A THEOREM ON ISOMETRIES AND THE APPLICATION OF IT TO THE ISOMETRIES OF $H^p(S)$ FOR 2

FRANK FORELLI

1. Introduction. 1.1. Let X and Y be sets, let λ be a bounded positive measure on X, and let μ be a bounded positive measure on Y. Furthermore let M be a subalgebra of $L^{\infty}(\lambda)$, let $p \in (0, \infty)$, and let A be a linear transformation of M into $L^{p}(\mu)$ such that

$$\int |Af|^p d\mu = \int |f|^p d\lambda$$

for all f in M.

In § 2 of this paper we will prove the following theorem.

1.2. THEOREM. If (a) p > 2, if (b) $(Af)(y) \neq 0$ for μ -almost all y in Y whenever $f \in M$ and $f \neq 0$, and if (c) A1 = 1, then

$$A(fg) = AfAg$$

for all f and g in M and

$$\int Af\overline{Ag}d\mu = \int f\overline{g}d\lambda$$

for all f and g in M.

1.3. If the hypotheses (b) and (c) of Theorem 1.2 hold and if instead of (a) we have p < 2, then we do not know if the conclusion of Theorem 1.2 holds. We will denote by U the class of all f in M such that $f\bar{f} = 1$. It was proved in [1] that if $M = \mathbb{C}[U]$ and if the hypothesis (c) of Theorem 1.2 holds, then the conclusion of Theorem 1.2 holds for p in $(0, \infty)$. Furthermore it was proved in [1] that if the hypothesis (c) of Theorem 1.2 holds and if instead of (a) we have $p \ge 4$, then the conclusion of Theorem 1.2 holds.

1.4. Let V be a vector space over **C** of complex dimension *n* with an inner product. If x and y are in V, then we will denote by $\langle x, y \rangle$ the inner product of x and y. We will denote by B the class of all x in V such that $\langle x, x \rangle < 1$, by \overline{B} the class of all x in V such that $\langle x, x \rangle \leq 1$, and by S the class of all x in V such that $\langle x, x \rangle \leq 1$. Thus S may be regarded as the Euclidean sphere of real dimension 2n - 1. We will denote by σ the positive Radon measure on S which assigns to each open subset of S its Euclidean volume. We define $\alpha : \overline{B} \times B \to \mathbb{C}$ by

$$\alpha(x, y) = \left[\sqrt{(1 - \langle y, y \rangle)}\right]/(1 - \langle x, y \rangle)$$

Received January 3, 1972.

and we define $\beta : \overline{B} \times B \to (0, \infty)$ by $\beta = (\alpha \overline{\alpha})^n$. We recall that if ϕ is a function which is defined on the Cartesian product $E \times F$ of sets E and F and if $(x, y) \in E \times F$, then ϕ_x and ϕ^y are the functions which are defined on F and E respectively by $\phi_x(t) = \phi(x, t)$ and $\phi^y(s) = \phi(s, y)$. If $f \in L^1(\sigma)$, then we define $f^{\frac{d}{2}} : B \to \mathbf{C}$ by

$$f^{\#}(y) = (1/\sigma(S)) \int f \beta^y d\sigma.$$

We remark that if $f \in L^1(\sigma)$, then f^{\sharp} is of differentiability class C^{∞} . If $1 \leq p \leq \infty$, then we will denote by $H^p(S)$ the class of all f in $L^p(\sigma)$ such that f^{\sharp} is holomorphic on B. It follows that $H^p(S)$ is a closed subspace of the Banach space $L^p(\sigma)$, and hence that $H^p(S)$ is a Banach space with respect to the norm of $L^p(\sigma)$. The definition of $H^p(S)$ is motivated by the change of variables formula with regard to holomorphic homeomorphisms of B that is expressed in Lemma 3.4. If n = 1, then $H^p(S)$ is the familiar Hardy class H^p (if we regard S as the unit circle in the complex plane).

As an application of Theorem 1.2 we will prove the following theorem.

1.5. THEOREM. If (a) T is a linear isometry of the Banach space $H^p(S)$ onto itself and if (b) 2 , then there is a holomorphic homeomorphism Z of B $and a unimodular complex number <math>\theta$ such that for every f in $H^p(S)$ we have

(1.1)
$$Tf = \theta(\alpha^z)^{2n/p} f \circ Z$$

where z in B is defined by Z(z) = 0.

1.6. The proof of Theorem 1.5 is in § 3. We remark that if Z is any holomorphic homeomorphism of B and if $p \in [1, \infty)$, then the expression (1.1) defines a linear isometry of $H^p(S)$ onto itself. (This follows from Lemma 3.4. The holomorphic homeomorphisms of B are described in Lemma 3.2.) If $n \ge 2$, if the hypothesis (a) of Theorem 1.5 holds, and if instead of (b) we have $1 \le p < 2$, then we do not know if the conclusion of Theorem 1.5 holds. Furthermore if $n \ge 2$, if $p \in [1, \infty)$, and if $p \ne 2$, then it is not known if there are any linear isometries of $H^p(S)$ into itself which are not onto.

2. The proof of Theorem 1.2. 2.1. If $w \in \mathbf{C}$ and if $r \in (0, \infty)$, then we will denote by D(w, r) the open disc in \mathbf{C} whose center is w and whose radius is r. The proof of the following lemma is in [1].

2.2. LEMMA. Let ρ be a bounded positive measure on X, let τ be a bounded positive measure on Y, let $s \in (0, \infty)$, let $f \in L^s(\rho)$, and let $g \in L^s(\tau)$. If for some r in $(0, \infty)$ we have

$$\int |1+zf|^s d\rho = \int |1+zg|^s d\tau$$

for all z in D(0, r), then

$$\int |f|^2 d\rho = \int |g|^2 d\tau.$$

FRANK FORELLI

2.3. We will now prove Theorem 1.2. We will break the proof up into several statements.

2.3.1. If $f \in M$ and $f \neq 0$, then

(2.1)
$$\int |A(fg)|^2 |Af|^{p-2} d\mu = \int |g|^2 |f|^p d\lambda$$

for all g in M.

For the purpose of proving statement 2.3.1 we let $d\rho = |f|^p d\lambda$ and $d\tau = |Af|^p d\mu$. If $g \in M$ and $z \in \mathbf{C}$, then

$$\int |1 + zg|^{p} d\rho = \int |f + zfg|^{p} d\lambda$$
$$= \int |Af + zA(fg)|^{p} d\mu$$
$$= \int |1 + zA(fg)/Af|^{p} d\tau,$$

and hence by Lemma 2.2 we have

$$\int |g|^2 d\rho = \int |A(fg)/Af|^2 d\eta$$

which completes the proof of statement 2.3.1.

We remark that the proof of statement 2.3.1 did not use either the fact that A1 = 1 or the fact that p > 2.

We will denote by M^{-1} the collection of all invertible elements of M. 2.3.2. If $f \in M^{-1}$, then

(2.2)
$$\int |Af|^{p-2} |Ag|^2 d\mu = \int |f|^{p-2} |g|^2 d\lambda$$

for all g in M.

Statement 2.3.2 follows from statement 2.3.1 upon replacing g in the identity (2.1) by g/f.

2.3.3. If $f \in M$ and $g \in M$, then

$$\int |1 + zAf|^{p-2} |Ag|^2 d\mu = \int |1 + zf|^{p-2} |g|^2 d\lambda$$

for all z in $D(0, 1/||f||_{\infty})$.

For the purpose of proving statement 2.3.3 we may assume that M is a closed subalgebra of $L^{\infty}(\lambda)$. Since $1 + zf \in M^{-1}$ if $z \in D(0, 1/||f||_{\infty})$, statement 2.3.3 follows from statement 2.3.2 upon replacing f in the identity (2.2) by 1 + zf.

We remark that the proof of statement 2.3.3 did not use the fact that p > 2. 2.3.4. If $f \in M$ and $g \in M$, then

$$\int |Af|^2 |Ag|^2 d\mu = \int |f|^2 |g|^2 d\lambda$$

Statement 2.3.4 follows from statement 2.3.3 and Lemma 2.2 (with $d\rho = |g|^2 d\lambda$, $d\tau = |Ag|^2 d\mu$, and s = p - 2).

It follows from statement 2.3.4 that if $f \in M$, then $Af \in L^4(\mu)$. 2.3.5. If a, b, c, and d are in M, then

$$\int Aa\overline{Ab}Ac\overline{Ad}d\mu = \int a\overline{b}c\overline{d}d\lambda$$

Statement 2.3.5 follows from statement 2.3.4 by the method of polarization. Statement 2.3.5 includes the second assertion of Theorem 1.2. Furthermore it follows from statement 2.3.5 that if $f \in M$ and $g \in M$, then

$$\int |A(fg) - AfAg|^2 d\mu = 0,$$

which completes the proof of Theorem 1.2.

2.4. We will denote by \mathbf{Z}_+ the class of all positive integers.

2.5. COROLLARY (of Theorem 1.2). If $f \in M$, then $||Af||_{\infty} = ||f||_{\infty}$.

Proof. If $k \in \mathbb{Z}_+$, then

$$\left(\int |Af|^{2k} d\mu\right)^{1/2k}$$

= $\left(\int A(f^k)\overline{A(f^k)} d\mu\right)^{1/2k}$
= $\left(\int |f|^{2k} d\lambda\right)^{1/2k}$,

from which the desired conclusion follows upon letting k increase to ∞ .

3. The proof of Theorem 1.5. 3.1. We will denote by U(V) the class of all unitary transformations of V, and we will regard SL(2, **R**) as the class of all 2×2 matrices L of the form

$$\mathbf{L} = \begin{bmatrix} a & b \\ \bar{b} & \bar{a} \end{bmatrix}$$

where a and b are in **C** and det(L) = $a\bar{a} - b\bar{b} = 1$. We define $\gamma : SL(2, \mathbf{R}) \times S \times \bar{B} \to \bar{B}$ by

 $\gamma(L, x, y) = [1/(\bar{b}\langle y, x \rangle + \bar{a})](y - \langle y, x \rangle x) + [(a\langle y, x \rangle + b)/(\bar{b}\langle y, x \rangle + \bar{a})]x$ and we define $\delta : U(V) \times SL(2, \mathbf{R}) \times S \times \bar{B} \to \bar{B}$ by

$$\delta(W, L, x, y) = W\gamma(L, x, y) = \gamma(L, Wx, Wy).$$

With regard to the definition of γ we remark that if $x \in S$ and if $y \in V$, then $y - \langle y, x \rangle x$ is the orthogonal projection of y into $V \ominus \mathbf{C}x$. Furthermore we

remark that $\delta_{(W,L,z)}$ is a holomorphic homeomorphism of *B* for every triple (W, L, x) in $U(V) \times SL(2, \mathbf{R}) \times S$. We recall the following fact of the theory of functions on *B*.

3.2. LEMMA. If Z is a holomorphic homeomorphism of B, then there is a triple (W, L, x) in $U(V) \times SL(2, \mathbf{R}) \times S$ such that

$$Z(y) = \delta(W, L, x, y)$$

for all y in B.

3.3. The following lemma (which is well-known) follows from Lemma 3.2.

3.4. LEMMA. If Z is a holomorphic homeomorphism of B, then

$$\int f \circ Z d\sigma = \int f \beta^{Z^{(0)}} d\sigma$$

for every f in $L^1(\sigma)$.

3.5. The following lemma is due to R. Schneider [2] who stated it and proved it in terms of the Hardy spaces of torii. His proof applies as well to $H^{p}(S)$.

3.6. LEMMA. If $p \in [1, \infty]$, if $g \in H^p(S)$ and $g \neq 0$, if $h \in L^{\infty}(\sigma)$, and if $gh^k \in H^p(S)$ for all k in \mathbb{Z}_+ , then $h \in H^{\infty}(S)$.

3.7. We will now prove Theorem 1.5. For this purpose we recall that if $g \in H^p(S)$ and $g \neq 0$, then $g(y) \neq 0$ for σ almost all y in S. We let a = T1, $d\mu = |a|^p d\sigma$, and define $A : H^p(S) \to L^p(\mu)$ by Af = Tf/a. Since $H^{\infty}(S)$ is a subalgebra of $L^{\infty}(\sigma)$, it follows from Theorem 1.2 and Corollary 2.5 that if f and g are in $H^{\infty}(S)$, then $Af \in L^{\infty}(\sigma)$ and A(fg) = AfAg. It follows from this and Lemma 3.6 that if $f \in H^{\infty}(S)$, then $Af \in H^{\infty}(S)$ since $a(Af)^k = aA(f^k) = T(f^k)$ and $T(f^k) \in H^p(S)$ for all k in \mathbb{Z}_+ . Thus if A is restricted to $H^{\infty}(S)$, then A is an algebra homomorphism of $H^{\infty}(S)$ into $H^{\infty}(S)$. Furthermore we have $||Af||_{\infty} = ||f||_{\infty}$ for all f in $H^{\infty}(S)$.

We define $\chi : S \times V \to \mathbf{C}$ by $\chi(x, y) = \langle x, y \rangle$, we let *F* be an orthonormal basis of *V*, and we define $Z : B \to V$ by

$$Z(x) = \sum_{y \in F} [(A \chi^{y})^{\#}(x)]y.$$

It follows that if $(x, y) \in B \times V$, then $\langle Z(x), y \rangle = (A\chi^y)^{\sharp}(x)$. Hence Z (which is holomorphic) maps B into itself, and $(A\chi^y)^{\sharp} = (\chi^y)^{\sharp} \circ Z$ for all y in V. Thus if g is in the ring $\mathbb{C}[\chi^y : y \in V]$, then $(Tg)^{\sharp} = a^{\sharp}(Ag)^{\sharp} = a^{\sharp}g^{\sharp} \circ Z$, from which it follows that if $f \in H^p(S)$, then

(3.1)
$$(Tf)^{\#} = a^{\#}f^{\#} \circ Z$$

since $\mathbf{C}[\chi^{y}: y \in V]$ is dense in $H^{p}(S)$.

We now consider T^{-1} . It follows that there is a function b in $H^p(S)$ and a holomorphic transformation W of B into itself such that if $f \in H^p(S)$, then

(3.2)
$$(T^{-1}f)^{\#} = b^{\#}f^{\#} \circ W.$$

From (3.1) and (3.2) it follows that if $f \in H^p(S)$, then $f^{\#} \circ W \circ Z = f^{\#} = f^{\#} \circ Z \circ W$, and hence Z is a holomorphic homeomorphism of B (whose inverse is W). Thus (by Lemma 3.2) Z is defined on \overline{B} as well as on B, Z maps S onto itself, and we have

$$(3.3) Tf = af \circ Z$$

for all f in $H^p(S)$.

We will now prove that for σ -almost all x in S we have

$$(3.4) |a(x)|^p = \beta(x,z)$$

where z = W(0). If $f \in H^p(S)$, then by (3.3) and Lemma 3.4 we have

$$\int |f|^{p} |a|^{p} d\sigma = \int |f \circ W \circ Z|^{p} |a|^{p} d\sigma$$
$$= \int |f \circ W|^{p} d\sigma = \int |f|^{p} \beta^{z} d\sigma$$

From this and Theorem 1.2 it follows that if f and g are in $\mathbb{C}[\chi^{y} : y \in V]$, then

$$\int f\overline{g}|a|^{p}d\sigma = \int f\overline{g}\beta^{z}d\sigma,$$

from which it follows by the Stone-Weierstrass theorem that (3.4) holds for σ -almost all x in S. We will denote by A(S) the class of all f in C(S) such that f^{\sharp} is holomorphic on B. With regard to the proof of (3.4) we remark that if $n \ge 2$, then $\{|f|: f \in A(S)\}$ is not dense in $\{|f|: f \in C(S)\}$.

We let $\theta = a/[(\alpha^z)^{2n/p}]$. Then $\theta\bar{\theta} = 1$, $\theta \in H^{\infty}(S)$, and if $f \in H^p(S)$, then $Tf = \theta(\alpha^z)^{2n/p}f \circ Z$. Thus if $f = T^{-1}1$, then $f \in H^{\infty}(S)$ and $\bar{\theta} = (\alpha^z)^{2n/p}f \circ Z$, and hence θ is a constant. This completes the proof of Theorem 1.5.

References

1. F. Forelli, The isometries of H^p, Can. J. Math. 16 (1964), 721-728.

2. R. B. Schneider, Isometries of H^p(Uⁿ), Can. J. Math. 25 (1973), 92-95.

University of Wisconsin, Madison, Wisconsin