EXPERIMENTAL STUDY ON DIRECT SHEAR STRENGTH OF SEA ICE

by

HIROSHI SAEKI, TOSHIYUKI ONO

Department of Civil Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Japan 060

NIU EN ZONG

Ministry of Communication, The People's Republic of China

NAOKI NAKAZAWA

Pacific Consultants Co Ltd, Mainichikaikan, Kita-4, Nishi-6, Kita-ku, Sapporo, Japan 060

ABSTRACT

When structures such as oil drilling rigs are constructed on or through the ice plate in coastal and offshore regions, the shear strength of sea ice must be estimated to determine the loading on these structures. Testing methods for shear strength must be established so that shear strength of sea ice in various conditions can be determined.

The authors have been conducting, for five years, direct shear strength experiments using sea ice samples from the Okhotsk Sea coast. Physical characteristics of sea ice, including shear strength, depend to a great extent on such properties as salinity, porosity, grain size, etc; thus, there is variation in the test results of five years experimentation since the samples obtained varied from year to year.

The following conclusions were drawn from this

experiment:

i) Under certain conditions the relation between shear strength and vertical stress can be represented by Coulomb's equation of soil; ie,

$$\tau_S = C^* + \sigma_v \cdot \tan \Phi^*$$

where τ_S : shear strength, C^* : apparent cohesion (shear strength at $\sigma_v = 0$), Φ^* : angle of internal friction, σ_v : vertical stress

- ii) The shear strength of sea ice increases. approaching a constant, with decreasing ice temperature.
- iii) The shear strength decreases with increasing ice shear area; an analogous relation exists in concrete.
- iv) The shear strength is not greatly dependent on either the shear velocity or stress rate.
- v) The shear strength is greater and generally increases more rapidly with decreasing ice temperatures in planes perpendicular to the ice growth direction than in planes parallel to it.
- vi) Two types of failure occurred in the sea ice samples. In the case of (sample diameter)/(sample length) less than 2 (d/1 < 2), the failure was induced by shear only. With d/2 > 2, the failure was not solely caused by shear since the existence of a small gap between the ice sample and shear box introduced a bending moment.

INTRODUCTION

In recent years, the development of seabed resources and the industrialization of cold regions have led to hydraulic structures, such as oil drilling platforms and artificial islands, being constructed in coastal and offshore areas exposed to sea ice pressure. These structures are being constructed directly on the ice sheet as well as founded on the seabed. Important in their design is estimation of the shear strength of sea ice. Shear strength is used in the calculation of the load-bearing capacity of the ice sheet as well as in estimating the horizontal pressure on structures built through the ice sheet. Testing methods to accurately estimate the shear strength of sea ice must be established, so that shear strength in various conditions can be determined.

Experiments were conducted in order to clarify the effects of the following:

- i) the ratio of the diameter (d) to length (1) of the sea ice sample (d/1)
 - ii) diameter of the sea ice sample (d)
 - iii) shear velocity (6s)
 - iv) shear stress rate (†s)
 - v) sea ice temperature (T°C)
 - vi) vertical stress (σ_v)
 - vii) growth direction of sea ice

TESTING METHOD AND APPARATUS

Experimental Apparatus

The experimental setup diagram is shown in Figure The apparatus was designed to allow for the following:

- i) use of variously sized sea ice samples
 ii) variable vertical stress
- iii) variable shear velocity
- iv) variable shear stress rate

Testing Procedure

A horizontally movable shear box was used. Shear force was supplied by a hydraulic jack. The sea ice sample was placed in the circular hole in the shear box. Shear failure tests were conducted in this box. Static vertical loading was accomplished by placing weights on the sea ice sample via the steel cap. The shear velocity (thus, shear stress rate) was controlled by varying the hydraulic pressure applied to the jack.

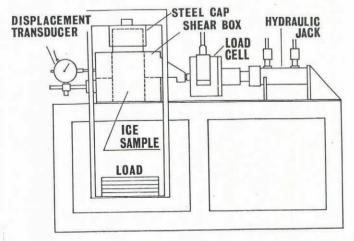


Fig.1. Diagram of the experimental setup.

Instrumentation

The sea ice sample was held immobile by the fixed lower half of the shear box. Shear velocity was measured using a standard displacement transducer attached to the movable upper half of the shear box. The shearing force was measured using a standard load cell connected to the movable upper half of the shear box. The vertical load was measured by weighing the added weights, steel cap and associated structure.

SEA ICE TEST SAMPLE

Cylindrical ice samples were used because they are easy to obtain using a core drill and are less likely to become damaged. Ideally, rectangular ice samples are desirable to obtain strain rates uniform over the entire shear plane; thus, directly relating the effects of strain rate to the direct shear strength of sea ice. However, in practice it is very difficult to obtain rectangular prismatic samples that properly fit the rectangular hole of the shear box.

The original ice block was sawed from the Okhotsk Sea ice field (coastal). Sample diameters were 10.0 cm and 15.0 cm, thicknesses were 3.0 cm, 5.0 cm, 10.0 cm and 15.0 cm. After a consideration of the grain size (8 - 12 mm in diameter) and ice sheet thickness (40 - 50 cm) of this sea ice, the standard sample's dimensions were chosen: diameter 10.0 cm, thickness 15.0

Figure 2 shows the coring directions of the sea ice sample: vertical and horizontal in relation to the upper

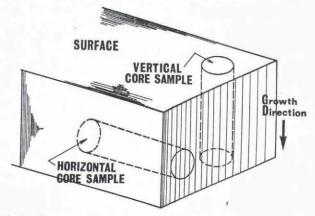


Fig.2. Diagram of the coring directions of the sea ice sample.

surface. The vertical core samples were tested perpendicular to the ice growth direction (GDL). The The vertical core horizontal core samples were tested parallel to the ice growth direction (GD//).

TEST RESULTS

Diameter to length ratio effects

Figure 3 shows the relation between the shear strength (τ_s) and the diameter (d) to length (1) ratio (d/1) of the sea ice sample. Although the test results exhibit scatter, it can be seen that the smaller the ratio

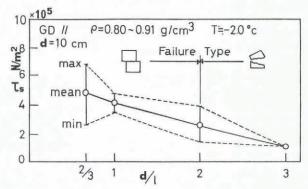


Fig.3. The relation between 7s and d/1.

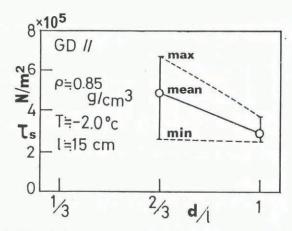


Fig.4. The relation between Ts and d.

(d/1) becomes, the larger the value of τ_s becomes. Post experiment examinations of the fractured specimens showed two types of failure. In the case of d/1 < 2, the failure was induced by shear only; with $d/\ell > 2$, the failure was not caused by shear alone since the existence of a small gap between the ice sample and shear box introduced a bending moment.

Shear area effects

Figure 4 shows the effects of the shear area on shear strength; ie the larger the ice sample diameter the smaller the value of τ_8 became. An analogous relation exists in concrete. Future tests with larger sample diameters will have to be conducted to establish the relation between the τ_{S} of a test sample and the τ_{S} of the actual ice sheet.

Shear velocity and stress rate effects

Since ice is a visco-elastic solid, its shear strength varies with the strain rate $\dot{\epsilon}$ and stress rate $\dot{\tau}_s$; thus, selection of the strain rate or stress rate is important when testing ice. When using cylindrical samples in direct shear tests, the strain rate over the plane of shear failure is not uniform; therefore, the authors determined

the relation between τ_S and shear velocity $\hat{\mathbf{s}}s$.

The three values, the strain rate $\hat{\boldsymbol{\epsilon}}$, stress rate $\hat{\boldsymbol{\tau}}_S$ and shear velocity $\hat{\mathbf{s}}s$, are defined by the following equations:

strain rate :
$$\dot{\epsilon}$$

$$\dot{\epsilon} = \frac{\Delta l}{l} \cdot \frac{1}{t}$$
(1)

where Δl = strain, l = shear length, t = time to shear

stress rate:
$$\dot{\tau}_S$$

 $\dot{\tau}_S = \tau_S/t$ (2)

where τ_S = direct shear strength, t = time to shear

shear velocity: 8s

$$\delta s = \Delta l / t$$
 (3)

where Δl = strain, t = time to shear failure Figure 5 shows the effects of shear velocity 8s on the shear strength. It can be seen that the shear strength au_{S} is relatively insensitive to changes in shear velocity in the range 0.01 to 1.0 mm/s; $\tau_{\rm S}$ broadly peaks about 0.1 mm/s.

Converting the sample's circular cross section to an equivalent square cross section produces an equivalent shear length B, where B is derived as follows:

$$B = \sqrt{\pi \cdot} d \cdot 2$$

where d = diameter of the ice sample.

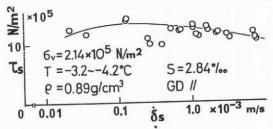


Fig.5. Effects of shear velocity 6s on the shear strength 7s.

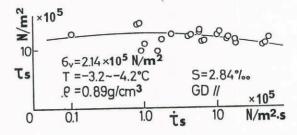


Fig.6. Effects of shear stress rate 's on the shear strength

Using this shear length B in Equation 1 produces a strain rate of è of 0.001 sec⁻¹ at the maximum shear strength τ_S . This value coincides with the rates found in compressive strength tests.

The relation between τ_s and shear stress rate τ_s is shown in Figure 6. The shear strength τ_s is relatively insensitive to changes in shear stress rate $\dot{\tau}_{S}$ in the range 0.1 x 10⁵ to 10 x 10⁵ N/m²·s.

Sea ice temperature effects

In general, the strength of ice depends on its temperature. The experimental relation between the shear strength and ice temperature is shown in Figure 7. Descriptively, the figure can be divided into two temperature regions: -2°C > T > -6°C and T < -6°C. The shear strength clearly increases between -2°C and -6° C, but generally remains constant or decreases for T < -6° C. This phenomenon for T < -6° C, the remaining constant or decreasing of τ_s , appears to be caused by the dilitancy of sea ice.

Vertical stress effects

The experimental relations between the shear strength $\tau_{\rm S}$ and vertical stress $\sigma_{\rm v}$, as a function of ice temperature T, are shown in Figure 8(a) for 1981 and in Figure 8(b) for 1982. As can be seen, $\tau_{\rm S}$ increases with decreasing ice temperature T. τ_s increases linearly with increasing vertical stress σ_v for ice temperatures

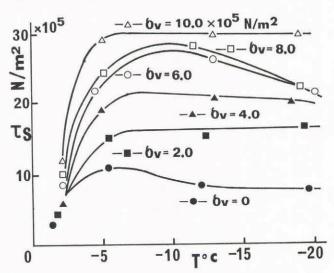


Fig.7. Relation of τs and T as a function of σ_v.

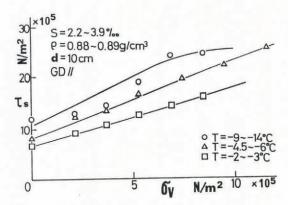


Fig.8(a). Relation of τ_s and σ_v as a function of T (1981).

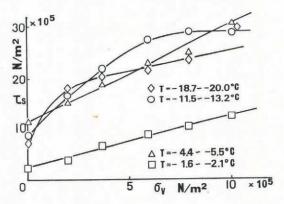


Fig.8(b). Relation of T s and σ_{v} as a function of T (1982).

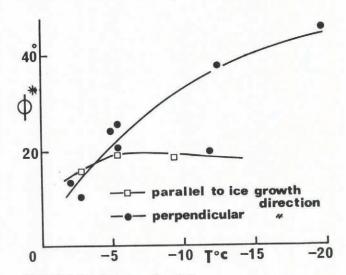


Fig.9. Relation between φ* and T.

higher than about -6° C; at lower ice temperatures (-9° C to -14° C in Figure 8(a) and -11° C to -20° C in Figure 8(b) the relation between τ_s and σ_v is not linear. The results (at temperatures higher than about -6° C) coincide with Coulomb's equation for direct shear strength; i.e., $\tau_{\rm S}$ and $\sigma_{\rm v}$ are linearly dependent. Coulomb's equation:

$$\tau_{\rm s} = C^* + \sigma_{\rm v} \cdot \tan \Phi^*$$

where C* = apparent cohesion, ϕ^* = angle of internal friction, σ_v = vertical stress.

Relation between of and T

The relation between the angle of internal friction φ* and ice temperature T is shown in Figure 9. It can be seen that φ* increases with decreasing ice temperature when the shear force is applied perpendicular to the

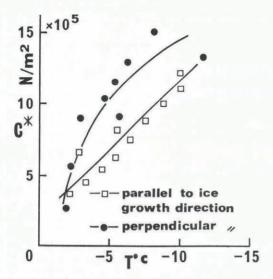


Fig.10. Relation between C* and T.

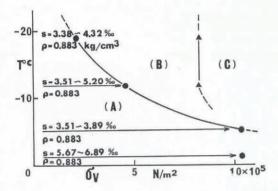


Fig.11. Application envelope of Coulomb's equation.

growth direction. With the shear force applied parallel to the growth direction, o* tends to remain almost constant.

Growth direction effects on C*

Figure 10 shows the results of the growth direction effect test on C*; ie, τ_S at $\sigma_v=0$. Although the test results exhibit scatter, it can be seen that C* in shear planes perpendicular to the growth direction is generally greater than C* in planes parallel to the growth direction (at equivalent sample temperatures). With

TABLE 1. RESULTS OF FIVE YEARS OF SEA ICE EXPERIMENTS.

YEAR	ρ	S (./**)	c* x 105	ф*	T (*C)	0 × 105
1978	0.850	2.50~6.00	1 3.40	-	-2.0	0
			4.30	-	-3.0	0
			5.30	-	-4.0	0
			6.20	-	-5.0	0
			7.10	-	-6.0	0
			8.00	-	-7.0	0
			9.00	-	-8.0	0
			9.90	-	-9.0	0
1979	0.860	3.60~6.30	5.30	-	-2.0	0
			10.50	-	-4.0	0
			12.30	-	-6.0	0
			15.40	-	-8.0	0
1980	0.880	2.00	9.68	-	-6.08.0	0
1981	0.880	2.20-3.90	1 6.60	1101	-2.03.0	0 - 8.4
		2.40~3.40	8.20		-4.5~ -6.0	0 -11.6
		2.25	11.40		-8.010.5	0 - 8.5
		2.40-3.90	9.00		-2.03.0	0 ~ 8.5
		0.89	9.20		-4.56.0	0 -11.6
		3.28	12.60		-9.014.0	0 - 8.5
1982	0.883	5.67-6.89	1 2.60		-1.62.1	
		3.51-3.89	11.20		-4.4 5.5	0 -10.2
		3.51~5.20	8.80		-11.513.2	0 -10.2
		3.38-4.32	7.70		-18.7~-20.0	0 ~10.2
0-10	/cm3),	C*(N/m2)	, \$2,(-)		(N/m^2)	0-10.2

decreasing sample temperatures, the C* in planes perpendicular to the growth direction tends to increase more rapidly than in planes parallel to the growth direction.

CONCLUSION

The application envelope of Coulomb's equation

As determined from the results of five years of ice experiments summarized in Table 1, the application envelope of Coulomb's equation is shown in Figure 11. In region A, Coulomb's equation is applicable for the determination of the shear strength of sea ice. The shear strength in region C is independent of vertical stress $\sigma_{\mathbf{v}}$. In region B, the relation between $\tau_{\mathbf{S}}$ and $\sigma_{\mathbf{v}}$ is not linear because of the dilitancy of sea ice.

Ice temperature

The shear strength of sea approaching a constant, with decreasing ice temperature (see TEST RESULTS - 4).

Shear velocity and stress rate

The shear strength is not greatly dependent on either the shear velocity or stress rate (see TEST RESULTS - 3).

Growth direction of sea ice

The shear strength in planes perpendicular to the growth direction is generally greater than in planes parallel to the growth direction (see TEST RESULTS -

Shear Area

The shear area experimental results (see TEST RESULTS - 2) indicate that the shear strength decreases with increasing shear area. Analogous relation exists in concrete.

Diameter to length ratio

The smaller the ratio (d/1) becomes, the larger the value of τ_S becomes (see TEST RESULTS - 1).

ACKNOWLEDGEMENT

The authors express their appreciation to E. Suenaga for his assistance in the preparation of this