffs(a's) + t / s - tfs(m's) < 0, 
0 
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where the last strict inequality follows from as' > cs
f and the maximum 

property of cs
f expressed in (1). 

In the second case, because of the maximum property of Hr(mr)} 

H(A) = Hs{c's) + . . . + Hi+1(ci+1) + H Mi) + £ HT(mT) 
0 

= HMi) + Hi+1(ci+1) + . . . + Hs(c's) + US- Ha{m's) - . . . 
- Hiinii) < 0, 

where the last strict inequality follows from at > ct and the maximum property 
of Ci expressed in (2). 

Since we have shown H(Q) = 0 and H (A) < 0 for every A > Q, it follows 
that Q = C. 

In the following example B = 4. The table shows P(a), H^a) and Vi with 
a double underline for Hi(m^) and, if there is a distinction, a single underline 
for Hiinii). All entries are written in the usual way with base 10. 

TABLE I 

EXAMPLE 1. Bi 1 4 16 64 256 1024 

a P(a) i 0 1 2 3 4 5 

0 100 Hiifi) 100 100 100 100 100 100 

1 50 Hid) 49 46 34 "^14 - 2 0 6 -^974 

2 200 

3 10 

Hi{2) 198 

~7 
192 

- 2 

168 

•^38 

72 

- 1 8 2 

- 3 1 2 

- 7 5 8 

- 1 8 4 8 

- 3 0 6 2 

Ut 198 390 558 630 452 - 2 1 6 

With the aid of the later Corollary 5.1, we may see from this table that 
5 = 4. Then starting from M4 = B* + 2B2 + 2B + 2, the algorithm of 
Theorem 2 is the following. Replacing m4 = 1 by a = 2 gives H = 346, but 
by a = 3 gives H = — 100, hence c4 = 2. Next, replacing m3 = 0 by a = 3 
gives H = 346 — 100 — 182 = 64, hence c3 = 3. No further replacements are 
possible: c2 = m2j d = mu c0 = m0. Thus C = 25 4 + SB' + 2B2 + 2B + 2. 

4. Growth properties of F(A). In this section we obtain further pro
perties of H (A) = F (A) — A and since our chief concern is what happens to 
H {A) as A increases, we describe these as growth properties of F (A). 

Let R be the maximum value of (P(a') - P(0))/a'. 
If R < 1, define J = 0. If 1 = R, define / by BJ~l

 = R < BJ. 

THEOREM 3. If i = / , m{ = 0. / / i < J, mt = m(. 

Proof. Note that Ht(0) - Ht{a') = P(0) - P(a') + a'B1 > 0 holds if 
B* > R, hence for i = / . But when i < / , suppose R = (P(m') - P(0))/rn' 
and note that ff^O) - Hi(m

/) = 0. 
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COROLLARY 3.1. S ^ J — 1. 

Proof. If J = 0, the s t a t ement S ^ - 1 is trivial. If / > 0 and i < J, 

then it follows from Theorem 3 t h a t Ht(m/) ^ Ht(0) = P ( 0 ) ^ 0. Hence 
for k < J, ftèO, therefore 5 ^ 7 - 1 . 

COROLLARY 3.2. There exists an integer J\ such that for i ^ Ji, m( = 1; awd 
-//' i < Ji, then m I > 1. 

Proof. T h e proof exactly parallels t h a t of Theorem 3, s tar t ing with Ri as 
the maximum value of (P(af) — P ( 1 ) ) / ( V — 1) for all a' > 1, and defining 
J i = 0, if i?i < 1; bu t otherwise, defining Jx by BJ'~l ^ Ri < BJK 

Example 1 provides an il lustration of these results wherein J — 3, J\ = 4. 

COROLLARY 3.3. JTze following relations hold: 

(3) C/,+1 - tf< = ff<+i(m;+i)f 0 ^ i < / ; 

(4) tf<+1 - Ut = flVi(w'i+1) + P ( 0 ) - i?,(m'<), / ^ *. 

Proof. In the sums representing C/̂ +i and £/*, the te rms with index j ^ i — 1 
are the same, hence 

Z7i+i — Ui = Hi+i(m'i+i) + Hi(nii) — Hi(m'i). 

When 0 ^ i < / , the second pa r t of Theorem 3 shows H^m^) = Hfim/) 
which establishes (3). When J ^ i, the first pa r t of Theorem 3 shows 
Hi{ml) = Hi(0) = P ( 0 ) which establishes (4). 

COROLLARY 3.4. Let J\ be the maximum of J and JV / / i ^ J2, then 

Ui+1 - Ut = P ( 0 ) - B ' ( B - 1). 

Proof. From i ^ J2 ^ J, relation (4) holds. From i ^ J2 ^ Ji, Corollary 
3.2 shows mi+i = w / = 1, hence 

i?,+i(ro',+1) - #,(*»',) = P ( l ) - Bi+1 - ( P ( l ) - B*), 

thus (4) reduces to the s ta ted form. 

T H E O R E M 4. Fori è 0, £ * ( # - 1) ^ H(m/) - Hi+1(mi+1') ^ £ * ( £ - l ) 2 . 

Proof. From the maximum proper ty of Hi(m/) it follows t h a t 

Hiirn'i) - Hi+1(m
f
i+1) > i7 , (m'+i) - Hi+1(m'i+i) 

= mf
i+lB\B - 1) ^ 5 * ( 5 - 1). 

From the maximum proper ty of Hi+1(mi+i) it follows t h a t 

i?<(ro'<) - Hi+1(nt'i+1) ^ Hiim't) - Hi+1{m\) = m ' M S - 1) £ S * ( 5 - l ) 2 . 

COROLLARY 4.1 . mi+i ^ w / . 
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Proof. In the displayed steps of the proof of Theorem 4, note that 

m\+1B\B - 1) ^ Ht(m't) - Hi+l{m\+l) ^ m\B\B - 1). 

Define L to be the minimum integer such that UL+\ < UL and such that 
if / > 0, then L ^ / - 1; but if J = 0, then L ^ J. 

We appeal to Corollary 3.4, with i sufficiently large, to show that L must 
exist. (The existence of L may be shown also by the existence of S and by 
Corollary 3.1, except for the case J = 0 and 5 = — 1.) 

THEOREM 5. If i ^ L, then Ui+1 < Ut. 

Proof. The proof is by induction on i with the case L serving as the base 
for the induction. When i ^ / + 1, it follows from (4) and Theorem 4 that 

Ui+i - Ut = Hi+1(m
f
i+1) + P(0) - H^m'i) = P(0) - B\B - 1) 

< P(0) - Bl-l{B - l ) 2 S P(0) +Hi(m
f
i) - H^rnU) 

When / = 0 this completes the proof, since i — I ^ L ^ J implies i^J+1. 
When J > 0 the above argument is valid except for the one possibility 

i — 1 = L = J — 1. But then using P(0) = Hj-i(Q), the second part of 
Theorem 3, and (3), we may modify the last displayed line to read 

ff,_i(0) +Hj{m'j) - Hj-^m'j-ù S Hj(rn'j) = Uj - Uj-i, 

which completes the proof. 

COROLLARY 5.1. If E ^ L and if UE ^ 0 but UE+1 < 0, then E = S. 

Proof. Theorem 5 shows Uk ^ UE+i < 0 for every k > E. Hence E = S. 
As an application of this corollary note in Example 1 that L = 3, U ± > 0, 

Us < 0, consequently 5 = 4. 

COROLLARY 5.2. If J > 0 and i < J — 1, /fora Z7*+i ^ £/,. 

P r ^ / . If £/0 < U-i, then P(w') - m' < P(0) implies P < 1 and J = 0. So 
the hypothesis / > 0 implies Uo ^ £/_i. Since i < J — 1, i + 1 ^ J — 1, and 
i? = (P(m') - P(0))/m' ^ ^«/~1 è £*+1 which implies P(ra') - w ' 5 i + 1 è P(0). 
Then for / — 1 > i ^ 0, relation (3) holds, so that 

Ui+i - Uf = Hi+1(m
f
i+1) ^ Hi+1(m') = P(m') - tn'Bi+1 ^ P(0) è 0. 

Corollary 5.2 indicates that when J > 0, the condition L ^ J — 1 is 
necessary if we are to have UL+I < UL. Thus the search for 5, initiated in 
Corollary 3.1 and made explicit in Corollary 5.1, should begin at this point 
L^ J - 1. 

However, when / = 0, the added condition L ^ J plays a different role. 
For J = 0 implies P < 1, hence U0 = P(m0

f) - W < P(0) = U-h but this 
does not imply U\ < Uo as the following example shows. 
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TABLE II 

EXAMPLE 2. Bl 1 4 16 64 256 1024 

a P(a) i 0 1 2 3 4 5 

0 100 H;(0) 

HiiX) 

100 

~89 

78 
67 

100 

~86 
72 
58 

100 

~74 

48 
22 

100 

~~26 
- 4 8 

-122 

100 100 

1 90 
2 80 
3 70 

H;(0) 

HiiX) 

100 

~89 

78 
67 

100 

~86 
72 
58 

100 

~74 

48 
22 

100 

~~26 
- 4 8 

-122 

-166 
-432 
-698 

-934 

-1968 
-3002 

Ui 89 186 274 326 234 -434 

In Example 2, / = 0 and UQ = 89 < 100 - U-i. However, L = 3 and 
5 = 4. Starting from Af4 = 5 4 we find by the algorithm of Theorem 2 that 
C = 5 4 + 3 5 3 + 1. 

5. The case P(a) = a1. If P{a) = a1 where t is a fixed positive integer, 
there are two trivial cases. If t = 1, it is obvious that C = B — 1 for every 
B. If B = 2, it is obvious that C = 1 for every £. 

THEOREM 6. If P(a) = a\ t > 1, B > 2, then 0 < J ^ S ^ t and S may 
be determined by: Bs

 = J(B - 1)l - (BJ - 2) < Bs+1. 

Proof. Since P(0) = 0 , R = (B - l ) ' - 1 , so that / is determined by 
BJ~l < (B - I)1'1 < BJ. The condition / > 1 implies / > 0. Moreover, 
{B - I)1'1 < B'-1, hence J = / - 1. 

Since t > 1, Ht(x) = xl — xBl is concave upward for x > 0. Hence m / is 
either 1 or B - 1. Note that 

1) = l + (B - 2)Bl - (B - 1)'. 

l ) ^ - 1 < (B - l)1 , 

iï<(l) - 2 ^ ( 5 

When i g ; - l , 

(5 - 2)B* < (B 

so that m{ = B — 1. When i ^ J + 1, 

(B - 2)Bl
 = (B - 2)BJ+l > (B - 2){B - I)1

 = (B - 1)\ 

so ml — 1. From Theorem 3, it follows that mt = ml = B — 1 for i = 7 — 1 , 
and Wj = 0 for i = / . The only undecided case is m/ which is either 1 or 
B - 1. 

From the preceding results 

(5) 

Uj-! = E H,(B - 1) = E ((B - 1) ' - (B - l)Bf) 
0 0 

= J(B - 1)< - (.B-7 

I Z7f = H,(1) + Uj-u for t > J. 

1); 
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Using (5) and {B — 1) '_ 1 ^ BJ~l + 1, we may show Uj ^ 0 as follows: 

Uj 5; # , ( 1 ) + Uj-i = J(B - 1)' - 2 ( 5 ' - 1) 

è / ( B - 1){BJ~1 + 1) - 2 (B J - 1) = S ' - H U - 2)5 - J) 

+ J(B - 1) + 2. 

If / = 1 or 2 the last expression is 0. If / ^ 3, the last expression is positive, 
for B > 2 implies ( / - 2)B ^ J. Hence [/., è 0, so 5 ^ / (a bit more than 
Corollary 3.1). 

If i > t, then Bl ^ Bt+1\ and also from 7 g * - 1, we have i > J + 1. We 
combine these observations with (5) to see that if i > t, then 

Ut = 1 - B* + J(B - I)1 - (BJ - 1) 

< (t - l)(B - I)1 - Bl+l < (B - I)1 + {t + 1)(5 - 1)' - .B^ 1 

< ((5 - 1)'+! + (t + 1)(5 - l ) 1 + . . . + 1) - Bl+l 

= (B - 1 + l)t+l - Bl+l = 0. 

Since U i < 0 for i > /, it follows that S ^ t. 
In the proof that S ^ J we showed that Hj{\) + UV-i ^ 0 which implies 

£ J ^ 1 + Uj-i. From (5) we have Ut = 1 + C/j-i — J3* when i > J, hence 
we see that 5 (with Us ^ 0 and Uk < 0 for all & > 5) is determined by 

£ S ^ 1 + Uj-! < BS+l. 

This result together with (5) completes the proof of Theorem 6. 

In general, to find C we must next apply the algorithm of Theorem 2. 
However, in many cases we can say considerably more, as the following 
theorem indicates. 

THEOREM 7. If P(a) = a\ I > 1, B > 2, then C < (t - l)Bl. If 
B > T = (1 - (1 - r 1 ) 1 7 ' ) - 1 (which includes all B ^ t2) then 

C = (t - l)Bl - 1. 

Proof. From Theorem 6, 5 ^ /, hence C < Bt+1. Suppose that C < (t—l)Bl 

is false. Then Bt+1 > C ^ (t - l)Bl implies B ^ t and 

t-i 

C = c\Bl + £ CiB* 
0 

with B — 1 t c,' ^ t - 1. But then it follows that 

C e c't(B - 1 + l)' + c,^B'-1 

= c't((B- l)' + t(B - i ) ' - 1 + . . . + i) + c < _ 1 5 ! - 1 

> c\{B - 1) ! + c\i{B - I ) ' " 1 + c^B'-1 
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> ( * - l ) ( B - 1) '+ (a',)'+ (c-xY 

>(cty+ E (ciY = F(c). 
0 

The inequality C > F(C) is a contradiction of one of the denning properties 
of C. Therefore C < (t — \)Bl is true, as stated in the first part of Theorem 7. 

It is natural to ask for B ^ t whether Q = (t — l)Bl — 1 will serve as C. 
Since F(Q) = (t - 2) ' + t(B - l)\ the inequality F(Q) ^ Q will hold if 
t{B — 1)' è (t - l)Bl. This is readily brought to the form 

B > T = (l - (l - r1)1 7 1)"1 . 

Since (1 - r 2 ) ' > 1 - r 1 > (1 - r 1 ) ' , it follows that t2 > T > t. These 
observations complete the proof of Theorem 7. 

In the remaining cases the method of Theorem 2 is available for finding C. 
At least one general observation can be made about the result. 

THEOREM 8. For P(a) = a\ t > 1, B > 2, C has the property that ct = B — 1 
for i < J; and either d = B — 1 or ct ^ £ — 2 /or J Û i ik S. 

Proof. Recall from the proof of Theorem 6 that nti = m/ = B — 1 for 
i ^ J" — 1. Since c* ^ ra* it follows that ct = B — 1 for i ^ / — 1. 

The rest of the theorem is trivial if B ^ t, and is known from Theorem 7 
if B > T. In what follows assume B > t. 

If 5 = t, it follows from C < (t - \)B\ that ct ^ t - 2. Since 5 ^ /, it 
remains to discuss ct for the cases J ^ i ^ S where i < t. 

Since i < t < B, note that 

-= £ (s - iy'(/- l)*-1-' 
c 

= (B - i + îy-1 = 5?"1 ^ 5*. 

Hence H^B - 1) = (B - 1) ' - {B - l)Bl ^ (t - I)1 - (t - \)Bl = 
Ht(t — 1). Because of the concave upward property of Ht(x) the inequality 
Ht(B — 1) ^ Ht(t — 1) indicates that the choice of ct in the range 
£ — l ^ C z < ^ — 1 would be a contradiction of the requirement in the 
algorithm of Theorem 2 that d be maximal satisfying (1) or (2). Consequently 
Ci must be limited to the values stated in the theorem. 

The following tables illustrate Theorems 6, 7, 8 by showing C for P{a) = a1 

for all B è 3 when t = 2, 3, 4, 5. 

e g - i y - q -
(B - 0 
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TABLE III 

* = 2 

5 C 

5 

All 3 B2 - 1 

TABLE IV 

t = 3 

5 C 

3 
4, 
6, 
5 

5 
7 
> 8 

2 5 2 - 1 
5 3 - 1 
5 3 + 5 2 - 1 
2 5 3 - 1 

TABLE V TABLE VI 

/ = 4 t = 5 

5 C 5 C 

3 
4 ,5 
6 
7 to 11 
12, 13 
14 
5 ^ 15 

5 3 - 1 
54 - 1 
54 + 5 3 - 1 
254 - 1 
2 5 4 + 5 3 - I 
254 + 3 5 3 - I 
354 - 1 

3 
4 
5 
6 , 7 , 8 
9 
10 to 19 
20 
21 
22 
5 ^ 23 

54 - 1 
5 5 - 1 
5 5 + 5 4 - 1 
2 5 5 - 1 
2 5 5 + 5 4 - 1 
35* - 1 
3 5 5 + 5 4 - 1 
3 5 5 + 2 5 4 - I 
3 5 5 + 3 5 4 - I 
4 5 5 - 1 

3 
4 
5 
6 , 7 , 8 
9 
10 to 19 
20 
21 
22 
5 ^ 23 

54 - 1 
5 5 - 1 
5 5 + 5 4 - 1 
2 5 5 - 1 
2 5 5 + 5 4 - 1 
35* - 1 
3 5 5 + 5 4 - 1 
3 5 5 + 2 5 4 - I 
3 5 5 + 3 5 4 - I 
4 5 5 - 1 

The effectiveness of the algorithm for finding C may be illustrated by an 
example such as B = 10, t = 100. The necessary comparisons are in this case 
successfully made with a table of logarithms. 

Test Decision 

(1) 10 ' - 1 < 9 " < 10*7 / = 95 

(2) 10s ^ ^94 + 1 = 95-9100 - 1095 + 2 < 10s+1 5 = 97 
(Remember from (5) that Uw = H^(l) + J/94.) 

(3) c100 - c-1097 + J/94 ^ 0 C97' = 2 

(4) c100 - c-1096 + 2100 - 2-109 7 + E/94 ^ 0 c96 = 5 

(5) c100 - c-1095 + 5100 - 5-1096 + 2100 - 2-1097 + Uu ^ 0 c95 = 1 

Theorem 8 guarantees ct = 9 for 0 ^ 2 < / , so the algorithm closes, and 
C = 2-B97 + 5-.B96 + £9 5 + (59 5 - 1). 

6. Orbits of T^-related integers. Return now to the general function 
P{a) requiring only that P (a) is a non-negative integer. This modest restriction 
not only allows the number C to be determined as in Theorem 2, but also 
allows the function F (A) to be iterated. 

Define F™(A) = A and F<k+»(A) = F(F™(A)). Integers X and Y are 
said to be /^-related if and only if there exist non-negative integers k and m 
such that F(k)(X) = F{m)(Y). Being F-related is an equivalence relation 
dividing all non-negative integers into N disjoint sets of F-related integers. 
Following Isaacs (1) call each such set an orbit and denote the orbit con
taining A by {A}. 

THEOREM 9. For F{A) the number N is finite. 
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Proof. T h e existence of C implies t h a t each orbit {A} contains a t least one 
integer K with K ^ C, for otherwise the sequence F{n)(A) for n = 0, 1, 2, . . . 
(all of whose members belong to {^4}) would be an infinite decreasing sequence 
of non-negative integers. T h e existence of such a K for each orbit {.4} shows 
t h a t 1 ^ N ^ C + 1. 

COROLLARY 9.1. At least one orbit must be infinite. 

An improved est imate of the value of N may be obtained by noting t h a t 
the value of F (A) does not depend on the order of the digits of A. For if Ai 
is obtained from A merely by permut ing the digits (but keeping ak

f > 0, of 
course), then F(Ai) = ^(^4). Consequent ly many numbers less than C are 
ap t to be F-related. 

Let C* be the number of integers A, 1 ^ A ^ C, which can be wri t ten 

J c - l 

A = a'kB
k + X atB\ B - 1 ^ a[ ^ a*_i è . • • ^ a i ^ a0 è 0. 

o 

Then an improved est imate for A7 is given by 1 ^ N S C* + 1. 
From C < Bs+1 and properties of the binomial coefficients it follows t h a t 

C - a ( B + ^ 1 ) - < 5 + 2 , . 

The work of Isaacs shows for the i teration of a much more general function 
G, t h a t each orbit of G-related numbers has a t most one "cycle" and various 
incoming "branches . " T h e word "cycle" has the usual meaning—namely, for 
F (A) it will mean the existence of a period number p (minimal and positive) 
and an initial point a such t h a t 

Fd+P)(A) = F^(A) for all i ^ a. 

If F™(X) = F, m ^ 1, then X is called an "an t eceden t " of F. If m = 1, 
X is an " immedia te an teceden t" of F. If X ^ F, X is a "proper an teceden t " 
of F. If F(X) = U is in the cycle par t of {^4}, bu t X itself is not in the cycle, 
then X and all its antecedents const i tute a " b r a n c h " of {^4}. 

T H E O R E M 10. For F (A) each orbit {A} has a unique cycle. 

Proof. If the orbit {̂ 4} is non-cyclic, then for all n sufficiently large 
F(n)(A) > C; however, for such n, F{n+l) (A) < F(n) (A) and a contradict ion 
is reached, for we cannot have an infinite decreasing sequence of integers 
> C. T h u s each orbit {̂ 4} must have a finite cycle. 

T o show t h a t this cycle depends on {̂ 4} and not on the representat ive A, 
we reproduce Isaacs' proof. Suppose U and U' are both in {̂ 4} and t h a t each 
is a member of some cycle of {A}. T h e first hypothesis implies the existence 
of k and m so t h a t F(Jc) (U) = F(m) (Uf) = U"'. T h e second hypothesis now 
shows t h a t U" is in the cycle containing U and also in the cycle containing 
V. In other words, {̂ 4} has only one cycle. 
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COROLLARY 10.1. Let W be the maximum value of F {A) for A S C Then 
the period p of the cycle of {A) is bounded by I ^ p ^ W + 1. 

Proof. In the proof of Theorem 9 we showed that {̂ 4} contains at least one 
Kw'ithK ^ C. Then F^(K) ^ W for all n ^ 0. For either C < F™(K) ^ W, 
whence 7*re+1) (K) < F™ (K) by the definition of C, thus /^+1> (K) < W; or 
0 ^ FW (K) ^ C, whence 7^+ 1 ) (K) ^ W by the definition of 17. Not only 
is the existence of a cycle of {̂ 4} newly evident, but also the maximum number 
of elements in the cycle is the complete set 0 ^ X ^ W, hence l^p^W+1. 

COROLLARY 10.2. Each element U of the cycle part of {A} has the property 
U ^ W and at least one member U satisfies U ^ C. 

A simple example in which the maximums of both N and p are attained is 
given by B = 2, P(0) = 1, P ( l ) = 0, wherein C = 0, W = 1, and there is 
just one orbit: N = 1 = C + 1, with p = 2 = W + 1. 

There seem to be few additional general statements to be made about the 
orbits, cycles, and branches, for by varying P(a) properly, we may construct 
bizarre situations which contradict proposed generalizations. 

REMARK 1. Not every orbit need be infinite. For if P(q) = q, but P(a) > q 
when a 7e q, then [q] contains only q. 

REMARK 2. If P(a) = 1 for some a ^ 0, then every Y > 1 has a proper 
antecedent. For F (A) = F has a solution 

F - l 

A =a E B* 
0 

and A > Y. 

REMARK 3. If P(a) = 0 for some a, and if A ^ 0, then F (A) has infinitely 
many immediate antecedents. For since P(a) = 0 , 

m— 1 

Am = ABm + a X B* 
0 

has F(Am) = F(^4), for m = 1, 2 . . . . And since A 9e 0, the ^4m are distinct 
(even if a = 0). 

REMARK 4. If P(a) > 0 /or a// a, //ze?z mc/̂  F &as at most a finite number 
of immediate antecedents. For note that if xa denotes the number of digits 
of A which are equal to a, then F (A) may be written 

B-l 

F(A) = £ xaP{a). 
o 

Then the assumption P{a) > 0 for every a and the restrictions xa ^ 0 mean 
that F(^4) = F is a linear Diophantine form problem with at most a finite 
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number of solutions: x0, Xi, . . . , xB-i> (Of course, there may be no solution.) 
Corresponding to each such solution set there are only a finite number of 

integers A resulting from permissible permuta t ions of the sets of digits. ( Per

missible means a t least one xa> > 0 and ak' > 0 where 

B - l \ 

R / j X# . / 
0 / 

Example 3. Suppose B = 10 and P ( 0 ) = P ( 2 ) = P ( 4 ) = 18, P ( 6 ) = 8, 
P ( 8 ) = 6, P ( l ) = P ( 3 ) = P ( 5 ) = 5, P ( 7 ) = 9, P ( 9 ) = 7. I t is easy to find 
7 = 0, 5 = 1, M i = 20, C = 27, IF = 36. Then {1, 3, 5} is a finite orbit 
with p = 1; and {6, 8} and {7, 9} are finite orbits each with p = 2. All other 
integers belong to either {23}, {26} or {27}, all of which are infinite orbits, 
each with p = 1. Hence N = 6. These results follow from Corollary 10.2 and 
Remark 4. 

Example 4. Suppose P(a) = a for every a. If 0 ^ g < P / 2 , then N = 1 
with p = 1 and P(C) = C = g. If J 5 s / 5 ^ g < P S + 7 ( S + 2), S ^ 1, then 
iV = 1 with £ = 1 and F(C) = C = (S + l)g. If BS/(S + l) S q < Bs/S, 
5 ^ 1 , then N = 2 and both orbits have p = 1: one (infinite) contains 
7?(C) = C = (5 + l)g, the other (finite) contains F(U) = U = Sq. 

8. Orbits for P ( a ) = a' . When the previous discussion is applied to the 
case P{a) = a1, a few addit ional comments may be made. 

Remark 1 applies with q = 0. Hence {0} contains only 0. 
Remark 2 applies with a = 1. Hence if Y > 1, F has a proper antecedent . 

Because P ( 0 ) = 0, F(Bi) = 1, so F = 1 also has a proper antecedent . Note 
t h a t the orbit {1} has p = 1. 

Remark 3 applies. Hence each A ^ 0 has infinitely many immediate 
antecedents . 

Let Ni indicate the number of orbits of P r e l a t e d integers with period i. 
Then N = £ # « . 

For t = 1 and any P , N = TVi = 5 . For C = B - 1 implies .V ^ C + 1 =B 
and P ( a ) = a shows each {a} has p = 1. Note t h a t the corresponding 
^(^4) = E # Î is the function met in ar i thmet ic in the process called "cast ing-
out (P — l ) ' s " and has the useful proper ty F (A) = A mod B — 1. 

For B = 2 and any £, iV = Ni = 2. For C = 1 shows iV ^ 2 and each of 
{0} and {1} has p = 1. By the same a rgument iVi ^ 2 for every 2 and every B. 

If / = 2 and P is odd, then iVi is even and N\ ^ 4. From Section 5, when 
t = 2, C = P 2 — 1, and hence by Corollary 10.2 each 1-cycle mus t contain 
either U = b or U = aB + b. If P(6) = b2 = b, then ô = 0 or 1, the cases 
noted in the previous paragraph. If F(aB + b) = a2 + b2 = aB + b, then it 
follows t h a t 

F((B - a)B + b) = (P - a ) 2 + b2 = P 2 - 2 a P + (aP + 6) = (P - a ) P + 6. 
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Also B — a 5* a, because B is odd. Hence 1-cycles of this type occur in pairs, 
thus Ni is even. Furthermore, at least one choice of a and b is always avail
able: a = b = (B + l ) /2 . Hence N± ^ 4. 

Perhaps the best way to show the teasing irregularity of the orbit and cycle 
numbers of F-related integers when P{a) = a1 is to append the following 
brief tables. 

TABLE VII TABLE VIII 

t = 2 * = = 3 

B Ni N2 ^ t Others N B Ni N2 iV3 Others iV 

3 4 1 5 3 3 N4 = 1 4 
4 2 2 4 10 10 
5 4 1 5 5 4 1 5 
6 2 iV8 = 1 3 6 5 iV5 = 1 6 
7 6 iV4 = 2 8 7 8 4 2 JV4 = N9 = 1 16 
8 4 2 1 7 8 7 iV5 = 1 8 
9 4 1 1 6 9 9 2 iV5 = JVi, = 1 13 

10 2 iV8 = 1 3 10 6 2 2 10 
11 4 
12 4 

2 
1 

6 
8 

11 4 
12 4 2 

2 
1 N10 = 1 

6 
8 

13 8 3 11 
14 2 1 iV9 = 1 4 
15 4 1 3 Nb = N, = 1 = N7 11 
16 2 N, = 1 3 

Added in proof: 

During 1959-60, as part of an NSF Undergraduate Research Project, 
Joseph C. Ferrar made use of the Michigan State University MISTIC to 
check and extend Tables VII and VIII. Thanks to this work several correc
tions have been made in Table VII. The extended tables for t = 2 show B 
from 17 to 32 and for t = 3 show B from 11 to 16. 

Space allows explanation of just one of these entries. 
When B = 10 and t = 3, then C = 1999. From the discussion following 

Corollary 9.1, there are 

numbers from 0 to 999 and 

12 
= 220 

Ï ) - 165 

numbers from 1111 to 1999 which need to be considered. The results are as 
follows: 
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Nx = 6: the 1-cycles being 0; 1; 153; 370; 371; 407; 

N2 = 2: the 2-cycles being 136, 244, and 919, 1459; 

Nz = 2: the 3-cycles being 55, 250, 133, and 160, 217, 352. 

Then by Corollary 10.2 each non-negative integer is a member of one and 
only one of these N = 10 orbits. 

9. Products of functions of digits. Use the previous notation for a, a' 
and A and suppose P(a) is a rational integer P(a) ^ 0. Define 

G(a) = P(a), G(A) = P{a'k) f[ P{at). 
o 

The question suggested by Theorem 1 (for e = 1) is whether there exists 
an integer D for which G(D) ^ D and G {A) < A for every A > D. 

Let M indicate the maximum value of P(a) and let M' indicate the maximum 
value of Pia'). 

CASE 1. If M' ^ B, then D does not exist. 

Proof. If P(b') = Mf, then 

A =b' £ Bl 

o 

has G (A) = (M')k+l ^ Bk+l > A for every k. 

CASE 2. If M' = 0, then D = 0. 

Proof. If A > 0, P(a'k) = 0, so G {A) = 0 < A. And G(0) = P(0) è 0. 

CASE 3. / / 0 < M' < B and M ^ B + 1, then D does not exist. 

Proof. The hypotheses imply P(0) - M. Then ^ = b'Bk has G(,4) = M'M* 
è (B + l)k > Bk+1 > A, for all jfe sufficiently large. 

CASE 4. i j M < B, then D exists. 

Proof. Note M' ^ M. If Bk S A < Bk+1 and if k ^ (B - 1) (5 - 2) = jfex 
then G(4) ^ Af'Af* ^ (5 - 1)*+1 < Bk S A. For from the assumption 
k ^ h it follows that B - 1 ^ 1 + k/(B - 1) < (1 + 1/(B - l))k = 
(B/(B - l))k. Since G(0) è 0, D exists and is in the range 0 ^ D < BkK 

CASE 5. If M' < B, if M = B, and if P(af) ^ a' for any a', then D does not 
exist. 

Proof. The hypotheses imply P(0) = B. Hence if A = a'i?*, then 
G (A) = P(af)Bk ^ a '5* = A, for every jfe. 

CASE 6. / / M ^ B and P(a') < a' for every af, then D = 0. 
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Proof. UBkSA < Bk+\ then 

G(A) = P(a'k) f i P{at) < a'kB
k g A 

0 

for every k. Since G(0) ^ 0, D = 0. 

Since these six cases exhaust the possible situations, the only "interesting" 
cases (having D > 0) arise when 1 ^ M' ^ M < B and P(a') ^ a1 for at 
least one a'. For these cases the actual value of D and the orbits of G-related 
integers and their cycles may be determined by methods similar to those 
in §§ 3 and 6. 

In particular, the choice P(a) = a1 leads to an "interesting" case only 
when t = 1, and then there are B — 1 orbits, each infinite and of period 1. 

The author thanks the referee for his stimulating criticisms and suggestions. 
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