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ISOMETRIC MULTIPLICATION OF
HARDY-ORLICZ SPACES

W. Dees, R. KHaLiL AND M. MArRzua

For a modulus function ¢ , we define the Hardy-Orlicz space
H(¢) . Two main questions are discussed in this paper. First,

when is a linear map mg D H(e) > HGB) , Mg(f7 = g.f an isometry?

Second, when is H(¢) = HI 2

0. Introduction.

Let A be the open unit disc in ¢ , the set of complex numbers,

and H(A) be the space of analytic functions in A . If T is the unit

circle, then Lp(T) denotes the space of p-Lebesgue integrable functions,

0 <p £ . The classical Hardy spaces will be denoted by

2n .
= { fe H(D) : sup J If(rele) Pde<o },0 <p <o,

0<r<l

and B is the space of bounded analytic functions in A
It is very well-known that every f € HP has a radial limit function,
also denoted by f , in P(T) . Further, H’ can be considered as a

closed subspace of Lp(T) , when equipped with the metric:
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1
(J |f(z) - gtz)|P dz )P p 21
T

d(fsg) = |
|flx) - g(z)|P dx 0<p<1.

N N—

\

Another important and interesting class in H(A) is the Nevalinna

class:

on .
N= { fe HA) : sup J m(1 + |fre®)|)de < m} )
0<r<l1

+
By N we mean as usual the space

+ Zm i0 am 10
N = {f‘ € N : sup J In(1+ |f(re °)|)de = J In(1+|f(e )l)de} .
0<r<1 70 0

We may think of the metric for i 0<p<l and N as given by

1 [ET i6 i8
d(f,g) = sup o J o(|f(re™”) - glre™”)|)de
Osp<1 “7 0

where

¢(x) = xp for Hp
and ¢(x) = In(1 + |x|) for N .

It is clear that in both of these cases ¢ is continuous, increasing,
subadditive and zero only at zero. Moreover ¢(|u|) is subharmonic for
every u € H(A) . Assuming that we have a function ¢ as described

above we can define the space

. A i8 an 16 ‘
H(o) ={Ff e H (8) : o|f(e”")|de = sup o(|f(re*”)|)do
0 0<r<1 /0

where Ht denoted the subspace of H(A) consisting of functions which
have radial limits almost everywhere. See [2] for more details about

these spaces. See [9] and [10] for general related results.

In this paper we consider the following question: if g € H(¢)

and the map mg(f? = f.g 1is an isometry what can we say about g ? Our

result in this regard generalizes the known one for HP , see [4]. 1In
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Section 3 we consider the very natural question: what condition on ¢
would guarantee that H(¢) = HJ ? Finally we consider the projective
tensor product of H(¢) with itself,

1. Preliminaries and Notation.

A function ¢ : [0,») > R is called a modulus function if:
(i) ¢ 1is continuous and increasing,
(ii) ¢(x) =0 if and only if =z =20 ,
(iii) o¢(x + y) < o(x) + ¢(y) .
Examples of such functions are: ¢(x) = &£ 0 < p <1, ¢(x)= In(1 + z).
In fact if ¢ is a modulus function then Y(z) = _ofx) is a
1+ ¢(x)
modulus function, and for modulus functions ¢1,¢2 , the function

w = ¢1 ° ¢2 is a modulus function.

Throughout the paper, we will assume that our modulus function
satisfies the additional conditions that ¢(|u|) is a subharmonic

function whenever u € H(A) , and ¢ is strictly increasing.

Let H (M) = {f € H(A) : lim f(reie) exists a.e.} . Thus H (A)
r+1

can be viewed as a space of functions on T .
Now, we define the Hardy-Orlicz space:
2n . 2m .
+
H(p) = {f e H (8) : sup J olr(re™®)|de = J o|7e*®)|de < = } ,
0sr<1 ’0 0

where ¢ is a modulus function. On H(¢) we define a metric

Zm 70 78
d(f,g) = llf - g”¢ = fo ¢|f(e ) - gle )lde .

With this metric, H(¢) is a topological vector space. Further, since
we are assuming that ¢(|u|) is subharmonic for u € H(A) , the space
H(¢) 1is an F-space, [Z]. If ¢ is bounded, then H(¢) = H(A). 1If

o(x) = In(1 + &) 0 < p £ 1 , then we write Np for H(¢) . Clearly

N1 = N+ E.Np , noting that In(1 + £) = ¢1 ° ¢2(x) , where
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¢,(x) = (1 +2), dylx) = &£
In [2], it was shown that Hl < H(¢) for all modulus functions ¢.
am 0
Throughout the paper, we write ||f||¢ for J o|fe”")|de ,
0
f e H(¢)

2. Multiplication on H($) .

Throughout this section, we will view H(¢) as a space of functions
defined on T . A function g defined on T is called a (Schur)
multiplier of H(¢) if g.f € H(¢) for all f e H($) , where
(g.f)(x) = glx).flx).

The set of all multipliers of H(¢) will be denoted by M(H(¢$)) .

It is well known (and easy to prove) that M(EP) = H® . 1In this section
we characterize M(H(¢)) for a large class of modulus functions. First

we need the following
LEMMA 2.1. Let ¢ be a modulus function which satisfies:

() for any f e B there exists g € H(¢) such that

o(lgl) = 17l ;
(i1) o¢(x).d(y) < ¢(x.y) forall 21 and y 2 0.

2n . .
If g e MH($)), and f ¢ a? , then f (¢|g(e7’e)|).f(ete)de < o,
0

Proof. Since 1 e H(¢) , it follows that g € H(¢) . Let

E=1{0: |g(e’®)] 21} . Then

am 8 i6 18 9 18 18
I dlge )| |fte )km==f¢ww )| frte )qufﬂgw )| fe™")|de
0 E

By the first assumption on ¢ , there exists % € H(¢) such that

lfl = ¢|hl . Consequently, using assumption (ii) on ¢ , we have

IA

&m 76 i8 L0 A
f olgle” )| |f(e”")|de f $|g(e*®) . ne*®)|do + ¢(1).||h||¢ ,
0 E

IA

hgll, + o0l <=,
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since g € M(H(¢)). O
THEOREM 2.2. ILet ¢ be a modulus function satisfying the con-

ditions in lemma 2.1. If Lim ¢(z) = = , then M(H($)) = H .
230

Proof. Let g e M(H(¢)). Lemma 2.1 implies that

on . .
f ¢[lg(6ze)| + i] .lf(ete)|d3<m for all f e gl . It follows easily
0 i,

that In(1 + ¢|g(eze)l) € LJ(T) . Hence, [5, p.53], there exists
u e Hl such that 1 + ¢|g| = |u| . consequently

2T . .
I Iu(ete)l.lf(ete)lde <o for all f e gl . This implies that
0

u e M(Hl) =H . Thus I+ ¢lg| € B . since 1lim¢(x) = » , it follows
x> o«
that g € H® . Hence M(H($)) E‘Hm . That H < M(H(¢)) is clear.

Hence H = M(H(4)) . ]
COROLLARY 2.3. M(H) =8, 0 <p < 1.

Proof. The modulus function defining 4 , 0 <p<1,is
d(x) = xp . For f e Hp , one can write f = u.v , where u is an inner
function, and v is an outer function, [3], such that ]flp = Ivlp .

Thus vp € Hl . Hence ¢ satisfies condition (i) of Lemma 2.1.

Condition (ii) of Lemma 2.1 is clearly verified for ¢ . So the result

in Lemma 2.1 is true for HP , and therefore by Theorem 2.2, M(Hp) =H.

THEOREM 2.4. Let ¢ be a modulus function such that
$l(z.y) s o(x) + ¢(y) for all x,y ¢ [0,2). Then M(H($)) = H($) .

Proof. since 1 e H(¢) , clearly, M(H($)) < H(¢) . Let
g € H(¢) . Then for any f e H($) we have

2n . . 2n . 2% .
j s|£(e*®).g(*%)|de s[ o|r(e*®)|de +J olgte*®)|de
0 0 0
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s ||f||¢+ llgl|¢<m .
Hence g M(H($)), 0

COROLLARY 2.5. m(N ) =0, 0<ps<1.

Proof. This modulus function defining Np is o(x) = In(1 + &),

Since

olzay) = (1 + (x.y)P) < In(1 + L) + (1 + ),

N_. 0
p

For g € M(H($)) , one defines a linear map mg on H(¢) by

theroem 2.4 applies to give M(Nb)

mg(f? =g.f for f e H(¢) . The map mg will be called an isometry if
= H .
[Im (P = Tl for a1 f e (o)

THEOREM 2.6. Let ¢ be a modulus function such that 1lim ¢(z) = =,

>
Let g e M(H(¢)) . Then o is an isometry on H(¢) if and only if
lgl = 1 for almost all .

Proof. If |g| = 1 , then it is easily seen that m is an

isometry.

Let mg be an isometry on H(¢) . Then gn € H($) for all n ,

aa |1g"1, = Vlall, -

Let E = {8 : lg(ete)l > 1}. First we show that £ has Lebesgue

1]

measure zero. Suppose FE has a positive Lebesqgue measure, so that

2]
[ olge® a0 < 11511, = 1lgll, -
z ¢ ¢

since |g| > 1 on E , by Fatou's lemma we get

o = J lin ¢|g"(c*%) |de < lim I olg"e*®) |do < lHgll, -
E n n ‘E

This contradiction implies that FE has Lebesgque measure zero,

Let B= (6 : |ge*® | < 1} . Then 1lim olg" e )] = 0 on B,

71-+00
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1 on B° , it follows that

since [1g"]1, = llgll, » ana lg]

f ¢)g(e®®) ao

J olg™ %) |ds .
B B

The Lebesgue domoninated convergence theorem implies that

j ¢|g(eie) |de = 0 .
B

Consequently, ¢|g(e$e)| = ¢ on B, and hence g=0 on B . But g
is the radial limit of an analytic function in A . This implies that
B has Lebesgue measure zero. From this we conclude that |g| =1

a.eon T. ]

1

3. Equality of H and H(4).

1

In [2], it was shown that H' c H(¢) for all ¢ . Further, if

r o(x)
2
0 X

of when HI = H(¢) .

dx < » , then HZ c H(¢) . 1In this section we study the question

THEOREM 3.1. Let ¢ be a given modulus function. Then the

following are equivalent:

(0) im M5 im U oo s, e/
2300

x>0
. 1
(i1) H($) = H and ||f||15>\||f||¢sn||f||1. for all
f e H(¢) , and some constants A,neR+.
Proof. (i) - (ii) . Choose 0 < a < b such that 5 %r on
[0,a) and Qéﬁi 28 on (b,») , for some r, s € .

let f e H(¢) , and

E(a) = {6 : 0 < |f]l <al
E(b) = {e : |f] > b}
E(a,b) = {6 : a < |f|] sb}.

https://doi.org/10.1017/50004972700010042 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700010042

184 W. Deeb, R, Khalil and M. Marzuq

Then

||f||1=J |£¢e*®) |de + f |£¢e*®) |de + J |7(e*®) |do
E(a) E(a,b) E(b)

sLilsllg [ 1re™as # L1l -
E(a,b) '

. (x) | ; .
The function 9;— is continuous on [a,b] , consequently there exists

¢ € (a,b) such that %2 9% for all x € [a,b] . Hence

¢(x) 2 t.x on [a,b] . It follows

1 1 1
ety < 2011, + 2 1sll, + 2111,

< Allfll, <o .
1 1 1
where A = max (;, z° g)
Similarly one can show that ||f] |¢ < A7) |1 . Thus (ii) is proved.
(ii) + (i). Consider the map f(eie) =x eie , x>0 . Then
||f||1 =z, ||f||¢ = ¢(x) . From (ii) we get
x < Ap(x) < nx .
Hence 1 < M < 1 .
A x A

Consequently lim 9% is finite and 1lim %(:c—) is finite. This
x>0 Fo )

proves (i) . 0

THEOREM 3.2, If Iim 9%= 0, then B ; H(s) .

L-»o0

’

. X
Proof. Since 1lim $lx) _ 0 , one can choose a sequence z > M
X x
Tn
such that q>(.'z:n) < ol With no loss of generality, we can choose
o
. 1

x >x for all n . Since x_< Yn , then H =¢ < @,
n+1 n n nx,

Choose points Y, € [0,2n) such that Yo = 2% , and Yy > Ypp1
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2n .
- = e——— r .
for all n , and y, -y, ;=5 xn'H . The interval [0, 2r] is then
partitioned into disjoint intervals Ih = (yn—l’ yn] > nEJIyn - yn-ll = 2,
Define the function f on (0,271] such that f(z) = x, on In .
o
Il = = [ slrtlas
LA
I
n

ool )y, -y, 4l
n=1

A
Il >8

-—1—<oo
n1n2

Hence f € L(¢) = {f : T ¢ : J ¢|f| < m} . But

T
11, = £ [ lrtlax
n=0 I
n
= nil .’L‘n. |yn - yn 1'
=3 x = o

1
Hence f & L .
It is not difficult to see that one can construct [ to be
. . . 1
continuous, without changing the facts that f e H(¢) but f ¢ H .

Now, consider the following sequence of functions:

n
fh(x) = flx) if =z e j:] I, = En , define fh on
o, yn) by fh(x) =% . Then f e C(T) for all n , and fh(x) < flx)

for all x ¢ [0, 2n] . Thus
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I]fﬁ||¢ < ||f||¢ , for all n . Further

T
gy > [ Iflass 5 & &
k=1
EVL

Let € > 0 . By Wermer's maximality theorem, [8§] , for each = ,

one can find g € C(T) such that ||fh - gnllw < € . Further, there

exists Gn € H(A) such that

lim G (reie) =g (eie) for almost all 6 .
oy 7 n

Now :
6,11, = Hgyll, < 115,11, + &

for all n . Since ¢ is assumed to satisfy the condition that ¢|u|

subharmonic for u € H(A) , it follows that, [2],

¢flc, 11 -
lcn(z)l < —9) for all z = re*® ¢ &

Consequently, the sequence {Gn} is uniformly bounded on compact subsets

of A , and so it is a normal family.

Hence there exists a subsequence (Gn ) which converges uniformly on

J

compact sets to some analytic function G e H(A) . Since

Zm i8 am i6
[ ¢|G(re””)|de = 1im f ¢|Gn (re””)|de ,
0

!
=
—
+
[
"

it follows that G ¢ H(¢) .

e, > £, - ¢

an

Since ||G ||1 = lim J |G (reie)|d6 » We get
n 1 ), n
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2% -
J lere®®)|do = (= %-) - €,
k=1
0
1 1
for some r ¢ (0,1) . Hence G ¢ H . Hence H ; H(¢) . 0O

4, H(¢) §H(¢) .

Let H(¢) @ H(¢) be the space of all analytic functions f on

n
2% = A x A, such that f(z,w) = % w,(z) v ) , u, , v, € H(o) , for

1=1
some modulus function ¢ ., We will assume that ¢ satisfies the condition
that ¢|u| is subharmonic if wu € HfA) . Let us define the metric d on
H(¢) 8 H(d) by:

n
gl - 1l )

1=

d(f,g) = inf {

where the infimum is taken over all representations of f - g in
H(4) @ H(¢) . Once can easily check that d 1is a metric on H(¢) @ H(4),

and we write

IF - oll, sor dlf,g)
The space H(¢) & H(¢) with the metric d is not complete. We write
H($) @ H($) for the completion. Following [1], one can show that every

~ o
element in H(¢) @ H($) has a representation f= T u; e vs o
i=1

o« [o+]
E bl Moyl <o ana 1ipll de = snef T Tl 11}
The space H(¢) é H($) will be called the projective tensor product of

H(¢) with itself.

Tensor product is usually defined for locally convex topological
vector spaces. The space H(¢) is not locally convex in general. The

main result of this section is:
THEOREM 4.1. H(¢) @ H(4) ie a topological vector space.

Proof. First, we remark that d is a quasi-norm on H(¢) & H(¢) .
That is:
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(i) d(f,0) = 0 if and only if f =20
(ii) doo,-f) = d(o,f)
(iii) d(f+g, 0) s d(f, 0) + d(g, 0} .

These follow easily from the properties of the metric d and the

representations of functions in H(¢) ) H(p) .
From Proposition 1 of [7, p. 38], it remains to show that:

(i) if o >0, then dla .f,0) >0 for all f e H(¢) 8 H() ;

(ii) if d(fh) + 0 , then d(afh,O) + 0 for all a € R .

n

To prove (i): let f = I u, & v, € H($) é H(¢) . Then
=1
k
0 s ata,£,00 51 o wll, - Hlo 1l
1=1
and
k
lim d < L i . . , =0 .
;m (anfLO) 2 ;m ||an utH¢ llvz||¢

o o«
£ = 1 . . E . . . defi h
Now, for f Iy u; 8 v, o 2 Iluzl|¢ ||v$||¢ < = , define the

sequence of functions
i) = |lo. u, . v. .
g, = Ha, wll, - 111,
The Lebesgue dominated convergence theorem on the set on natural numbers

with the counting measure implies:

«©
lim d(o_f,0) <€ lim I o u. . v
Lin d(a £,0) = 1in T o, ull, - Il
-2
< I 1i . . .
< o le, gl - gl
=0 .

To prove (ii): let fh € H(o) @ H($) , d(fh,O)*O . Let k be a
positive integer such that k > a . Then

d(a.f,,0) < d(kf,,0) s k.d(f,,0) > 0
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This completes the proof of the theorem, 0

Characterization of the (Schur) multipliers of H(¢) & H(¢) would

be an interesting problem.
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