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A note about charts built by Eriksson-Bique
and Soultanis on metric measure spaces

Luca Gennaioli and Nicola Gigli

Abstract. This note is motivated by recent studies by Eriksson-Bique and Soultanis about the con-
struction of charts in general metric measure spaces. We analyze their construction and provide an
alternative and simpler proof of the fact that these charts exist on sets of finite Hausdorff dimension.
The observation made here offers also some simplification about the study of the relation between the
reference measure and the charts in the setting of RCD spaces.

1 Introduction

In the recent, very interesting, paper [ES21], the authors provided a general con-
struction of charts on metric measure spaces, key features of their notion being:
the compatibility with Sobolev calculus (and thus in particular with the differential
calculus as developed by Cheeger in [Che99] and by the second author in [Gig15]), a
very general existence result, and notable consequences in terms of the structure of
the Sobolev spaces (see also [ERS22a, ERS22b]). An example in this latter direction is
the proof that the space W 1, p(X), p ∈ (1,∞), is reflexive as soon as the space X can be
covered by a countable number of sets with finite Hausdorff measure (the “previous
best” result appeared in [ACD14] and required the metric to be locally doubling).

A crucial step in [ES21] is the proof that if φ ∶ E ⊂ X → R
n is a “p-independent

weak chart,” then n is bounded from above by the Hausdorff dimension of E: more
precisely, the authors prove the following.

Proposition 1.1 Suppose φ ∈ Lip(X,Rn) is p-independent on U. Then n ≤ dimH(U).

For the precise meaning of “p-independent weak chart,” we refer to Definition 2.23;
for the purpose of this introduction, we shall limit ourselves to point out that in the
smooth setting, this would be equivalent to requiring the image of the differential of
φ at every point to span the whole tangent space of Rd . Starting from this result, the
existence of actual charts is obtained via a suitable maximality argument.

Interestingly, this upper bound is proved via means that have, in principle, little
to do with analysis in nonsmooth setting: key ingredients are indeed the elliptic
regularity result in [DR] and the study of the structure of the set of nondifferentiability
points of Lipschitz functions in [AM16].
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This sort of procedure has a recent analog in the theory of RCD spaces. Let us
recall indeed that, in [MN14], it has been proved that finite-dimensional RCD spaces
admit bi-Lipschitz charts covering almost all the space. In [DMR, KM18, MN14], no
information about the behavior of the reference measure with respect to these charts
has been provided: this topic has been later studied in [KM18] where, relying in a
way or another on [DR] and [AM16], it has been proved that φ∗(m∣E) ≪ L n for a
Mondino–Naber chart φ ∶ E → R

n .
Of particular interest for the discussion here is the fact that in [GP21] only the

results in [DR] have been used, whereas in [KM18] also those in [AM16] were
necessary. Comparing this with the results in [ES21], it is natural to wonder whether
the use of [AM16] is really crucial or can be avoided: this is the question motivating
the present note. Of course, there is nothing wrong in using a well-established result in
doing research; our study is simply motivated by the desire of better understanding the
interesting construction done in [ES21]. The result of our investigation is that [AM16]
is not really needed and the line of thought presented here simplifies not only some
of the steps done in [ES21], but also some of those in [GP21] (see Section 3).

Another remark that we make, consequence of the studies in [ES21], is that the
dimension of the (co)tangent module (in the sense of [Gig15]) on a subset E ⊂ X is
bounded from above from the Hausdorff dimension of E (see Remark 3.6).

2 Preliminaries

2.1 Test plans and Sobolev functions

In this section, we shall recall the definition of Sobolev space following the approach in
[AGS14]. We say that a triple (X, d,m) is a metric measure space if (X, d) is a complete
and separable metric measure space andm is a Radon measure which is finite on balls.
For the rest of the paper, p, q will be conjugate exponents, namely, 1

p + 1
q = 1.

Definition 2.1 We say that a probability measure π on C([0, 1]; X) is a q-test plan if
it is concentrated on AC([0, 1]; X) and the following two conditions are met:
(1) ∃ C = C(π) > 0 such that et ♯π ≤ Cm, where m is the reference measure on X

and et ∶ C([0, 1]; X) → X is the evaluation map et(γ) = γt .
(2) The following quantity, called kinetic energy, is finite:

K.E.(π) = ∫ ∫
1

0
∣γ̇t ∣q dt dπ(γ),

where ∣γ̇t ∣ = limh→0
d(γ t+h ,γ t)

h is the metric derivative of the curve γ.
With this notion at hand, we can introduce the Sobolev space W1, p(X, d,m).

Definition 2.2 We say that a function f ∶ X → R belongs to the Sobolev space
W 1, p(X, d,m) if f ∈ Lp(m) and if

∫ ∣ f (γ1) − f (γ0)∣dπ(γ) ≤ ∫ ∫
1

0
G(γt)∣γ̇t ∣dt dπ(γ) ∀π q-test plan,(2.1)

with G ∶ X → R+ being a Borel function belonging to Lp(m).
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Remark 2.3 It is easy to see that the set of functions G satisfying (2.1) is a closed
convex set; hence, it admits an element of minimal norm: we will call such an element
p-weak upper gradient and we will denote it by ∣D f ∣p . With a little bit of work, it is
possible to prove that the function ∣D f ∣p is such that ∣D f ∣p ≤ G m-a.e. for every other
G satisfying (2.1).

2.2 The language of Lp-normed L∞-modules

We now switch our attention to the theory of Lp(m)-normed L∞(m)-modules
developed by the second author in [Gig18]: the following material can be found there,
unless otherwise stated.

Definition 2.4 (Lp(m)-normed module) We say that a Banach space (M, ∥⋅∥M)
is an Lp(m)-normed L∞(m)-module if there exists a bilinear continuous map ⋅ ∶
L∞(m) ×M → M which makes M a module with unity over the ring of L∞(m)
functions and another map ∣ ⋅ ∣ ∶ M �→ Lp(m) with nonnegative values such that

∥∣v∣∥Lp(m) = ∥v∥M ,(2.2)

∣ f ⋅ v∣ = ∣ f ∣∣v∣ m − a.e.(2.3)

for all v ∈ M, f ∈ L∞(m). We call ⋅ the multiplication and ∣ ⋅ ∣ the pointwise norm.

Remark 2.5 Note that the pointwise norm is continuous thanks to the triangular
inequality; in fact,

∥∣v∣ − ∣w∣∥Lp(m) ≤ ∥∣v − w∣∥Lp(m) = ∥v − w∥M .

Moreover, with a little bit of abuse of notation, we will write f v instead of f ⋅ v and
write Lp(m)-normed module instead of Lp(m)-normed L∞(m)-module.

A related interesting concept is the one of localization of a module; indeed, it is
easy to see that the following object

M∣E ∶= {χEv ∶ v ∈ M}

is a submodule of M and it clearly inherits the normed structure from M.

Definition 2.6 (Local independence) Let M be an Lp(m)-normed L∞(m)-module
and A ∈ B(X) with m(A) > 0, and we say that a family v1 , ..., vn ∈ M is independent
on A if, for every f1 , ..., fn ∈ L∞(m),

n
∑
i=1

f iv i = 0 m − a.e. on A �⇒ f i = 0 m − a.e. on A ∀i = 1, ..., n.(2.4)

In the spirit of linear algebra, we shall also define what is the span of a set of vectors.

Definition 2.7 (Span) Let M be an Lp(m)-normed L∞(m)-module, V ⊂ M

a subset, and A ∈ B(X). We denote with SpanA(V) the closure in M of the
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L∞(m)-linear combinations of elements of V. Moreover, we say that SpanA(V) is
the space generated by V on A.

After this definition, the one of basis and of dimension for an Lp(m)-normed
L∞(m) arise naturally.

Definition 2.8 We say that a finite family v1 , ..., vn ∈ M is a basis on A ∈ B(X) if it
is independent on A and SpanA{v1 , ..., vn} = M∣A. If the above happens, we say that
the local dimension of M on A is n and in case M has not dimension k for any k ∈ N,
we say that it has infinite dimension.

It can be proved that the notion of dimension is well posed, namely, if we have
v1 , ..., vn generating M on a set A and w1 , ..., wm are independent on A, then n ≥ m.
Ultimately, this means that two different bases must have the same cardinality.

Building over these tools, we have the following proposition.

Proposition 2.9 Let M be an Lp(m)-normed L∞(m)-module. Then there is a unique
partition {E i}i∈N∪{∞} of X, up to m-a.e. equality, such that:
(1) for every i ∈ N such that m(E i) > 0, M has dimension i on E i ,
(2) for every E ⊂ E∞ with m(E) > 0, M has infinite dimension on E.

2.3 Pullback of a normed module

We now introduce the notion of pullback module which, roughly speaking, is nothing
but a module over a space X obtained by pulling back a module on another space Y
via a certain map.

Definition 2.10 (Pullback) Let (X, dX ,mX) and (Y, dY ,mY) be metric measure
spaces, φ ∶ X �→ Y a map of bounded compression, and M an Lp(mY)-normed
module. Then there exists a unique, up to unique isomorphism, couple (φ∗M, φ∗)
with φ∗M being an Lp(mX)-normed module and φ∗ ∶ M �→ φ∗M being a linear and
continuous operator such that:
(1) ∣φ∗v∣ = ∣v∣ ○ φ holds mX-a.e., for every v ∈ M,
(2) the set {φ∗v ∶ v ∈ M} generates φ∗M as a module.

At this point, one can try to understand what is the relation between the dimension
of a module and the one of its pullback via the map φ and in order to do so we need
to introduce a sort of left inverse of the pullback operator φ∗. To do so, let us assume
that φ♯mX = mY to simplify the exposition.

For f ∈ Lp(mX) nonnegative, we put

Prφ( f ) ∶= dφ♯( fmX)
dmY

,(2.5)

and in a natural way, we set Prφ( f ) ∶= Prφ( f +) − Prφ( f −) for general f ∈ Lp(mX).
For the next proposition, we need to recall the classical Disintegration theorem.

The statement below is taken from [AGS08, Theorem 5.3.1] (see also [Fre06, Chapter
452] and [Bog07, Chapter 10.6]).
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Theorem 2.11 (Disintegration) Let X, Y be complete and separable metric spaces, let
μ ∈ P(X), let π ∶ X → Y be a Borel map, and let ν = π♯μ ∈ P(Y). Then there exists a
ν-a.e. uniquely determined Borel family of probability measures {μy}y∈Y ⊆ P(X) such
that μx(X/π−1({y})) = 0 for ν-a.e. y ∈ X and

∫
X

f dμ = ∫
Y
(∫

π−1({y})
f dμy)dν(y)(2.6)

for every Borel map f ∶ X → [0,+∞].

Remark 2.12 Two remarks are in order here: the first one is that the above theorem
in [AGS08] is stated for Radon separable metric space, but in our setting, it suffices
to state it for complete and separable ones (which in particular are Radon), and the
second is that the result easily extends to any f ∶ X → R Borel provided, for example,
that f ∈ L1(μ).

We now recall some properties of the map Prφ .

Proposition 2.13 The operator Prφ ∶ Lp(mX) �→ Lp(mY) is linear, continuous, and

Prφ( f )(y) = ∫
X

f (x)dmy(x) mY − a.e., ∀ f ∈ Lp(mX),(2.7)

where y ↦ my denotes the disintegration of mX with respect to the map φ. Finally, it
holds

∣Prφ( f )∣ ≤ Prφ(∣ f ∣) mY − a.e.(2.8)

Proof Linearity is a consequence of the linearity of the integral. Formula (2.8) is
also trivial, while for (2.7), we have, for any A ∈ B(Y),

∫
A

Prφ( f )(y)dmY = ∫
A

dφ♯( f dmX) = ∫
φ−1(A)

f (x)dmX ,

and by the properties of the disintegration, we have

∫
φ−1(A)

f (x)dmX = ∫
Y
∫

φ−1(A)
f (x)dmy(x)dmY(y) = ∫

A
∫

X
f (x)dmy(x)dmY(y),

therefore proving (2.7).
To prove continuity, note that the case p = ∞ is due to formula (2.8), while

continuity in Lp(m) for every p ∈ [1,+∞) follows from the following:

∫
Y
∣Prφ ∣p dmY = ∫

Y
∣∫

X
f (x)dmy(x)∣

p

dmY(y) ≤ ∫
Y
∫

X
∣ f (x)∣p dmy(x)dmY(y) = ∥ f ∥p

Lp(m) ,

where we used Jensen’s inequality and the properties of the disintegration. ∎
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In the case of a general Lp(mX)-normed module, the continuous operator Prφ ∶
φ∗M ∶�→ M can be characterized by the following properties:

gPrφ(v) = Prφ(g ○ φv), ∀v ∈ M ∀g ∈ L∞(mX),(2.9)

Prφ(gφ∗v) = Prφ(g)v , ∀v ∈ M ∀g ∈ L∞(mX),(2.10)

with the bound ∣Prφ(V)∣ ≤ Prφ(∣V ∣) still holding mY-a.e. for every V ∈ φ∗M.
With these objects, we are now able to describe the structure of the pullback

module; in particular (as one can expect by reasoning via pre-composition), the
pullback of an n-dimensional module M over E is an n-dimensional module over
φ−1(E) (see also [Pas18]).

Proposition 2.14 Let M be an Lp(mY)-normed module over the m.m.s. (Y, dY , μ),
and let E ∈ B(Y) be a Borel set where M has dimension n, with {v1 , ..., vn} being a
basis. Let (X, dX ,m) be another m.m.s., and let φ ∶ X → Y be a Borel map such that
φ♯mX = mY, then {φ∗v1 , ..., φ∗vn} is a basis of φ∗M over φ−1(E).

Proof We first prove that {φ∗v1 , ..., φ∗vn} generate φ∗M over φ−1(E).
First recall that φ∗M is generated (as module) by {φ∗v ∶ v ∈ M} =∶ V . Let us show

that V ⊆ Spanφ−1(E){φ∗v1 , ..., φ∗vn}: pick w ∈ V , then there exists v ∈ M such that
w = φ∗v so that there exists (A j) j ⊆ B(X) partition of E and (g j

i ) j∈N ⊂ L∞(mY) ∀i =
1, ..., n such that

χA j v =
n
∑
i=1

g j
i v i ∀ j ∈ N.

Using the linearity of the pullback map and the fact that φ∗(gv) = g ○ φφ∗v for all
v ∈ M, g ∈ L∞(mY), we get

χφ−1(A j)w =
n
∑
i=1

g j
i ○ φφ∗v i .

Finally, since the pullback module has a natural structure of Lp(m)-normed L∞(m)-
module, we get that Spanφ−1(E){φ∗v1 , ..., φ∗vn} is closed, proving the first result.

We now turn to local independence: assume by contradiction {φ∗v1 , ..., φ∗vn}
are not independent on φ−1(E), then there exist f1 , ..., fn ∈ L∞(mX) such that
∑n

i=1 f i φ∗v i = 0 m-a.e. with (upon relabeling indexes) ∣ f1∣ > 0 m-a.e. on some subset
Ẽ of positive measure. Without loss of generality, possibly considering a smaller set,
we shall assume f1 > 0 m-a.e. so that

n
∑
i=1

f i φ∗v i = 0 m − a.e. on Ẽ �⇒
n
∑
i=1

Prφ( f i)v i = 0 m − a.e. on Ẽ .

However, note that Prφ( f1) > 0 on some set of positive mY measure, contradicting the
independence of the v i s. ∎

Definition 2.15 We say that the space of L∞(m)-linear and continuous maps
L ∶ M → L1(m) is the dual module of the module M, and we shall denote this space
by M∗.
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Remark 2.16 Being M Lp(m)-normed, we can endow M∗ with a natural structure
of Lq(m)-normed module.

2.4 The cotangent and tangent modules

We are now in position to speak about the differential of a Sobolev function as the
following proposition shows.

Proposition 2.17 Let (X, d,m) be a metric measure space, then there exists a unique
(up to unique isomorphism) couple (Lp(T∗X), dp) where Lp(T∗X) is an Lp(m)-
normed L∞(m)-module and dp ∶ W 1, p(X) → Lp(T∗X) is a linear and continuous
operator such that:
(1) ∣dp f ∣ = ∣D f ∣p m-a.e. for every f ∈ W 1, p(X),
(2) the set {d f ∶ f ∈ W 1, p(X)} generates Lp(T∗X).

Remark 2.18 We will call 1-forms the elements of Lp(T∗X), in analogy with the
section of the cotangent bundle on a Riemannian manifold.

Definition 2.19 We denote with Lq(TX) the dual module of Lp(T∗X), and we call
its elements vector fields or vectors.

Besides the differential of a Sobolev function introduced in Proposition 2.17, one
can give another definition which exploits the fact that the map is Lipschitz and such
that φ♯mX ≤ CmY for some C¿0 (namely a map of bounded compression): this class of
maps is that of bounded deformation. In this direction, we need to recall the notion
of pullback of forms: in order to distinguish it from the pullback of a module, we shall
proceed denoting with ω ↦ [φ∗ω] the pullback map and with φ∗ the pullback of
1-forms which is the following.

Definition 2.20 Let φ ∶ X → Y be a map of bounded deformation, then we define
φ∗ ∶ Lp(T∗Y) → Lp(T∗X) to be the linear map such that φ∗(d f ) = d( f ○ φ) for all
f ∈ W 1, p(Y) and φ∗(gω) = g ○ φφ∗ω for all g ∈ L∞(Y) and ω ∈ Lp(T∗Y).

Remark 2.21 It is easy to see that, thanks to the regularity properties of φ, the
pullback of 1-forms φ∗ is well defined.

Definition 2.22 Given φ ∶ X �→ Y of bounded deformation, we define for all p ≥ 1
its p-differential as an operator dpφ ∶ Lq(TX) �→ φ∗(Lp(T∗Y))∗ such that

[φ∗ω](dpφ(v)) = φ∗ω(v) ∀v ∈ Lq(TX), ∀ω ∈ Lp(T∗Y).(2.11)

In the recent work [ES21], the authors provide some “charts” over Borel sets (E i)i∈N
partitioning the metric measure space m-a.e.: we will briefly recall here the definition.
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Definition 2.23 We say that φ ∶ X → R
N is an EBS chart over the Borel set E if it is

a Lipschitz map with the following properties:
(1) (p-independence) ess inf v∈SN−1 ∣D(v ⋅ φ)∣p > 0 m-a.e on E.
(2) (maximality) There is no other Lipschitz map φ ∶ X → R

M with M > N which is
p-independent on a subset of E of positive measure.

The authors proved that the condition of p-independence over a set E is equivalent
to the fact that the Lp(T∗X) module over E is generated by the differentials of the
components of the chart: in other words, {dpφ1 , ..., dpφN} is a basis for Lp(T∗X)∣E
(see Lemma 6.3 in [ES21]), and as a consequence of Theorem 1.4.7 in [Gig18], we are
able to deduce that Lq(TX)∣E is also an N-dimensional normed module.

3 Main result

In this section, we give an alternative proof to Proposition 4.13 in [ES21]. First, we
remark that with dpφ, we will denote the differential of a map of bounded deforma-
tion in the sense of Definition 2.22, whereas with dp f , we denote the differential in
the sense of Proposition 2.17. Lastly, let us assume that m is a finite measure: we can
do so because of the inner regularity of the measure m. Indeed, if for a Borel map
ψ ∶ X → R

n we have ψ♯(m∣Ek) << L n for every k ∈ N with (Ek)k compact, such that
Ek ⊆ Ek+1 and m(E/ ∪k Ek) = 0, then ψ♯(m∣E) << L n .

We begin with the following simple lemma, which follows standard arguments in
linear algebra.

Lemma 3.1 Let M be an Lp(m)-normed module, and let M∗ be its dual module.
Assume that M has dimension n over E: then {v1 , ..., vn} and {ω1 , ..., ωn} are basis of
M∗ and M (respectively) over E if and only if det[ω i(v j)]i j > 0 m-a.e. on E.

Proof Define A i j ∶= [ω i(v j)]i j , and let us assume first that det A > 0 m-a.e.
It is clearly sufficient to prove the independence: assume by contradiction that
∑n

i=1 g iv i = 0 m-a.e. on some subset B of positive measure, for some g1 , ..., gn which
are not all zero on B (in the measure theoretic sense). Then consider g ∶= (g1 , ..., gn)
and note that Ag ≠ 0 m-a.e. on B because of the condition on the determinant.
However, (Ag)i = ∑n

j=1 g jv j(ω i)=0 m-a.e. on B for every i = 1, ..., n, which is clearly a
contradiction. This argument trivially applies for {ω1 , ..., ωn} as well by considering
the transpose of A.

Assume now that {ω1 , ..., ωn} and {v1 , ..., vn} are basis over E of M and M∗,
respectively, and by contradiction, let det A = 0 m-a.e. on a Borel subset C of positive
measure. Then there exists a further measurable subset (which we will not relabel)
C of positive measure and g ∈ L∞(m)n for which Ag = 0 and g ≠ 0 m-a.e. on C. The
latter system of equations means that we have

v i(
n
∑
j=1

g jω j) = 0 m − a.e. on C , ∀i = 1, ..., n.(3.1)

Set ω̃ = ∑n
j=1 g jω j and suppose that ∣ω̃∣ ≠ 0 m-a.e. on C, then there exists a nonzero

continuous functional � ∈ M′ (which is the Banach dual) such that �(χC ω̃) = ∣∣χC ω̃∣∣M
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and there exists L ∈ M∗ (see Proposition 1.2.13 in [Gig18]) such that

�(ω) = ∫
X

L(ω)dm ∀ω ∈ M.

In our case, this means that ∥χC ω̃∥M = ∫C L(ω̃)dm > 0, so that there must be a Borel
set of positive measure where χC L(ω̃) > 0, which contradicts (3.1) since there exists
D ⊂ C with m(D) > 0 such that χD L = ∑n

i=1 f iv i for some f1 , ..., fn ∈ L∞(m). ∎

Lemma 3.2 Let φ be an EBS chart over the Borel set E, and let {v1 , ..., vn} ∈ Lp(TX)
be independent over E, then {dpφ(v1), ..., dpφ(vn)} ∈ φ∗Lp

μ(TRn) are independent
over the same set, where μ = φ♯(m∣E) and Lp

μ(TRn) is the tangent module built over
(Rn , deucl , μ).

Proof Consider f1 , ..., fn ∈ L∞(m) such that
n
∑
i=1

f i dpφ(v i) = 0 m − a.e. on E ,

then set v ∶= ∑n
i=1 f iv i . Note that the maps Π j ∶ Rn �→ R being the projection on the

jth component are all 1-Lipschitz with respect to the Euclidean distance, and for this
reason, they belong to W 1, p(Rn , deucl , μ): following equation (2.11), we have that, for
every j = 1, ..., n and choosing ω = dpΠ j ,

0 = dpφ j(v) =
n
∑
i=1

f i dpφ j(v i) m − a.e. on E ,

where φ j is the jth component of the map φ.
Being the matrix A = (A i j)i j = ⟨dpφ j , v i⟩ such that det A > 0m-a.e., the equations

above can be rewritten as Af = 0m−a.e. on E with f = ( f1 , ..., fn), meaning f = 0 thanks
to Lemma 3.1. ∎

The following result is borrowed from [LPR21, Proposition 4.5] where only the
metric measure space (Rn , deucl , μ) is considered.

Proposition 3.3 Assume that there exists a Borel set E such that dim Lp
μ(T∗Rn)∣E = n

for some p ∈ (1,+∞), then μ∣E << L n .

Remark 3.4 It is in the proof of the latter proposition that the results contained in
[DR] are used.

Now we are in place to apply Proposition 3.3 to prove the following.

Theorem 3.5 Let φ ∶ X → R
N be a p-independent weak chart over a Borel set E of

positive measure and with p ≥ 1, then μ = φ♯(m∣E) << L N and N ≤ dimH(E).

Proof For the moment, assume that p ∈ (1,+∞), and without loss of generality,
assume that E to be compact. Thanks to Lemma 3.2, we deduce that φ∗Lp

μ(T∗RN)
has dimension N over the set E, meaning that Lp

μ(T∗RN) has dimension N over
the set φ(E). Being the latter module top dimensional, by Proposition 3.3, we
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have that μ << L N , which is the first part of the statement. The second part is
immediate since if we had N > dimH(E) we would get HN(E) = 0 and since the map
φ is Lipschitz this implies HN(φ(E)) = L N(φ(E)) ≤ C ⋅ 0 = 0, so that by absolute
continuity μ(φ(E)) = m(E) = 0, which is clearly a contradiction.

For the case p = 1, note that, since the measure m is finite, we have ∣D(v ⋅ φ)∣1 ≤
∣D(v ⋅ φ)∣p m-a.e. and for every v ∈ SN−1, meaning that φ is also p-independent and
the same argument applies. ∎

Remark 3.6 By virtue of the latter theorem, one can see that a control on the
Hausdorff dimension l of a subset E of a metric measure space grants that the
dimension of Lp(T∗X)∣E is bounded by l; hence, the cotangent module is finite-
dimensional there. Moreover, the proof presented here simplifies the one in [GP21]
since there the authors needed to build independent vector fields in L2(TX) with
L2(m)-integrable divergence and push them to R

n keeping them independent and
regular: to do so, they had to use additional properties of the map Prφ and the bi-
Lipschitz regularity of their chart φ was essential. Here, instead, we mainly exploit the
properties of Rn .
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[LPR21] D. Lučić, E. Pasqualetto, and T. Rajala, Characterisation of upper gradients on the weighted
Euclidean space and applications. Ann. Mat. Pura Appl. (4) 200(2021), no. 6,
2473–2513. https://doi.org/10.1007/s10231-021-01088-4

[MN14] A. Mondino and A. Naber, Structure theory of metric-measure spaces with lower Ricci
curvature bounds. Accepted at J. Eur. Math. Soc., 2017. arXiv:1405.2222

[Pas18] E. Pasqualetto, Structural and geometric properties of RCD spaces. Ph.D. thesis, SISSA, 2018.

SISSA, Via Bonomea 256, Trieste, Italy
e-mail: luca.gennaioli@sissa.it nicola.gigli@sissa.it

https://doi.org/10.4153/S0008439523000486 Published online by Cambridge University Press

https://doi.org/10.1090/memo/1113
https://doi.org/10.1090/memo/1196
https://doi.org/10.4310/CAG.2021.v29.n6.a3
https://doi.org/10.1007/s10231-021-01088-4
https://arxiv.org/abs/1405.2222
mailto:luca.gennaioli@sissa.it
mailto:nicola.gigli@sissa.it
https://doi.org/10.4153/S0008439523000486

	1 Introduction
	2 Preliminaries
	2.1 Test plans and Sobolev functions
	2.2 The language of Lp-normed L∞-modules
	2.3 Pullback of a normed module
	2.4 The cotangent and tangent modules

	3 Main result

