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ISOMETRIC MULTIPLICATION OF

HARDY-ORLICZ SPACES

W. DEEB, R. KHALIL AND M, MARZUQ

For a modulus function <j> , we define the Hardy-Orlicz space

H(<\>) . Two main questions are discussed in this paper. First,

when is a linear map m : H($) -*• H($) , m (f) = g.f an isometry?
y 3

Second, when is

0. Introduction.

Let A be the open unit disc in 0 , the set of complex numbers,

and H(h) be the space of analytic functions in A . If T is the unit

circle, then L (T) denotes the space of p-Lebesgue integrable functions,

0 < p S °° . The classical Hardy spaces will be denoted by

flP = ( / e H(A) : sup [ \f(reLQ) P de < •» \,0 < p < » ,

0
CO

and H is the space of bounded analytic functions in A .

It is very well-known that every f e IF has a radial limit function,

also denoted by / , in V(T) . Further, W can be considered as a

closed subspace of L (T) , when equipped with the metric:
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(

T

d(f,g) = .

j \f(x) - g(x)\P dx )P p i l

T

j \f(x) - g(x)\P dx 0 < p < 1

Another important and interesting class in H(b>) is the Nevalinna

class:

r r2v . -,
N = \ f e H(h) : sup ln(l + \f(reW) \)dQ < » } .

*• n<y<1 i >

By N we mean as usual the space

N+ = If e N : sup f ln(l+ \f(reLQ)\)dQ = [ ln(l+\f(et&) \)de\ .
*• 0<r<l >O >O >

We may think of the metric for W 0<p<l and N as given by

d(f,g) = sup j - [ $(\f(re-Q) - g(reid)\)de
n<y<l >n

f- f ̂
0<r<l ^

where

4>(x) = a? for HP

and $(x) = ln(l + \x\) for N .

It is clear that in both of these cases <j> is continuous, increasing,

subadditive and zero only at zero. Moreover (jiflul/l is subharmonic for

every u e H(t) . Assuming that we have a function <j> as described

above we can define the space

= if e H+(b) : [ <f> \f (e^) \dQ = sup [ «>( \f (ve%%) | )de)
*• >0 0&r<l >0 '

where H denoted the subspace of H(h) consisting of functions which

have radial limits almost everywhere. See [2] for more details about

these spaces. See [9] and [10] for general related results.

In this paper we consider the following question: if g e

and the map m (f) = f.g is an isometry what can we say about g ? Ou

result in this regard generalizes the known one for H? , see [4]. In
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Section 3 we consider the very natural question: what condition on (J>

would guarantee that R(§) = H ? Finally we consider the projective

tensor product of H($) with i t s e l f .

1. Preliminaries and Notation.

A function <j> : L0}<») -*• R is called a modulus function if:

(i) <(> is continuous and increasing,

(ii) $(x) = 0 if and only if x = 0 ,

(iii) i>(x + y) < $(x) + $(y) .

Examples of such functions are: $(x) = ar 0 < p ̂  13 $(x)= ln(1 + x).

In fact if ifi is a modulus function then fy(x) = ? ' .—j- is a

modulus function, and for modulus functions §.3§- , the function

W = ^ > 1 ° i j ) 0 is a modulus function.

Throughout the paper, we will assume that our modulus function

satisfies the additional conditions that <J>f|w|/l is a subharmonic

function whenever u e H(A) , and <j> is strictly increasing.

Let H (h) = {f e H(L) : lim five) exists a.e.} . Thus H(L)

can be viewed as a space of functions on T .

Now, we define the Hardy-Orlicz space:

9 O

sup [ $\f(re*6)\de = [ "$\f(e%%) \dQ
>0 >0

where ij> is a modulus function. On H(i\>) we define a metric

fe J g(ev*)\ds
r2-n

d(f,g) = \\f - g\\,=
9 ' 0

With this metric, H($) is a topological vector space. Further, since

we are assuming that 4|C|UI'' i s subharmonic for u e H(L) , the space

is an F-space, [2]. If <f> is bounded, then H($) = H(b). If

= ln(l + x?h 0 < p < 1 , then we write N for H(Q) . Clearly

If2 = N+ c_N , noting that ln(l + 3p) = i>1 ° ̂Jx) , where
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t/Ax) = ln(l + x),

In [2 ] , i t was shown that R c_ R($) for a l l modulus functions <(>.

f2iT ie
Throughout the paper, we write | |/| | for 1 $\f(e ) \dB ,

* >0
f e

2. Multiplication on

Throughout this section, we will view R($) as a space of functions

defined on T . A function g defined on T is called a (Schur)

multiplier of H($) if g.fe. H(§) for all f e R($) , where

(g.f)(x) = g(x).f(x).

The set of all multipliers of H($) will be denoted by M(H(§)) .

It is well known (and easy to prove) that M(If) = H In this section

we characterize M(R(§)) for a large class of modulus functions. First

we need the following

LEMMA 2.1. Let $ be a modulus function which satisfies:

(i) for any f e H there exists g e H($) such that

*(\g\> = I/I ;

(ii) §(x).$(y) £ $(x.y) for all x £ 1 and y s 0 .

If g e M(H($)), and f c H1 , then [ f<j> \g(e%Q) \) .f(e'l6)d6 < ».

Proof. Since 1 e H($) , it follows that g e R(§) . LetE = {9 ; \g(e7'e)\ > 1} . Then

\2\2\\g(eiQ) | \f(eU) \de = \ *\g(eid) \ \f(eU) |de+f j\g(eiQ) | \f(eiQ) \de .
>0 >E >E^

By the f i r s t assumption on <fi , there exists h e H(<\>) such that

\f\ = $\h\ • Consequently, using assumption (ii) on <f> , we have

f \\g(ei6) | \f(eiQ) \de < f ^\g(eiQ) ,h(ei%) \dS + $(1). \ \ h \ \
>0 >E *
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since g e M(R($)). D

THEOREM 2.2. Let § be a modulus function satisfying the con-
oo

ditions in lemma Z.I. If lim <\>(x) = °° , then M(R(§)) = H .

Proof. Let g e M(R($)). Lemma 2.1 implies that

* I^Ce^l + 3 . |/re7'e;ide<» f o r all f € H
1 . it follows easily

-•tf L J

that ln(l + $\g(e'LQ)\) e L1(T) . Hence, [5 , p. 53], there exists

u e H such that i + <f> |g| = \u\ . Consequently

I \u(e'te)\,\f(e'ie)\de < <» for all f e H1 . This implies that
>0

u e M(H ) = H° . Thus 1 + <j>|g| e H° . Since lim (j> (x) = <*> , it follows

that g e H° . Hence M(H($)) £ ff°° . That ff°° <=_M(H($)) is clear.

Hence ff°° = M(R($)) . D

COROLLARY 2.3. MfflP,) = H°° , 0 < p < 1 .

Proof. The modulus function defining }F,0<p<l, is

<J>fx,> = ar . For f e IF , one can write f = u.V , where w is an inner

function, and v is an outer function, [3], such that I/I = lul •

Thus IT e H . Hence i)> satisfies condition (i) of Lemma 2.1.

Condition (ii) of Lemma 2.1 is clearly verified for <j> . So the result

in Lemma 2.1 is true for It , and therefore by Theorem 2.2, M(If) = H .

THEOREM 2.4. Let $ be a modulus function such that

$(x.y) < $(x) + $(y) for all x,y e 10,<*>). Then M(H($))

Proof. Since 1 e R($) , clearly, M(R(i>)) <^R(i/) . Let

g e H($) . Then for any / e H($) we have

1*) \db +\
>0
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* l l f l l ^ l l f f l l , < - •
Hence g M(R($)). U

COROLLARY 2 . 5 . M(N ) = N 0 < p < 1 .
P P

Proof. This modulus function defining N is $(x) - ln(l + 3?).

Since

$(x.y) = ln(l + (x.y)P) < ln(l + a?) + ln(l + yP) ,

theroem 2.4 applies to give M(N ) = N . •

For g e M(H($)) , one defines a linear map m on H(§) by

m (f) = g.f for f e H($) . The map m will be called an isometry if
y y

I \mg<f>\\^ = I l/ll + f o r a l l / £ H(<p) .

THEOREM 2.6. Let § be a modulus function such that lim §(x) = °°.

Let g e M(H($)) . Then m is an isometry on H($) if and only if
y

\g\ = 1 for almost all 9.

Proof. If |<y| = 1 , then it is easily seen that m is an

isometry.

Let m be an isometry on H(§) . Then g e H($) for all n ,
y

and 1 1 / 1 1 ^ = \\g\\^ •

Let E = {6 : \g(e% ) \ > 1}. Firs t we show that E has Lebesgue

measure zero. Suppose E has a positive Lebesgue measure, so that

Since Ig'l > 1 on E , by Fatou 's lemma we get

- = f lim <j»|3
nreie;|de < Um f * \gn(eie) |de sf

n 'E

This contradiction implies that E has Lebesgue measure zero.
Let B = {e ; \g(elQ)\ < 1} . Then lim ^\gn (e^) \ = 0 on B .
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Since | | s n | | . = I M L , and M = J o n B° < Lt follows that

f *\g(eif>) dQ = f $\gn(eiQ)\dS .

The Lebesgue domoninated convergence theorem implies that

f t\g(ei*)\d9 = 0 .
'B

Consequently, $\g(e )\ = 0 on B , and hence g = 0 on B . But g

is the radial limit of an analytic function in A . This implies that

B has Lebesgue measure zero. From this we conclude that \g\ = 1

a . e on T . Q

3. Equality of H1 and H($).

In [2], it was shown that H c_H(§) for all <f> . Further, if

0 x

of when H1 =

2
dx < <» , then H c H(6) . In this section we study the question

THEOREM 3.1. Let § be a given modulus function. Then the

following are equivalent:

(i) Um_ 4i*i = $ 3 Um_ H*L = e J 6 , e e R
+ ;

0 xx+0

( i i ) H(4>) = H1 and 1 1 / 1 1 ^ < A 1 1 / 1 1 ^ s j \ \ \ f \ \ 1 . f o r a l l

f e R(i>) , and some constants A , n e R .

Proof. (i) -y (ii) . Choose 0 < a < b such that z±—L > r o n

and > s on (b,°>) , for some r, s e R .

Let / e ̂ C<j>; , and

£Ya; = {e : 0 < \f\ < a)

E(b) = {6 : |/| > b}

E(a,b) = {6 : a < \f\ < b] .
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Then

I If I 12 = \ \f(eiQ) \de + I \f(eiQ) \de + I \f(eiQ) |d9
E(a) E(a,bl E(b)

|
E(a,b)

-"•——The function -"•—— is continuous on [a,bl , consequently there exists

a e (a3b) such tha t ' > ™—— for a l l x e La^bl . Hence

if(x) > t .a; on Ca,i>] . I t follows

I ll/ll,

where X = max (— 3 -r , — ) •

Similarly one can show that | |/| | ^ X| |/| L . Thus (ii) is proved.

(ii) -»• (i) . Consider the map f(eV ) = x e , x > 0 . Then

1 1 / 1 1 - 2 = * * I I/I 1^ = *(x> • From (i:L) we g e t

x £ \§(x) < nx .

1 ^ A>(x) _ n
Hence — S -"- <, — .

A 3C A

Consequently lira •*—— is finite and lim ' is finite. This
X x

proves (i) . D

THEOREM 3.2. If lim ̂ L = o , then H1 c
x 4

Proof. Since lim = 0 , one can choose a sequence x > vn
x-**>

X
such t h a t <|>Cx ) < — . With no loss of genera l i ty , we can choose

00 j

x j > x for all n . Since x < Jn , then R = 1 < °° .

Choose points y e L0,2TI) such that yQ= 2ir , and y >
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for all n , and y - y . = • ^-jr . The interval 10, 2TT] is then
71 71—J. 71 *G t "

oo

partitioned into disjoint intervals I = (y ^.3 y ] 3 Y, \y - y A = 2-n ,
71 Yt^-L 71 — 71 YI—-L

71=1

Define the function / on (0,2v~\ such that f(x) = x on J .

= E [ fs>\f(x)\dx ,
n=l J.

n

oo

=n=J *(Xn}\yn-»n-l\ '

OO -1

< E - j < » .
n=I n

Hence / e LC<(>; = / / : T •* (f : j <H/ | < <4 •

T

| | / | | = I f

But

Jn

= I x . \y - y A
n-1

n " n . x .ff
n

Hence f I L1 .

It is not difficult to see that one can construct / to be

continuous, without changing the facts that / e H(§) but f i H

Now, consider the following sequence of functions:

n
f (x) = f(x) if x e U I. = E 3 define / on
71 ._. J 71 71

10, y ) by / (x) = x . Then / e C(T) tor all n , and / (x) < f(x)

for all x e. [,0, 2TT] . Thus
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' f o r a 1 1 n • F u r t h e r

t n

' I I > \f\dx > I j- (*)
En

Let e > 0 . By Wermer's maximality theorem, [S] , for each n ,

one can find g e C(T) such that | |/ - g \ \m S e . Further, there

exists G e H(h) such that

lim G (vevQ) = g (e"®) for almost all 6 .
r-KZ " n

Now:

for all n . Since <j> is assumed to satisfy the condition that <j>|w| is

subharmonic for u e H(&) , it follows that, [2],

_j 4\\Gn\\il
\G (Z) I < $ (—Y~Z— ^ s for al]L z = re1 e A .

Consequently, the sequence {G } is uniformly bounded on compact subsets

of A , and so it is a normal family.

Hence there exists a subsequence (G ) which converges uniformly on

compact sets to some analytic function G e H(&) . Since

r2it
|d6 = lim

0 n~° 0

i t fo l lows t h a t G e

n 7
> ( I i-) - z

K

S i n c e \\G \\1= l im \G (reiB)\dQ , we get
n *+2 o n
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f \G(rei6)\d9 > f £ f J - e ,

0

for some r e (0,1) . Hence ff { S . Hence H c R($) . D

4.

Let H($) 8 H($) be the space of all analytic functions / on

A = A x A , such that f(z,w) = E U.(z) v.(w) , u. , V . a H(§) , for
Is—-J-

some modulus function § . We wi l l assume that $ s a t i s f i e s the condition

that <f>|w| i s subharmonic i f u e E(t) . Let us define the metric d on

fff<J>; 0 H(4>) by:

d(f,g)

where the infimum is taken over all representations of f - 9 in

fff't'/' 8 H(§) . Once can easily check that d is a metric on H(§) &

and we write

\\f- g\\^ for d(f,g) .

The space H(§) 8 H($) with the metric d is not complete. We write

H($) 8 E(§) for the completion. Following [7], one can show that every

" CO

element in H(§) 8 H(§) has a representation / = Z u. 0 V. s

The space H($) 8 H(§) will be called the projective tensor product of

H(<t>) with itself.

Tensor product is usually defined for locally convex topological

vector spaces. The space H(§) is not locally convex in general. The

main result of this section is:

THEOREM 4.1. H(§) 0 H(§) is a topological vector space.

Proof. First, we remark that d is a quasi-norm on H(§)

That is:
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(i) dif,O) = 0 if and only if f = 0

tii) diO,-f) = dCO,f)

(iii) dCf+g, 0) < d(f, 0) + dig, 0) .

These follow easily from the properties of the metric d and the

representations of functions in R(§)

From Proposition 1 of [7, p, 38], it remains to show that:

(i) if a -> 0 , then dia .f,0) -*• 0 for all / e

(ii) if dif ) •*• 0 , then d(afn,0) •* 0 for all a e R .

To prove (i) : let f = Z u. 0 V. e H($)
%1

. Then

0 < dia f,0) < E u.\
"V—~L

and

IV

lim d(anf,0) < X^ lim | \^ ^

OO 00

Now, for / = I u. 8 V. , I I I M . | | . | | u . | | < » , d e f i n e t h e
•1=1 % % i=l t * % •

sequence of functions

The Lebesgue dominated convergence theorem on the set on natural numbers

with the counting measure implies:

00

l i m d i a . f , 0 ) S l i m £ \ \ a u . \ \ , . | | u . | | .
n-Voo n H » 1=1 Y Y

lim I la M . I L • I \v • I
M l * *

To prove (ii): let fn e Ri$) 8 Ri$) , difn,O)+O . Let k be a

positive integer such that k > a . Then

.fn,O) < d(Kfn,O) < k.difn,O) •* 0
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This completes the proof of the theorem. Q

Characterization of the (Schur) multipliers of K(§1 8 K(§) would

be an interesting problem.
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