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Abstract. It is well known that along any stable manifold the dynamics travels
with an exponential rate. Moreover, this rate is close to the slowest exponential rate
along the stable direction of the linearization, provided that the nonlinear part is
sufficiently small. In this note, we show that whenever there is also a fastest finite
exponential rate along the stable direction of the linearization, similarly we can establish
a lower bound for the speed of the nonlinear dynamics along the stable manifold.
We consider both cases of discrete and continuous time, as well as a nonuniform
exponential behaviour.
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1. Introduction. In this note, we consider stable invariant manifolds obtained
from a sufficiently small nonlinear perturbation of an exponential dichotomy. It is
well known that invariant manifolds play a central role in a large part of the theory
of differential equations and dynamical systems, both in discrete and continuous
time, and in finite and infinite dimension. Not surprisingly, the theory of exponential
dichotomies, invariant manifolds and their applications is widely developed. We refer
the reader to the books [4–6, 10] for details and references.

We consider both cases of discrete and continuous time. More precisely, we
consider stable invariant manifolds respectively for the dynamics

vn+1 = Anvn + fn(vn), n ∈ �, (1)

and

v′ = A(t)v + f (t, v), t ≥ 0, (2)

on some Banach space (in fact we consider the more general case of mild differential
equations obtained from perturbation a linear evolution family). The linear dynamics
vn+1 = Anvn and v′ = A(t)v are assumed to have an exponential dichotomy and the
nonlinear terms are assumed to be sufficiently small (see Sections 2 and 3).

In fact, we consider the more general case of a linear dynamics having a nonuniform
exponential dichotomy. This type of exponential behaviour is much more typical
than the uniform exponential behaviour and plays a central role in a large part of
the theory of dynamical systems, most notably in smooth ergodic theory (see, for
example, [1]). Besides the existence of stable invariant manifold for any sufficiently small
perturbation of a nonuniform exponential dichotomy (with a small nonuniformity,

https://doi.org/10.1017/S001708951700026X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951700026X


528 LUIS BARREIRA AND CLAUDIA VALLS

which is controlled by the Lyapunov regularity theory), one can study the ergodic
properties of the dynamics, obtain a formula for the entropy of an invariant measure,
and study the dimension of a hyperbolic invariant measure, among many other
nontrivial consequences. Invariant manifolds were first obtained for nonuniformly
hyperbolic trajectories by Pesin [8]. The first related results in Hilbert spaces were
established by Ruelle [9]. The case of transformations in Banach spaces under some
compactness assumptions was considered by Mañé [7].

It is well know that along any stable manifold the dynamics travels at least with
an exponential rate. Moreover, this rate is close to the slowest exponential rate along
the stable direction of the linearizations vn+1 = Anvn and v′ = A(t)v, provided that the
nonlinear part is sufficiently small. This means that if we have an upper exponential
bound for the stable part of the linear dynamics, we have also a close upper exponential
bound along the stable manifold of the corresponding nonlinear dynamics in (1)
and (2).

Our main aim in this note is to show that whenever there is also a fastest exponential
rate along the stable part of the linearization, which means that the linear part has in
fact a strong nonuniform exponential dichotomy, we can also establish a lower bound
for the speed of the nonlinear dynamics along the stable direction. We consider both
cases of discrete and continuous time, as well as the general case of a nonuniform
exponential behaviour.

We emphasize that in the context of ergodic theory most nonuniform exponential
dichotomies are in fact strong nonuniform exponential dichotomies. More precisely, for
a flow preserving a finite invariant measure, the linear variational equation of almost
all trajectories with a nonuniform exponential dichotomy has a strong nonuniform
exponential dichotomy (see for example [1]).

2. Stable manifolds for discrete time. Let X be a Banach space. We denote by B(X)
the set of all bounded linear operators acting on X . Given a sequence (An)n∈� ⊂ B(X)
of invertible linear operators, we define

A(m, n) =

⎧⎪⎨
⎪⎩

Am−1 · · · An, m > n,

Id, m = n,

A−1
n−1 · · · A−1

m , m < n

for each m, n ∈ �. Note that

A(m, n) = A(m, k)A(k, n) and A(m, n)−1 = A(n, m) (3)

for m, n, k ∈ �. We say that (An)n∈� has a nonuniform exponential dichotomy if there
exist projections Pn for n ∈ � satisfying

PmA(m, n) = A(m, n)Pn for m, n ∈ �,

and there exist constants a < 0 < b and D > 0 such that for each m, n ∈ � with m ≥ n
we have

‖A(m, n)Pn‖ ≤ Dea(m−n)+εn and ‖A(n, m)Qm‖ ≤ De−b(m−n)+εm, (4)
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where Qm = Id − Pm. For each n ∈ �, we define the stable and unstable spaces,
respectively, by

Sn = Pn(X) and Un = Qn(X).

Moreover, we say that the sequence (An)n∈� has a strong nonuniform exponential
dichotomy if it has a nonuniform exponential dichotomy and there exist constants
c ≥ −a and d ≤ −b such that for each m, n ∈ � with m ≤ n we have

‖A(m, n)Pn‖ ≤ Dec(n−m)+εn and ‖A(n, m)Qm‖ ≤ De−d(n−m)+εm. (5)

Note that given an invertible linear operator A ∈ B(X), the constant sequence
An = A has a strong nonuniform exponential dichotomy if and only if the spectrum of
A does not intersect the unit circle and A−1 is bounded. Before proceeding, following [3]
we describe a few examples of nonconstant sequences.

EXAMPLE 1. Given ω < 0 and ρ ≥ 0, let

an = eω+ρ[(−1)nn−1/2]

for n ∈ �. Then, the sequence

An =
(

an 0
0 1/an

)
(6)

has a strong nonuniform exponential dichotomy provided that ω is sufficiently small.

EXAMPLE 2. Given ω < 0 and ρ ≥ 0, the sequence An in (6) with an replaced by

bn = eω+ρ(n+1) cos(n+1)−ρn cos n−ρ sin(n+1)+ρ sin n

for all n ∈ � or by

cn = eω+ρ(n+1) sin log(n+1)−ρn sin log n+ρ sin log(n+1)−ρ sin log n

for all n ∈ �, also has a strong nonuniform exponential dichotomy, again provided
that ω is sufficiently small.

We also consider a sequence of C1 functions fn : X → X with fn(0) = 0 and d0fn = 0
for n ∈ �. We always assume that there exists δ > 0 such that

‖dvfn‖ ≤ δe−3εn and ‖dvfn − dwfn‖ ≤ δe−3εn‖v − w‖ (7)

for n ∈ � and v,w ∈ X , with the same ε as above. We are interested in the dynamics
given by

vn+1 = Fn(vn), where Fn(v) = Anv + fn(v).

Clearly, letting

F(m, n) =

⎧⎪⎨
⎪⎩

Fm−1 ◦ · · · ◦ Fn, m > n,

Id, m = n,

F−1
n−1 · · · F−1

m , m < n,

we have vm = F(m, n)(vn) for all m, n ∈ �.
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Now let X be the set of all sequences φ = (φn)n∈� of C1 functions φn : Sn → Un

with φn(0) = 0 and d0φn = 0 for n ∈ � such that

γ := sup
{‖dξφn‖ : n ∈ �, ξ ∈ Sn

}
< 1

and

‖dξφn − dξ̄ φn‖ ≤ γ ‖ξ − ξ̄‖ for n ∈ � and ξ, ξ̄ ∈ Sn.

Given φ ∈ X, we consider the C1 manifolds

Vn = {(ξ, φn(ξ )) : ξ ∈ Sn} for n ∈ �.

The following stable manifold theorem can be obtained as in [2] (even though the paper
takes γ = 1, the same argument applies with simple changes).

THEOREM 1. Assume that the sequence (An)n∈� has a nonuniform exponential
dichotomy and that the maps fn satisfy property (7). If a + ε < b and δ is sufficiently
small, then there exists a unique sequence of functions φ ∈ X such that

F(m, n)(Vn) = Vm for m ≥ n. (8)

Moreover, there exists K > 0 such that for each m, n ∈ � with m ≥ n and ξ, ξ̄ ∈ Sn we
have

‖F(m, n)(v) − F(m, n)(v̄)‖ ≤ Kea(m−n)+εn‖ξ − ξ̄‖,

where v = (ξ, φn(ξ )) and v̄ = (ξ̄ , φn(ξ̄ )), and so

‖dvF(m, n)‖ ≤ (1 − γ )−1Kea(m−n)+εn.

Our main aim is to show that when (An)n∈� has a strong nonuniform exponential
dichotomy, one can in fact also establish lower bounds along the stable manifolds Vn in
Theorem 1 that imitate the first bound in (5). In other words, along the stable manifolds
the nonlinear dynamics has the same lower and upper bounds as the linear dynamics
along the stable space.

THEOREM 2. Assume that the sequence (An)n∈� has a strong nonuniform exponential
dichotomy and that the maps fn satisfy property (7). If a + ε < b and δ is sufficiently
small, then for the unique sequence of functions φ ∈ X in Theorem 1 there exists L > 0
such that for each m, n ∈ � with m ≥ n and ξ, ξ̄ ∈ Sn we have

‖F(m, n)(v) − F(m, n)(v̄)‖ ≥ Le−c(m−n)−εm‖ξ − ξ̄‖, (9)

where v = (ξ, φn(ξ )) and v̄ = (ξ̄ , φn(ξ̄ )), and

‖dvF(m, n)‖ ≥ Le−c(m−n)−εm. (10)

Proof. Write vm = (xm, ym), with xm ∈ Sm and ym ∈ Um. It follows from (8) that for
the unique sequence φ ∈ X in Theorem 1, given n ∈ � and vn = (ξ, φn(ξ )) ∈ Sn ⊕ Un,
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for each m ≥ n we have

xm = A(m, n)ξ +
m−1∑
l=n

A(m, l + 1)Pl+1fl(xl, φl(xl)),

φm(xm) = A(m, n)φn(ξ ) +
m−1∑
l=n

A(m, l + 1)Ql+1fl(xl, φl(xl)).

(11)

For simplicity of the notation, we shall also write

xm = xm(ξ ) and φ∗
m(ξ ) = φm(xm(ξ )).

We first establish the lower bound in (9). Let

vm(ξ ) = F(m, n)(xm(ξ ), φ∗
m(ξ )). (12)

Then,

‖vm(ξ ) − vm(ξ̄ )‖ ≥ ‖xm(ξ ) − xm(ξ̄ )‖ − ‖φ∗
m(ξ ) − φ∗

m(ξ̄ )‖
≥ (1 − γ )‖xm(ξ ) − xm(ξ̄ )‖.

Hence, to prove the theorem, it suffices to show that

‖xm(ξ ) − xm(ξ̄ )‖ ≥ Ce−c(m−n)−εm‖ξ − ξ̄‖ for m ≥ n

for some constant C > 0. By (3), one can rewrite the first identity in (11) in the form

ξ = A(n, m)xm −
m−1∑
l=n

A(n, l + 1)Pl+1fl(xl, φl(xl)). (13)

We will show that

‖ξ − ξ̄‖ ≤ 2Dec(m−n)+εm‖xm(ξ ) − xm(ξ̄ )‖ for n ≤ m.

Writing xm = xm(ξ ) and x̄m = xm(ξ̄ ), it follows from (13) that

xn − x̄n = A(n, m)(xm − x̄m)

−
m−1∑
l=n

A(n, l + 1)Pl+1
(
fl(xl, φl(xl)) − fl(x̄l, φl(x̄l))

)
.
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Using (5), we obtain

‖xn − x̄n‖ ≤ ‖A(n, m)‖ · ‖xm − x̄m‖

+
m−1∑
l=n

‖A(n, l + 1)Pl+1‖ · ∥∥fl(xl, φl(xl)) − fl(x̄l, φl(x̄l))
∥∥

≤ Dec(m−n)+εm‖xm − x̄m‖

+ δD
m−1∑
l=n

ec(l+1−n)+ε(l+1)e−3lε(1 + γ )‖xl − x̄l‖

≤ Dec(m−n)+εm‖xm − x̄m‖

+ δD(1 + γ )ec+ε

m−1∑
l=n

ec(m−n)ec(l−m)e−2lε‖xl − x̄l‖.

Letting 	l = ec(l−m)‖xl − x̄l‖ yields the inequality

	n ≤ Deεm‖xm − x̄m‖ + δD(1 + γ )ec+ε

m−1∑
l=n

e−2lε	l.

Now let 	 = maxn≤l≤m 	l. Then,

	 ≤ Deεm‖xm − x̄m‖ + δD(1 + γ )ec+ε

1 − e−2ε
	.

Taking δ sufficiently small so that

δD(1 + γ )ec+ε

1 − e−2ε
≤ 1

2
(14)

we obtain

	 ≤ 2Deεm‖xm − x̄m‖,
which is equivalent to

‖xn − x̄n‖ ≤ 2Dec(m−n)+εm‖xm − x̄m‖.
This concludes the proof of inequality (9).

Now we establish the lower bound in (10). With the notation introduced in (12),
we have

‖dξ vm‖ ≥ ‖dξ xm‖ − ‖dξφ
∗
m‖.

Moreover, since φ ∈ X, we obtain

‖dξφ
∗
m‖ ≤ ‖dxm(ξ )φm(ξ )‖ · ‖dξ xm‖ ≤ γ ‖dξ xm‖,

and so

‖dξ vm‖ ≥ (1 − γ )‖dξ xm‖.
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In order to bound ‖dξ xm‖, we take derivatives in (13), thus yielding the identity

Id = A(n, m)dξ xm −
m−1∑
l=n

A(n, l + 1)Pl+1dξ [fl(xl, φl(xl))].

Using (5) and (7), we obtain

1 ≤ ‖A(n, m)‖ · ‖dξ xm‖ +
m−1∑
l=n

‖A(n, l + 1)Pl+1‖ · ‖dvl (ξ )fl‖ · ‖dξ vl(ξ )‖

≤ Dec(m−n)+εm‖dξ xm‖ + δD
m−1∑
l=n

ec(l+1−n)+ε(l+1)e−2lε(1 + γ )‖dξ xl‖

≤ Dec(m−n)+εm‖dξ xm‖ + δD(1 + γ )ec+εec(m−n)
m−1∑
l=n

e−2lεec(l−m)‖dξ xl‖.

Finally, letting ϒl = ec(l−m)‖dξ xl‖ and taking into account that xn = ξ and so dξ xn =
Id, we have

ϒn ≤ Deεm‖dξ xm‖ + δD(1 + γ )ec+ε

m−1∑
l=n

e−2lεϒl.

Now let ϒ = maxn≤l≤m ϒl. Then,

ϒ ≤ Deεm‖dξ xm‖ + δD(1 + γ )ec+ε

1 − e−2ε
ϒ.

For δ as in (14), we obtain

ϒ ≤ 2Deεm‖dξ xm‖,
which yields the inequality

1 ≤ 2Dec(m−n)+εm‖dξ xm‖.
This concludes the proof of the theorem. �

As noted in Section 1, along any stable manifold, the dynamics travels at least
with an exponential rate. We end this section with an example illustrating the role of
Theorem 2: it shows that if the linear dynamics has a strong exponential dichotomy
(and not all exponential dichotomies are strong), then there is also a lower bound for
the speed of the nonlinear dynamics along the stable manifold.

EXAMPLE 3. Given δ ≥ 0, consider the sequence fn : �2 → �2 defined by

fn(v) = δe−3εnv for n ∈ �.

Moreover, let An be any of the sequences of 2 × 2 matrices in Examples 1 and 2.
By Theorem 1, for each such choice, there exist unique stable manifolds Vn that are
obtained from a sequence of functions φ ∈ X. On the other hand, it follows from
Theorem 2 that there is also a lower bound for the speed of the dynamics along the
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stable manifolds. In fact, this bound is given by the constant c in the notion of a
strong exponential dichotomy (see (10)), which shows that under the assumptions of
Theorem 2 the minimal and maximal speeds along the stable manifolds are precisely
those of the linear dynamics along the stable spaces (see (4) and (5)), determined by
the constants a and c.

3. Stable manifolds for continuous time. In this section, we obtain a version of
Theorem 2 for continuous time. Let X be a Banach space and let T(t, s), for t, s ≥ 0,
be an evolution family on X . This means that T(t, s) ∈ B(X) for t, s ≥ 0 and that

T(t, t) = Id and T(t, s) = T(t, τ )T(τ, s) for t, s, τ ≥ 0.

We shall always assume in the paper that the map (t, s) 
→ T(t, s) is of class C1. We say
that T(t, s) has a nonuniform exponential dichotomy if there exist projections P(t) for
t ≥ 0 satisfying

P(t)T(t, s) = T(t, s)P(s) for t, s ≥ 0,

and there exist constants a < 0 < b and D > 0 such that for each t ≥ s ≥ 0 we have

‖T(t, s)P(s)‖ ≤ Dea(t−s)+εs and ‖T(s, t)Q(t)‖ ≤ De−b(t−s)+εt,

where Q(t) = Id − P(t). For each s ≥ 0, we define the stable and unstable spaces by

S(s) = P(s)(X) and U(s) = Q(s)(X).

Moreover, we say that T(t, s) has a strong nonuniform exponential dichotomy if it has a
nonuniform exponential dichotomy and there exist c ≥ −a and d ≤ −b such that for
each s ≥ t ≥ 0 we have

‖T(t, s)P(s)‖ ≤ Dec(s−t)+εs and ‖T(s, t)Q(t)‖ ≤ De−d(s−t)+εt. (15)

We also consider a C1 function f : �+
0 × X → X with f (t, 0) = 0 and ∂f (t, 0) = 0

for t ≥ 0, where ∂f denotes the partial derivative with respect to v. We always assume
that there exists δ > 0 such that

‖∂f (t, v)‖ ≤ δe−3εt and ‖∂f (t, v) − ∂f (t, w)‖ ≤ δe−3εt‖v − w‖ (16)

for t ≥ 0 and v,w ∈ X . In this section, we consider the problem

v(t) = T(t, s)vs +
∫ t

s
T(t, τ )f (τ, v(τ )) dτ, (17)

for some s ≥ 0 and vs ∈ X .
Now let X be the set of continuous functions φ : F → X of class C1 in ξ , where

F = {
(s, ξ ) : s ≥ 0, ξ ∈ S(s)

}
,

with φ(s, 0) = 0, ∂φ(s, 0) = 0 (where ∂φ = ∂φ/∂ξ ) and

φ(s, ξ ) ∈ U(s) for s ≥ 0 and ξ ∈ S(s),
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such that

γ := sup
{‖∂φ(s, ξ )‖ : s ≥ 0, ξ ∈ S(s)

}
< 1

and

‖∂φ(s, ξ ) − ∂φ(s, ξ̄ )‖ ≤ γ ‖ξ − ξ̄‖ for n ∈ � and ξ, ξ̄ ∈ Sn.

We also consider the graph

Vφ = {
(s, ξ, φ(s, ξ )) : s ≥ 0, ξ ∈ S(s)

}
.

Given s ≥ 0 and vs = (ξ, η) ∈ S(s) × U(s), we denote by

v(·, s, vs) = (x(·, s, vs), y(·, s, vs))

the unique solution of problem (17) or, equivalently, of the system

x(t) = T(t, s)P(s)ξ +
∫ t

s
T(t, τ )P(τ )f (τ, x(τ ), φ(τ, x(τ ))) dτ,

φ(t, x(t)) = T(t, s)Q(s)η +
∫ t

s
T(t, τ )Q(τ )f (τ, x(τ ), φ(τ, x(τ ))) dτ

(18)

for t ≥ s. For each τ ≥ 0, we consider the semiflow

�τ (s, vs) = (s + τ, v(s + τ, s, vs)).

The following stable manifold theorem was established in [2] (even though the paper
takes γ = 1 the same argument applies with simple changes).

THEOREM 3. Assume that the evolution family T(t, s) has a nonuniform exponential
dichotomy and that the function f satisfies property (16). If a + ε < b and δ is sufficiently
small, then there exists a unique function φ ∈ X such that

�τ (V) = V for τ ≥ 0.

Moreover, there exists K > 0 such that for each t ≥ s ≥ 0 and ξ, ξ̄ ∈ S(s) we have

‖�τ (s, ξ, φ(s, ξ )) − �τ (s, ξ̄ , φ(s, ξ̄ ))‖ ≤ Kea(t−s)+εs‖ξ − ξ̄‖

and so

‖∂v�τ (s, ξ, φ(s, ξ ))‖ ≤ (1 − γ )−1Kea(t−s)+εs.

We also establish a version of Theorem 2 for continuous time.

THEOREM 4. Assume that T(t, s) has a strong nonuniform exponential dichotomy
and that the function f satisfies property (16). If a + ε < b and δ is sufficiently small,
then for the unique function φ ∈ X in Theorem 3 there exists L > 0 such that for each
t ≥ s ≥ 0 and ξ, ξ̄ ∈ S(s) we have

‖�τ (s, ξ, φ(s, ξ )) − �τ (s, ξ̄ , φ(s, ξ̄ ))‖ ≥ Le−(c+δD(1+γ ))(t−s)−εt‖ξ − ξ̄‖
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and

‖∂v�τ (s, ξ, φ(s, ξ ))‖ ≥ Le−(c+δD(1+γ ))(t−s)−εt.

Proof. It follows from the first inequality in (18) that

x(t − r) = T(t − r, t)P(t)x(t) −
∫ t

t−r
T(t − r, τ )P(τ )f (τ, x(τ ), φ(τ, x(τ ))) dτ (19)

for r ∈ [0, t − s]. Using (15), we obtain

‖x(t − r) − x̄(t − r)‖

≤ Decr+εt‖x(t) − x̄(t)‖ + δD(1 + γ )
∫ t

t−r
ec(τ−t+r)+ετ e−3ετ‖x(τ ) − x̄(τ )‖ dτ

≤ Decr+εt‖x(t) − x̄(t)‖ + δD(1 + γ )ecr
∫ t

s
ec(τ−t)‖x(τ ) − x̄(τ )‖ dτ.

Now let 	(s) = e−cr‖x(t − r) − x̄(t − r)‖. Then,

	(r) ≤ Deεt	(0) + δD(1 + γ )
∫ r

0
	(τ ) dτ

for r ∈ [0, t − s]. It follows from Gronwall’s lemma that

	(r) ≤ DeεteδD(1+γ )r‖x(t) − x̄(t)‖,

also for r ∈ [0, t − s], and so

‖x(s) − x̄(s)‖ ≤ Deεte(c+δD(1+γ ))(t−s)‖x(t) − x̄(t)‖. (20)

Finally, note that if t = τ + s, then

‖�τ (s, ξ, φ(s, ξ )) − �τ (s, ξ̄ , φ(s, ξ̄ ))‖
= ∥∥(t, x(t), φ(t, x(t))) − (t, x̄(t), φ(t, x̄(t)))

∥∥
≥ ‖x(t) − x̄(t)‖ − ‖φ(t, x(t)) − φ(t, x̄(t))‖
≥ (1 − γ )‖x(t) − x̄(t)‖.

Together with (20) this yields the first inequality in the theorem.
Now, we establish the bound for the derivative. Clearly,

‖∂v�τ (s, ξ, φ(s, ξ ))‖ ≥ ‖∂ξ x(t)‖ − ‖∂φ(t, x(t))‖ · ‖∂ξ x(t)‖
≥ (1 − γ )‖∂ξ x(t)‖. (21)

In order to bound ‖∂ξ x(t)‖, we proceed as before. Taking derivatives in (19), we get

Id = T(s, t)P(t)∂ξ x(t) −
∫ t

s
T(s, τ )P(τ )dξ [f (τ, v(τ ))] dτ.
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Using (15) and (16), we obtain

1 ≤ Dec(t−s)+εt‖∂ξ x(t)‖ + δD(1 + γ )
∫ t

s
ec(τ−s)+ετ e−3ετ‖∂ξ x(τ )‖ dτ

≤ Dec(t−s)+εt‖∂ξ x(t)‖ + δD(1 + γ )ec(t−s)
∫ t

s
e−c(t−τ )e−2ετ‖∂ξ x(τ )‖ dτ.

Since ∂ξ x(s) = Id, it follows again from Gronwall’s lemma that

1 ≤ Deεte(c+δD(1+γ ))(t−s)‖∂ξ x(t)‖
for t ≥ s. Together with (21) this concludes the proof for the theorem. �

ACKNOWLEDGEMENTS. This work is supported by FCT/Portugal through Grant
UID/MAT/04459/2013.

REFERENCES

1. L. Barreira and Ya. Pesin, Lyapunov exponents and smooth ergodic theory, University
Lecture Series, vol. 23 (American Mathematical Society, Providence, RI, 2002).

2. L. Barreira and C. Valls, Characterization of stable manifolds for nonuniform
exponential dichotomies, Discrete Contin. Dyn. Syst. 21 (2008), 1025–1046.

3. L. Barreira and C. Valls, Nonuniform exponential contractions and Lyapunov
sequences, J. Differ. Equ. 246 (2009), 4743–4771.

4. W. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, vol. 629
(Springer-Verlag, Berlin-New York, 1978).

5. J. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and
Monographs, vol. 25 (American Mathematical Society, Providence, RI, 1988).

6. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in
Mathematics, vol. 840 (Springer-Verlag, Berlin-New York, 1981).
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