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Abstract

In this paper, we consider the Neumann boundary value problem with a parameter λ ∈ (0,∞):−(p(t)x′(t))′ + q(t)x(t) = λg(t) f (x(t)), 0 ≤ t ≤ 1,

x′(0) = x′(1) = 0.

By using fixed point theorems in a cone, we obtain some existence, multiplicity and nonexistence results
for positive solutions in terms of different values of λ. We also prove an existence and uniqueness theorem
and show the continuous dependence of solutions on the parameter λ.
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1. Introduction

In this paper, we consider the following Neumann boundary value problem (NBVP)
with a parameter λ ∈ (0,∞):{

−(p(t)x′(t))′ + q(t)x(t) = λg(t) f (x(t)), 0 ≤ t ≤ 1,
x′(0) = x′(1) = 0,

(1.1)

where p(t) ∈C1[0, 1], p(t) > 0; q(t) ∈C[0, 1], q(t) ≥ 0 and q(t) . 0; g : [0,∞)→ [0,∞)
is continuous and

∫ 1

0
g(s) ds > 0; f : [0,∞)→ [0,∞) is continuous and f . 0. We

assume that these conditions on p, q, f , g are satisfied throughout the paper unless
otherwise specified.

A function x ∈C2[0, 1] is said to be a nontrivial solution of (1.1) if and only if x
satisfies (1.1) and x(t) . 0. Moreover, if x(t) ≥ 0 for t ∈ [0, 1], then x is said to be a
positive solution of (1.1).

By using fixed point theorems in a cone, we give some existence, multiplicity and
nonexistence results for positive solutions of (1.1) (see Theorem 3.1), and we also
investigate the existence and uniqueness of solutions of (1.1) and their continuous
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dependence on the parameter λ (see Theorem 4.1). Similar results for the periodic
boundary value problem are obtained in Graef et al. [6] for the case where p(t) = 1
and q(t) = ρ2 for some ρ > 0. So our results can be regarded as extensions of the
results in [6]. We note that, in D’Agui [4], some results on the existence of three
solutions for the NBVP in a more general form than (1.1) are proved by using a three
critical points theorem. Studies of the boundary value problem with a parameter can
also be found in [15, 16]. For more work on (1.1) with λ = 1, we refer readers to
[3, 7–9, 12–14, 17–20] and the references therein.

This paper is organised as follows. Some notation and preliminary lemmas are
given in Section 2. Then existence, multiplicity and nonexistence results for positive
solutions are derived in terms of different values of λ in Section 3. An existence and
uniqueness theorem as well as the result of continuous dependence of solutions on λ
are presented in Section 4.

2. Preliminaries

Let X = C[0, 1] with norm ‖x‖ = max0≤t≤1 |x(t)|, and P = {x ∈C[0, 1]; x(t) ≥ 0}.
Then P is a normal cone in C[0, 1], and P◦ , ∅. Let x1, x2 ∈ X. We write x1 ≤ x2

if x2 − x1 ∈ P; x1 < x2 if x1 ≤ x2 and x1 , x2; x1� x2 if x2 − x1 ∈ P◦. We call the
set [x1, x2] = {x ∈ X : x1 ≤ x2} an order interval in X. An operator T : [x1, x2]→ X is
called increasing (or nondecreasing) if T x ≤ Ty for any x, y ∈ [x1, x2] and x ≤ y, and T
is called strongly increasing if T x� Ty for any x, y ∈ [x1, x2] and x < y.

From the results in [5], we obtain the following two lemmas, which will be useful
for the proofs of our main results.

L 2.1. Let X be a Banach space, P ⊂ X a normal cone with P◦ , ∅. Let
ψ1, ψ2, ψ3, ψ4 ∈ X with ψ1 < ψ2 < ψ3 < ψ4 and suppose that the strongly increasing
completely continuous map G : [ψ1, ψ4]→ X satisfies

ψ1 ≤G(ψ1),G(ψ2) < ψ2, ψ3 <G(ψ3),G(ψ4) ≤ ψ4.

Then G has at least three fixed points x1, x2, x3 such that x1� x2� x3.

L 2.2. Let X be a Banach space and P be a cone in X. Assume that Q1, Q2

are bounded open subsets of X with 0 ∈ Q1 ⊂ Q̄1 ⊂ Q2, and let A : P ∩ (Q̄2 \ Q1)→ P
be a completely continuous operator such that ‖Ax‖ ≥ ‖x‖ for any x ∈ P ∩ ∂Q1 and
‖Ax‖ ≤ ‖x‖ for any x ∈ P ∩ ∂Q2. Then A has a fixed point in P ∩ (Q̄2 \ Q1).

We write

F(x) =

 f (x)/x, x > 0,
lim sup

t→0
f (t)/t, x = 0,

and f0 = F(0), f∞ = limx→∞ F(x). We also need the functions

f ∗(x) = max
0≤t≤x
{ f (t)} and f∗(x) = min

0≤t≤x
{ f (t)},

and we write f ∗∞ = limx→∞ f ∗(x)/x and f ∗0 = limx→0 f ∗(x)/x.
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L 2.3 [15]. Assume that f : [0,∞)→ [0,∞) is continuous and f (x) > 0 for
x > 0. Then f ∗∞ = f∞ and f ∗0 = f0.

The following results are due to Li [8]. Let L = max0≤t≤1{p(t)q(t)}. Then, by [8,
Lemma 1], for each h ∈C[0, 1], the NBVP−(p(t)x′(t))′ + Lx(t)/p(t) = h(t), 0 ≤ t ≤ 1,

x′(0) = x′(1) = 0,

has the unique solution

x(t) = (Th)(t) =

∫ 1

0
G(t, s)h(s) ds,

where

G(t, s) =


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, 0 ≤ s ≤ t ≤ 1.

Let k = min0≤s,t≤1 G(t, s) and K = max0≤s,t≤1 G(t, s). Then it is clear that K > k > 0.
Moreover, we can see easily that T : P→ P is a linear completely continuous operator
since G(t, s) is continuous. Let

(Bx)(t) =
L − p(t)q(t)

p(t)
x(t), x ∈ P, t ∈ [0, 1].

Then T B : P→ P is a linear completely continuous operator and ‖T B‖ < 1 (see [8,
Lemma 2]). Moreover, for each h ∈C[0, 1], the NBVP{

−(p(t)x′(t))′ + q(t)x(t) = h(t), 0 ≤ t ≤ 1,
x′(0) = x′(1) = 0,

has a solution x(t) = (I − T B)−1Th(t) (see [8, Lemma 3]).
Now we define the map Tλ : P→ P by

Tλx(t) = λ(I − T B)−1T (g f (x))(t), 0 ≤ t ≤ 1.

As in the proof of [9, Lemmas 3–5], we can prove that Tλ is completely continuous.
Then x ∈ P \ {0} is a fixed point of Tλ if and only if x is a positive solution of (1.1).

3. Existence, multiplicity and nonexistence of positive solutions

In this section we give the existence, multiplicity and nonexistence results of
positive solutions of (1.1).
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T 3.1.

(i) Assume that f (t) > 0 for t ≥ 0. Then, given R > 0, there exist 0 < λ1 < λ0 such
that (1.1) has at least a positive solution x(t) with ‖x‖ ≤ R for λ1 ≤ λ ≤ λ0.
Moreover, if f∞ = 0, (1.1) has at least a positive solution for all λ > 0.

(ii) Assume that f is strictly increasing and f∞ = f0 = 0. Then there exists λ0 > 0
such that (1.1) has at least two positive solutions x1, x2 with 0� x1� x2 for
λ ∈ (λ0,∞).

(iii) Assume that F(x) is bounded in [0,∞). Then there exists λ1 > 0 such that (1.1)
has no positive solution for λ ∈ (0, λ1).

P. (i) For r > 0, we write Ωr = {x ∈ X : ‖x‖ < r}, Ω̄r = {x ∈ X : ‖x‖ ≤ r} and ∂Ωr =

{x ∈ X : ‖x‖ = r}.
For x ∈ ∂ΩR ∩ P,

‖Tλx‖ = λ

∥∥∥∥∥∥(I − T B)−1
∫ 1

0
G(t, s)g(s) f (x(s)) ds

∥∥∥∥∥∥
≤ λK f ∗(R)‖(I − T B)−1‖

∫ 1

0
g(s) ds.

Let

λ0 =
R

K f ∗(R)‖(I − T B)−1‖
∫ 1

0
g(s) ds

. (3.1)

Then, for each 0 < λ ≤ λ0,

‖Tλx‖ ≤ R = ‖x‖ for x ∈ ∂ΩR ∩ P.

Let R1 > 0 be such that

R1 <
k f∗(R)

K f ∗(R)‖I − T B‖ ‖(I − T B)−1‖
R. (3.2)

Clearly, R1 < R and then, for x ∈ ∂ΩR1 ∩ P,

‖Tλx‖ = λ

∥∥∥∥∥∥(I − T B)−1
∫ 1

0
G(t, s)g(s) f (x(s)) ds

∥∥∥∥∥∥
≥ λ
‖
∫ 1

0
G(t, s)g(s) f (x(s)) ds‖

‖I − T B‖

≥ λ
k f∗(R1)

∫ 1

0
g(s) ds

‖I − T B‖

≥ λ
k f∗(R)

∫ 1

0
g(s) ds

‖I − T B‖
.
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Set

λ1 =
R1‖(I − T B)‖

k f∗(R)
∫ 1

0
g(s) ds

.

Then λ1 < λ0 by (3.1) and (3.2), and, for each λ ≥ λ1,

‖Tλx‖ ≥ R1 = ‖x‖ for x ∈ ∂ΩR1 ∩ P.

Now it follows from Lemma 2.2 that Tλ has a fixed point in (Ω̄R \ΩR1 ) ∩ P for each
λ1 ≤ λ ≤ λ0. Consequently, (1.1) has a positive solution x(t) with ‖x‖ ≤ R for each
λ1 ≤ λ ≤ λ0.

Given λ > 0, since f (t) > 0 for t ∈ [0,∞), we have f∗(r)/r→∞ as r→ 0. So we can
choose r1 sufficiently small such that

0 < r1 ≤ λ
k f∗(r1)

∫ 1

0
g(s) ds

‖I − T B‖
.

Then, for x ∈ ∂Ωr1 ∩ P,

‖Tλx‖ = λ

∥∥∥∥∥∥(I − T B)−1
∫ 1

0
G(t, s)g(s) f (x(s)) ds

∥∥∥∥∥∥
≥ λ
‖
∫ 1

0
G(t, s)g(s) f (x(s)) ds‖

‖I − T B‖

≥ λ
k f∗(r1)

∫ 1

0
g(s) ds

‖I − T B‖
≥ r1 = ‖x‖.

Also, since f∞ = 0, we have f ∗∞ = 0 by Lemma 2.3. Then there exists r2 ∈ (r1,∞) such
that f ∗(r2) ≤ εr2 for some small ε > 0 satisfying

ελK‖(I − T B)−1‖

∫ 1

0
g(s) ds < 1.

Thus, for x ∈ ∂Ωr2 ∩ P,

‖Tλx‖ = λ

∥∥∥∥∥∥(I − T B)−1
∫ 1

0
G(t, s)g(s) f (x(s)) ds

∥∥∥∥∥∥
≤ λ f ∗(r2)K‖(I − T B)−1‖

∫ 1

0
g(s) ds

≤ λεr2K‖(I − T B)−1‖

∫ 1

0
g(s) ds

< r2 = ‖x‖.

Then Tλ has a fixed point in (Ω̄r2 \Ωr1 ) ∩ P by Lemma 2.2, and consequently (1.1) has
a positive solution for λ > 0.
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(ii) It is easy to see that there exists b ∈ (0,∞) such that F(b) = max{F(x) : x ∈
[0,∞)} > 0 since f0 = f∞ = 0 and f . 0. We let

m = min
0≤t≤1

(I − T B)−1Tg(t), M = ‖(I − T B)−1Tg‖. (3.3)

Then 0 < m ≤ M. Let λ0 = 1/mF(b). Noticing that F(t)→ 0 as t→ 0 or t→∞, given
λ > λ0, there exist a ∈ (0, b) and c ∈ (b,∞) such that λMF(a) < 1 and λMF(c) < 1.
That is,

λM f (a) < a and λM f (c) < c. (3.4)

Since f is strictly increasing, we can verify easily that Tλ is strongly increasing in any
order interval in P. It is clear that

Tλ0 = 0,

and by (3.4),

Tλa = λ(I − T B)−1T ( f (a)g) = λ f (a)(I − T B)−1Tg ≤ λ f (a)M < a, (3.5)

Tλb = λ(I − T B)−1T ( f (b)g) = λ f (b)(I − T B)−1Tg ≥ λ f (b)m > b,

Tλc = λ(I − T B)−1T ( f (c)g) = λ f (c)(I − T B)−1Tg ≤ λ f (c)M < c.

Then it follows from Lemma 2.1 that Tλ has three fixed points x0, x1, x2 in [0, c] such
that x0� x1� x2. So x1, x2 are two fixed points of Tλ such that 0 ≤ x0� x1� x2.
This means that (1.1) has two positive solutions x1, x2 with 0� x1� x2 for each
λ ∈ (λ0,∞).

(iii) Since F(x) is bounded, we may let F = supx∈[0,∞) F(x) and λ1 = 1/MF , where
M is given in (3.3). Suppose that (1.1) has a positive solution xλ for λ ∈ (0, λ1). Then

‖xλ‖ = ‖λ(I − T B)−1T (g f (xλ))‖

≤ ‖λ(I − T B)−1T (F ‖xλ‖g)‖

= λF ‖xλ‖ · ‖(I − T B)−1T (g)‖

= λMF ‖xλ‖ < ‖xλ‖,

which is a contradiction. So (1.1) has no positive solution for λ ∈ (0, λ1).
This completes the proof. �

R 3.2.

(a) Theorem 3.1 extends [6, Theorem 2.1]. In fact, results similar to Theorem 3.1
were established in [6] for the special case of (1.1) when p(t) = 1 and q(t) = ρ2

for some ρ > 0 (see [6, Theorem 2.1(a), (c), (e)]).
(b) In the proof of Theorem 3.1(ii), we get three fixed points of Tλ in [0, c].

However, there are possibly only two fixed points in P \ {0} since x1 may be 0.
For example, let f (x) = min{xσ, xς} with σ > 1, ς < 1. Then the conditions of
Theorem (ii) hold. We can choose a < 1 so small that

λMaσ−1 < 1. (3.6)
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From the proof of Lemma 2.1 (see [5, Section 20]), 0 ≤ x1 < a. Then
by (3.5), (3.6) and the monotonicity of Tλ,

x1 = T n
λ x1 ≤ T n

λa ≤ (λM)(σn−1)/(σ−1)aσ
n

= (λMaσ−1)(σn−1)/(σ−1)a→ 0 as n→∞.

4. Existence and uniqueness of positive solutions

In this section, we will use the following assumption:

(H) f : [0,∞)→ (0,∞) is nondecreasing, and there exists θ ∈ (0, 1) such that f (αx) ≥
αθ f (x) for α ∈ (0, 1) and x ∈ [0,∞).

The main result of this section is the following theorem.

T 4.1. Assume that (H) holds and g(t) > 0 for t ≥ 0. Then (1.1) has a unique
positive solution xλ(t) with xλ(t) > 0, t ∈ [0, 1], for λ ∈ (0,∞). Furthermore, such a
solution xλ(t) satisfies the following properties:

(i) xλ(t) is nondecreasing in λ;
(ii) limλ→0+ ‖xλ‖ = 0 and limλ→∞ ‖xλ‖ =∞;
(iii) xλ is continuous in λ, that is, if λ→ λ0, then ‖xλ − xλ0‖ → 0.

P. We first show that (1.1) has a solution for any λ ∈ (0,∞). By (H), for x ∈ P,
α ∈ (0, 1),

Tλ(αx) = λ(I − T B)−1T (g f (αx)) ≥ λ(I − T B)−1T (αθg f (x)) = αθTλx. (4.1)

Similarly,
Tλ(βx) ≤ βθTλx for β > 1. (4.2)

Let Φ = λ(I − T B)−1
∫ 1

0
g(s) ds > 0. Then it is easy to see that

0 < k f (Φ)Φ ≤ Tλ(Φ) ≤ K f (Φ)Φ.

Define C̄ and D̄ by

C̄ = sup{µ : µΦ ≤ Tλ(Φ)} and D̄ = inf{µ : µΦ ≥ Tλ(Φ)}. (4.3)

Clearly, k f (Φ) ≤ C̄ ≤ D̄ ≤ K f (Φ). Choose C and D such that

0 <C < min{1, C̄1/(1−θ)} and max{1, D̄1/(1−θ)} < D <∞.

Define two sequences {xk(t)} and {yk(t)} by{
x1 = CΦ, xk+1 = Tλxk, k = 1, 2, . . . ,
y1 = DΦ, yk+1 = Tλyk, k = 1, 2, . . . .

(4.4)

Then, by (4.1) and (4.3),

x2 = Tλx1 = Tλ(CΦ) ≥CθTλ(Φ) ≥CθC̄Φ ≥CθC1−θΦ = x1, (4.5)
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and similarly, by (4.2) and (4.3),
y2 ≤ y1. (4.6)

Since f is nondecreasing, it is easy to verify that Tλ is nondecreasing in any order
interval in P. Noticing that x1 < y1, by (4.4)–(4.6) it then follows that

CΦ = x1 ≤ x2 ≤ · · · ≤ xk ≤ · · · ≤ yk ≤ · · · ≤ y2 ≤ y1 = DΦ. (4.7)

Let d = C/D, so that d ∈ (0, 1). We claim that

xk ≥ dθ
k−1

yk for k = 1, 2, . . . . (4.8)

In fact, it is obvious that x1 = dy1, so that (4.8) is true for k = 1. Assume that (4.8)
holds for k = n. Then it follows from (4.1) and the monotonicity of Tλ that

xn+1 = Tλxn ≥ Tλ(dθ
n−1

yn) ≥ (dθ
n−1

)θTλyn = dθ
n
yn+1,

which means that (4.8) holds for k = n + 1, and then (4.8) holds for all k = 1, 2, . . . .
By (4.7) and (4.8),

‖xk − yk‖ ≤ (1 − dθ
k−1

)‖yk‖ ≤ (1 − dθ
k−1

)DΦ.

Thus there exists a function xλ ∈ P with xλ ≥CΦ and

lim
k→∞

xk = lim
k→∞

yk = xλ,

and xλ is a fixed point of Tλ. Therefore, xλ(t) is a positive solution of (1.1) with
xλ(t) > 0 for t ∈ [0, 1].

We now show the uniqueness of the positive solution xλ(t) of (1.1) with xλ(t) > 0,
t ∈ [0, 1], for each λ ∈ (0,∞). Assume, to the contrary, that there exists another positive
solution x̄λ(t) of (1.1) such that x̄λ(t) > 0 for t ∈ [0, 1]. Then Tλ x̄λ = x̄λ. Let

α0 = sup{α > 0 : xλ ≥ αx̄λ}.

It is easy to see that α0 ∈ (0,∞) is well defined. We now show that α0 ≥ 1. In fact, if
α0 < 1, by (4.1) and the monotonicity of Tλ,

xλ = Tλxλ ≥ Tλ(α0 x̄λ) ≥ αθ0Tλ x̄λ = αθ0 x̄λ.

This contradicts the definition of α0 since αθ0 > α0. Hence, xλ ≥ x̄λ. Similarly, we can
show that x̄λ ≥ xλ. Therefore, xλ = x̄λ, and (1.1) has a unique positive solution xλ(t)
with xλ(t) > 0, t ∈ [0, 1], for each λ ∈ (0,∞).

Finally, we prove properties (i)–(iii) of the solution xλ of (1.1).
(i) Let 0 < λ1 ≤ λ2. Then Tλi xλi = xλi , i = 1, 2. Let

η̄ = sup{η : xλ2 ≥ ηxλ1}.
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Clearly, η̄ ∈ (0,∞) is well defined. We assert that η̄ ≥ 1. Indeed, if η̄ < 1, by (4.1) and
the monotonicity of Tλ,

xλ2 = Tλ2 xλ2 =
λ2

λ1
Tλ1 xλ2 ≥

λ2

λ1
Tλ1 (η̄xλ1 ) ≥

λ2

λ1
η̄θTλ1 xλ1 =

λ2

λ1
η̄θxλ1 .

This contradicts the definition of η̄ since (λ2/λ1)η̄θ > η̄. Therefore, η̄ ≥ 1 and xλ2 ≥

η̄xλ1 ≥ xλ1 and (i) is true.
(ii) For 0 < λ1 ≤ λ2, we have xλ1 ≤ xλ2 by (i). Then by the monotonicity of Tλ,

xλ1 = Tλ1 xλ1 =
λ1

λ2
Tλ2 xλ1 ≤

λ1

λ2
Tλ2 xλ2 =

λ1

λ2
xλ2 . (4.9)

Now fix λ2 and let λ1→ 0+; we obtain ‖xλ1‖ → 0. On the other hand, fix λ1 and let
λ2→∞; we obtain ‖xλ2‖ →∞.

(iii) Suppose that λ0 > 0. Let λ > λ0. As in (4.9) we can show that xλ0 ≤ (λ0/λ)xλ.
Let

lλ = sup{l > 0 : xλ0 ≥ lxλ}.

Then 0 < lλ ≤ λ0/λ1 < 1. From (4.1) and the monotonicity of Tλ,

xλ0 = Tλ0 xλ0 ≥ Tλ0 (lλxλ) ≥ lθλTλ0 xλ = lθλ
λ0

λ
Tλxλ = lθλ

λ0

λ
xλ.

By the definition of lλ, lλ ≥ lθλλ0/λ; that is, lλ ≥ (λ0/λ)1/(1−θ). So we obtain

xλ0 ≥ lλxλ ≥ (λ0/λ)1/(1−θ)xλ,

and then
‖xλ0 − xλ‖ ≤ (1 − (λ0/λ)1/(1−θ))‖xλ0‖ → 0 as λ→ λ0 + 0.

That is, Tλ is right-continuous at λ0. Similarly, we can prove that Tλ is left-continuous
at λ0. This completes the proof. �

R 4.2. We note that results similar to Theorem 4.1 have been established
in [6, 10, 11] for other types of boundary value problem, and some ideas of the proof
of Theorem 4.1 are also from [6, 10, 11]. For some more work in this area, we refer
readers to [1, 2].
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