A THEOREM ON ISOMETRIES AND THE APPLICATION OF IT TO THE ISOMETRIES OF $H^{p}(S)$ FOR $2<p<\infty$

FRANK FORELLI

1. Introduction. 1.1. Let X and Y be sets, let λ be a bounded positive measure on X, and let μ be a bounded positive measure on Y. Furthermore let M be a subalgebra of $L^{\infty}(\lambda)$, let $p \in(0, \infty)$, and let A be a linear transformation of M into $L^{p}(\mu)$ such that

$$
\int|A f|^{p} d \mu=\int|f|^{p} d \lambda
$$

for all f in M.
In § 2 of this paper we will prove the following theorem.
1.2. Theorem. If (a) $p>2$, if (b) $($ Af $)(y) \neq 0$ for μ-almost all y in Y whenever $f \in M$ and $f \neq 0$, and if (c) $A 1=1$, then

$$
A(f g)=A f A g
$$

for all f and g in M and

$$
\int A \bar{f} \overline{A g} d \mu=\int \overline{f g} d \lambda
$$

for all f and g in M.
1.3. If the hypotheses (b) and (c) of Theorem 1.2 hold and if instead of (a) we have $p<2$, then we do not know if the conclusion of Theorem 1.2 holds. We will denote by U the class of all f in M such that $f \bar{f}=1$. It was proved in $[\mathbf{1}]$ that if $M=\mathbf{C}[U]$ and if the hypothesis (c) of Theorem 1.2 holds, then the conclusion of Theorem 1.2 holds for p in $(0, \infty)$. Furthermore it was proved in [1] that if the hypothesis (c) of Theorem 1.2 holds and if instead of (a) we have $p \geqq 4$, then the conclusion of Theorem 1.2 holds.
1.4. Let V be a vector space over \mathbf{C} of complex dimension n with an inner product. If x and y are in V, then we will denote by $\langle x, y\rangle$ the inner product of x and y. We will denote by B the class of all x in V such that $\langle x, x\rangle<1$, by \bar{B} the class of all x in V such that $\langle x, x\rangle \leqq 1$, and by S the class of all x in V such that $\langle x, x\rangle=1$. Thus S may be regarded as the Euclidean sphere of real dimension $2 n-1$. We will denote by σ the positive Radon measure on S which assigns to each open subset of S its Euclidean volume. We define $\alpha: \bar{B} \times B \rightarrow \mathbf{C}$ by

$$
\alpha(x, y)=[\sqrt{ }(1-\langle y, y\rangle)] /(1-\langle x, y\rangle)
$$

[^0]and we define $\beta: \bar{B} \times B \rightarrow(0, \infty)$ by $\beta=(\alpha \bar{\alpha})^{n}$. We recall that if ϕ is a function which is defined on the Cartesian product $E \times F$ of sets E and F and if $(x, y) \in E \times F$, then ϕ_{x} and ϕ^{y} are the functions which are defined on F and E respectively by $\phi_{x}(t)=\phi(x, t)$ and $\phi^{y}(s)=\phi(s, y)$. If $f \in L^{1}(\sigma)$, then we define $f^{\#}: B \rightarrow \mathbf{C}$ by
$$
f^{\#}(y)=(1 / \sigma(S)) \int f \beta^{y} d \sigma .
$$

We remark that if $f \in L^{1}(\sigma)$, then $f^{\#}$ is of differentiability class C^{∞}. If $1 \leqq p \leqq \infty$, then we will denote by $H^{p}(S)$ the class of all f in $L^{p}(\sigma)$ such that $f^{\#}$ is holomorphic on B. It follows that $H^{p}(S)$ is a closed subspace of the Banach space $L^{p}(\sigma)$, and hence that $H^{p}(S)$ is a Banach space with respect to the norm of $L^{p}(\sigma)$. The definition of $H^{p}(S)$ is motivated by the change of variables formula with regard to holomorphic homeomorphisms of B that is expressed in Lemma 3.4. If $n=1$, then $H^{p}(S)$ is the familiar Hardy class H^{p} (if we regard S as the unit circle in the complex plane).

As an application of Theorem 1.2 we will prove the following theorem.
1.5. Theorem. If (a) T is a linear isometry of the Banach space $H^{p}(S)$ onto itself and if (b) $2<p<\infty$, then there is a holomorphic homeomorphism Z of B and a unimodular complex number θ such that for every f in $H^{p}(S)$ we have

$$
\begin{equation*}
T f=\theta\left(\alpha^{z}\right)^{2 n / p} f \circ Z \tag{1.1}
\end{equation*}
$$

where z in B is defined by $Z(z)=0$.
1.6. The proof of Theorem 1.5 is in §3. We remark that if Z is any holomorphic homeomorphism of B and if $p \in[1, \infty)$, then the expression (1.1) defines a linear isometry of $H^{p}(S)$ onto itself. (This follows from Lemma 3.4. The holomorphic homeomorphisms of B are described in Lemma 3.2.) If $n \geqq 2$, if the hypothesis (a) of Theorem 1.5 holds, and if instead of (b) we have $1 \leqq p<2$, then we do not know if the conclusion of Theorem 1.5 holds. Furthermore if $n \geqq 2$, if $p \in[1, \infty)$, and if $p \neq 2$, then it is not known if there are any linear isometries of $H^{p}(S)$ into itself which are not onto.
2. The proof of Theorem 1.2.2.1. If $w \in \mathbf{C}$ and if $r \in(0, \infty)$, then we will denote by $D(w, r)$ the open disc in \mathbf{C} whose center is w and whose radius is r. The proof of the following lemma is in [1].
2.2. Lemma. Let ρ be a bounded positive measure on X, let τ be a bounded positive measure on Y, let $s \in(0, \infty)$, let $f \in L^{s}(\rho)$, and let $g \in L^{s}(\tau)$. If for some r in $(0, \infty)$ we have

$$
\int|1+z f|^{s} d \rho=\int|1+z g|^{s} d \tau
$$

for all z in $D(0, r)$, then

$$
\int|f|^{2} d \rho=\int|g|^{2} d \tau
$$

2.3. We will now prove Theorem 1.2. We will break the proof up into several statements.
2.3.1. If $f \in M$ and $f \neq 0$, then

$$
\begin{equation*}
\int|A(f g)|^{2}|A f|^{p-2} d \mu=\int|g|^{2}|f|^{p} d \lambda \tag{2.1}
\end{equation*}
$$

for all g in M.
For the purpose of proving statement 2.3.1 we let $d \rho=|f|^{p} d \lambda$ and $d \tau=|A f|^{p} d \mu$. If $g \in M$ and $z \in \mathbf{C}$, then

$$
\begin{aligned}
\int|1+z g|^{p} d \rho & =\int|f+z f g|^{p} d \lambda \\
& =\int|A f+z A(f g)|^{p} d \mu \\
& =\int|1+z A(f g) / A f|^{p} d \tau
\end{aligned}
$$

and hence by Lemma 2.2 we have

$$
\int|g|^{2} d \rho=\int|A(f g) / A f|^{2} d \tau
$$

which completes the proof of statement 2.3.1.
We remark that the proof of statement 2.3.1 did not use either the fact that $A 1=1$ or the fact that $p>2$.

We will denote by M^{-1} the collection of all invertible elements of M.
2.3.2. If $f \in M^{-1}$, then

$$
\begin{equation*}
\int|A f|^{p-2}|A g|^{2} d \mu=\int|f|^{p-2}|g|^{2} d \lambda \tag{2.2}
\end{equation*}
$$

for all g in M.
Statement 2.3.2 follows from statement 2.3.1 upon replacing g in the identity (2.1) by g / f.
2.3.3. If $f \in M$ and $g \in M$, then

$$
\int|1+z A f|^{p^{p-2}}|A g|^{2} d \mu=\int|1+z f|^{p-2}|g|^{2} d \lambda
$$

for all z in $D\left(0,1 /\|f\|_{\infty}\right)$.
For the purpose of proving statement 2.3 .3 we may assume that M is a closed subalgebra of $L^{\infty}(\lambda)$. Since $1+z f \in M^{-1}$ if $z \in D\left(0,1 /\|f\|_{\infty}\right)$, statement 2.3.3 follows from statement 2.3.2 upon replacing f in the identity (2.2) by $1+z f$.

We remark that the proof of statement 2.3.3 did not use the fact that $p>2$. 2.3.4. If $f \in M$ and $g \in M$, then

$$
\int|A f|^{2}|A g|^{2} d \mu=\int|f|^{2}|g|^{2} d \lambda
$$

Statement 2.3.4 follows from statement 2.3.3 and Lemma 2.2 (with $d \rho=|g|^{2} d \lambda, d \tau=|A g|^{2} d \mu$, and $\left.s=p-2\right)$.

It follows from statement 2.3.4 that if $f \in M$, then $A f \in L^{4}(\mu)$.
2.3.5. If a, b, c, and d are in M, then

$$
\int A a \overline{A b} A c \overline{A d} d \mu=\int a \bar{b} c \bar{d} d \lambda
$$

Statement 2.3.5 follows from statement 2.3 .4 by the method of polarization.
Statement 2.3.5 includes the second assertion of Theorem 1.2. Furthermore it follows from statement 2.3.5 that if $f \in M$ and $g \in M$, then

$$
\int|A(f g)-A f A g|^{2} d \mu=0
$$

which completes the proof of Theorem 1.2.
2.4. We will denote by \mathbf{Z}_{+}the class of all positive integers.
2.5. Corollary (of Theorem 1.2). If $f \in M$, then $\|A f\|_{\infty}=\|f\|_{\infty}$.

Proof. If $k \in \mathbf{Z}_{+}$, then

$$
\begin{aligned}
& \left(\int|A f|^{2 k} d \mu\right)^{1 / 2 k} \\
& \quad=\left(\int A\left(f^{k}\right) \overline{A\left(f^{k}\right)} d \mu\right)^{1 / 2 k} \\
& \quad=\left(\int|f|^{2 k} d \lambda\right)^{1 / 2 k}
\end{aligned}
$$

from which the desired conclusion follows upon letting k increase to ∞.
3. The proof of Theorem 1.5. 3.1. We will denote by $U(V)$ the class of all unitary transformations of V, and we will regard $\operatorname{SL}(2, \mathbf{R})$ as the class of all 2×2 matrices L of the form

$$
\mathrm{L}=\left[\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right]
$$

where a and b are in \mathbf{C} and $\operatorname{det}(L)=a \bar{a}-b \bar{b}=1$. We define $\gamma: \operatorname{SL}(2, \mathbf{R}) \times$ $S \times \bar{B} \rightarrow \bar{B}$ by
$\gamma(L, x, y)=[1 /(\bar{b}\langle y, x\rangle+\bar{a})](y-\langle y, x\rangle x)+[(a\langle y, x\rangle+b) /(\bar{b}\langle y, x\rangle+\bar{a})] x$ and we define $\delta: U(V) \times \operatorname{SL}(2, \mathbf{R}) \times S \times \bar{B} \rightarrow \bar{B}$ by

$$
\delta(W, L, x, y)=W \gamma(L, x, y)=\gamma(L, W x, W y)
$$

With regard to the definition of γ we remark that if $x \in S$ and if $y \in V$, then $y-\langle y, x\rangle x$ is the orthogonal projection of y into $V \ominus \mathbf{C} x$. Furthermore we
remark that $\delta_{(W, L, x)}$ is a holomorphic homeomorphism of B for every triple (W, L, x) in $U(V) \times \operatorname{SL}(2, \mathbf{R}) \times S$. We recall the following fact of the theory of functions on B.
3.2. Lemma. If Z is a holomorphic homeomorphism of B, then there is a triple (W, L, x) in $U(V) \times \operatorname{SL}(2, \mathbf{R}) \times S$ such that

$$
Z(y)=\delta(W, L, x, y)
$$

for all y in B.
3.3. The following lemma (which is well-known) follows from Lemma 3.2.
3.4. Lemma. If Z is a holomorphic homeomorphism of B, then

$$
\int f \circ Z d \sigma=\int f \beta^{Z(0)} d \sigma
$$

for every f in $L^{1}(\sigma)$.
3.5. The following lemma is due to R. Schneider [2] who stated it and proved it in terms of the Hardy spaces of torii. His proof applies as well to $H^{p}(S)$.
3.6. Lemma. If $p \in[1, \infty]$, if $g \in H^{p}(S)$ and $g \neq 0$, if $h \in L^{\infty}(\sigma)$, and if $g h^{k} \in H^{p}(S)$ for all k in \mathbf{Z}_{+}, then $h \in H^{\infty}(S)$.
3.7. We will now prove Theorem 1.5. For this purpose we recall that if $g \in H^{p}(S)$ and $g \neq 0$, then $g(y) \neq 0$ for σ almost all y in S. We let $a=T 1$, $d \mu=|a|^{p} d \sigma$, and define $A: H^{p}(S) \rightarrow L^{p}(\mu)$ by $A f=T f / a$. Since $H^{\infty}(S)$ is a subalgebra of $L^{\infty}(\sigma)$, it follows from Theorem 1.2 and Corollary 2.5 that if f and g are in $H^{\infty}(S)$, then $A f \in L^{\infty}(\sigma)$ and $A(f g)=A f A g$. It follows from this and Lemma 3.6 that if $f \in H^{\infty}(S)$, then $A f \in H^{\infty}(S)$ since $a(A f)^{k}=$ $a A\left(f^{k}\right)=T\left(f^{k}\right)$ and $T\left(f^{k}\right) \in H^{p}(S)$ for all k in \mathbf{Z}_{+}. Thus if A is restricted to $H^{\infty}(S)$, then A is an algebra homomorphism of $H^{\infty}(S)$ into $H^{\infty}(S)$. Furthermore we have $\|A f\|_{\infty}=\|f\|_{\infty}$ for all f in $H^{\infty}(S)$.

We define $\chi: S \times V \rightarrow \mathbf{C}$ by $\chi(x, y)=\langle x, y\rangle$, we let F be an orthonormal basis of V, and we define $Z: B \rightarrow V$ by

$$
Z(x)=\sum_{v \in F}\left[\left(A \chi^{y}\right)^{\#}(x)\right] y .
$$

It follows that if $(x, y) \in B \times V$, then $\langle Z(x), y\rangle=\left(A \chi^{y}\right)^{\#}(x)$. Hence Z (which is holomorphic) maps B into itself, and $\left(A \chi^{y}\right)^{\#}=\left(\chi^{y}\right)^{\#} \circ Z$ for all y in V. Thus if g is in the ring $\mathbf{C}\left[\chi^{y}: y \in V\right]$, then $(T g)^{\#}=a^{\sharp}(A g)^{\#}=a^{\sharp} g^{\#} \circ Z$, from which it follows that if $f \in H^{p}(S)$, then

$$
\begin{equation*}
(T f)^{\#}=a^{\#} f^{\#} \circ Z \tag{3.1}
\end{equation*}
$$

since $\mathbf{C}\left[\chi^{y}: y \in V\right]$ is dense in $H^{p}(S)$.
We now consider T^{-1}. It follows that there is a function b in $H^{p}(S)$ and a holomorphic transformation W of B into itself such that if $f \in H^{p}(S)$, then

$$
\begin{equation*}
\left(T^{-1} f\right)^{\#}=b^{\#} f^{\#} \circ W \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2) it follows that if $f \in H^{p}(S)$, then $f^{\#} \circ W \circ Z=f^{\#}=$ $f^{\#} \circ Z \circ W$, and hence Z is a holomorphic homeomorphism of B (whose inverse is W). Thus (by Lemma 3.2) Z is defined on \bar{B} as well as on B, Z maps S onto itself, and we have

$$
\begin{equation*}
T f=a f \circ Z \tag{3.3}
\end{equation*}
$$

for all f in $H^{p}(S)$.
We will now prove that for σ-almost all x in S we have

$$
\begin{equation*}
|a(x)|^{p}=\beta(x, z) \tag{3.4}
\end{equation*}
$$

where $z=W(0)$. If $f \in H^{p}(S)$, then by (3.3) and Lemma 3.4 we have

$$
\begin{aligned}
\int|f|^{p}|a|^{p} d \sigma & =\int|f \circ W \circ Z|^{p}|a|^{p} d \sigma \\
& =\int|f \circ W|^{p} d \sigma=\int|f|^{p} \beta^{z} d \sigma
\end{aligned}
$$

From this and Theorem 1.2 it follows that if f and g are in $\mathbf{C}\left[\chi^{y}: y \in V\right]$, then

$$
\int \overline{f g}|a|^{p} d \sigma=\int \overline{f g} \beta^{2} d \sigma
$$

from which it follows by the Stone-Weierstrass theorem that (3.4) holds for σ-almost all x in S. We will denote by $A(S)$ the class of all f in $C(S)$ such that $f^{\#}$ is holomorphic on B. With regard to the proof of (3.4) we remark that if $n \geqq 2$, then $\{|f|: f \in A(S)\}$ is not dense in $\{|f|: f \in C(S)\}$.

We let $\theta=a /\left[\left(\alpha^{z}\right)^{2 n / p}\right]$. Then $\theta \bar{\theta}=1, \theta \in H^{\infty}(S)$, and if $f \in H^{p}(S)$, then $T f=\theta\left(\alpha^{2}\right)^{2 n / p} f \circ Z$. Thus if $f=T^{-1} 1$, then $f \in H^{\infty}(S)$ and $\bar{\theta}=\left(\alpha^{2}\right)^{2 n / p} \circ Z$, and hence θ is a constant. This completes the proof of Theorem 1.5.

References

1. F. Forelli, The isometries of H^{p}, Can. J. Math. 16 (1964), 721-728.
2. R. B. Schneider, Isometries of $H^{p}\left(U^{n}\right)$, Can. J. Math. 25 (1973), 92-95.

University of Wisconsin, Madison, Wisconsin

[^0]: Received January 3, 1972.

